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Abstract
The aim of hybrid inverse problems such as Acousto-Electric Tomography or
Current Density Imaging is the reconstruction of the electrical conductivity in a
domain that can only be accessed from its exterior. In the inversion procedure,
the solutions to the conductivity equation play a central role. In particular, it
is important that the Jacobian of the solutions is non-vanishing. In the present
paper we address a two-dimensional limited view setting, where only a part of
the boundary of the domain can be controlled by a non-zero Dirichlet condi-
tion, while on the remaining boundary there is a zero Dirichlet condition. For
this setting, we propose sufficient conditions on the boundary functions so that
the Jacobian of the corresponding solutions is non-vanishing. In that regard we
allow for discontinuous boundary functions, which requires the use of solutions
in weighted Sobolev spaces. We implement the procedure of reconstructing
a conductivity from power density data numerically and investigate how this
limited view setting affects the Jacobian and the quality of the reconstructions.

Keywords: acousto-electric tomography, current density imaging,
hybrid inverse problems, coupled physics imaging, non-vanishing Jacobian,
conductivity equation

(Some figures may appear in colour only in the online journal)

1. Introduction

In certain imaging applications it is important to know whether solutions u1 and u2 to the
conductivity equation{

−div(σ∇ui) = 0 in Ω,

ui = gi on ∂Ω,
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satisfy the following non-vanishing Jacobian condition:

det[∇u1(x)∇u2(x)] ̸= 0, for x ∈ Ω. (1)

Here Ω⊂ R2 is a bounded Lipschitz domain and σ ∈ L∞(Ω,R2×2) is an anisotropic con-
ductivity. This question arises in Acousto-Electric Tomography that aims at reconstruct-
ing the unknown interior conductivity σ from internal data composed of power density
measurements [ZW04, Amm+08]. Similar questions appear in other imaging methods includ-
ing Current Density Imaging [WS12, Bal13, Li+21] andMagnetic Resonance Electric Imped-
ance Tomography [SKW05, SW11] that aim at reconstructing the conductivity from current
density measurements. These questions are relevant in any dimension n⩾ 2, but in this article,
we will restrict our attention only on the two-dimensional case.

The reconstruction procedure in Acousto-Electric Tomography is characterized by two
steps: First reconstructing interior power density data Hi j = σ∇ui ·∇u j from combined
information from boundary measurements and perturbations by acoustic waves, and secondly
reconstructing σ from the power density matrixH ∈ R2×2. The non-vanishing Jacobian condi-
tion (1) is essential for the second step in the reconstruction procedure, as it requires inverting
the matrix H.

The question whether one can find conditions on the boundary functions g1 and g2 so that
the non-vanishing Jacobian condition (1) is satisfied dates back to Radó in the 1920s. For
the constant coefficient case σ = I2 an answer to this question is formulated in the Radó-
Kneser-Choquet theorem [Rad26, Kne26, Cho45]. This result was generalized to non-constant
coefficients in [Ale86, Ale87, AM94, AN01, BMN01, AN15]. For instance, [BMN01] require
that g= (g1,g2) is a C1 diffeomorphism and maps ∂Ω onto the boundary of a convex domain
for the condition (1) to hold. A discussion of results of this type is given in [AC18] (see also
[Alb22] for recent work on random boundary data).

In this paper, we address the same question in a limited view setting that is characterized
by a non-empty closed part of the boundary, Γ⊂ ∂Ω, which we can control, while on the rest
of the boundary the potentials u1 and u2 are vanishing:

−div(σ∇ui) = 0 in Ω,

ui = fi on Γ,

ui = 0 on ∂Ω\Γ.
(2)

The Radó-Kneser-Choquet type results mentioned above cannot be applied directly in limited
view, as g= (u1,u2)|∂Ω is not injective. However, we show that the arguments for proving such
results can be adapted to the limited view setting, and we formulate sufficient conditions under
which the corresponding Jacobian is non-vanishing. We also allow the boundary functions to
be discontinuous (e.g. piecewise smooth), which seems natural in this setting and requires the
use of weighted Sobolev spaces. For H1/2 boundary functions having bounded variation the
result is a consequence of [AM94, theorem 2.7], while the result for discontinuous boundary
functions is new. We illustrate by numerical simulations how these conditions can be used to
reconstruct an isotropic conductivity from power density data. For the numerical simulations
an analytic reconstruction approach is used [MB12b].

2. Main results

We will consider the conductivity equation−div(σ∇u) = 0 inΩ, where the conductivity mat-
rix σ is symmetric and satisfies for some λ,Λ> 0 the ellipticity condition

λ|ξ|2 ⩽ σ jk(x)ξ jξk ⩽ Λ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn. (3)
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The first result states that the presence of an interior critical point for a nonconstant solution
u forces oscillations in its boundary data. The result is known for H1/2 boundary data, see
[AC18, proposition 6.7], but we give an extension to the case where the boundary data can
be slightly worse that H1/2 (e.g. piecewise smooth). Boundary data in Hs with s⩽ 1/2 may
be discontinuous, and for such functions, we can use a quasicontinuous representative to talk
about their pointwise values [AH96, chapter 6]. The notationH1(Ω,d1−2s) for weighted spaces
is explained in section 3.

Proposition 2.1. Let Ω⊂ R2 be a simply connected bounded Lipschitz domain and let
σ ∈ C0,α(Ω) satisfy (3). There is ε>0 with the following property: if f ∈ Hs(∂Ω) where
|s− 1/2|< ε and if u ∈ H1(Ω,d1−2s) is a nonconstant solution of{

−div(σ∇u) = 0 in Ω,

u= f on ∂Ω,

and if ∇u(x0) = 0 for some x0 ∈ Ω, then there are x1,x2,x3,x4 ∈ ∂Ω that are in counterclock-
wise order along ∂Ω such that

u(x1)> u(x0), u(x2)< u(x0), u(x3)> u(x0), u(x4)< u(x0).

Proof. We follow the argument in [AC18, proposition 6.7]. By [Sch90, theorem 2.3.3] the
interior regularity of u is C1,α

loc (Ω). As x0 is a critical point of u it follows from [AC18, propos-
ition 6.6] that in a neighborhood U of x0 the level set {x ∈ U : u(x) = u(x0)} is made of m+ 1
arcs intersecting with equal angles at x0 for some m⩾ 1. We note that by [AC18, proposition
6.5 (i)] the set {x ∈ U : u(x)> u(x0)} is made of m+ 1 connected components that we denote
by U+

l :

{x ∈ U : u(x)> u(x0)}=
m+1⋃
l=1

U+
l .

Furthermore, by the same proposition it follows that these connected components alternate
with the corresponding connected components U−

l of the set {x ∈ U : u(x)< u(x0)}. We now
consider the corresponding sets over the whole domain Ω. The components of {u(x)> u(x0)}
are denoted by Ω+

j and

{x ∈ Ω : u(x)> u(x0)}=
⋃
j∈J

Ω+
j .

Similarly, the components of {u(x)< u(x0)} are denoted by Ω−
j and

{x ∈ Ω : u(x)< u(x0)}=
⋃
k∈K

Ω−
k .

Now pick indices j1, j2 ∈ J such that U+
1 ⊂ Ω+

j1 and U
+
2 ⊂ Ω+

j2 . It follows from theorem 3.6
that the weak maximum principle holds for H1(Ω,d1−2s) solutions (in order to apply theorem
3.6 it is required that s satisfies |s− 1/2|< ε for a suitable ε> 0). Therefore if u(x)> u(x0)
holds in the interior of the domainsΩ+

j1 andΩ
+
j2 , then one must have u(x1)> u(x0) and u(x3)>

u(x0) for some x1 ∈ ∂Ω+
j1 and x3 ∈ ∂Ω+

j2 . Since u(x) = u(x0) for x ∈ ∂Ω+
ji ∩Ω, we must have

x1 ∈ ∂Ω∩Ω
+

j1 and x3 ∈ ∂Ω∩Ω
+

j2 . By construction there exist indices l1, l2 ∈ [1, ..,m+ 1] so
that U−

l1
is located between U+

1 and U+
2 and U−

l2
is located to the other side of U+

2 . We now
pick indices k1,k2 ∈ K such that U−

l1
⊂ Ω−

k1
and U−

l2
⊂ Ω−

k2
. By the weak maximum principle
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(theorem 3.6) there then exist points x2 ∈ ∂Ω∩Ω
−
k1 and x4 ∈ ∂Ω∩Ω

−
k2 such that u(x2)< u(x0)

and u(x4)< u(x0) yielding the desired statement.

Let γ : [0, ℓ]→ R2 be a C1 curve (we do not require that γ(0) = γ(ℓ)). We say that γ is
regular if γ̇(t) ̸= 0 for all t ∈ [0, ℓ]. For a regular curve, we may write a polar coordinate rep-
resentation for the tangent vector γ̇(t) as

γ̇(t) = r(t)eiϕ(t)

where r(t) = |γ̇(t)| and ϕ(t) are continuous functions in [0, ℓ]. The function

arg(γ̇(t)) := ϕ(t)

is well defined modulo a constant in 2πZ. We define

Ind(γ̇) :=
arg(γ̇(ℓ))− arg(γ̇(0))

2π
.

If γ is closed, i.e. γ(0) = γ(ℓ), then Ind(γ̇) is the winding number of the curve γ̇(t) (also called
the rotation index of γ(t)), which is an integer. If γ is not closed but arg(γ̇(t)) is monotone
(i.e. nondecreasing or nonincreasing), we may still interpret Ind(γ̇) as the winding number of
γ̇(t), and this is then a real number.

We now give sufficient conditions on a pair of boundary data vanishing outside an arc
Γ such that the corresponding solutions u1,u2 satisfy det[∇u1(x)∇u2(x)] ̸= 0 everywhere in
Ω. Condition (a) below is related to the case where ui|∂Ω are continuous and condition (b)
allows discontinuous boundary data. Note that part (a) can be seen as a consequence of [AM94,
theorem 2.7], while for part (b) proposition 2.1 is needed.

Theorem 2.2. Let Ω⊂ R2 be a bounded simply connected domain with C1 boundary curve
η : [0,2π]→ ∂Ω, and let σ ∈ C0,α(Ω;R2×2) satisfy (3). Let Γ = η([0, ℓ]) be a closed arc in
∂Ω. Let f1, f2 ∈ C1(Γ) be linearly independent, and assume that ui is the unique solution of

−div(σ∇ui) = 0 in Ω,

ui = fi on Γ,

ui = 0 on ∂Ω\Γ.
(4)

Assume that the curve γ : [0, ℓ]→ R2, γ(t) = ( f 1(η(t)), f2(η(t))) is regular, arg(γ̇(t)) is mono-
tone, and that one of the following holds:

(a) ui|∂Ω are continuous, and |Ind(γ̇)|⩽ 1; or
(b) ui|∂Ω are continuous at η(0), and |Ind(γ̇)|⩽ 1/2.

Then det[∇u1(x)∇u2(x)] ̸= 0 for all x ∈ Ω.

Proof. Assume that (a) or (b) holds, but one has det[∇u1(x0)∇u2(x0)] = 0 for some x0 ∈ Ω.
Then there is a vector α⃗= (α1,α2) ∈ R2 \ {0} such that the function

u= α1u1 +α2u2

satisfies∇u(x0) = 0. Note that if u is a constant, then by the boundary condition one has u≡ 0
and hence f 1 and f 2 would be linearly dependent. Thus, we may assume that u is nonconstant.
Note that ui|∂Ω are piecewise C1 and hence they are also in Hs(∂Ω) for any s< 1/2. This
implies that ui ∈ H1(Ω,d1−2s) by theorem 3.5. Then by proposition 2.1 there exist distinct
points x1,x2,x3,x4 ∈ ∂Ω that are in counterclockwise order along ∂Ω such that

u(x1)> u(x0), u(x2)< u(x0), u(x3)> u(x0), u(x4)< u(x0).

4
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Consider the function g : [0, ℓ]→ R given by

g(t) := u(η(t)) = α⃗ · γ(t). (5)

Extend g by zero to [0,2π). Writing x j = η(t j) where t j ∈ [0,2π), we have

g(t1)> u(x0), g(t2)< u(x0), g(t3)> u(x0), g(t4)< u(x0). (6)

We may assume that t1 < t2 < t3 < t4 (possibly after a cyclic permutation of the indices and
after changing g to −g).

We now assume that (a) holds, and want to derive a contradiction with (6). The function g
is C1 on [0, ℓ] and its derivative satisfies

g ′(t) = α⃗ · γ̇(t). (7)

Since arg(γ̇(t)) is monotone and |Ind(γ̇(t))|⩽ 1, it follows that g ′(t) either has at most two
zeros in [0, ℓ], or has three zeros two of which are at t= 0 and t= ℓ. Note that if the argument
is not strictly monotone, we make the interpretation that some of these zeros of g′ could be
intervals. We also note that by (7) and monotonicity of arg(γ̇(t)), g′ changes sign after each
of these zeros. Now suppose that u(x0)⩾ 0. Using the assumption that u|∂Ω is continuous, we
have g(0) = 0, and then (6) implies that g′ is positive somewhere in (0, t1), negative somewhere
in (t1, t2), positive somewhere in (t2, t3), and negative somewhere in (t3, ℓ). On the other hand,
if u(x0)< 0, we use the fact that g(ℓ) = 0 to obtain similarly that g′ is negative somewhere in
(t1, t2), positive somewhere in (t2, t3), negative somewhere in (t3, t4), and positive somewhere
in (t4, ℓ). In both cases g′ has at least three zeros in (0, ℓ). Moreover, before the first such zero,
after the last zero, and between each subsequent pair of these zeros there are points where g′

is nonzero. This is a contradiction.
Assume that (b) holds. One has the formula (7) for g ′(t) on [0, ℓ]. Since arg(γ̇(t)) is mono-

tone and |Ind(γ̇(t))|⩽ 1/2, g ′(t) either has at most one zero (that could be an interval) in
[0, ℓ], or has two zeros (that could be intervals) which are at t= 0 and t= ℓ. By the assumption
that ui|∂Ω is continuous at t= 0 it follows that g(0) = 0, while there may be a discontinuity at
t= ℓ. If one has u(x0)⩾ 0, it follows from (6) that g′ is positive somewhere in (0, t1), negat-
ive somewhere in (t1, t2), and positive somewhere in (t2, t3). On the other hand if u(x0)< 0,
from (6) one sees that t4 ∈ (0, ℓ] and hence g′ is negative somewhere in (t1, t2), positive some-
where in (t2, t3), and negative somewhere in (t3, t4). In both cases g′ has at least two zeros in
(0, ℓ) and before, between, and after these zeros there are points where g′ is nonzero. This is a
contradiction.

Remark 2.3. In the setting of theorem 2.2, let Γ = η([0, ℓ]) and Γd = η([0, ℓd]) with ℓd < ℓ.
Boundary functions f1, f2 ∈ C1(Γ) that satisfy the assumptions and condition (a) in theorem
2.2 can also be used to generate boundary functions f d1 , f

d
2 ∈ C1(Γd) whose zero extensions

are discontinuous. Define f di as

f di (η(t)) = fi(η(t))χ[0,ℓd](t).

This yields solutions udi that satisfy det[∇ud1(x)∇ud2(x)] ̸= 0. This allows for boundary func-
tions that are not captured in condition (b) in theorem 2.2, as in this case it is possible that
1/2< |Ind(γ̇d)|, where γd(t) = ( f d1 (η(t)), f

d
2 (η(t))).

Proof. Assume that one has det[∇ud1(x0)∇ud2(x0)] = 0 for some x0 ∈ Ω. Then there is a vector
α⃗= (α1,α2) ∈ R2 \ {0} such that the function

ud = α1u
d
1 +α2u

d
2

5
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satisfies ∇ud(x0) = 0. As udi |∂Ω is piecewise C1 it follows by the analysis in the proof of the-
orem 2.2 that there exist distinct points x1,x2,x3,x4 ∈ ∂Ω that are in counterclockwise order
along ∂Ω such that

ud(x1)> ud(x0), ud(x2)< ud(x0), ud(x3)> ud(x0), ud(x4)< ud(x0).

We then consider the function gd : [0, ℓ]→ R,

gd(t) := ud(η(t)) = (α⃗ · γ(t))χ[0,ℓd](t)

where γ(t) = ( f 1(η(t)), f2(η(t)) for t ∈ [0, ℓ] as before. We extend gd by zero to [0,2π). Writ-
ing x j = η(t j) where t j ∈ [0,2π), we have

gd(t1)> ud(x0), gd(t2)< ud(x0), gd(t3)> ud(x0), gd(t4)< ud(x0). (8)

Furthermore, we consider the function g : [0, ℓ]→ R for the same vector α⃗:

g(t) := α⃗ · γ(t).

Since arg(γ̇(t)) is monotone and |Ind(γ̇)|⩽ 1, it follows that g ′(t) has at most two zeros
in (0, ℓ), or three zeros two of which are at t= 0 and t= ℓ. (Again these zeros could be inter-
vals.) Since u j|∂Ω are continuous, we have f j(η(0)) = f j(η(ℓ)) = 0 and thus g(0) = g(ℓ) = 0.
Suppose that g ′(t) has exactly two zeros in (0, ℓ). Then since g′ must change sign after each
zero, there exist two intervals (0, ti) and (ti, ℓ) so that either

g(t)⩾ 0 for t ∈ (0, ti) and g(t)⩽ 0 for t ∈ (ti, ℓ),

or

g(t)⩽ 0 for t ∈ (0, ti) and g(t)⩾ 0 for t ∈ (ti, ℓ).

On the other hand if g ′(t) has at most one zero, or three zeros two of which are at t= 0 and
t= ℓ, then either

g(t)⩾ 0 for t ∈ (0, ℓ) or g(t)⩽ 0 for t ∈ (0, ℓ).

The behavior of g translates to gd, as gd is the restriction of g to the interval [0, ℓd] with ℓd < ℓ.
It follows that there are at most two intervals for which gd is nonnegative and nonpositive
respectively, and additionally (gd) ′ must change sign after each of its zeros. This is in contra-
diction with (8) as no matter if ud(x0)≥ 0 or ud(x0)⩽ 0 it is not possible for gd to have two
points for which gd(t)⩾ u(x0) and two points for which gd(t)⩽ u(x0) in alternating order.

Remark 2.4. For boundary functions f 1 and f 2 that satisfy one of the conditions in theorem
2.2 it is determined by the order of the functions whether det[∇u1(x)∇u2(x)] is positive or
negative for all x ∈ Ω.

Remark 2.5. Let Ω be a C1,α domain and f1, f2 ∈ C1,α(Ω), then ui ∈ C1,α on Ω away from
the endpoints of Γ [GT01, Corollary 8.36]. Due to the limited view setting det[∇u1(x)∇u2(x)]
is zero for x ∈ ∂Ω \Γ. Therefore

in f
x∈Ω

det[∇u1(x)∇u2(x)] = 0.

Proof. We decompose ∇ui into two parts with contribution from the unit outward normal ν

and the tangent vector ω = J ν with J =

(
0 −1
1 0

)
:

∇ui = (∇ui · ν)ν+(∇ui ·ω)ω.

6
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As ui|∂Ω\Γ = 0 by the boundary value problem (4) it follows that there is no contribution in
ω-direction. Therefore both ∇u1|∂Ω\Γ and ∇u2|∂Ω\Γ are parallel to the unit normal ν so that
det[∇u1|∂Ω\Γ∇u2|∂Ω\Γ] = 0.

3. Dirichlet problem in weighted spaces

Let Ω⊂ Rn be a bounded open set with Lipschitz boundary, and consider the operator

Lu=−∂ j(σ
jk∂ku)+ cu

where σ jk,c ∈ L∞(Ω), σ jk = σk j, and (σ jk) is uniformly elliptic in the sense that for some
λ,Λ> 0,

λ|ξ|2 ⩽ σ jk(x)ξ jξk ⩽ Λ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn. (9)

We wish to consider the Dirichlet problem

Lu= 0 in Ω, u= f on ∂Ω

in suitable weighted Sobolev spaces. For general references on weighted Sobolev spaces see
[Tri78, chapter 3] and [Kuf80]. The following theory in the L2 setting is mostly in [Kuf80], but
for completeness and possible later use for discontinuous boundary functions we also discuss
the Lp theory following [Kim08] but with slightly different notation. The results for p ̸= 2 are
not used in the other sections of this article.

Definition 3.1. Let Ω⊂ Rn be a bounded open set with Lipschitz boundary. Let 1< p<∞
and α ∈ R, and let d(x) = dist(x,∂Ω). Consider the norms

∥u∥L p(Ω,dα) = ∥udα/p∥L p(Ω),

∥u∥W1, p(Ω,dα) = ∥u∥L p(Ω,dα) + ∥∇u∥L p(Ω,dα).

Let W1,p(Ω,dα) be the space of all u ∈ Lploc(Ω) with ∥u∥W1, p(Ω,dα) <∞. We also define

W1,p
0 (Ω,dα) as the closure of C∞

c (Ω) in W1,p(Ω,dα).

The spaces W1,p(Ω,dα) and W1,p
0 (Ω,dα) are Banach spaces, and they are equal when α⩽

−1 or α > p− 1 (see [Kuf80, proposition 9.10]). For α >−1 the set C∞(Ω) is dense in
W1,p(Ω,dα) (see [Kuf80, remark 7.2]). The trace space of W1,p(Ω,dα) can then be identified
with a Sobolev space on ∂Ω as follows.

For 1< p<∞ and 0< s< 1, let Ws,p(∂Ω) be the standard Sobolev space on ∂Ω defined
via a partition of unity, C1 boundary flattening transformations, and corresponding spaces on
Rn−1. Part (a) of the following trace theorem is given in [Kim08, theorem 2.13] (see [Tri78,
section 3.6.1] for the case of C∞ domains), and part (b) follows from [Kim08, lemma 2.14,
remark 2.15 and proposition 2.3] and lemma 3.3 below.

Theorem 3.2. Let Ω⊂ Rn be a bounded Lipschitz domain, let 1< p<∞, and let −1< α <
p− 1.

(a) The trace operator T : C∞(Ω)→ C(∂Ω), Tu= u|∂Ω extends as a bounded surjective oper-
ator

T :W1,p(Ω,dα)→W1− 1+α
p ,p(∂Ω).

Moreover, T has a bounded right inverse E :W1− 1+α
p ,p(∂Ω)→W1,p(Ω,dα).

7
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(b) The space W1,p
0 (Ω,dα) satisfies

W1,p
0 (Ω,dα) = {u ∈W1,p(Ω,dα) : Tu= 0}

= {u ∈ Lp(Ω,dα−p) : ∇u ∈ Lp(Ω,dα)}.

The three norms ∥·∥W1, p(Ω,dα), ∥·∥L p(Ω,dα− p) + ∥∇·∥L p(Ω,dα), and ∥∇·∥L p(Ω,dα) are equi-

valent norms on W1,p
0 (Ω,dα).

The following Hardy inequality is given in [Kuf80, section 9.1]. However, for later purposes
we need to make sure that the constant has a controlled dependence on α and hence we repeat
the proof.

Lemma 3.3. Let Ω⊂ Rn be a bounded Lipschitz domain, 1< p<∞, and α ∈ R, α ̸= p− 1.
There are C,C1 > 0 only depending on Ω,n, p such that

∥d(α/p)−1u∥L p(Ω) ⩽ CCα/p
1

(
1+

1
|α− p+ 1|

)
∥dα/p∇u∥L p(Ω)

for any u ∈W1,p
0 (Ω,dα).

Proof. We begin with the case of Rn
+ = {xn > 0}. Let u ∈ C∞

c (Rn
+). We integrate by parts

over Rn
+ and use the Hölder inequality to obtain

ˆ
xα−p
n up dx =

ˆ
∂n

(
xα−p+1
n

α− p+ 1

)
up dx=− p

α− p+ 1

ˆ
xα−p+1−α/p
n up−1xα/pn ∂nudx

⩽ p
|α− p+ 1|

∥x(α/p)−1
n u∥

p−1

L p ∥xα/pn ∂nu∥L p .

This implies that for any u ∈ C∞
c (Rn

+), one has

∥x(α/p)−1
n u∥L p ⩽

p
|α− p+ 1|

∥xα/pn ∂nu∥L p .

Similarly, if U= {(x ′,xn) ∈ Rn : |x ′|< r, xn > h(x ′)} where r > 0 and h : {|x ′|⩽ r}→ R is
a Lipschitz function, and if u ∈ C∞(U) vanishes near {xn = h(x ′)} and {xn =∞}, the same
argument gives that

∥(xn− h(x ′))(α/p)−1u∥L p(U) ⩽
p

|α− p+ 1|
∥(xn− h(x ′))α/p∂nu∥L p(U). (10)

Now if Ω is a bounded Lipschitz domain, then ∂Ω can be covered by finitely many balls
B1, . . . ,BN such that for each j, after a rigid motion one has B j ∩Ω= {xn > h j(x ′)}∩Ω where
hj is a Lipschitz function, and d(x) inB j ∩Ω is comparable to xn− h j(x ′) (see [Kuf80, corollary
4.8]). There is also an open set B0 with B0 ⊂ Ω so that Ω is covered by B0, . . . ,BN. Moreover,
Bj and hj only depend on Ω and not on p and α.

Let u ∈ C∞
c (Ω). We can now apply (10) in B j ∩Ω for j = 1, . . . ,N to obtain that

∥d(α/p)−1u∥L p(B j∩Ω) ⩽ C
Cα/p
1

|α− p+ 1|
∥dα/p∇u∥L p(Ω).

In B0, where d(x) is comparable to 1, we can apply a Poincaré inequality as in [Kuf80, section
9.1] and use the above estimates on B j ∩Ω to get

8
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∥d(α/p)−1u∥L p(B0)
⩽ CC

α
p

1 ∥u∥L p(B0)
⩽ CCα/p

1 (∥∇u∥L p(B0)
+ ∥u∥L p(B0∩(B1∪...∪BN))

⩽ CCα/p
1

(
1+

1
|α− p+ 1|

)
∥dα/p∇u∥L p(Ω).

The result follows by adding these inequalities and using that C∞
c (Ω) is dense inW1,p

0 (Ω,dα).

The next result, which follows from [Kim08, theorem 3.7], states the solvability of theDirichlet
problem in weighted Sobolev spaces when the Dirichlet data is in Ws,p(∂Ω).

Theorem 3.4. LetΩ⊂ Rn be a bounded C1 domain, let 1< p<∞, and let 0< s< 1. Assume
that σjk and c are Lipschitz continuous in Ω with (σ jk) satisfying (9), and assume that c⩾ 0.
Given any f ∈Ws,p(∂Ω), there is a unique solution u ∈W1,p(Ω,dp(1−s)−1) of the problem

Lu= 0 in Ω, u|∂Ω = f .

One has the estimate

∥u∥W1, p(Ω,d p(1−s)−1) ⩽ C∥ f ∥Ws, p(∂Ω)

with C independent of f.

For p= 2 we obtain a similar result in weighted L2 spaces H1(Ω,dα) :=W1,2(Ω,dα) under
weaker conditions, but assuming that s is close to 1/2.

Theorem 3.5. Let Ω⊂ Rn be a bounded Lipschitz domain. Assume that σ jk,c ∈ L∞(Ω) with
(σ jk) satisfying (9) and c⩾ 0 a.e. in Ω. There is ε>0 such that whenever |s− 1/2|< ε, then
for any f ∈ Hs(∂Ω) there is a unique solution u ∈ H1(Ω,d1−2s) of the problem

Lu= 0 in Ω, u|∂Ω = f .

One has the estimate

∥u∥H1(Ω,d1−2s) ⩽ C∥ f ∥Hs(∂Ω)

with C independent of f.

Proof. Note that |s− 1/2|< ε implies |1− 2s|< 2ε. If ε is chosen small enough, the result
follows by combining [Kuf80, theorem 14.4] and the trace theorem (theorem 3.2) above.

The next result gives a weak maximum principle for solutions in H1(Ω,dα) when |α| is suffi-
ciently small. This smallness condition is analogous to the condition that s is close to 1/2 in
theorem 3.5.

Theorem 3.6. LetΩ⊂ Rn be a bounded Lipschitz domain. Let σ jk,c ∈ L∞(Ω) be such that (9)
holds and c⩾ 0 a.e. in Ω. There is ε>0 such that if |α|⩽ ε and u ∈ H1(Ω,dα) solves

−∂k(σ
jk∂ ju)+ cu= 0 in Ω

in the sense of distributions, and if Tu⩽ C a.e. on ∂Ω, then u⩽ C in Ω. Similarly, if Tu⩾ C
a.e. on ∂Ω, then u⩾ C in Ω.

The proof uses the following simple result where we write u± =max{±u,0}.

Lemma 3.7. Let Ω⊂ Rn be a bounded open set and α ∈ R. If u ∈ H1(Ω,dα), then u± ∈
H1(Ω,dα) and the weak derivatives satisfy

9
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∂ ju± =

{
∂ ju in {±u> 0},
0 elsewhere.

If Ω has Lipschitz boundary and −1< α < 1, we also have T(u±) = (Tu)±.

Proof. If u ∈ H1(Ω,dα), then it is standard that u± ∈ H1
loc(Ω) and that ∂ ju± satisfies the for-

mula above locally in Ω. It follows directly that u± ∈ H1(Ω,dα). The formula T(u±) = (Tu)±
holds for u ∈ C∞(Ω), and it continues to hold for u ∈ H1(Ω,dα) by density.

Proof of theorem 3.6. We will prove that if Tu⩽ 0 a.e. on ∂Ω, then u⩽ 0 a.e. in Ω (the other
statements follow easily from this). This will be done by testing the equation against dαvwhere
v= u+. Let u ∈ H1(Ω,dα) and v ∈ C∞

c (Ω), and define the bilinear form

B(u,v) =
∑
j,k

(σ jk∂ ju,∂k(d
αv))+ (cu,dαv)

where the inner products are in L2(Ω). Using the Leibniz rule gives

B(u,v) =
∑
j,k

[
(σ jkdα/2∂ ju,d

α/2∂kv)+
(
σ jkdα/2∂ ju,α(∂kd)d

α/2−1v
)
+
(
cdα/2u,dα/2v

)]
. (11)

Now |∇d|⩽ 1. Using theorem 3.2 (b), the identity (11) continues to hold for all u ∈ H1(Ω,dα)
and v ∈ H1

0(Ω,d
α) by density.

Finally, let u be a solution with Tu⩽ 0 a.e. on ∂Ω. Then B(u,v) = 0 for all v ∈ H1
0(Ω,d

α),
and T(u+) = 0 by lemma 3.7. Thus we may choose v= u+, which implies that

0= B(u,u+) = B(u+,u+)−B(u−,u+).

By lemma 3.7 any product ∂βu+∂γu− vanishes a.e. in Ω for |β|, |γ|⩽ 1. This implies that
B(u−,u+) = 0, which yields B(u+,u+) = 0. We now use (11) with u= v= u+, the assump-
tion (9) for σjk, and the assumption that c⩾ 0 to obtain that

λ∥dα/2∇u+∥
2 ⩽ Λ|α|∥dα/2∇u+∥∥dα/2−1u+∥.

Using the Hardy inequality from lemma 3.3, we obtain that

∥dα/2∇u+∥
2 ⩽ Λ

λ
|α|CCα/2

1

(
1+

1
|α− 1|

)
∥dα/2∇u+∥

2
.

If ε is small enough and |α|⩽ ε, then the constant on the right is⩽ 1/2. It follows that∇u+ =
0, which implies that u+ = 0 using that Tu+ = 0.

4. Reconstruction procedure

This section lists the reconstruction procedure for an isotropic conductivity σ from a 2× 2
power density matrix H based on [MB12b]. One can extend this procedure for anisotropic
conductivities by adding another step following the approach of [MB12a]. For simplicity, we
limit ourselves to the isotropic case. Throughout this section we assume that the boundary
functions f 1 and f 2 were chosen in accordance with theorem 2.2 so that the corresponding
solutions u1 and u2 enteringH satisfy the non-vanishing Jacobian constraint (1) and are ordered
so that det[∇u1∇u2]> 0.

10
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The procedure is characterized by two steps. In the first step we reconstruct the angle θ that
enables us to determine the functionals Si =

√
σ∇ui from the entries of Hi j = σ∇ui ·∇u j. In

the second step, we reconstruct σ from the functionals Si.

4.1. Reconstruction of θ

We consider the power density matrix H and the matrix S composed of the functionals S1
and S2: S= [S1S2]. By definition, H is symmetric and by the Jacobian constraint and the
lower bound on σ it follows that H is positive definite: For any x= (x1,x2) ̸= 0,xTHx=
σ|x1∇u1 + x2∇u2|2 > 0 (since∇u1 and∇u2 are nonzero and linearly independent by the Jac-
obian constraint).

In order to split the functionals Si from the entries of the power density data Hij, S is
orthonormalized into a SO(2)-valued matrix R: R= STT. By definition, R is orthogonal and
has determinant one and the transfer matrix T is determined by the data. The question is,
which matrices T satisfy the equality R= STT under the conditions on R. This question has
no unique answer, so several choices of T are possible, for instance T=H− 1

2 or obtaining
T by Gram-Schmidt orthonormalization. As R is a rotation matrix, it is parameterized by the
angle function θ as follows:

R(θ) =
[
cosθ −sinθ
sinθ cosθ

]
.

From this definition, we see that once T and S are known, the function θ can be computed by

θ = arg(R1),

whereR1 denotes the first column of R. The orthonormalization technique and thus the choice
of T influences the angle θ. Our choice of T and the corresponding interpretation of θ is
discussed in subsection 4.3.

Defining T= (Ti j)1⩽i, j⩽2 and T−1 = (Ti j)1⩽i, j⩽2, and letting

Vi j =∇(Ti1)T
1 j+∇(Ti2)T

2 j,

then θ is determined by the following equation [MB12b, equation (65)]:

∇θ = F, (12)

with

F=
1
2
(V12 −V21 −J∇ logD),

J =

[
0 −1
1 0

]
, andD= (H11H22 −H2

12)
1
2 . Once θ is known at at least one point on the bound-

ary one can integrate F along curves originating from that point to obtain θ throughout the
whole domain. Alternatively, when assuming that θ is known along the whole boundary one
can apply the divergence operator to (12) and solve the following Poisson equationwithDirich-
let boundary condition:{

∆θ =∇·F in Ω,

θ = θtrue on ∂Ω.
(13)

In our implementation, we use the second option and discuss in subsection 4.3 knowledge of
θ along the boundary.

11
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4.2. Reconstruction of σ

Reconstruction of σ is based on [MB12b, equation (68)]

∇ logσ =G, (14)

with

G= cos(2θ)K+ sin(2θ)K,

K= U(V11 −V22)+JU(V12 −V21) and U =

[
1 0
0 −1

]
.

Similarly as for θ one need to solve a gradient equation to obtain σ and has the possibility of
either integrating along curves or solving a Poisson equation, assuming knowledge of σ in one
point or along the whole boundary respectively. We assume knowledge of σ along the whole
boundary and solve the following Poisson equation with Dirichlet condition:{

∆ log(σ) =∇·G in Ω,

log(σ) = log(σtrue) on ∂Ω.
(15)

4.3. Choice of the transfer matrix T and knowledge of θ

For our implementation, we use Gram-Schmidt orthonormalization to obtain the transfer mat-
rix T:

T=

[
H

− 1
2

11 0

−H12H
− 1

2
11 D

−1 H
1
2
11D

−1

]
.

By the Jacobian constraint, it follows that H11 > 0 so that T is well-defined. As a
direct consequence of using Gram-Schmidt orthonormalization the first column of R
simplifies to:

Therefore, the angle θ simply defines the angle between ∇u1 and the x1-axis. Hence,

θ = arg(∇u1). (16)

In addition, following this definition for T the vector fields Vi j can be written explicitly in
terms of H:

V11 =∇ logH
− 1

2
11 , V12 = 0,

V21 =−H11

D
∇
(
H12

H11

)
, V22 =∇ log

(
H

1
2
11

D

)
.

(17)

Knowledge of θ at the boundary is essential for the reconstruction procedure. By this definition
of T, knowledge of θ is directly related to knowledge of the gradient ∇u1 and the current
σ∇u1, as both vector fields have the same direction. We decompose σ∇u1 into two parts with
contribution from the unit outward normal ν and the tangent vector ω = J ν:

σ∇u1 = (σ∇u1 · ν)ν+(σ∇u1 ·ω)ω.

12
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As along the whole boundary u1 and σ are known, the contribution from σ∇u1 ·ω is known as
well. Furthermore, along the part of the boundary ∂Ω\Γ we have additional information as u1
vanishes. Therefore, the only contribution is from the unit outward normal ν, so that on this part
of the boundary σ∇u1 has either the direction of ν,−ν or the zero vector. However, in order to
have full information of θ along the boundary one needs knowledge about the Neumann data
σ∇u1 · ν.

5. Numerical examples

Our aim is to illustrate numerically how two boundary conditions can be selected so that
the non-vanishing Jacobian condition (1) for corresponding solutions is satisfied in accord-
ance with theorem 2.2. And we choose the order of the corresponding solutions so that
det[∇u1∇u2]> 0. Furthermore, we show numerically how this can be used to reconstruct the
conductivity from power density data. For that purpose, we implemented the reconstruction
procedure in section 4 in Python and used FEniCS [LMW12] to solve the PDEs. We use a
fine mesh to generate our power density data and a coarser mesh to address the reconstruction
problem. We use Ndata = 79281 nodes in the high-resolution case, while for the coarser mesh
we consider a resolution of Nrecon = 50845 nodes. For both meshes, we use P1 elements. We
consider the domain Ω to be the unit disk: Ω= B(0,1). Furthermore, we consider two test
cases for an isotropic conductivity σ defined by:

σcase 1(x1,x2) =

1+ e

2− 2

1− (x1)
2+(x2)

2

1−0.82


0⩽ (x1)2 +(x2)2 ⩽ 0.82,

1 0.82 ⩽ (x1)2 +(x2)2 ⩽ 1,

σcase 2(x1,x2) =



2
(
x1 + 1

2

)2
+(x2)2 ⩽ 0.32,

2 (x1)
2
+
(
x2 + 1

2

)2 ⩽ 0.12,

2
(
x1 − 1

2

)2
+
(
x2 − 1

2

)2 ⩽ 0.12,

1 otherwise.

for (x1,x2) ∈ Ω. Figure 1 illustrates the conductivities. To investigate influence of the size of
the boundary of control, Γ, we consider three different sizes that are outlined in figure 2.

We demonstrate that the Jacobian constraint is satisfied for a choice of continuous and
discontinuous boundary conditions in accordance with theorem 2.2. The functions ( f c1 , f

c
2 )

below yield continuous boundary functions that satisfy condition (a) in theorem 2.2: From
the right part in figure 3 we see that arg(γ̇c) is strictly increasing and thus monotone and γ̇c

satisfies |Ind(γ̇c)|= 1. As Ind(γ̇c) denotes the winding number of γ̇c it can also be observed
visually from the left part of figure 3 that its winding number is 1

( f c1 (η(t)), f
c
2 (η(t))) =


(cos(8t)− 1,sin(8t)) for Γsmall = {t ∈

[
0, π4

]
}

(cos(2t)− 1,sin(2t)) for Γmedium = {t ∈ [0,π]}(
cos
(
8t
7

)
− 1,sin

(
8t
7

))
for Γlarge =

{
t ∈
[
0, 7π4

]}
.

The corresponding functions uci |∂Ω extended by zero along the whole boundary are illustrated
in figure 4.

The functions ( f d1 , f
d
2 ) below yield discontinuous boundary functions that satisfy condition

(b) in theorem 2.2: From the right part in figure 3 we see that arg(γ̇d) is strictly increasing
and thus monotone and γ̇d satisfies

∣∣Ind(γ̇d)∣∣= 1/2. As we interpret Ind(γ̇d) as the winding

13
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Figure 1. The conductivities σ used for the reconstruction procedure.

Figure 2. Different sizes of Γ used for the reconstruction procedure.

number of γ̇d it can also be observed visually from the left part of figure 3 that its winding
number is 1/2

( f d1 (η(t)), f
d
2 (η(t))) =


(cos(4t)− 1,sin(5t)) for Γsmall = {t ∈

[
0, π4

]
}(

cos(t)− 1,sin
(
5t
4

))
for Γmedium = {t ∈ [0,π]}(

cos
(
4t
7

)
− 1,sin

(
5t
7

))
for Γlarge =

{
t ∈
[
0, 7π4

]}
.

The corresponding functions udi |∂Ω extended by zero along the whole boundary are illus-
trated in figure 5.

We compute the corresponding solutions u1 and u2 and the three power densities H11,H12

and H22. It is not straightforward to compute the solutions numerically for discontinuous
boundary conditions; therefore, the procedure is discussed in section 5.1. The solutions u1

14
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Figure 3. Illustration that the functions in 4 and 5 respectively satisfy the conditions in
theorem 2.2. The left part illustrates the winding number Ind(γ̇) of the curves γ̇c(t) =
(( f c1 )

′(t),( f c2 )
′(t)) and γ̇d(t) = (( f d1 )

′(t),(( f d2 )
′(t)), while the right part shows the

behavior of their arguments.

Figure 4. The continuous boundary functions uc1|∂Ω and uc2|∂Ω used for the reconstruc-
tion procedure for Γsmall, Γmedium and Γlarge (top to bottom).

and u2 are then illustrated in figure 6. From table 1 we see that the Jacobian condition is sat-
isfied for all cases, as the determinant of H is positive. However, for a small boundary of
control the values of the determinant are very small, so for Γsmall the minimum values are
of order 10−14. To investigate where the small values of det(H) concentrate, we illustrate
the expression log(det(H)) for continuous and discontinuous boundary conditions in figure 7.
The expression log(det(H)) will give us more nuances of the small values than the determin-
ant itself. From the figure, it is evident that the small values concentrate close to the boundary

15



Inverse Problems 39 (2023) 025001 M Salo and H Schlüter

Figure 5. The discontinuous boundary functions ud1|∂Ω and ud2|∂Ω used for the recon-
struction procedure for Γsmall, Γmedium and Γlarge (top to bottom).

that we cannot control. Furthermore, the figure shows that for discontinuous boundary con-
ditions there appear larger values of log(det(H)) than for the continuous case, but these are
mainly concentrated around the discontinuity. For the continuous boundary conditions, the
maximal values are smaller, but they are more evenly distributed along the boundary of con-
trol. As the Jacobian condition is satisfied, we can use the reconstruction procedure outlined
in section 4 to reconstruct the two conductivities σcase 1 and σcase 2. For the reconstruction pro-
cedure, we use knowledge of the true angle θ that can be computed by knowledge of the true
gradient ∇u1.

5.1. Solving the conductivity equation numerically with discontinuous boundary functions
udi |∂Ω

It is a challenge numerically to use FEniCS to compute the solutions with discontinuous
boundary conditions as the solutions are only in H1(Ω,d1−2s) and not in H1(Ω). Using Lag-
range basis functions one can define a H1-function space, but this does not allow for discon-
tinuities. To allow for discontinuities one has the possibility to define a function space using
discontinuous Galerkin basis functions between the nodes, but in this way one loses interior
regularity as well. Both possibilities are not optimal as in our case we only have a discontinu-
ity at the boundary, while away from the boundary the function behaves like an H1-function.
For that purpose, we consider the functions wi = ui− u0i , were u

0
i ∈ H1(Ω,d1−2s) solves the

Laplace equation with boundary conditions:


∆u0i = 0 in Ω,

u0i = fi on Γ

u0i = 0 on ∂Ω\Γ.
(18)
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Figure 6. The solutions u1 and u2 induced by the discontinuous and continuous bound-
ary conditions for σ as in case 1 and varying boundaries of control Γlarge, Γmedium and
Γsmall.

Now wi solves the following boundary value problem:{
−div(σ∇wi) = div(σ∇u0i ) in Ω,

wi = 0 on ∂Ω.
(19)

As we consider conductivities σ that are one on and in a neighborhood of the boundary, the
right hand side div(σ∇u0i ) vanishes in a neighborhood where the discontinuity appears. Using
these choices of σ thus ensure that the discontinuity is covered so that the right hand side
satisfies div(σ∇u0i ) ∈ H−1(Ω) implying that wi is a solution in H1(Ω). We solve the bound-
ary value problem (18) semi-analytically for u0i in Matlab using the Fourier transform. This
gives us the exact solution at each node apart from the Gibbs phenomenon happening at the
discontinuity. Afterwards we solve the boundary value problem (19) for wi in Python using
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Figure 7. The expression log(det(H)) for varying sizes ofΓ, when using continuous and
discontinuous boundary conditions. Large negative values (blue regions) correspond to
values of det(H) close to zero.

Table 1. Relative L2 errors when using the continuous boundary conditions (uci |∂Ω) and
the discontinuous boundary conditions (udi |∂Ω).

Γlarge Γmedium Γsmall

uci |∂Ω udi |∂Ω uci |∂Ω udi |∂Ω uci |∂Ω udi |∂Ω

Min
det(H)

case 1 1× 10−6 3× 10−6 8× 10−10 1× 10−9 8× 10−14 8× 10−14

case 2 1× 10−6 3× 10−6 9× 10−10 2× 10−9 8× 10−14 7× 10−14

Rel. L2

error θ
case 1 1.62% 0.74% 1.19% 6.90% — —
case 2 1.67% 0.75% 1.20% 7.11% — —

Rel. L2

error σ
case 1 15.7% 15.6% 40.1% 39.9% 56.5% 56.3%
case 2 15.0% 15.0% 40.0% 39.9% 56.9% 56.4%

FEniCS and compute the solution ui as desired. In this way, we obtain the correct solution ui
at each node, but there still happens a smoothing between the nodes around the discontinuity,
as we assign ui to a H1 function space using Lagrange basis functions.

5.2. Reconstruction of θ

We compute the true angle θ as the argument of ∇u1 as highlighted in equation (16). Using
the true angle as boundary condition for the boundary value problem (13) we reconstruct θ by
solving the problem numerically. This is repeated for the two conductivities as in figure 1, all
different boundaries of control as in figure 2 and the continuous and discontinuous boundary
conditions as in figures 3 and 4. The relative errors are shown in tables 1 and 2.

Even though the errors range up to 7% the reconstructions with control overΓlarge orΓmedium

can barely be distinguished visually from the true θ. The only difference appears throughminor
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Table 2. Relative L2 errors of (cos(2θ),sin(2θ)) for Γsmall.

Continuous BC Discontinuous BC

case 1 (3.47%, 3.61%) (5.34%, 5.44%)
case 2 (3.58%, 3.56%) (5.40%, 5.38%)

Figure 8. True θ for the different boundary conditions and different conductivities and
having control over Γlarge.

artifacts along the part of the boundary that cannot be controlled. For that purpose in these
cases, we only focus on the true expressions for θ. These are illustrated for Γlarge in figure 8
and for Γmedium in figure 9. From the figures we see that the discontinuities of udi are reflected
in θ as well, which follows directly from the definition of θ. Furthermore, θ differs for the two
cases of σ: As the circular feature in σcase 1 has a smooth edge its contours can barely be seen in
the expression for θ. However, as there appear piecewise constant features in σcase 2 the edges
are clearly reflected in the expression for θ as well.

For some choices of the boundary conditions and Γ, the true angle θ changes values from
−π to π throughout Ω. This is here the case for both continuous and discontinuous boundary
conditions and when Γ has the size of Γsmall. This behavior causes a curve of transitions. Along
this curve the expression transitions through all values from −π to π, instead of leaving a
discontinuity, which would adhere to the periodic nature of the codomain. This is illustrated
in the left part of figure 10 and a periodic color map is used to highlight the transition curve.
A similar phenomenon was observed and addressed in [JKS22] and we use the same approach
to address this issue. By the discussion in section 4.3 the direction of ∇u1 corresponds to
the direction of the unit normal ν, its opposite −ν, or the zero vector along the boundary
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Figure 9. True θ for the different boundary conditions and different conductivities and
having control over Γmedium.

∂Ω\Γsmall. If we investigate θ along the boundary in the right part of figure 10, we see that
along ∂Ω\Γsmall θ is a linear increasing function, as it corresponds to the angle between ν
and the x1-axis. The only deviations happen for t ∈ [0, π4 ], which is the boundary of control
Γsmall. By this behavior of θ along ∂Ω\Γsmall there happens a jump from π to −π at t= π. An
additional jump is induced by the boundary condition: For the continuous boundary condition
there happens a jump at t= π

8 and for the discontinuous boundary condition there happens a
jump at t= π

4 . The smoothed discontinuities are a problem when using the true angle θ as a
boundary condition in (13), therefore we define a modified version θ̃ to be used as a boundary
condition. As θ only appears as an input to the cosine and sine-functions in the reconstruction
formula in (15), we can add and subtract multiples of 2π without changing the reconstruction.
Therefore, we subtract 2π in the interval between the discontinuities to extend θ to a more
continuous function along the boundary. For continuous boundary conditions θ̃c is defined as

θ̃c(t) =

{
θc(t)− 2π t ∈

[
π
8 ,π

]
,

θc(t) otherwise.
(20)

And for the discontinuous boundary condition:

θ̃d(t) =

{
θd(t)− 2π t ∈

[
π
4 ,π

]
,

θd(t) otherwise.
(21)

These functions are illustrated in the right part of figure 10 and used as a boundary condition
when solving the boundary value problem (13).

For these reconstructions θ it does no longer make sense to compare them to the true angles,
so instead we compare the reconstructed cos(2θ) to the true expression in figure 11, as this
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Figure 10. True expression for θ assigned to a smooth function space and using con-
tinuous and discontinuous boundary conditions.We consider the conductivity σcase 1 and
have control overΓsmall. The left part shows θ along the boundary together with modified
versions θ̃ defined in (20) and (21).

is the way θ appears in the reconstruction formula for σ (15). The reconstruction errors are
shown in table 2. From the figure, we see that there appear artifacts along the whole bound-
ary ∂Ω\Γsmall. This is because this part of the boundary is difficult to control from the small
boundaryΓsmall so that the Jacobian constraint almost is violated close to this part of the bound-
ary. This is in accordance with remark 2.5, as the Jacobian constraint is violated on this part
of the boundary. This is seen from figure 7, as the values of det(H) are very small close to
the boundary ∂Ω\Γsmall. And from table 1 we see the small values are of order 10−14. These
artifacts were not as visible for Γlarge and Γmedium, as the smallest values of det(H) were larger
than 3× 10−6 and 9× 10−10 respectively.

5.3. Reconstruction of σ

Using the reconstructions of θ we compute σ by solving the boundary value problem (15).
The reconstructions of σ using the continuous boundary conditions are shown in figure 12. As
seen from the relative errors in table 1 there is no significant difference in the quality of the
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Figure 11. Reconstructions of cos(2θ) compared to the true expression for the different
boundary conditions. We consider the conductivity σcase 1 and have control over Γsmall.

reconstruction when using the continuous or discontinuous boundary conditions. It is there-
fore impossible to distinguish the reconstructions visually, so we only show the reconstructions
using the continuous boundary conditions. From the figure we see that the quality of the recon-
structions is highly affected by the size of the boundary of control Γ: The larger the boundary
of control the better the reconstruction. We note that since the minimum values of the determ-
inant of H are close to machine precision for Γsmall, as can be seen from the first to rows in 1,
the numerical results for this size of Γ are not very reliable. We still include this example to
show the limitations of the method. We see from figure 12 that for Γlarge the features in the
reconstructions are still visible in almost the same intensity as for the true σ, only the shape of
the circular feature in σcase 1 is changed in the direction of ∂Ω\Γlarge. With decreasing size of Γ
the intensity of the features is decreasing as well, so that for Γsmall the features have intensity
close to 1 like the background of the true σ. Also in a large neighborhood of the boundary
∂Ω\Γ, the reconstruction has intensity close to 0, so that for Γsmall the reconstruction is dom-
inated by intensity 0. When comparing performance for the two different conductivities σ we
see that the reconstructions for the piecewise constant conductivity σcase 2 look almost better
than for the smooth σcase 1, as the piecewise constant edges of the three features in σcase 2 are
clearly visible in the reconstructions. This is due to the fact, that these edges are clearly visible
in the data (see figure 13) and in θ (see the right parts of figures 8 and 9 respectively). For σcase 1

the shape of the feature is deformed a little bit towards ∂Ω\Γ, as the feature has a smooth edge.
However, this difference in quality is not evident from the relative errors in table 1. Another
take away from the reconstructions is that as σcase 2 is composed of features that are closer and
further away from the boundary of control as the feature in σcase 1, we can see that there is a
difference in the intensity of the three features. This is especially evident for Γmedium, so that
the feature closest to Γmedium has intensity 1.8, which is almost the same intensity as the true
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Figure 12. Reconstructions of σ as in test case 1 in the left column and as in test case 2
in the right column for varying sizes of Γ. The discontinuous boundary conditions are
used.
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Figure 13. The power densities used for reconstruction of σcase 2 and having control over
Γmedium.

σcase 2. On the other hand, the feature furthest away from Γmedium has intensity 1, which is the
same as the background intensity of the true σcase 2.

5.4. Reconstruction of σ from noisy data

We perturb the entries of the power density matrix H at each node with random noise:

H̃i j = Hi j+
α

100
ei j

∥ei j∥L2
Hi j,

where α is the noise level and eij are entries in the matrix E that are normally distributed
ei j ∼N (0,1). We use numpy.random.randn to generate the elements eij and fix the seed
numpy.random.seed(50). After generating H̃, we make sure that it is symmetric by comput-
ing 1

2 (H̃+ H̃T). Furthermore, for the reconstruction procedure it is essential that H̃ is positive

definite so that we use a small positive lower bound L for the eigenvalues of H̃. This approach
can be seen as a regularization method. We note that by remark 2.5 the Jacobian constraint is
violated on ∂Ω\Γ, therefore we would assume very small values of det(H̃) close to this part of
the boundary. However, in the approach of using a lower bound for the eigenvalues we might
discard some of these values. Therefore, we choose the lower bound as small as possible in
order to get a reasonable reconstruction that is not dominated by noise on these small values.

After these modifications on symmetry and positive definiteness, we use H̃ for reconstruct-
ing σcase 2 for three different noise levels: α= 1, α= 5 and α= 10. The results are shown in
figure 14, where we compare performance when using continuous and discontinuous bound-
ary conditions. The lower bounds L used for reconstruction are documented in table 3 and the
relative errors of σ are shown in the same table. The reconstructions are all of similar quality
when looking at the relative errors and how well the values at the red features matches with the
true σ. However, for the discontinuous boundary condition the increasing noise level results
in an artifact around the discontinuity. To account for this one needs to use significantly larger
lower bounds for increasing noise level. In contrast, there is a gradual rise in the lower bound
for increasing noise level when using continuous boundary conditions. The high lower bound
in the case of discontinuous boundary conditions induces a light belt close to ∂Ω\Γ. This belt
appears, as information in this region is discarded by the lower bound.
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Figure 14. Reconstructions of σcase 2 whenH is perturbed with varying noise levels and
with boundary of control Γmedium. To obtain a positive definite noisy matrix H̃, different
lower bounds L for the eigenvalues of H̃ are used.
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Table 3. Relative L2 errors on σcase 2 in presence of noise. To obtain a positive defin-
ite noisy matrix H̃, different lower bounds L for the eigenvalues of H̃ are used. The
boundary of control is Γmedium.

Continous BC Discontinuous BC

L Relative error σ L Relative error σ

1% Noise 10−6 40.7% 10−6 38.9%
5% Noise 10−5 41.4% 10−3 41.7%
10% Noise 10−4 40.6% 2× 10−2 38.4%

6. Conclusions

In this work, we have derived sufficient conditions on two boundary functions so that the cor-
responding solutions to the conductivity equation satisfy a non-vanishing Jacobian constraint
in limited view. This approach allows for boundary functions that have discontinuities. This
is relevant for Acousto-Electric Tomography and Current Density Imaging both in limited
view and in full view settings, as the conditions and thus the use of discontinuous boundary
functions apply for both settings.

We illustrated how these conditions could be used for numerical examples of reconstructing
the conductivity from power density data in limited view following the approach of [MB12b].
It was evident from the numerical examples how the non-vanishing Jacobian constraint was
almost violated close to the boundary that could not be controlled. This follows from the zero
Dirichlet condition on this part of the boundary: Here the two corresponding solutions have
both the direction of the unit normal so that the non-vanishing Jacobian constraint cannot be
satisfied on this part of the boundary. Nevertheless, without noise it was possible to obtain
decent reconstructions of the conductivity when the support of the boundary of control was at
least half the size of the full boundary. For smaller boundaries of control the numerical results
get unreliable due to small values of the Jacobian. Therefore in general it is almost impossible
to add even small levels of noise while maintaining positive definiteness of the measurement
matrix. To account for this, we used a small positive lower bound for the eigenvalues of the
measurementmatrix. This workedwell in the numerical experiments even for high noise levels.
However, in this approach especially values close to the part of the boundary that cannot be
controlled are affected by the lower bound. When the lower bound is high this might be in
contradiction with the assumption that values should be small in this region. This is especially
a problem when using discontinuous boundary conditions as the lower bound needs to be
chosen large when the noise level is high.

We mention that the proposed conditions in order to obtain solutions satisfying the non-
vanishing Jacobian constraint are not optimal. Especially for the case of discontinuous bound-
ary functions there is a possibility that 2.2 (b) can be relaxed, as we are aware of functions that
are more general than allowed here as indicated in remark 2.3.

Data availability statement

The data that support the findings of this study are openly available at the fol-
lowing URL/DOI: https://lab.compute.dtu.dk/hjsc/jacobian-of-solutions-to-the-conductivity-
equation-in-limited-view.git.
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