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Abstract. We give examples on the use of the Stone-Weierstrass theorem in inverse problems.
We show uniqueness in the linearized Calderón problem on holomorphically separable Kähler mani-
folds, and in the Calderón problem for nonlinear equations on conformally transversally anisotropic
manifolds. We also study the holomorphic separability condition in terms of plurisubharmonic
functions. The Stone-Weierstrass theorem allows us to generalize and simplify earlier results. It
also makes it possible to circumvent the use of complex geometrical optics solutions and inversion
of explicit transforms in certain cases.

1. Introduction

In this work we study versions of the geometric (or anisotropic) Calderón problem. This inverse
problem was studied in [Cal80Cal80] for the purpose of determining the electrical conductivity in a
Euclidean domain from voltage and current measurements on its boundary. There is a substantial
literature on the Calderón problem and we refer the readers to the survey [Uhl14Uhl14].

The anisotropic Calderón problem corresponds to the case of matrix-valued conductivities. In
dimensions ≥ 3 the problem can be reformulated in geometric terms as follows (see e.g. [DSFKSU09DSFKSU09]
for further details). Let (M, g) be a compact oriented Riemannian manifold with smooth boundary,
and let q ∈ C∞(M). Consider the Cauchy data set

Cg,q = {(u|∂M , ∂νu|∂M ) : u ∈ C∞(M) satisfies (∆g + q)u = 0 in M}.
Here ∆g is the Laplace-Beltrami operator and ∂ν is the normal derivative with respect to g. The
anisotropic Calderón problem corresponds to determining a Riemannian metric g, up to a boundary
fixing isometry, from the knowledge of Cg,0. For metrics in a fixed conformal class the problem
reduces to determining an unknown potential q from the knowledge of Cg,q. In this work we will
consider the case where g is fixed and we wish to recover q. A standard method for proving such
results is to show a density result of the following type.

Question 1.1 (Completeness of products). Let (M, g) be a compact Riemannian manifold with
smooth boundary, and let q1, q2 ∈ C∞(M). If f ∈ C∞(M) satisfies∫

M
fu1u2 dV = 0

for any u1, u2 ∈ C∞(M) satisfying (∆g + qj)uj = 0 in M , is it true that f ≡ 0?

In other words, one would like to prove that the set {u1u2 : (∆g + qj)uj = 0} is complete
(i.e. its linear span is dense). This is known when dim(M) = 2 [GT11GT11] but it is an open problem
for dim(M) ≥ 3. For Euclidean domains this was proved in [SU87SU87], and the works [DSFKSU09DSFKSU09,
DSFKLS16DSFKLS16] establish this when (M, g) is conformally transversally anisotropic (CTA, see Definition
1.51.5 below) and the transversal manifold has injective geodesic X-ray transform. See [CFO23CFO23] for
related rigidity results and [UW21UW21, MSS23MSS23] for results at a large fixed frequency.
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One can also consider the linearized version of the above inverse problem (linearized at zero
potential). This corresponds to completeness of products of harmonic functions:

Question 1.2 (Linearized problem). Let (M, g) be a compact Riemannian manifold with smooth
boundary. If f ∈ C∞(M) satisfies ∫

M
fu1u2 dV = 0

for any u1, u2 ∈ C∞(M) satisfying ∆guj = 0 in M , is it true that f ≡ 0?

This problem is also open when dim(M) ≥ 3 but there are partial results for CTA manifolds
with weaker assumptions on the transversal manifold [DSFKL+20DSFKL+20, KLS22KLS22]. There is also a result
for Kähler manifolds [GST19GST19] based on extending the methods from dim(M) = 2 to higher complex
dimensions.

The results above are based on constructing special complex geometrical optics (CGO) solutions
to (∆g+q)u = 0, and on reducing the uniqueness result to inverting certain transforms. Transforms
that have been used in this context include

• the Fourier transform [SU87SU87]
• a mixed Fourier/geodesic X-ray transform [DSFKSU09DSFKSU09, DSFKLS16DSFKLS16]
• a mixed Fourier/FBI transform [DSFKL+20DSFKL+20, KLS22KLS22]
• a transform related to stationary phase [GST19GST19]

In this work we introduce an alternative approach where completeness of products is obtained
from the Stone-Weierstrass theorem rather than from inverting explicit transforms. This approach
might work also in the absence of CGO type solutions, and thus it avoids one of the main obstacles
in the geometric Calderón problem. However, the success of this approach relies on finding suitable
algebras within the closure of span{u1u2 : uj are solutions}. So far we have only been able to
implement this in the presence of suitable complex structure, and for our second main result we
also use CGO solutions to exhibit such algebras.

Our first result proves uniqueness in the linearized Calderón problem on compact Kähler man-
ifolds M with smooth boundary. We assume that M is holomorphically separable, i.e. for any
x, y ∈ M with x ̸= y there is f ∈ C∞(M) that is holomorphic in M int such that f(x) ̸= f(y).
Previously this uniqueness result was proved in [GST19GST19] (see [MT21MT21, KUY21KUY21] for related results)
under the additional condition that M has local charts given by global holomorphic functions, and
for measures µ = f dV where f ∈ C∞(M) vanishes to high order at the boundary. The proof was
based on CGO solutions with Morse phase functions. Here we remove these additional conditions
and give a short proof that avoids CGO solutions and is much simpler than the one in [GST19GST19].

Theorem 1.3. Let (M, g) be a compact holomorphically separable Kähler manifold with smooth
boundary. If µ is a bounded measure on M (i.e. µ ∈ (C(M))∗) and∫

M
u1u2 dµ = 0

for any u1, u2 ∈ C∞(M) with ∆guj = 0 in M , then µ = 0.

Proof. Consider the set

A = {h1a1 + · · ·+ hNaN : hj ∈ C∞(M) holomorphic, aj ∈ C∞(M) antiholomorphic, N ≥ 1}.
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This set is a subalgebra of C(M) since products of holomorphic (resp. antiholomorphic) functions
are holomorphic (resp. antiholomorphic). Moreover, A is unital and closed under complex conju-
gation. By assumption A separates points in M . By the complex Stone-Weierstrass theorem (see
e.g. [Lan93Lan93, Chapter 3, Theorem 1.4]), A is dense in C(M).

Since holomorphic and antiholomorphic functions on a Kähler manifold are harmonic, our as-
sumption on µ implies that

∫
M w dµ = 0 for any w ∈ A. Since A is dense in C(M), we obtain

µ = 0. □

In Section 33 we show that the holomorphic separability condition (stated for holomorphic func-
tions near M) is equivalent to the existence of a smooth strictly plurisubharmonic function on M ,
and that this condition fails for manifolds M such as a compact neighborhood of the equator in
CPn. We also show that the second assumption in [GST19GST19] related to local charts given by global
holomorphic functions actually follows from a suitable version of holomorphic separability. We re-
mark that harmonic functions always separate points in M e.g. by Runge approximation [LLS20LLS20],
so the holomorphic separability assumption is probably just an artifact of our method of proof.

The fact that one has uniqueness in the linearized problem yields uniqueness in inverse problems
for nonlinear equations by the method of higher order linearization. Below is an example of such
a result (see e.g. [ST23ST23] for more details). It is likely that one could also consider potentials in
Lp(M) for suitable p as in [Nur23Nur23].

Corollary 1.4. Let (M, g) be a compact holomorphically separable Kähler manifold with smooth
boundary, let q1, q2 ∈ Cα(M), and let m ≥ 2 be an integer. Let Λqj be the DN map for the equation
∆gu+ qum = 0 in M with small Dirichlet data. If Λq1 = Λq2, then q1 = q2. This works even when
the Neumann data is measured at a single point x0 ∈ ∂M .

As another result, we give a simplified proof of the completeness of products of four harmonic
functions on a CTA manifold (M, g).

Definition 1.5 ([DSFKLS16DSFKLS16]). Let (M, g) be a compact manifold with smooth boundary. We say
that (M, g) is transversally anisotropic (TA) if M ⊂⊂ R × M0 and g = e ⊕ g0, where e is the
Euclidean metric on R and (M0, g0) is a compact manifold with smooth boundary. We say that
(M, g) is conformally transversally anisotropic (CTA) if (M, c−1g) is TA for some smooth positive
function c.

The following result was proved for a TA manifold in [LLLS21LLLS21] when f ∈ C1(M) and uj solve
∆guj = 0, and for a CTA manifold in [FO20FO20] with an additional assumption on the invertibility
of a certain weighted geodesic ray transform. For a general CTA manifold with f ∈ C1,1(M) this
result follows from [KU23KU23]. Our proof avoids all stationary and non-stationary phase arguments in
the previous proofs and works for f ∈ C(M).

Theorem 1.6. Let (M, g) be a compact CTA manifold with smooth boundary, and let Vj ∈ C∞(M)
for 1 ≤ j ≤ m where m ≥ 4. If q ∈ C(M) satisfies∫

M
qu1 · · ·um dV = 0(1.1)

for any uj ∈ C∞(M) solving (∆g + Vj)uj = 0 in M , then q ≡ 0.

The main geometric simplification in our proof is the following. Consider the case m = 4 and
let uj be suitable CGO solutions as in [LLLS21LLLS21] that depend on a large parameter τ > 0. Instead
of looking at two intersecting geodesics on the transversal manifold, which produces pointwise
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concentration of u1u2u3u4 at the intersection points as in [LLLS21LLLS21, KU23KU23], we use a fixed geodesic
γ on the transversal manifold M0. Let us consider here the case where γ does not self-intersect for
simplicity. Then the product u1u2u3u4 concentrates on a two-dimensional manifold Γ = R×γ. We
then use the fact that the amplitudes of the CGO solutions are holomorphic or antiholomorphic
functions on Γ. This yields the limit

0 = lim
τ→∞

∫
M
fu1u2u3u4 dV =

∫
Γ
fa1a2a3a4 dVΓ,

where a1, a2 are holomorphic functions on Γ and a3, a4 are antiholomorphic on Γ, and dVΓ is a
positive multiple of the Riemannian volume form on Γ. More specifically, the construction gives
amplitudes a1 = eiλ1z, a3 = eiλ2z̄ and a2 = a4 = 1 where λj ∈ R are free parameters and z
is a complex coordinate on Γ. The set A = span{a1a2a3a4} is a unital subalgebra of C(Γ) that
is closed under complex conjugation and separates points. The Stone-Weierstrass theorem then
implies that A is dense in C(Γ), which implies that q|Γ = 0. Repeating this argument for many
maximal geodesics γ on M0 implies that q = 0 everywhere.

Theorem 1.61.6 allows us to relax the regularity assumptions on the unknowns in the main theorems
of [LLLS21LLLS21, FO20FO20, KU23KU23]:

Corollary 1.7. Let (M, g) be a compact CTA manifold with smooth boundary. Let q1, q2 ∈ C(M),
and let m ≥ 3 be an integer. Let Λqj be the DN map for the equation ∆gu + qum = 0 in M with
small Dirichlet data. If Λq1 = Λq2, then q1 = q2.

Remark 1.8. One could also consider the following refinement of Theorem 1.61.6. Let (M, g) be a
compact manifold with smooth boundary, and suppose that∫

M
qu1u2u3u4 dV = 0

whenever ∆guj = 0 (or (∆g + Vj)uj = 0) in M . It is likely that one could prove that q|Γ = 0
whenever Γ is a good bicharacteristic leaf for some limiting Carleman weight on (M, g) in the sense
of [Sal17Sal17, Definition 1.2], if the definition of a good bicharacteristic leaf is adapted to products of
four quasimodes instead of two. We recall that on a TA manifold the good bicharacteristic leaves
cover M up to a set of measure zero [Sal17Sal17, Theorem 1.2], so this would indeed generalize Theorem
1.61.6.

Remark 1.9. We note that Theorem 1.61.6 also works in R2. That is, for products of four solutions
one can use standard CGO solutions with linear phase also in two dimensions to get density results.
This is in contrast with the case of products of two solutions, where one has to use different CGO
solutions with quadratic type phases in two dimensions.

This article is organized as follows. In Section 22 we revisit the Euclidean case and discuss density
results for products of harmonic functions by using the Stone-Weierstrass theorem. In Section
33 we consider the case of Kähler manifolds and study the relation of holomorphic separability,
plurisubharmonic functions and the existence of charts given by global holomorphic functions.
This involves some methods from the characterization of Stein manifolds via plurisubharmonic
functions based on the L2 estimates of Hörmander. Finally in Section 44 we consider the case of
CTA manifolds and give the proof of Theorem 1.61.6.
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2. The Euclidean case

In this short section we review, from the point of view of the Stone-Weierstrass theorem, some
classical completeness results for products of special harmonic functions in subsets of Rn. The case
of exponential harmonic functions may be found in [Cal80Cal80] and the case of Green functions follows
from [Rie38Rie38] (see the discussion in [Isa90Isa90] or [GSU20GSU20]). We also prove completeness of products
of harmonic homogeneous polynomials; we do not know if this result has appeared before in the
literature.

Theorem 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set (with n ≥ 3 in the case of S2 below).
Then the sets

S1 = {u1u2 : uj = eρj ·x, ρj ∈ Cn, ρj · ρj = 0},
S2 = {u1u2 : uj(x) = |x− xj |2−n, xj ∈ Rn \ Ω},
S3 = {u1u2 : uj is a harmonic homogeneous polynomial in Rn}

are complete in C(Ω).

Proof. For S1, we fix ξ ∈ Rn and choose uj = eρj ·x where ρ1 = η + iξ and ρ2 = −η + iξ where

η ∈ Rn satisfies |η| = |ξ| and η · ξ = 0. Then u1u2 = e2ix·ξ. This shows that span(S1) contains the
set

A = span{eix·ξ : ξ ∈ Rn}.
The set A is a unital subalgebra of C(Ω) that is closed under complex conjugation and separates
points in Ω. Thus A is dense in C(Ω) by the Stone-Weierstrass theorem.

To prove that S2 is complete, it is enough to show that if µ is a bounded measure on Ω satisfying

(2.1)

∫
Ω
|x− y|4−2n dµ(y) = 0, x ∈ Rn \ Ω,

then µ ≡ 0. Multiplying (2.12.1) by |x|2n−4 and letting |x| → ∞ we obtain∫
Ω
dµ(y) = 0.

Applying powers of ∆x to (2.12.1) and using that n ≥ 3 yields∫
Ω
|x− y|4−2n−2k dµ(y) = 0, k ≥ 0, x ∈ Rn \ Ω.

Now, applying ∂xj to (2.12.1), multiplying by a suitable power of |x| and letting |x| → ∞ gives∫
Ω
|x− y|4−2n−2yjdµ(y) =

∫
Ω
yjdµ(y) = 0, 1 ≤ j ≤ n.

Repeating this for various higher order derivatives and taking limits as |x| → ∞ yields∫
Ω
yαdµ(y) = 0, α ∈ Nn.

The set A = span{yα} is a unital subalgebra of C(Ω,R) that separates points. Thus the real
Stone-Weierstrass theorem implies that µ ≡ 0.

5



Next we consider S3. Let first n = 2m be even, and write points in Rn as (x1, y1, . . . , xm, ym).
Writing zj = xj + iyj and z = (z1, . . . , zm), we can choose harmonic homogeneous polynomials

u1 = zα and u2 = z̄β where α, β ∈ Nn. Thus span(S3) contains the set

A = span{zαz̄β : α, β ∈ Nn}.

This is a unital subalgebra of C(Ω) that is closed under complex conjugation and separates points.
Hence A is dense in C(Ω) by the Stone-Weierstrass theorem.

Finally we consider S3 in the case where n = 2m+ 1 is odd. For simplicity we first show that if
f ∈ Cc(Ω) satisfies ∫

Ω
fu1u2 dx = 0

for all harmonic homogeneous polynomials uj , then f ≡ 0. We extend f by zero to R2m+1 and
write points in R2m+1 as x = (x′, t) where x′ ∈ R2m. Choosing uj = uj(x

′), we obtain∫
R2m

[∫ ∞

−∞
f(x′, t) dt

]
u1(x

′)u2(x
′) dx′ = 0.

Now if uj(x
′) are harmonic homogeneous polynomials in R2m, the density argument for even di-

mensions above (applied in a large ball in R2m) implies that∫ ∞

−∞
f(x′, t) dt = 0, x′ ∈ R2m.

This means that the integrals of f along all lines in direction e2m+1 vanish. There is nothing
special about the direction e2m+1, and repeating this argument for other directions implies that the
integrals of f over all lines in R2m+1 must be zero. By injectivity of the X-ray transform [Hel99Hel99]
we see that f ≡ 0 as required. To show that S3 is complete in C(Ω) it is enough to apply the
argument above with f replaced by a bounded measure µ on Ω and to use injectivity of the X-ray
transform on compactly supported distributions [SU24SU24]. □

3. Kähler manifolds

In the introduction we already proved that products of harmonic functions are complete on
compact holomorphically separable Kähler manifolds with boundary. Here we first give a simple
example of complex manifolds that are not holomorphically separable.

Example 3.1. LetM be a compact complex manifold with C∞ boundary, and suppose that S is a
closed (i.e. compact without boundary) connected embedded complex submanifold of M int. Then
for any points x, y ∈ S with x ̸= y and for any holomorphic function f in M int, the function f |S is
holomorphic in S and hence f |S is constant in S. Thus in such a case holomorphic functions never
separate points of S.

An explicit example is obtained from the complex projective space CPn = (Cn+1 \ {0})/ ∼
where (z0, . . . , zn) ∼ (w0, . . . , wn) if (w0, . . . , wn) = λ(z0, . . . , zn) for some λ ∈ C \ {0}. Let S =
{[z0, . . . , zn] : zn = 0} be the equator, and let M = f−1([0, ε]) where ε > 0 is small and

f([z0, . . . , zn]) =
|zn|2

|z|2
.

Then M is a compact subdomain of CPn with smooth boundary such that S is an embedded
complex submanifold of M int. Thus holomorphic functions do not separate points in M .
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Next we will show that holomorphic separability (for functions holomorphic nearM) is equivalent
to the existence of a smooth strictly plurisubharmonic function. This is very similar to the argument
that a manifold is Stein if and only if it admits a strictly plurisubharmonic function (solution of
the Levi problem, see e.g. [Hör73Hör73, Theorem 5.2.10]). However, we need to verify that the argument
works also for compact manifolds with boundary.

Definition 3.2. Let X be an open complex manifold. A function φ ∈ C2(X) is plurisubharmonic
if for any x ∈ X, the Levi matrix (computed in some complex coordinates at x)

Hφ(x) =

(
∂2φ(x)

∂zj∂z̄k

)n
j,k=1

is positive semidefinite. We say that φ is strictly plurisubharmonic if this matrix is positive definite
at each x ∈ X.

More generally, a function φ ∈ L1
loc(X) is plurisubharmonic if for any a ∈ Cn, the distribution∑ ∂2φ

∂zj∂z̄k
aj āk

is a nonnegative measure on X.

If dimC(M) = 1, then plurisubharmonic functions are precisely the subharmonic functions, and
in general any plurisubharmonic function is subharmonic [Dem97Dem97, §I.5]. We also note that if f is
holomorphic, then |f |2 is plurisubharmonic.

We will prove the following equivalence. Below we assume that M is a compact subdomain in
an open complex manifold X, and we say that a property holds near M if it holds in some open
set in X containing M .

Theorem 3.3. Let M be a compact Kähler manifold with C∞ boundary. The following are equiv-
alent:

(a) For any x, y ∈M with x ̸= y, there is a holomorphic function f near M with f(x) ̸= f(y).
(b) There is a strictly plurisubharmonic function φ near M .

One direction is easy and we prove it following the argument in [Dem97Dem97, Lemma 6.17 in §I].

Proof of first implication in Lemma 3.33.3. Assume that (a) holds. Fix x0 ∈ M . Choose complex
coordinates z in a neighborhood V of x0 in M such that x0 corresponds to 0 and (after scaling if
necessary) V contains {|z| ≤ 1} ∩M . By (a), for any y ∈ {|z| = 1} ∩M there is fy holomorphic
near M with |fy(y)| = 2 and fy(x0) = 0. Then by compactness there are finitely many functions
f1, . . . , fN that are holomorphic near M such that vx0 :=

∑
|fj |2 satisfies vx0(x0) = 0 and vx0(y) ≥

2 for y ∈ {|z| = 1} ∩ M . Note that vx0 is C∞, nonnegative and plurisubharmonic in some
neighborhood U of M . By continuity, one can further choose U so that vx0(y) ≥ 1 whenever
y ∈ {|z| = 1} ∩ U .

Next we define

ux0(z) =

{
vx0(z) in U \ {|z| < 1},
max{vx0(z), (|z|2 + 1)/3} in {|z| ≤ 1} ∩ U.

Then ux0 = vx0 near {|z| = 1} ∩ U and ux0 = (|z|2 + 1)/3 near x0. The function ux0 is not
smooth everywhere, but it is continuous, nonnegative and plurisubharmonic in U [Dem97Dem97, §I.5]
and strictly plurisubharmonic near x0. By Richberg’s approximation theorem [Dem97Dem97, §I.5] there
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is a plurisubharmonic function ũx0 that is C∞, nonnegative and plurisubharmonic in U and strictly
plurisubharmonic in some neighborhood Ux0 of x0. After covering M by finitely many such neigh-
borhoods Ux0 , we obtain functions ũ1, . . . , ũm such that φ := ũ1 + · · · + ũm is C∞ and strictly
plurisubharmonic everywhere near M . Thus (b) holds. □

We now move to the implication (b) =⇒ (a). This is a consequence of an interpolation theorem.

Theorem 3.4. Let M be a compact subset of an open Kähler manifold X and suppose that there
is a strictly plurisubharmonic C∞ function near M . Given m ≥ 0 and a finite set of points xν in
M , one can find a holomorphic function f near M with prescribed Taylor expansions to order m
at each xν .

We will give a proof based on plurisubharmonic weights having logarithmic singularities. See
[Ohs02Ohs02, Theorem 5.3] or [Dem96Dem96, Theorem 9.18] for corresponding results on open pseudoconvex
manifolds. The proof involves a scheme for approximating singular plurisubharmonic functions by
smooth ones [Dem82Dem82] (this is the only point where we need that the manifold is Kähler). It is
convenient to state plurisubharmonicity in more invariant terms. If d = ∂ + ∂ where ∂ and ∂ are
the Dolbeault operators, one has

i∂∂φ = i
∂2φ(x)

∂zj∂z̄k
dzj ∧ dz̄k.

A (1, 1)-form u = iujk dz
j ∧ dz̄k is said to be positive semidefinite if the matrix (ujk) is positive

semidefinite. In this case we write u ≥ 0. Then φ is plurisubharmonic if i∂∂φ ≥ 0. Moreover,
if X is a Kähler manifold with fundamental (1, 1)-form ω written in local coordinates as ω =
i
2hjk dz

j ∧ dz̄k where h = hjk dz
j ⊗ dzk is the corresponding Hermitian metric, the condition of

strict plurisubharmonicity may be written as i∂∂φ ≥ cω for some c > 0.

Proof of Theorem 3.43.4. We follow the argument in [Dem96Dem96, Theorem 9.18]. Let {xν}Nν=1 be a finite
subset of M and let Pν(z

ν) be polynomials of degree mν where zν = (zν1 , . . . , z
ν
n) is a complex

coordinate chart in a small neighborhood Uν of xν . We want to find a holomorphic function f near
M such that the Taylor expansion of f to order mν at xν agrees with Pν . Let θν ∈ C∞

c (Uν) be a
cutoff function with θν = 1 near xν and 0 ≤ θν ≤ 1. The point is to find a holomorphic function f
in the form f =

∑
θνPν + u, where u solves

(3.1) ∂u = v := −∂(
∑

θνPν), and u vanishes to order mν at xν .

We first define a function

φ0 =
∑
ν

2(n+mν)θν log |zν |.

The function φ0 is in L1
loc(X), it has a logarithmic singularity at the points xν and it is smooth

elsewhere. The complex Hessian Hφ0 is a nonnegative measure in the sets where θν = 1, and the
negative part of Hφ0 is bounded from below away from these neighborhoods. Next we let Ω ⊂ X

be an open set such that M ⊂ Ω and ψ is strictly plurisubharmonic near Ω, and consider

φ̃ = χ0(ψ) + φ0,

where χ0 is a strictly increasing convex function. Such Ω and ψ exist by assumption. By adding a
constant we may also assume ψ ≥ 0. Since

i∂∂(χ0(ψ)) = iχ′′
0(ψ)∂ψ ∧ ∂ψ + iχ′

0(ψ)∂∂ψ,
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we can choose χ0 e.g. as χ0(t) = eλt for λ > 0 large so that φ̃ becomes plurisubharmonic near
Ω. By [Dem82Dem82, Theorem 0.7], there is a nonincreasing sequence (φ̃j) of C

∞ functions near Ω with

φ̃j → φ̃ pointwise on Ω and i∂∂φ̃j ≥ −ω on Ω. Finally fix R > 0 large and choose

φj = χ1(ψ) + φ̃j , φ = χ1(ψ) + φ̃,

where χ1 is another convex function chosen so that i∂∂φj ≥ Rω for all j.

Define the norm

∥f∥2φ =

∫
Ω
|f |2e−φ dV.

The functions φj are smooth and strictly plurisubharmonic near Ω. If R > 0 was chosen large
enough to begin with, we can apply Hörmander’s L2-estimate and the related solvability result
[Hör73Hör73, Theorem 5.2.4 and Corollary 5.2.6] together with the condition ∂v = 0 to obtain a C∞

solution uj of

∂uj = v in Ω

satisfying

∥uj∥φj ≤ ∥v∥φj .

Whenever j ≥ j0 we have φj0 ≥ φj ≥ φ, which gives

∥uj∥φj0
≤ ∥uj∥φj ≤ ∥v∥φ.

Note that, writing χ = χ0 + χ1,

∥v∥2φ =
∑∫

Uν

|Pν |2|∂θν |2e−2(n+mν)θν log |zν |−χ(ψ) dV.

Since ∂θν = 0 near the singular points xν , it follows that ∥v∥φ is finite. Thus for any j0 there is a
subsequence of (uj) converging weakly in the ∥ · ∥φj0

norm. A diagonal argument gives u solving

∂u = v with ∥u∥φj0
≤ ∥v∥φ for any j0. Then monotone convergence gives

∥u∥φ ≤ ∥v∥φ.
By looking at the norm on the left, we see that u must satisfy∫

Uν

|u|2

|zν |2(n+mν)
<∞.

This means that u vanishes to order mν at xν , proving (3.13.1). □

To conclude this section we show that holomorphic separability implies the existence of local
charts given by global holomorphic functions, thus proving that condition (b) in [GST19GST19] was not
really necessary (at least if we consider holomorphic functions near M).

Theorem 3.5. Let M be a compact Kähler manifold with C∞ boundary, and suppose that for any
x, y ∈ M with x ̸= y there is a holomorphic function f near M with f(x) ̸= f(y). Then for any
x ∈M there are holomorphic functions f1, . . . , fn near M which form a coordinate system near x.

Proof. By Theorem 3.33.3 there is a strictly plurisubharmonic function near M . Fix x ∈ M and
choose some complex coordinates z near x. Theorem 3.43.4 ensures that when 1 ≤ k ≤ n there is a
holomorphic function fk near M with

fk(x) = 0, ∂zjfk(x) = δjk.

The functions f1, . . . , fn have the required property. □
9



4. CTA manifolds

In this section we prove Theorem 1.61.6 and Corollary 1.71.7. Before that, let us recall the construction
of CGO solutions on CTA manifolds. These are solutions to the equation

(4.1) (∆g + V )v = 0

on a manifold M compactly contained in I ×M0 equipped with metric g = c(e⊕ g0). Here M0 is a
manifold with boundary, I ⊂ R is a closed interval and c > 0 and V are real valued C∞ functions on
M . These solutions originate from the works [DSFKSU09DSFKSU09] and [DSFKLS16DSFKLS16]. Higher order Sobolev
estimates for the related correction terms have been obtained in [FO20FO20, LLLS21LLLS21, KU23KU23].

If we replace v above by c−
n−2
4 v, it is enough to construct solutions for the TA metric g = e⊕ g0

with a new potential V (see e.g. [KU23KU23, Section 2]). We will assume below that this reduction has
been done.

Proposition 4.1 (CGO solutions [KU23KU23]). Let (M, g) be a TA manifold with smooth boundary
∂M , dim(M) = n ≥ 3, and V ∈ C∞(M). Let γ : [0, T ] → M0 be a nontangential geodesic, and
let λ ∈ C. For any K ∈ N and k ∈ N, there is a family of functions u = us ∈ C∞(M), where
s = τ + iλ ∈ C with τ ∈ R and |τ | large, such that

(∆g + V )us = 0,

us = τ
n−2
8 e±sx1(vs + rs),

(4.2)

where ∥rs∥Hk(M) = O(τ−K) as τ → ∞.

The functions vs have the following properties. If p ∈ γ([0, T ]), then there is P ∈ N such that on
a neighborhood U of p the function vs is a finite sum

(4.3) vs = v(1) + · · ·+ v(P )

on I × U , where t1 < · · · < tP are the times in [0, T ] such that γ(tl) = p, l = 1, . . . , P . Each v(l)

has the form

(4.4) v(l) = eisψ
(l)
a(l),

where each ψ = ψ(l) is a smooth complex function in U satisfying

ψ(γ(t)) = t, ∇ψ(γ(t)) = γ̇(t),

Im(∇2ψ(γ(t))) ≥ 0, Im(∇2ψ)(γ(t))|γ̇(t)⊥ > 0,
(4.5)

for t close to tl. Here a(l) = a
(l)
0 + OL∞(τ−1), where a

(l)
0 is independent of x1 and τ , a

(l)
0 (γ(t)) is

nonvanishing, and the support of a(l) can be taken to be in any neighborhood of I × γ([0, T ]) chosen
beforehand.

The functions vs in the proposition above are called quasimodes. We use CGOs to prove Theorem
1.61.6.

Proof of Theorem 1.61.6. Step 1. The choice of CGOs: Let us extend (M, g) smoothly to a mani-

fold M̃ := I ×M0 equipped with the metric e⊕ g0. Here I ⊂ R is a closed interval. We also extend

q by zero to M̃ as an L∞(M̃) function. From the assumption (1.11.1), it then follows that

(4.6)

∫
M̃
qu1 · · ·um dV = 0,

10



where each uk, k = 1, . . . ,m, solves (∆g + Vk)uk = 0 in M̃ . We first assume that m = 4, and then
consider the case m > 4 separately.

Assume that γ : [0, T ] → M0 is a unit speed nontangential geodesic in M0. We choose complex
geometrics optics solutions of the form (4.24.2) as the solutions uk, k = 1, . . . , 4. We specifically choose
them to be of the form

u1 = τ
n−2
8 e(τ+iλ1)x1(v1τ+iλ1 + r1)

u2 = τ
n−2
8 e−τx1(v2τ + r2)

u3 = τ
n−2
8 e(τ+iλ2)x1(v3τ+iλ2 + r3)

u4 = τ
n−2
8 e−τx1(v4τ + r4),

(4.7)

where ∥rk∥HK(M̃)
≲ τ−N and n = dim(M̃) = dim(M0) + 1. We will choose K and N large

beforehand. The first and the third of these CGOs correspond to choosing s = τ + iλ1 and
s = τ + iλ2 in (4.24.2) respectively. Substitution of these CGOs uk into (4.64.6) gives

(4.8) 0 = τ
n−2
2

∫
M̃
qeiλ1x1e−iλ2x1v1τ+iλ1v

2
τv

3
τ+iλ2

v4τ dV +Rτ ,

where Rτ corresponds to the contributions from the correction terms rk. We take ∥rk∥HK(M) ≲ τ−N

for K and N large, so that ∥rk∥L∞(M) ≲ τ−N by Sobolev embedding. Thus Rτ satisfies

Rτ = O(τ−1).

Here we also used the fact that q ∈ L∞(M̃). As the integral in (4.84.8) will be of size 1 as τ → ∞, we
may neglect Rτ in the following analysis.

In the case where γ does not self-intersect, the quasimodes v1τ+iλ1 , . . . , v
4
τ on M̃ are given by

v1τ+iλ1 = ei(τ+iλ1)ψa(1),

v2τ = eiτψa(2),

v3τ+iλ2 = ei(τ+iλ2)ψa(3),

v4τ = eiτψa(4)

(4.9)

by Proposition 4.14.1. Moreover, we have

a(k)(x1, x
′) = a0(x

′) +OL∞(τ−1), k = 1, . . . , 4.

We consider the case where γ does not self-intersect separately in Step 2 below to convey the idea
of the proof better. A reader interested only in this case can jump directly to Step 2 from here.

In general, the geodesic γ can have self-intersections. In this case the quasimodes v1τ+iλ1 , . . . , v
4
τ

have the following properties. Let p ∈ γ([0, T ]). By Proposition 4.14.1 the quasimode v1τ+iλ1 is a finite
sum

(4.10) v1τ+iλ1 |U = v(1,1) + · · ·+ v(1,P )

on a small enough neighborhood U of p, where

(4.11) t1 < · · · < tP

are the times in [0, T ] such that γ(tj) = p and P depends on p. We choose U so small that the
geodesic γ self-intersects only at p in U , or not at all in U . Moreover, there are intervals Ij ,
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j = 1, . . . , P , such that tj ∈ Ij and

(4.12) supp(v(1,j)) ∩ γ(Ij) = γ(Ij), γ(Ij) ∩ γ(Ij′) = {p}, Ij ∩ Ij′ = ∅ for j ̸= j′

holding for all |τ | large. Each v(1,j) has the form

(4.13) v(1,j) = ei(τ+iλ1)ψ
(j)
a(1,j),

where each ψ = ψ(j) is a smooth complex function defined in U satisfying

ψ(γ(t)) = t, ∇ψ(γ(t)) = γ̇(t), Im(∇2ψ(γ(t))) ≥ 0, Im(∇2ψ(γ(t)))|γ̇(t)⊥ > 0,(4.14)

for t ∈ Ij . Each a(1,j) can be taken to be supported in any fixed neighborhood of I × γ(Ij) in M̃ .
We also have that

(4.15) a(1,j) = a
(j)
0 + s−1a

(1,j)
1 + s−2a

(1,j)
2 + · · · ,

with s = τ + iλ1, and

a
(j)
0 |I×γ(Ij) > 0.

We have representations similar to (4.104.10) for v2τ , v
3
τ+iλ2

and v4τ as a sum of P functions v(k,j)

of the form (4.134.13), k = 1, . . . , 4, j = 1, . . . , P . Especially, the phase functions ψ(j) and leading

order coefficients of the corresponding amplitudes a
(j)
0 are the same for all k = 1, . . . , 4. Also the

corresponding intervals Ij are the same for all k = 1, . . . , 4.

Step 2. The case of no self-intersections: Let us first consider the special case where γ
does not have self-intersections. In this case the quasimodes v1τ+iλ1 , . . . , v

4
τ were given by (4.94.9). It

follows that the integral identity (4.84.8) reads

(4.16) 0 = τ
n−2
2

∫
M̃
qe−4τ Im(ψ)eiλ1(x1+iψ)eiλ2(x1+iψ)a(1)a(2)ā(3)ā(4) dV +Rτ ,

where Rτ = O(τ−1) and a(k) = a0 +OL∞(τ−1).

Let us then compute the limit τ → ∞ of (4.164.16) using Fermi coordinates (t, y) ∈ R × Rn−2 (see
e.g. [DSFKLS16DSFKLS16, Lemma 3.5]). By the properties (4.54.5), we have that

(4.17) Im(ψ)(t, y) =
1

2
Hessy(ψ)(t, 0)y · y +O(|y|3),

where Hessy(ψ)(t, 0) is the Hessian in the y-directions. In Fermi coordinates, the amplitudes a(k) =

a(k)(x1, t, y) are supported in I × [0, T ] × B, where B is a neighborhood of the origin in the y-
variables. By writing

f = qeiλ1(x1+iψ)eiλ2(x1+iψ),

we have that the integral in (4.164.16) equals

(4.18) τ
n−2
2

∫
I×M0

fe−4τ Im(ψ)a(1)a(2)a(3)a(4) dV

= τ
n−2
2

∫
I×[0,T ]×B

f(x1, t, y)e
−4τ Im(ψ)(t,y)

(
|a0(x1, t, y)|4 +OL∞(τ−1)

)
|g(x1, t, y)|1/2 dt dy dx1

= τ
n−2
2 τ−

n−2
2

∫
I×[0,T ]×Rn−2

f(x1, t, y/τ
1/2)e−4τ Im(ψ)(t,y/τ1/2)

(
|a0(x1, t, y/τ1/2)|4 +OL∞(τ−1)

)
× |g(x1, t, y/τ1/2)|1/2 dt dy dx1.
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The limit τ → ∞ of the above is

(4.19)

∫
I×[0,T ]×Rn−2

f(x1, t, 0)e
−4Im(Hess(ψ))(t,y)|a0(x1, t, 0)|4|g(x1, t, 0)|1/2 dt dy dx1

=

∫
I×[0,T ]

c(t)f(x1, t, 0)|a0(x1, t, 0)|4|g(x1, t, 0)|1/2 dt dx1,

where

c(t) =

∫
Rn−2

e−4Im(Hess(ψ))(t,y) dy ̸= 0.

Here we have used (4.174.17) and the Lebesgue dominated convergence theorem. The latter was justified
by the conditions (4.144.14), which especially imply that

Im(Hess(ψ))(t, 0) > 0, t ∈ [0, T ].

We also have |g(x1, t, 0)| = 1 due to a property of Fermi coordinates, and (see e.g. [FO20FO20, Eqs. 56
and 62])

a0(x1, t, 0) > 0.

Step 3. Stone-Weierstrass theorem: Recall that f = qeiλ1x1e−λ1ψe−iλ2x1e−λ2ψ. Then, using
the first property in (4.144.14) and taking the limit τ → ∞ of (4.164.16) yields

(4.20) 0 =

∫
I×[0,T ]

c(t)eiλ1(x1+it)eiλ2(x1+it)q(x1, γ(t))|a0(x1, γ(t))|4 dx1 dt.

Here we used the limit (4.194.19) of (4.184.18). Let us denote

q̃(x1, t) = c(t)q(x1, γ(t))|a0(x1, γ(t))|4.

We may take λ1, λ2 ∈ R and differentiate (4.204.20) any number of times in λ1 and λ2 at λ1 = λ2 = 0.
This gives

(4.21) 0 =

∫
I×[0,T ]

(x1 + it)a(x1 − it)bq̃(x1, t) dt dx1

for any a, b ≥ 0. By the complex Stone-Weierstrass theorem, the algebra generated by powers of
z = x1 + it and z = x1 − it is dense in C(I × [0, T ]) where I × [0, T ] ⊂ C. It follows that

q̃ ≡ 0.

Since c(t) ̸= 0 for all t ∈ [0, T ] and a0|I×[0,T ] > 0, it follows that

q|I×γ([0,T ]) = 0.

To conclude the proof (in the case where γ does not have self-intersections), we use some well-
known arguments. By [Sal17Sal17, Lemma 3.1], there is a dense set of points D ⊂ M0 such that for all
x ∈ D there is a non-tangential unit speed geodesic γx that passes through x. Thus, by varying
the non-tangential geodesic γ in the above argument we obtain that q = 0 on a dense set. Thus
q ≡ 0 by continuity. If m > 4, we may choose the first four solutions as the solutions u1, . . . , u4
above, and the remaining m− 4 solutions independent of τ . Using the above argument then shows

that qu5 · · ·um ≡ 0. By Runge approximation (see e.g. [LLS20LLS20]), for each x0 ∈ M̃ the solutions

u5, . . . , um can be chosen so that u5(x0) · · ·um(x0) ̸= 0. By letting x0 range over all points of M̃ ,
it follows that q ≡ 0 also in the case m > 4.
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Step 4. Analysis of self-intersections: Let us finally consider the case where γ can have self-
intersections. Let χ be a smooth cutoff function supported in the neighborhood U of p ∈ γ([0, T ]).
According to (4.104.10), in I × U we have

(4.22) v1τ+iλ1v
2
τv

3
τ+iλ2

v4τ =

P∑
j=1

v(1,j)v(2,j)v(3,j)v(4,j)

+
P∑

j1,j2,j3,j4=1, ja ̸=jb for some a,b=1,...,4

v(1,j1)v(2,j2)v(3,j3)v(4,j4).

Let us consider the integral

τ
n−2
2

∫
M̃
χqeiλ1x1e−iλ2x1v(1,j)v(2,j)v(3,j)v(4,j) dV

which corresponds to the first sum of (4.224.22). Integrals of this type will correspond to the leading

order part of our integral identity (4.84.8). Using the formula (4.134.13) for v(k,j), k = 1, . . . , 4, the above
integral reads

(4.23) τ
n−2
2

∫
M̃
χqe−4τ Im(ψ)eiλ1(x1+iψ)eiλ2(x1+iψ)a(1)a(2)a(3)a(4) dV.

Here, for simplicity of notation, we have denoted ψ = ψ(j) and a(k) = a(k,j) for j = 1, . . . , P and
k = 1, . . . , 4.

By writing

f = χqeiλ1(x1+iψ)eiλ2(x1+iψ),

the same computation as in (4.184.18) and (4.194.19) yields that the limit τ → ∞ of (4.234.23) is

(4.24)

∫
I×Ij

c(t)f(x1, t, 0)|a(x1, t, 0)|4|g(x1, t, 0)|1/2 dt dx1.

Here

c(t) =

∫
Rn−2

e−4Im(Hess(ψ))(t,y) dy ̸= 0

defines a smooth function on [0, T ]. Thus by the properties (4.124.12) of the intervals Ij we see that

(4.25)
P∑
j=1

∫
M̃
χv(1,j)v(2,j)v(3,j)v(4,j)

→
∫
I×[0,T ]

c(t)χ(γ(t))q(x1, γ(t))e
iλ1(x1+it)eiλ2(x1+it)|a0|4|(x1,γ(t)) dt dx1

as τ → ∞. This is because the intersection of all the sets γ(Ij), j = 1, . . . , P , contains only the
point p (which has measure zero). Recall also that χ is supported in U .

Let us next consider the integral

(4.26) τ
n−2
2

∫
M̃
χqeiλ1x1e−iλ2x1v(1,j1)v(2,j2)v(3,j3)v(4,j4) dV,

where ja ̸= jb for some a, b = 1, . . . , 4. We argue that this integral is O(τ−
1
2 ) and thus negligible.

Since ja ̸= jb, we have tja ̸= tjb by (4.114.11). If γ̇(tja) would be proportional to γ̇(tjb), then the
14



geodesic γ would be a loop by uniqueness of geodesics. Since γ is non-tangential, this can not be
the case and thus

γ̇(tja) is not proportional to γ̇(tjb).

It follows from the last two conditions of (4.144.14) that

Im(∇2(ψ(ja) + ψ(jb)))(p) > 0

and then using the third condition of (4.144.14) again we see that

(4.27) Im(∇2(ψ(j1) + ψ(j2) + ψ(j3) + ψ(j4)))(p) > 0.

It follows that the integrand in (4.264.26) is exponentially localized not only to the n − 2 directions
transversal to the graph of γ, but to all n−1 directions of M0 pointing away from p. Consequently,
if U is small enough,∣∣∣∣τ n−2

2

∫
I×U

χqeiλ1x1e−iλ2x1v(1,j1)v(2,j2)v(3,j3)v(4,j4) dV

∣∣∣∣ ≤ Cτ
n−2
2

∫
Rn−1

e−cτ |x|
2
dx = O(τ−

1
2 ).

Here we used that χ is supported in U and c is some positive constant resulting from (4.274.27). We
note that no stationary phase argument was used here.

The above arguments and estimates hold if the neighborhood U of p ∈ γ([0, T ]) was small
enough. Let us next consider choosing for each p ∈ γ([0, T ]) a neighborhood Up such that the
above arguments and estimates hold. Since γ([0, T ]) is compact, we may choose a finite number of

sets Up such that these sets cover a neighborhood of γ([0, T ]) in M̃ . Denote the cover of γ([0, T ])
constituting of these sets by {Uα}. Let {χα} be a partition of unity subordinate {Uα}.

We have that the quasimodes v1τ+iλ1 , . . . , v
4
τ are supported in I × ∪αUα. Combining the above

facts and estimates, we have

(4.28) 0 =

∫
M̃
qu1 · · ·u4 dV =

∑
α

∫
I×Uα

χαqu
1 · · ·u4dV

=
∑
α

Pα∑
j=1

τ
n−2
2

∫
I×Uα

χαqe
iλ1x1e−iλ2x1v(α,1,j)v(α,2,j)v(α,3,j)v(α,4,j) dV +O(τ−1) +O(τ−

1
2 ).

Here the terms O(τ−1) and O(τ−
1
2 ) correspond to Rτ and terms of the type (4.264.26) respectively.

Here, for k = 1, . . . , 4 and j = 1, . . . , Pα, we have denoted by

v(α,k,j),

the function v(k,j) in the presentation (4.104.10) with respect to the open set Uα. Taking the limit
τ → ∞ of (4.284.28), then gives

0 =
∑
α

Pα∑
j=1

∫
I×[0,T ]

χα(γ(t))q(x1, γ(t))c(t)e
iλ1(x1+it)eiλ2(x1+it)|a0(x1, γ(t))|4 dx1 dt

=
∑
α

∫
I×[0,T ]

χα(γ(t))q(x1, γ(t))c(t)e
iλ1(x1+it)eiλ2(x1+it)|a0(x1, γ(t))|4 dx1 dt

=

∫
I×[0,T ]

q(x1, γ(t))c(t)e
iλ1(x1+it)eiλ2(x1+it)|a0(x1, γ(t))|4 dx1 dt,

where we used (4.184.18) and (4.254.25). The rest of the proof is as in Step 3 above. □
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Proof of Corollary 1.71.7. The only thing to check is that also in the case where qj is only continuous,
Λq1 = Λq2 implies ∫

M
qu1 · · ·um+1 dV = 0,

for uk solving ∆guk = 0. This however was verified for qj ∈ Ln/2+ε in [Nur23Nur23] in Rn. The argument
on Riemannian manifolds is the same. Thus Corollary 1.71.7 follows from Theorem 1.61.6. □

Remark 4.2. The case m = 2 of Theorem 1.61.6 corresponds to the integral identity of the Calderón
problem for the linear Schrödinger operator. In this case one obtains

0 =

∫
I×[0,T ]

q̃(x, t)eiλ(x1+it) dt dx1

by arguments analogous to those in the proof of Theorem 1.61.6 above. Here q̃ is a smooth multiple of
the difference of the unknown potentials of the problem. By differentiating in λ at λ = 0 it follows
that

0 =

∫
I×[0,T ]

zl q̃(z) dt dx1

for l ∈ N ∪ {0}. Here z = x1 + it and q̃(z) = q̃(x, t). Stone-Weierstrass does not apply in this case
since the algebra span{zl} is not closed under complex conjugation (i.e. polynomials involving z̄
are missing). Indeed, if there were a sequence qn(z) of polynomials of z converging uniformly to
q̃(z), then since ∂qn = 0 it would follow that ∂q̃ = 0. Thus q̃ would have to be holomorphic. It
follows that the method of proof of Theorem 1.61.6 cannot be applied for the Calderón problem for
the linear Schrödinger operator.

The casem = 3 of Theorem 1.61.6 corresponds to the Calderón problem for the equation ∆gu+qu
2 =

0 on CTA manifolds. Recovery of q from the DN map in this case was shown in [FLL23FLL23]. We expect
that the Stone-Weierstrass theorem can be used for the qu2 nonlinearity as well, but proving
this would require constructing somewhat different solutions to the “overlinearized” equations in
[FLL23FLL23]. For this reason, we did not consider the case m = 3 in Corollary 1.71.7 in this paper.
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