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Preface

This monograph is devoted to geometric inverse problems, with emphasis
on the two-dimensional case. Inverse problems arise in various fields of
science and engineering, frequently in connection with imaging methods
where one attempts to produce images of the interior of an unknown
object by making indirect measurements outside. A standard example
is X-ray computed tomography (CT) in medical imaging. There one
sends X-rays through the patient and measures how much the rays are
attenuated along the way. From these measurements one would like to
determine the attenuation coefficient of the tissues inside. If the X-rays
are sent along a two-dimensional cross-section (identified with R?) of the
patient, the X-ray measurements correspond to the Radon transform Rf
of the unknown attenuation function f in R?. Here, Rf just encodes the
integrals of f along all straight lines in R2. The easy direct problem
in X-ray CT would be to determine the Radon transform Rf when f
is known. However, in order to produce images one needs to solve the
inverse problem: determine f when Rjf is known (i.e. invert the Radon
transform).

One can divide the mathematical analysis of the Radon transform
inverse problem in several parts, including the following;:

e (Uniqueness) If Rf; = Rfs, does it follow that f; = fo?
(Stability) If Rf, and Rfs are close, are f; and fs close in suitable
norms? Is there stability with respect to noise or measurement errors?

(Reconstruction) Is there an efficient algorithm for reconstructing f
from the knowledge of Rf?
(Range characterization) Which functions arise as Rf for some f?

(Partial data) Can one determine (some information on) f from partial
knowledge of Rf?
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viii Preface

In this monograph we will study inverse problems in geometric set-
tings. For X-ray type problems this will mean that straight lines are
replaced by more general curves. A particularly clean setting, which is
still relevant for several applications, is given by geodesic curves of a
smooth Riemannian metric. We will focus on this setting and formulate
our questions on compact Riemannian manifolds (M, g) with smooth
boundary. This corresponds to working with compactly supported func-
tions in the Radon transform problem.

We will now briefly describe the main geometric inverse problems
studied here. Our first question is a direct generalization of the Radon
transform problem.

1. Geodesic X-ray transform. Is it possible to determine an unknown
function f in (M, g) from the knowledge of its integrals over maximal
geodesics?

This is a fundamental inverse problem that is related to several other
inverse problems, in particular in seismic imaging applications. A clas-
sical related problem is to determine the interior structure of the Earth
by measuring travel times of earthquakes. In a mathematical idealiza-
tion, we may suppose that the Earth is a ball M C R3 and that wave
fronts generated by earthquakes follow the geodesics of a Riemannian
metric ¢ determined by the sound speed in different substructures. If
an earthquake is generated at a point x € OM, then the first arrival
time of that earthquake to a seismic station at y € OM is the geodesic
distance dg(z,y). The travel time tomography problem, originating in
geophysics in the early 20th century, is to determine the metric g (i.e.
the sound speed in M) from the geodesic distances between boundary
points. The same problem arose much later in pure mathematics and
differential geometry. It can be formulated as follows:

2. Boundary rigidity problem. Is it possible to determine the metric
in (M, g), up to a boundary fixing isometry, from the knowledge of the
boundary distance function dg|anrxan?

The geodesic X-ray transform problem is in fact precisely the lin-
earization of the boundary rigidity problem for metrics in a fixed con-
formal class. If one removes the restriction to a fixed conformal class,
the linearization of the boundary rigidity problem is a tensor tomography
problem. To describe such a problem, let (M, g) be a compact Rieman-
nian n-manifold with smooth boundary, and let m be a non-negative
integer. The geodesic X-ray transform on symmetric m-tensor fields is



ix
an operator I, defined by
Inf0) = [ Fieg O 0)+- 7 (1)t
¥

where ~ is a maximal geodesic in M and f = f;,..;, dz/* @ -+ @ dxim
is a smooth symmetric m-tensor field on M. Here and throughout this
monograph we employ the Einstein summation convention where a re-
peated lower and upper index is summed. In the above case this means
that

n
fjl"‘jm d.’tjl R d.’E‘jm = Z fjl"‘jm dl’jl R R d.’E‘jm.
JiseensJm=1
If m > 1 the operator I,, always has a nontrivial kernel: one has
I, (6Vh) = 0 whenever h is a smooth symmetric (m — 1)-tensor field
with h|spas = 0, V is the total covariant derivative, and o denotes the
symmetrization of a tensor. Tensors of the form oV h are called potential
tensors. If m = 1, this just means that Iy (dh) = 0 whenever h € C*°(M)
satisfies h|apsr = 0. Any 1-tensor field f has a solenoidal decomposition
f = f®+ dh where f*° is solenoidal (i.e. divergence-free) and h|sy = 0.
Thus it is only possible to determine the solenoidal part of a 1-tensor f
from I f. This decomposition generalizes to tensors of arbitrary order,
leading to the following inverse problem.

3. Tensor tomography problem. Is it possible to determine the
solenoidal part of an m-tensor field f in (M,g) from the knowledge
of I, f?

A variant of the geodesic X-ray transform, arising in applications such
as SPECT (single photon emission computed tomography), includes an
attenuation factor. In this case, f € C°°(M) is a source function and
a € C*(M) is an attenuation coefficient, and one can measure integrals
like

Lf(y) = / el a(v($))ds £(4(t))dt, -~ is a maximal geodesic.
8!

This is the attenuated geodesic X-ray transform of f, and a typical in-
verse problem is to determine f from I,f when a is assumed to be
known. Clearly this reduces to the standard geodesic X-ray transform
when a = 0. Similar questions appear in mathematical physics, where
the attenuation coefficient is replaced by a connection or a Higgs field
on some vector bundle over M. This roughly corresponds to replacing
the function a(z) by a matrix valued function or a 1-form.
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4. Attenuated geodesic X-ray transform. Is it possible to determine
a function f in (M,g) from its attenuated geodesic X-ray transform,
when the attenuation is given by a connection and a Higgs field?

This question also arises as the linearization of the scattering rigidity
problem (or the non-Abelian X-ray transform) for a connection/Higgs
field. One can ask related questions for tensor fields and also for more
general weighted X-ray transforms.

Finally, we consider a geometric inverse problem of a somewhat dif-
ferent nature. Consider the Dirichlet problem for the Laplace equation
in (M,g),

Agu =0in M,
u = fon OM.

Here A, is the Laplace-Beltrami operator on (M, g), given in local co-
ordinates by

Agu=g|728,, (92" O, u)

where (g7%) is the inverse matrix of g = (g;1), and |g| = det(g;x). This is
a uniformly elliptic operator, and there is a unique solution u € C°°(M)
for any f € C°°(0M). The Dirichlet-to-Neumann map A, takes the
Dirichlet data of u to Neumann data,

Ag: f = Ouulom

where d,ulpp = du(v)|aam with v denoting the inner unit normal to
oM.

The above problem is related to Electrical Impedance Tomography,
where the objective is to determine the electrical properties of a medium
by making voltage and current measurements on its boundary. Here the
metric g corresponds to the electrical resistivity of the medium, and for a
prescribed boundary voltage f one measures the corresponding current
flux d,u at the boundary. Thus the electrical measurements are encoded
by the Dirichlet-to-Neumann map A4. There are natural gauge invari-
ances: the map A, remains unchanged under a boundary fixing isometry
of (M, g), and when dim M = 2 there is an additional invariance due
to conformal changes of the metric. This leads to the following inverse
problem.

5. Calderén problem. Is it possible to determine the metric in (M, g),
up to gauge, from the knowledge of the Dirichlet-to-Neumann map A4?
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In this monograph we will discuss known results for the above prob-
lems, with an emphasis on the case where (M, g) is two-dimensional. One
reason for focusing on the two-dimensional setting is that the available
results and methods are somewhat different in three and higher dimen-
sions. This is also suggested by a formal variable count: in the questions
above we attempt to determine unknown functions of n variables from
data given by a function of 2n — 2 variables. Thus the inverse problems
above are formally determined when n = 2 and formally overdetermined
when n > 3. This indicates that there may be less flexibility when solv-
ing the two-dimensional problems. On the other hand, the possibility
of using methods from complex analysis will give an advantage in two
dimensions.

Another reason for focusing on the two-dimensional case is that the
two-dimensional theory is at the moment fairly well developed in the
context of simple manifolds. A compact Riemannian manifold (M, g)
with smooth boundary is called simple if

e the boundary 9M is strictly convez (the second fundamental form of
OM is positive definite),

e M is non-trapping (any geodesic reaches the boundary in finite time),
and

e M has no conjugate points.

Examples of simple manifolds include strictly convex domains in Eu-
clidean space, strictly convex simply connected domains in nonpositively
curved manifolds, strictly convex subdomains of the hemisphere, and
small metric perturbations of these.

In this book we will show that questions 1-4 above have a positive
answer on two-dimensional simple manifolds, and question 5 has a pos-
itive answer on any two-dimensional manifold. In particular, this gives
a positive answer in two dimensions to the boundary rigidity prob-

lem posed by Michel 32). The original proof of this result in

Pestov and Uhlmann (2005) employs striking connections between the
above problems: in fact, it uses the solution of the geodesic X-ray trans-
form problem and the Calderén problem in order to solve the boundary
rigidity problem.

We will also see that there are counterexamples to questions 1-4 if one
goes outside the class of simple manifolds. However, it is an outstanding
open problem whether questions 1-4 have positive answers in the class
of strictly convex non-trapping manifolds (i.e. whether the no conjugate
points assumption can be removed).
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While the emphasis in this monograph is on the two-dimensional case,
a large part of the material is valid in any dimension > 2. In Chapters 1—
8 the results are either presented in arbitrary dimension, or they are first
presented in two dimensions and there is an additional section describ-
ing extensions to the higher dimensional case. However, the methods in
Chapters 9-14 involve fibrewise holomorphic functions and holomorphic
integrating factors and these are largely specific to the two-dimensional
case.

The field of geometric inverse problems is vast and the present mono-
graph only covers a selection of topics. We have attempted to choose
topics that have reached a certain degree of maturity and that lead to
a coherent presentation. For the chosen topics, we have tried to give
an up to date treatment including the most recent results. However,
there are several notable omissions such as results specific to three and
higher dimensions, the case of closed manifolds, further geometric inverse
problems for partial differential equations, inverse spectral problems etc.
Some of these are briefly discussed in Chapter 15.

As for the references, we have not aimed at a complete historical
account of the results presented here. In the main text we have cited a few
selected references for each topic, and in Chapter 15 we give a number
of further references on related topics. We refer to the bibliographical
notes in Sharafutdinov (1994) for an account of results up to 1994. The
survey articles Paternain et al. (2014b); Ilmavirta and Monard (2019);
Stefanov et al. (2019) contain a wealth of references to further results.

We assume that readers are familiar with basic Riemannian geometry
roughly at the level of Lee (1997). We also assume familiarity with el-
liptic partial differential equations and Sobolev spaces in the setting of
Riemannian manifolds, as presented e.g. in Taylor (2011). There are nu-
merous exercises scattered throughout the text and the more challenging

ones are marked with a *.

Outline

One intent of the present text is to provide a unified approach to the
questions 1-4 while exposing the main techniques involved. Having this
in mind we have structured the contents as follows.

Chapter 1 considers basic properties of the classical Radon transform
in the plane and discusses briefly the Funk transform on the 2-sphere.
These homogeneous geometric backgrounds are particularly amenable
to the use of standard Fourier analysis and provide a quick introduction
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to the subject. Chapter 2 studies rotationally symmetric examples and
the well-known Herglotz condition that translates into a non-trapping
condition for the geodesics.

Chapter 3 discusses at length the necessary geometric background.
The starting assumptions on compact Riemannian manifolds is that they
have strictly convex boundary and no trapped geodesics. This combina-
tion produces an exit time function that is smooth everywhere except
at the glancing region, where its behaviour is well understood. This set-
ting is good enough to define all X-ray transforms arising in the book
(standard, attenuated and non-Abelian) and it is also good enough to
study regularity results for the transport equation associated with the
geodesic vector field as it is done in Chapter 5. As we mentioned above
when we add the condition of not having conjugate points we obtain the
notion of simple manifold; this is also discussed in Chapter 3.

In Chapter 4 we introduce the geodesic X-ray transform and we estab-
lish the important link with the transport equation. This link gives in
particular that the geodesic X-ray transform Iy is injective iff a unique-
ness result holds for the operator P = VX, where X is the geodesic
vector field and V' the vertical vector field. This brings us to the first
core idea in this book. To tackle this uniqueness problem for P we use an
energy identity called the Pestov identity which emerges from studying
the commutator [P*, P]. The absence of conjugate points gives a way to
control the sign of the terms that arise from this commutator. Variations
of this identity will be used to study attenuated and non-Abelian X-ray
transforms on Chapter 13.

Chapter 6 provides some tools which are specific to two dimensions.
Here we follow the approach of Guillemin and K ] Ja) and we
take advantage of the fact that there is a Fourier series expansion in
the angular variable (i.e. with respect to the vertical vector field V') and

that the geodesic vector field decomposes as X = n4 + n—, where 74
maps Fourier modes of degree k to degree k 4+ 1. The Fourier expan-
sions make it possible to consider holomorphic functions and Hilbert
transforms with respect to the angular variable, and a certain amount
of “vertical” complex analysis becomes available. On the other hand, the
operators 74+ are intimately connected with the Cauchy-Riemann oper-
ators of the underlying complex structure of the surface determined by
the metric. These tools get deployed right away in Chapter 7 where we
study solenoidal injectivity and stability for the geodesic X-ray trans-
form under the stronger assumption of having non-positive curvature.
Chapter 8 contains the second core idea in the book. This is based
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on the central fact that when the manifold (M, g) is simple, the normal
operator Ijly is an elliptic pseudodifferential operator of order —1 in
the interior of M. The ellipticity combined with the injectivity of I
gives a surjectivity result for the adjoint Ij. It is this last solvability
result that plays a key role in all subsequent developments and it may
be rephrased as an existence result for first integrals of the geodesic flow
with prescribed zero Fourier modes.

Chapter 9 discusses inversion formulas up to a Fredholm error and the
range of I. The description of the range is possible thanks to the sur-
jectivity of suitable adjoints following the outline of Chapter 8. Chapter
10 deals with tensor tomography, but also explains how to obtain the
important holomorphic integrating factors from the surjectivity of I§.
Here, the holomorphicity is in the sense of Chapter 6, i.e. in the angular
variable.

Chapter 11 is devoted fully to question 2 above on boundary rigidity
and its relation to the Calderén problem. Chapter 12 proves injectivity
for the attenuated X-ray transform using holomorphic integrating factors
and finally Chapters 13 and 14 discuss the non-Abelian X-ray transform
and attenuated X-ray transform for connections and Higgs fields. The
book concludes with Chapter 15 including a brief summary of the most
relevant open problems and a discussion on selected related topics.

The results presented in this monograph are scattered in research
articles, and we have aimed at giving a unified presentation of this theory.
Some arguments may appear here for the first time. These include a
detailed proof of the equivalence of several definitions of simple manifolds
in Section 3.8, a direct proof of a basic regularity result for the transport
equation in Section 5.1, a relation between the Pestov-Uhlmann inversion
formula and the filtered backprojection formula in Section 9.5, and a
proof that the scattering relation determines the Dirichlet-to-Neumann
map in Section 11.5 based on boundary values of invariant functions.
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1

The Radon transform in the plane

In this chapter we will study basic properties of the Radon transform
in the plane. In this setting it is possible to give precise results on
uniqueness, stability, reconstruction, and range characterization for the
related inverse problem. We will also discuss the normal operator and
show that it is an elliptic pseudodifferential operator. These results will
act as model cases for the corresponding geodesic X-ray transform re-
sults in later chapters. The results are rather classical, and we refer to
Helgason (1999) and Natterer (2001) for more detailed treatments (see
also Kuchment (2014) for a more recent reference). The chapter con-
cludes with another classical topic: the Funk transform on the 2-sphere.

1.1 Uniqueness and stability

The X-ray transform If of a function f in R™ encodes the integrals of
f over all straight lines, whereas the Radon transform Rf encodes the
integrals of f over (n — 1)-dimensional affine planes. We will focus on
the case n = 2, where the two transforms coincide. There are many ways
to parametrize the set of lines in R2. We will parametrize lines by their
normal vector w and signed distance s from the origin.

Definition 1.1.1. If f € C°(R?), the Radon transform of f is the

function

Rf(s,w) ::/ flsw+twh)dt, scR, we S

Here S' is the unit circle, w’ is the vector in S! obtained by rotat-
ing w counterclockwise by 90°, and C°(R?) denotes the set of smooth
compactly supported functions in R2.
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2 The Radon transform in the plane

O

Figure 1.1 Parallel-beam geometry

Remark 1.1.2. The parametrization of lines by (s,w) as above is called
the parallel-beam geometry (see Figure 1.1) and is commonly used for the
Radon transform in the plane. When studying the geodesic X-ray trans-
form in later chapters we will however use a different parametrization,
the fan-beam geometry, which is customary in that context.

The Radon transform arises in medical imaging in the context of X-ray
computed tomography. In this imaging method, X-rays are sent through
the patient from various locations and angles, and one measures how
much the rays are attenuated. The measurements correspond to inte-
grals of the unknown attenuation coefficient in the body along straight
lines. Moreover, the imaging is often carried out in two-dimensional cross
sections of the body, and the idealized measurements (corresponding to
X-rays sent from all locations and angles) correspond exactly to the two-
dimensional Radon transform. This leads to the basic inverse problem
in X-ray computed tomography.

Inverse problem: determine the attenuation function f in R? from
X-ray measurements encoded by the Radon transform Rf.

It is easy to see that given any f € C°(R?), one has Rf € C°(Rx S*)
and for each w € S! the function Rf(-,w) is compactly supported in
R. Moreover, the Radon transform enjoys the following invariance under
translations:

R(f(- — sow))(s,w) = Rf(s — sg,w).

Exercise 1.1.3. Prove the properties for R stated in the previous para-
graph.
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The translation invariance suggests that the Radon transform should
behave well under Fourier transforms. Indeed, there is a well-known
relation between Rf and the Fourier transform f = % f given by the
Fourier slice theorem. Here, for h € C°(R™) we use the convention

h(&) = Fh() = / e Eh(z)de, £ €R™

Recall the following facts regarding the Fourier transform in R™ (see e.g.
(Hormander, 1983-1985, Chapter 7) for more details):

1. The Fourier transform is bounded L!(R"™) — L>(R™).

2. The Fourier transform is bijective .(R") — .%(R™), where .(R"™)
is the Schwartz space consisting of all f € C°°(R") so that x*9° f €
L>(R™) for all a, 8 € Njj.

3. Any f € .#(R™) can be recovered from its Fourier transform f by
the Fourier inversion formula

f@) =7 @) = o [ ewfod aern

4. For f,g € Z(R™) one has the Parseval identity

F©3(&de=@m)" | fla)g(x)dw

R Rn
and the Plancherel formula
1 fllz2@ny = 7)™ 2|1 fll L2y
5. Fourier transform converts derivatives to polynomials:
(D;f) = ¢&£(€) (1.1.1)
where D; = %%.

Exercise 1.1.4. Show that R maps .(R?) to C°(R x S'). A more
precise result will be given in Theorem 1.2.3.

We will denote by (Rf) (-,w) the Fourier transform of Rf with re-
spect to s. The following theorem states that the one-dimensional Fourier
transform (Rf) (-,w) is equal to the slice of the two-dimensional Fourier
transform f along the line 0 — ow .

Theorem 1.1.5 (Fourier slice theorem). If f € C>°(R?), then

(Rf) (0,w) = f(ow).
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Proof Parametrizing R? by y = sw + tw', we have
N (o) . o0
(Rf) (o,w) = / e oS U f(sw+ twh) dt| ds
—o0 —o0

- /R () dy = fow) 0

This result gives uniqueness in the inverse problem for the Radon
transform:

Theorem 1.1.6 (Uniqueness). If fi, f € C°(R?) are such that Rf; =
ng, then fl = fg.

Proof Since R is linear, it is enough to write f = f; — fo and to show
that Rf = 0 implies f = 0. But if Rf = 0, then f = 0 by Theorem 1.1.5
and consequently f = 0 by Fourier inversion. O

In fact, it is easy to prove a quantitative version of the above unique-
ness result stating that if Rfy &~ Rfs, then f1 &~ fo (in suitable norms).
Given any s € R, we will employ the Sobolev norms

£l ey = 1+ €772 £l 2oy,
||Rf||H;(1R<xsl) =1+ 0'2)5/2(Rf)~(‘77W)HLQ(Rxsl)-

Exercise 1.1.7. If m > 0 is an integer, use the Plancherel theorem for
the Fourier transform to show that

I £l zr2m (m2) ~ Z 10 fll L2 (r2),

|a|<2m

2m
RS 2z x5ty ~ ZHaﬁRfHLz(Rxsl)
j=0
where A ~ B means that cA < B < C'A for some constants ¢,C > 0
which are independent of f.

Thus, roughly, the H*(R?) norm of f measures the size of the first s
derivatives of f in L? (this holds by Exercise 1.1.7 when s is an even
integer, and remains true for any real number s > 0 with a suitable
interpretation of fractional derivatives). A similar statement holds for
the HE norm of Rf, with the difference that the H% norm only involves
derivatives in the s variable but not in w.

Theorem 1.1.8 (Stability). If s € R, then for any fi, f» € C°(R?)
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one has
1
Il f1 = fallzrs 2y < EHRfl - Rf2||H;+1/2(RX51)~

Proof Let f = fi — fo. Using polar coordinates, we obtain that

(1 + |§|2)S/2f||2L2(R2) = /0OO /51(1 + 02)*|f(ow)|?0 dw do
;/_o;/gl(l+02)s|f(ow)2|U|dwdo

;/O; /Sl(l + 02 (Rf) (0,w)|?*|o| dw do. (1.1.2)

£ 117 ey

In particular, since || < (14 ¢2)'/2, this implies the stability estimate

1
2 2
”fHHS(Rz) < §||Rf||H;+1/2(]R><Sl)' [

If f is supported in a fixed compact set, the previous inequality can
be reversed.

Theorem 1.1.9 (Continuity). Let s € R and let K C R? be compact.
There is a constant Cx > 0 so that for any f € C°(R?) with supp(f) C
K one has

IR g2 g1y < Ol f e 2y

Exercise 1.1.10. Prove Theorem 1.1.9 when s > 0 by splitting the last
integral in (1.1.2) in two parts, one over {|o| < 1} and the other over
{lo| > 1}

Exercise 1.1.11. Prove Theorem 1.1.9 for all s € R. This requires the
Sobolev duality assertion | [g, fhdx| < || fllas||hllg-s-

Remark 1.1.12. Theorem 1.1.9 implies that the Radon transform ex-
tends as a bounded map

R: Hj(R?) — H3TV2(R x §Y)

where H (R?) = {f € H*(R?); supp(f) C K}. In fact one may replace
the H:™/? norm on the right by the H**/2 norm (see for instance
(Natterer, 2001, Theorem I1.5.2)). Thus, in a sense, the Radon transform
in the plane is smoothing of order 1/2 (it adds 1/2 derivatives). We also
observe that Theorems 1.1.8 and 1.1.9 yield the two-sided inequality

V2| fllre < IBfllgesir gy < Cxllflme, € Hi(R?).



6 The Radon transform in the plane

1.2 Range and support theorems

We will next consider the range characterization problem: which func-
tions in R x S1 are of the form Rf for some f € C2°(R?)? There is an
obvious restriction: one has

Rf(fsv 7&)) = Rf(s,w), (121)
i.e. Rf is always even. Another restriction comes from studying the
moments
(o]
uk(Rf)(w):/ sF(Rf)(s,w) ds, k>0, we S
— 00

It is easy to see that

for any k > 0, ux(Rf) is a homogeneous polynomial of degree k in w.
(1.2.2)
This means that ug(Rf)(w) = 251,‘..@:1 @jy e Wiy - - wj, for some con-
stants aj,...j, -

Exercise 1.2.1. Prove that Rf always satisfies (1.2.1) and (1.2.2).

It turns out that these conditions (called Helgason-Ludwig range con-
ditions) are essentially the only restrictions. We will first consider range
characterization on .#(R?). To do this, we need to define a Schwartz
space on R x S*.

Definition 1.2.2. The space .7 (R x S1) is the set of all p € C*°(Rx S1)
so that (1 + s2)*9L(Py) € L>®(R x S1) for all integers k,l > 0 and for
all differential operators P on S' with smooth coefficients. We write
i (R x S) for the set of all functions ¢ € .7 (R x S*!) that satisfy the
Helgason-Ludwig conditions, i.e. (1.2.1) and (1.2.2).

The following result is a Radon transform analogue of the fact that
the Fourier transform is bijective .(R?) — .7 (R?).

Theorem 1.2.3 (Range characterization on Schwartz space). The Radon
transform is bijective . (R?) — Zi (R x S1).

The proof of Theorem 1.2.3 is outlined in the following exercises (the
on (1999)).
Exercise 1.2.4. Show that R maps . (R?) into .7y (R x S1).

proof may be also be found in Helg

Exercise 1.2.5. Show that R is injective on .#(R?). (It is enough to
verify that the Fourier slice theorem holds for Schwartz functions.)
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Exercise 1.2.6. Given ¢ € .y (R x S'), show that there exists f €
S (R?) with Rf = ¢ as follows:

(i) By the Fourier slice theorem one should have f(ow) = @(o,w). Mo-
tivated by this, define the function F on R?\ {0} by

F() = (gl ¢/l), e R*\{0}.

(One wants to eventually show that F = f for the required function
f.) Show that F is C* in R?\ {0}.

(ii) Show that F is Schwartz near infinity, i.e. £*0°F € L>(R?\ B(0, 1))
for o, 8 € N§.

(iii) Show that F' can be extended continuously near 0, by using the fact
that ppp(w) is homogeneous of degree 0 (i.e. a constant).

(iv) Use the fact that each ppy is homogeneous of degree k to show that
F can be extended as a C'*° function near 0.

(v) Now that F is known to be in .%(R?), let f be the inverse Fourier
transform of F' and show that Rf = ¢.

There is a similar range characterization for the Radon transform
when rapid decay is replaced by compact support conditions.

Theorem 1.2.7 (Range characterization on C2°(R?)). The map R is
bijective C°(R?) — Py (R x S1), where

PR x SY) = Z5(R x 1) N CZ(R x S1).

In fact, Theorem 1.2.7 is an immediate consequence of Theorem 1.2.3
and the following fundamental result:

Theorem 1.2.8 (Helgason support theorem). Let f be a continuous
function on R? such that |z|*f € L>°(R?) for any k > 0. If A > 0 and
if Rf(s,w) = 0 whenever |s| > A and w € S*, then f(z) = 0 whenever
|z| > A.

The above result will not be needed later, and we refer to Helgason
(1999) for its proof. However, we will prove a closely related result fol-

Q

lowing Strichartz (1982), And

on and Boman (2018).

Theorem 1.2.9 (Local uniqueness). Let B be a ball in R?, and let
f € C.(R?) be supported in B. Let xo € OB and let Ly be the tangent
line to OB through xq. If f integrates to zero along any line L in a small
neighborhood of Ly, then f =0 near xg.
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Proof We will prove the result assuming that f € C°(R?) and that
f is supported in B (the general case is given as an exercise). After
a translation and rotation we may assume that g = 0, B C {xg >
0}, and Lg is the xj-axis. It is convenient to use a slightly different
parametrization of lines and to consider the operator

Pf(«f,n):/_ f(t, &t +n)dt, &neR.

The assumption implies that Pf(£,n) = 0 for (£,n) in some neighbor-
hood V of (0,0). Since f € C°(R?), we may take derivatives in ¢ so
that

oo

P f(Em) = / 100, £ (t, €6 + 1) dt = O, P(w1 £)(€, ).

Since Pf(&,n) = 0 for (§,n) € V, we have P(x1f)(&,n) = c¢(§) in V. But
taking 7 negative and using the support condition for f gives ¢(§) =0
for £ close to 0, i.e. P(z1f)(§,n) = 0. Repeating this argument gives

P(zX £)(&,m) = 0 near (0,0) for any k > 0.

In particular, choosing £ = 0 gives
/ t* f(t,n) dt = 0 for n near 0 whenever k > 0.

This means that all moments of f(-,n) vanish, and it follows that
f(-,m) = 0 for n near 0 (see the following exercise). Thus f vanishes
in a neighborhood of 0. O

Exercise 1.2.10. If f € C.(R) and [*_t*f(t)dt = 0 for any k > 0,
show that f = 0. (You may use the Weierstrass approximation theorem.)

Exercise 1.2.11. Prove Theorem 1.2.9 for functions f € C.(R?) sup-
ported in B. Hint: consider mollifications f-(z) = [p. f(z — y)pe(y) dy
where p.(z) = e "p(x/e) is a standard mollifier, and show that the
Radon transform of f. vanishes along certain lines when ¢ is small.

Remark 1.2.12. Theorem 1.2.9 is valid with the same proof also when
B is a strictly convex domain in R?. Similarly, the Helgason support
theorem (Theorem 1.2.8) can be phrased so that if f satisfies the given
decay properties and integrates to zero over any line disjoint from a
compact convex set K, then f = 0 outside K. Theorem 1.2.9 follows
from this version of the Helgason support theorem after redefining f
suitably.
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1.3 The normal operator and singularities

1.3.1 Normal operator

We will now proceed to studying the normal operator R* R of the Radon
transform, where the formal adjoint R* is defined with respect to the
natural L? inner products on R? and R x S!. The formula for R* is
obtained as follows: if f € C>°(R?), h € C*°(R x S') one has

(Rf,h)r2mx sy :/_ /S1 Rf(s,w)h(s,w)dwds

:/Z/S /O;f(sw+twl)h(s,w)dtdwds

:/R2 f(y)( Slh(y'wdw) dy.

Thus R* is the backprojection operator

R*: O®(R x S') — C>*(R?), R*h(y) = h(y - w,w) dw.
Sl

The following result shows that the normal operator R* R corresponds
to multiplication by % on the Fourier side, and gives an inversion for-
mula for reconstructing f from Rf.

Theorem 1.3.1 (Normal operator). One has

R*R=4xn|D|7' = .71 {TZ?(-)},

and f can be recovered from Rf by the formula
-
T
Remark 1.3.2. Above we have written, for a € R,
IDI*f = FHIEIF(©)}-
The notation (—A)*/2 = |D|* is also used.

Proof of Theorem 1.3.1 The proof is based on computing the inner
product (Rf, Rg)r2rxst) using the Parseval identity, the Fourier slice
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theorem, symmetry and polar coordinates:
(R*Rf,9)r2®2) = (Rf, Rg)r2(rx 51)

- [ oot w

:% } /oo M,(Rg)()] do dw
52 L[ s ] o

<5 f [ ] s

-~ 5 |£|f<s> 3(0) de

- tars {20} ol s

The same argument, based on computing (|D,|'/2Rf,|D;| 1/2Rg)L2(RX51)
instead of (Rf, Rg)r2rxs1), leads to the famous filtered backprojection
(FBP) inversion formula:

Theorem 1.3.3 (Filtered backprojection). If f € C°(R?), then
1 *
[ =R ID,IR]
7r

where |Dg|Rf is the inverse Fourier transform of |o|(Rf) with respect
to o.

The FBP formula is efficient to implement and gives accurate recon-
structions when one has complete X-ray data and relatively small noise,
and hence FBP (together with its variants) has been commonly used in
X-ray CT scanners.

1.3.2 Recovery of singularities

We will later study X-ray transforms in more general geometries. In such
cases exact reconstruction formulas such as FBP are often not available.
However, it will be important that some structural properties of the nor-
mal operator may still be valid. In particular, Theorem 1.3.1 implies that
the normal operator is an elliptic pseudodifferential operator of order —1
in R2. The theory of pseudodifferential operators (i.e. microlocal anal-
ysis) then immediately yields that the singularities of f are uniquely
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determined from the knowledge of Rf. For the benefit of those readers
who are not familiar with these notions, we will give a short presentation
partly without proofs.

vol. I), and for wave front sets see (Hormander
8). Sobolev wave front sets are considered in (Hormanc
Section 18.1).

We first define compactly supported distributions.

Definition 1.3.4. Define the set of compactly supported distributions
in R™ as
&'R") = | H:(R™)
seER

where HZ(R™) is the set of compactly supported elements in H*(R"™).

This definition coincides with the more standard ones defining &’ (R")
as the dual of C°°(R™) with a suitable topology, or as the compactly sup-
ported distributions in 2’(R™). By Remark 1.1.12, the Radon transform
R is well defined in &’(R?). We also recall that the Fourier transform
maps &' (R™) to C*°(R™).

We next discuss the singular support of u, which consists of those
points z such that u is not a smooth function in any neighborhood of
zo. We also consider the Sobolev singular support, which also measures
the "strength” of the singularity (in the L? Sobolev scale).

Definition 1.3.5 (Singular support). We say that a function or distri-
bution w in R™ is C*° (resp. H*) near xq if there is ¢ € C°(R") with
¢ = 1 near x such that pu is in C*°(R"™) (resp. in H*(R™)). We define

sing supp(u) = R™ \ {zp € R"; u is C* near ¢},

sing supp”(u) = R"™ \ {zg € R™; u is H® near xo}.

Example 1.3.6. Let Dq,..., Dy be bounded domains with C* bound-
ary in R™ so that D; N Dy, = () for j # k, and define

N
u=3_cixn,
i=1

where c¢; # 0 are constants, and xp, is the characteristic function of D;.
Then

sing supp®(u) = 0 for o < 1/2
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since u € H® for o < 1/2, but

N
sing supp” (u) = U 0D; for > 1/2
j=1

since u is not H'/2? near any boundary point. Thus in this case the
singularities of u are exactly at the points where u has a jump discon-
tinuity, and their strength is precisely H'/2. Knowing the singularities
of u can already be useful in applications. For instance, if u represents
some internal medium properties in medical imaging, the singularities
of u could determine the location of interfaces between different tissues.
On the other hand, if w represents an image, then the singularities in
some sense determine the ”sharp features” of the image.

Next we discuss the wave front set which is a more refined notion of
a singularity. For example, if f = xp is the characteristic function of a
bounded strictly convex C°° domain D and if xg € 9D, one could think
that f is in some sense smooth in tangential directions at xg (since f
restricted to a tangent hyperplane is identically zero, except possibly at
Zo), but that f is not smooth in normal directions at x( since in these
directions there is a jump. The wave front set is a subset of T*R" \ 0,
the cotangent space with the zero section removed:

T*R™\ 0:={(,&); z,§£ € R", £ # 0}.

Definition 1.3.7 (Wave front set). Let u be a distribution in R™. We
say that u is (microlocally) C*° (resp. H®) near (z¢,&o) if there exist
p € CP(R™) with ¢ = 1 near zp and ¢ € C*°(R™ \ {0}) so that ¢ =1
near &y and v is homogeneous of degree 0, such that

for any N there is Cy > 0 so that [1(€)(pu) (€)] < Cn (1 + €)™V

(resp. F~Hw(€)(pu) (£)} € H*(R™)). The wave front set W F(u) (resp.
H® wave front set WF(u)) consists of those points (z¢, o) where u is
not microlocally C*° (resp. H%).

Example 1.3.8. The wave front set of the function « in Example 1.3.6
is

N
W) = |J ¥ (D))

where N*(D;) is the conormal bundle of D;,

N*(D;) :={(z,&); x € 0D; and £ is normal to 0D; at x}.
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The wave front set describes singularities more precisely than the sin-
gular support, since one always has

m(WF(u)) = sing supp(u) (1.3.1)

where 7 : (2,£) — x is the projection to z-space.

We now go back to the Radon transform. If one is mainly interested in
the singularities of the image function f, then instead of using FBP to
reconstruct the whole function f from Rf it is possible to use the even
simpler backprojection method: just apply the backprojection operator
R* to the data Rf. Since R*R is an elliptic pseudodifferential operator,
the singularities are completely recovered:

Theorem 1.3.9. If f € &'(R?), then

sing supp(R*Rf) = sing supp(f),
WF(R*Rf) = WF().

Moreover, for any a € R one has

sing supp®*? (R*Rf) = sing supp®(f),
WE*TH(R*Rf) = WF(f).

Remark 1.3.10. Since R*R is a pseudodifferential operator of order
—1, hence smoothing of order 1, one can roughly expect that R*Rf is a
kind of blurred version of f where the main singularities are still visible.
The previous theorem makes this precise and shows that the singularities
in R*Rf are one Sobolev degree smoother than those in f.

1.3.3 Pseudodifferential operators

For the proof of Theorem 1.3.9 we recall quickly some relevant definitions
from microlocal analysis, based on the following example. We refer to
(Hormander, 1983-1985, Chapter 18) and (Folland, 1995, Chapter 8) for
a detailed account on pseudodifferential operators.

Example 1.3.11 (Differential operators). Let A = a(x, D) be a differ-
ential operator of order m, acting on functions f € .#(R™) by

Af(@) = a(z,D)f(x) = Y aa(x)Df(x)
la|]<m

where aq € C*°(R"). Here D = 1V, so that D* = (10,,)* - -+ (10, ).

i i
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If each aq is a constant, i.e. aq(z) = aq and A = a(D) =}, <, @a D",
we may use (1.1.1) to compute the Fourier transform of Af:

(AN©) =D aaf(&).
la|<m

The Fourier inversion formula gives that

Af(z) = (2m) / e Ca(€) f(€) d (1.3.2)

n

where a(£) = 3_, < a8 1s the symbol of A(D).
More generally, if each a, is a C°° function with 9%a,, € L>(R") for
all 8 € N{j, we may use the Fourier inversion formula to compute

Af(w) = A[F ()]
= Y aa(@)D |@r)" [ e mEf(e) de
3wt [en [ il

—em [ e | S au@e | o) de

lor|<m

—n " [ el ) f() de (13.)
where

a(x,§) = Z a (x)E” (1.3.4)
lae|<m
is the (full) symbol of A = a(z, D).

The above example shows that any differential operator of order m has
the Fourier representation (1.3.3), where the symbol a(z,§) in (1.3.4) is
a polynomial of degree m in £. The following definition generalizes this
setup.

Definition 1.3.12 (Pseudodifferential operators). For any m € R, de-
note by S™ (the set of symbols of order m) the set of all a € C*°(R" xR")
so that for any multi-indices a, 8 € Nij there is Cs > 0 such that

10200 a(x,6)] < Cap(1+ )™, 2,6 €R™

For any a € S™, define an operator A = Op(a) acting on functions
feZR") by

Af(@) = (2m)~" / e a(2,0)f(€) g, weR™
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Let U™ = {Op(a); a € S™} be the set of pseudodifferential operators of
order m. We say that an operator Op(a) with a € S™ is elliptic if there
are ¢, R > 0 such that

a(r,§) > c(1+E)™, xR (=R

We also give the definition of classical pseudodifferential operators
(the normal operator of the Radon transform will belong to this class):

Definition 1.3.13. We say that a € S™ is a classical symbol, written

a € S}, if one has

a(2,€) ~ Y am—;(,€) (13.5)
j=0

where a,,—; € S™ 77 and a,,_; is homogeneous of degree m — j for ||
large, i.e.

g (0 0) = A" Ty (@,€6), A= 1, |¢] large.

The asymptotic sym (1.3.5) means that for any N > 0 one has

N

a— Zam_j e gm—N-1

=0
We write ¥ = {Op(a); a € ST}

It is a basic fact that any A € U™ is a continuous map .#(R") —
Z(R™), when . (R™) is given the natural topology induced by the semi-
norms f + [|2%9° f|| .~ where a, 8 € Nj. By duality, any A € U™ gives
a continuous map .’'(R™) — ./(R"), where ./(R") is the weak* dual
space of ./(R™) (the space of tempered distributions). In particular, any
A € U™ is well defined on &’ (R™).

It is an important fact that applying a pseudodifferential operator to
a function or distribution never creates new singularities:

Theorem 1.3.14 (Pseudolocal/microlocal property). Any A € U™ has
the pseudolocal property

sing supp(Au) C singsupp(u),
sing supp®™ ™ (Au) C sing supp®(u)
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and the microlocal property

WF(Au) C WF(u),
WEF*™™(Au) C WF%(u).

Proof We sketch a proof for the inclusion sing supp(Au) C sing supp(u).
For more details see (Hormander, 1983-1985, Chapter 18). Suppose that
xo ¢ singsupp(u), so we need to show that xy ¢ singsupp(Au). By
definition, there is ¢y € C°(R™) with » = 1 near zy so that Yu €

C°(R™). We write
Au = A(Yu) + A((1 — ¢)u).

Since A maps the Schwartz space to itself, one always has A(yu) € C™.
Thus it is enough to show that A((1 —)u) is C* near xy. To do this,
choose ¢ € CX(R") so that ¢ = 1 near z¢ and some neighborhood of
supp(¢p) is contained in the set where ¢ = 1. Define

Bu = pA((1 - ¥)u).

It is enough to show that B is a smoothing operator, i.e. maps &' (R™)
to C(R™).
We compute the integral kernel of B:

Bu(z) = (2r) " (z) / e Ca(a, €) (1 — )u) (€) de

n

= [ K(z,y)u(y)dy
]Rn

where

Kla) = @n) " [ pla)e® D a1 - v(w) de.
Recall that a satisfies |a(x,&)] < C(1 + |£])™. Thus if m < —n, the
integral is absolutely convergent and one gets that K € L>®(R™ x R™).
In the general case the integral may not be absolutely convergent, but it
can be interpreted as an oscillatory integral or as the Fourier transform
of a tempered distribution. The main point is that |z — y| > ¢ > 0 on
the support of K(z,y), due to the support conditions on ¢ and . It
follows that we may write, for any N > 0,

€~y (AN ()
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and integrate by parts in £ to obtain that
K(z,y) = (2m) |z — y| 7V x
[ @480 Vel 9)(1 - vl de. (130)

If N is chosen large enough (it is enough that m — 2N < —n — 1),
one has |[(—A¢)Na(z,€)] < C(1 + [€])7""L. Thus the integral in (1.3.6)
is absolutely convergent, and in particular K € L*(R™ x R™). Taking
derivatives gives that 8?85 K is also bounded for any « and (3, showing
that K € C°(R™ x R™). It follows from the next exercise that the
operator B maps into C*°(R™). O

Exercise 1.3.15. Show that an operator Bu(x) = [;, K (x,y)u(y) dy,
where K € C°°(R™ x R™), induces a well defined map from &’ (R™) to
C>*(R™).

We now go back to the normal operator R* R and the proof of Theorem
1.3.9. Theorem 1.3.1 states that R* R has symbol %, which would be in
the symbol class S~! except that the symbol is not smooth when ¢ = 0.
This can be dealt with in the following standard way.

Theorem 1.3.16. The normal operator satisfies
R*'R=Q+S

where @ € ‘1/;1 is elliptic, and S is a smoothing operator which maps
&'(R?) to C>(R?).

Proof Let ¢ € C2°(R?) satisfy ¢(¢) = 1 for |¢] < 1/2 and ¥(£) = 0 for
€] > 1. Write

Qf =4nF ! {1_5(5”} Sf=drF ! {ﬁg)f}

Then @ is a pseudodifferential operator in q;;l with symbol ¢(z,§) =

17’5["(5), hence @ is elliptic. The operator S has the required property by

Lemma 1.3.17 below since % is in L'(R?) and has compact support

(the function £ — I?l\ is locally integrable in R?). O

Lemma 1.3.17. If m € L'(R") is compactly supported, then the oper-
ator

i fm FHmON
is smoothing in the sense that it maps &' (R™) to C*°(R™).
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Proof If f € &' (R™) then f € C°°(R™). Consequently F (&) := m(&) f(€)
is in L'(R") and compactly supported by the assumption on m. This
implies that Sf = .Z ~1F is C*. O

We can finally prove the recovery of singularities result.

Proof of Theorem 1.3.9 We prove the claim for the singular support
(the other parts are analogous). By Theorem 1.3.16, one has

R*Rf = Qf + C™.

Hence it is enough to show that sing supp(Q f) = sing supp(f). It follows
from Theorem 1.3.14 that singsupp(Qf) C singsupp(f). The converse
inclusion is a standard argument, which follows from the construction of
an approximate inverse, or parametriz, for the elliptic pseudodifferential
operator (). Define

Bf =77 {(1-x(©)kIf}

where xy € C°(R?) satisfies x(§) = 1 for |¢] < 2. Note that E € W!.
Since ¥(§) = 0 for |£] > 1, it follows that

_ 1—p(€) » B )
pf = 77 {a-x@nlet L = - 2 w0},
Thus EQf = f + Sif, where S; is smoothing and maps &’(R?) to
C*°(R?) by Lemma 1.3.17. Hence Theorem 1.3.14 applied to E gives

that

sing supp(f) = sing supp(EQf) C singsupp(Qf). O

1.3.4 Visible singularities

We conclude this section with a short discussion on more precise recovery
of singularities results from limited X-ray data. This follows the microlo-
cal approach to Radon transforms introduced in Guillemin (1975). For
more detailed treatments we refer to the survey articles Quinto (2006

Krishnan and Quinto (2015).

There are various imaging situations where complete X-ray data (i.e.
the function Rf(s,w) for all s and w) is not available. This is the case for
limited angle tomography (e.g. in luggage scanners at airports, or dental
applications), region of interest tomography, or exterior data tomogra-
phy. In such cases explicit inversion formulas such as FBP are usually
not available, but the analysis of singularities still provides a powerful



1.8 The normal operator and singularities 19

paradigm for predicting which sharp features can be recovered stably
from the measurements.
We will try to explain this paradigm a little bit more, starting with
an example:
Example 1.3.18. Let f be the characteristic function of the unit disk
D, ie. f(z) =1if || <1 and f(z) = 0 for |x| > 1. Then f is singular
precisely on the unit circle (in normal directions). We have
{ 2v1—s2, |s| <1,
Rf(s,w)=
0, |s| > 1.

Thus Rf is singular precisely at those points (s,w) with |s| = 1, which
correspond to those lines that are tangent to the unit circle.

There is a similar relation between the singularities of f and Rf in
general, and this is explained by microlocal analysis and the interpre-

tation of R as a Fourier integral operator (see (Hormander, 19831985,
Chapter 25) for the definition and facts on Fourier integral operators):

Theorem 1.3.19. The operator R is an elliptic Fourier integral opera-
tor of order —1/2. There is a precise relationship between the singulari-
ties of f and singularities of Rf.

We will not spell out the precise relationship here, but only give some
consequences. It will be useful to think of the Radon transform as defined
on the set of (non-oriented) lines in R2. If A is an open subset of lines
in R?, we consider the Radon transform Rf|4 restricted to lines in A.
Recovering f (or some properties of f) from Rf|4 is a limited data
tomography problem. Examples:

o If A = {lines not meeting D}, then Rf|4 is called exterior data.
e If 0 < a < 7/2 and A = {lines whose angle with z-axis is < a} then
Rf]|.4 is called limited angle data.

It is known that any f € C>°(R?\ D) is uniquely determined by exte-
rior data (Helgason support theorem), and any f € C°(R?) is uniquely
determined by limited angle data (Fourier slice and Paley-Wiener the-
orems). However, both inverse problems are very unstable: inversion is
not Lipschitz continuous in any Sobolev norms, but one has conditional
logarithmic stability. See Koch et al. (2021) for a detailed treatment of
instability issues.

The precise relationship between the singularities of f and Rf men-
tioned in Theorem 1.3.19 gives rise to the following notion.
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Definition 1.3.20. A singularity at (zg, &) is called wisible from A if
the line through g in direction & is in A.

One has the following dichotomy:

o If (zg,&) is visible from A, then from the singularities of Rf|4 one
can determine for any o whether or not (zg, &) € WF*(f). In general
one expects the reconstruction of visible singularities to be stable.

o If (x9,&) is not visible from A, then this singularity is smoothed out
in the measurement Rf| 4. Even if Rf|4 would determine f uniquely,
the inversion is not Lipschitz stable in any Sobolev norms.

1.4 The Funk transform

In this final section we consider the X-ray transform along closed geodesics
of the 2-sphere S? equipped with the usual metric of constant curva-

ture 1. This is also known as the Funk transform (Funk (1913)). Here

geodesics are great circles and they are all closed with period 27. Mani-

folds all of whose geodesics are closed are called Zoll manifolds and the

original motivation for studying the Funk transform was to describe Zoll

metrics on the sphere. Our presentation follows (Guillemin, 1976, Ap-

pendix A) and it will use some basic representation theory and Fourier

analysis. This is the only instance in this book in which we will consider

the X-ray transform on a closed manifold.

A great circle on S? can be identified with a point on S? C R3:
the correspondence associates the geodesic traveling counter-clockwise
through the equator with the north pole N = (0,0,1). Thus we may
identify the set of (oriented) closed geodesics with S2 and consider the
X-ray transform I as a map C*°(S?) — C'°°(S?), defined by

27
1)@ = [ o) i
where x € S? is identified with the oriented great circle .
Exercise 1.4.1. Show that if & is an odd function then I(h) = 0.
We have a decomposition
C%(5%) = C35a(5%) @ Cen(5?),

and the exercise asserts that C25,(S?) C ker I. Our objective is to show
the following theorem:
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Theorem 1.4.2. The kernel of the X-ray transform I on S? with its
standard metric of constant curvature 1 is precisely the odd functions on
S2:

ker I = C254(5%).

Moreover, I : C2, (S?%) — C,.(5?) is bijective.

even

To prove the theorem we require some preparations. Given f € C*°(R"),
let f denote f
Laplacian Ag» in R™ and the Laplacian Agn—1 on the sphere S7~1!; its
proof can be found in (Gallot et al., 2004, Proposition 4.48):

gn—1. We first need a standard relationship between the

— B TP
Agn = Agn- —_— —1)= 1.4.1
e (= Bss (D4 o2 v -0 an
where r is the radial coordinate.
Let
» := {homogeneous polynomials of degree k on R"}
and

p={PePp: Ar.(P) =0}
denote the harmonic homogeneous polynomials of degree k& on R™.
We write P € P as
P =r*P,
and hence for P € P}, (1.4.1) reduces to

Agn(P) = Agn-1(P) + k(k +n — 2)P.
If P € H}} then
Agn-1(P) = —k(k+mn—2)P,

so that P is an eigenfunction of Agn-1 with eigenvalue —k(k +n — 2).
Write Pj, := {P: P e P7} and similarly define H, ={P: Pc H}}

We briefly describe the representation theory we need for the orthog-
onal group. We define an action of O(n) on P, by setting

(9- P)(x) :== P(g~'x)
for P € P, and g € O(n).
Exercise 1.4.3. Show that
Agn-1(g-P)=g-Agn-1(P),

and hence this action descends to give an action on H .
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The following theorem is standard (see for instance, (Sepanski, 2007,
Theorem 2.33)).

Theorem 1.4.4. The set Hy, is an irreducible O(n)-module and forn >
3 is also an irreducible SO(n)-module. Moreover L*(S™~1) decomposes
as a Hilbert space direct sum

(s = pH,.
k=0

We now restrict to the case n = 3 and we drop the superscript n from
the notation. The key observation we need is that the X-ray transform
I commutes with the action of SO(3) on S?:

Exercise 1.4.5. Show that I(g-h) = g - Ih for any ¢ € SO(3) and
h € C>(S?), where (g- h)(x) = h(g~'z).

We claim that I maps Hj, into itself and there exist constants ¢, € R
such that

Tig, = e 1d. (1.4.2)

YNNT

This is essentially a consequence of Schur’s lemma (see (Sepanski, 2007,
Theorem 2.12)) as we now explain. By Exercise 1.4.5, I(Hy) is a SO(3)-
invariant subspace. If I(Hj) intersects two or more of the spaces H;
nontrivially, one obtains a splitting of Hy, into proper SO(3)-invariant
subspaces which is impossible by irreducibility. Thus I(Hy) C H; for
some . Since both Hj, and H; are irreducible, Schur’s lemma yields that
I |ﬁk : Hy — Hj is either an isomorphism or = 0. If & # [ it cannot
be an isomorphism since the spaces have different dimension (Sepanski,
2007, Exercise 2.30). Thus I must map Hy, into itself, and Schur’s lemma
implies (1.4.2).

As we observed earlier, clearly cor+1 = 0 for all non-negative integers
k, since Hap1 1 C C%,4(5?).

Proposition 1.4.6. For all non-negative integers k,

2m
Cok = (—1)’“/ (cos §)** dp
0

L1:3-5--(2k—1)
2.4-6---2k

=2m(—1)

Proof We take advantage of the fact that we only need to check the
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result on a fixed P € Hyy, of our choice and a fixed point in S2. Consider

l’y, Eakazz

for some constants a; € R. There are constraints on the coefficients a;
arising from P being harmonic:

O = AR”(P)
2k—2
=Y ai(2k—i)(2k—i—1 2’““+Zal i— 1)a?higi 2
=0
2k—2 o
=) a2k —i4+2)(2k —i+1) + ayi(i — 1)]z?*F 1272
=2
and hence
ai  (k—i+2)2k—i+1)
ai—2 i(i — 1) '
and so,
sk p 2k(2k—1)---2-1 .
£ = (- = (-1 1.4.3
ao ( )1.2.3...(21@71)21{ (=1 (14:3)

Let 7 : [0,27] — S? be the great circle going around the equator, so it
corresponds to the north pole N of S2. We have

1(P)(V) = / " PO(1)) de

2m
:/ P(cost,sint,0)dt
0

2
= ao/ (cost)?* dt.
0

But we also know that I(P)(N) = cg, P(N) = capasi. Thus we conclude
using (1.4.3)

cop = (—1)F /O%(Cost)% dt. (1.4.4)

This proves the first identity in the proposition; the second one is left as
an exercise (it is a Wallis integral). O

Exercise 1.4.7. Compute the integral in (1.4.4).
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Exercise 1.4.8. Give a shorter proof of the proposition considering the
sectoral harmonic P(x,y, z) = (z + iy)?*.

The proposition immediately proves that the kernel of I consists pre-
cisely of the odd functions; namely if I(f) = 0 then expanding f into
harmonic polynomials and using the fact that cor # 0 for all k shows
that f € C25,4(5?), that is, ker I C C54(S?), and we have observed that
the reverse inclusion easily holds.

It will take a bit more work to prove the second assertion of Theorem
1.4.2. In the same way as we saw that the Radon transform in the plane
is smoothing of order 1/2, we shall see that the X-ray transform I on
5?2 is smoothing of order 1/2. To make this statement precise we need
to define Sobolev spaces and norms. There are several ways to do this
and intuitively, we think of a function f lying in H*(S?) if it has s
derivatives in L2. For us the most convenient way to do it is to define
for f =377, fr € L*(S?) and s > 0 that

oo

12 =D (1 Rk +1)% fell 22 (1.4.5)

k=0

and declare that H*(S5?) is the set of f € L?(S?) such that || f||s < occ.
When s = 2m is an even integer this is equivalent to considering the
norm ||(—=Agz4+1)™ f]|| 2 and hence it captures the idea that if the norm
is finite f has 2m derivatives in L2. But the definition also gives meaning
to smoothness of fractional order and it suggests that one could define
the operator (—Age 4 1)%/2 as

) (U +k(k+ 1) fre
k=0

Denote by HE,.,(S?) the set of even functions in H*(S?). Now we
show that with this choice of norm we have:

Theorem 1.4.9. There is a constant C > 1 independent of s such that
CHIf s < M (H)llst1/2 < Cllfls
for all s >0 and f € HE,.,(5%).

Proof The proof is quite simple and it basically reduces to understand-
ing the asymptotic behaviour of ¢y as k — co. Using Proposition 1.4.6
together with Wallis’s formula

1 2.4-6--2k
VT Fne VEL 3.5 (2k—1)
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1
Cop ~ (-1)%/%.

This together with the definition of the norms in (1.4.5) gives the theo-
rem right away. O

we deduce that

Proof of Theorem 1.4.2 Theorem 1.4.9 tells us that for s > 0 the map
I: HS., (5% — HS;;}/Q(SQ) is injective. In order to check that I is
surjective, take h € HS%;/2(S2) and write h = Y7, o hor. If we let
f =40 haw/cor, then f € HE, (S?) and If = h. Finally to check
that I is a bijection between smooth even functions it suffices to note

that C*°(5?%) = Ng>oH*(S?). O

Exercise 1.4.10. Consider the X-ray transform I : Q!(S?) — Q1(S?)
acting on 1-forms on S? and let o : $2 — S? be the antipodal map. A
1-form 6 is said to be odd if 0*0 = —6 and even if ¢*6 = 6. Show that
any odd form is in the kernel of I. Moreover, show that an even form
is in the kernel of I if and only if it is exact (see (Michel, 1978, Section

8)).
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2
Radial sound speeds

In this chapter we will discuss geometric inverse problems in a ball with
radial sound speed. The fact that the sound speed is radial is a strong
symmetry condition, which allows one to determine the behaviour of
geodesics and solve related inverse problems quite explicitly. We will
restrict our attention to the two-dimensional case, since the general case
of a ball with radial sound speed in R™ reduces to this by looking at
two-dimensional slices through the origin.

We first discuss geodesics of a radial sound speed satisfying the im-
portant Herglotz condition, using the Hamiltonian approach to geodesics
and Cartesian coordinates. We then prove the classical result of Herglotz

(1907) that travel times uniquely determine a radial sound speed of this
type. Next we switch to polar coordinates and study geodesics of a rota-
tionally symmetric metric, and prove that the geodesic X-ray transform
is injective. The main point is that the geodesic equation can be inte-
grated explicitly by quadrature, and a function can be determined from
its integrals over geodesics using suitable changes of coordinates and
inverting Abel type transforms. Finally, we give examples of manifolds
(surfaces of revolution) where the geodesic X-ray transform is injective
or is not injective.

2.1 Geodesics of a radial sound speed

The fact that the geodesics of a radial sound speed can be explicitly
determined is related to the existence of multiple conserved quantities
in the Hamiltonian approach to geodesics. We first recall this approach.
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2.1.1 Geodesics as a Hamilton flow

Let M C R", let = be the standard Cartesian coordinates in R", and
let g = (g;r(2))} 4=, be a Riemannian metric on M. A curve z(t) =

(xt(t),...,2"(t)) is a geodesic iff it satisfies the geodesic equations
il(t) 4+ Tl (a(t)d? ()i (t) = 0, (2.1.1)
where Fé— . are the Christoffel symbols given by
1
Il = §glm(aj9km + OkGjm — OmGjk)-

Recall that (¢'™) is the inverse matrix of (g;x), and that we are using
the Einstein summation convention where a repeated index in upper and
lower position is summed. We will assume that all geodesics have unit
speed, i.e.

12(t)]g = \/gjk(x(t))d:j (t)ak(t) = 1.

In this section we will also use the Euclidean length of vectors x € R",
written as

|z|le = /22 + ...+ 22.

We recall that the geodesic equations are often derived by using the
Lagrangian approach to classical mechanics: they arise as the Euler-
Lagrange equations that are satisfied by critical points of the length
functional L(x) = f:|x(t)|g dt. We will now switch to the Hamiltonian
approach, which considers the position z(¢) and momentum £(t), where
&(t) is the covector corresponding to (), simultaneously.

Writing

&(t) = gin(z®)i®(t),  f(2,€) = /9" (@),

a short computation shows that the geodesic equations (for unit speed
geodesics) are equivalent with the Hamilton equations

{ i(t) = Vef(z(t),£(1)),
£(t) = —Vauf(a(t),&(1)).

Here f(z,£) = |€]4 (speed, or square root of kinetic energy) is called the
Hamilton function, and it is defined on the cotangent space

(2.1.2)

T*M:{(Qﬁ,g);.”L'EM,fER"}:MxR”CRZ”_

The operators V, and V, are the standard (Euclidean) gradient opera-
tors with respect to the x and £ variables.
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Exercise 2.1.1. Show that (2.1.1) is equivalent with (2.1.2).
Writing v(t) = (z(t),£(t)) and using the Hamilton vector field Hy on
T* M, defined by
Hy :=Vef - Vo—Vaof -Ve=(Vef,—Vaf)
we may write the Hamilton equations as

Y(t) = Hy(y(1)-

Definition 2.1.2. A function u = u(z, ) is called a conserved quantity
or a first integral if it is constant along the Hamilton flow, i.e. ¢ —

u(z(t),&(t)) is constant for any curve (x(t),£(t)) solving (2.1.2).
Now (2.1.2) implies that

u is conserved

= Sulal), &)
<~

Hpu(x(t),£(t)) =
Since

Hif = (Vef,=Vaf) (Vaf,Vef) =0,
the Hamilton function f (speed) is always conserved.

Let now M C R?, and consider a metric of the form

gk (@) = c(x) 25

where ¢ € C°(M) is positive. Then f(z,&) = c(z)|¢]e and, writing
$= i

Hy = ()€ - Vg — |€]Vac(z) - Ve.

Define the angular momentum

L(Ji,g) =¢- xL’

zt = (
When is L conserved? We compute

—T9,X1).

= —|¢]eVe(x) cpt.

Hfl = C(x)é (—=4) = [€leVac(x) - 2t
Thus H;L = 0 iff Ve(z) - 2+ = 0, which is equivalent with the fact that
c is radial:

Lemma 2.1.3. The angular momentum L is conserved iff

c=c(r), r=|x|e.
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If M C R? and ¢(z) is radial, then the Hamilton flow on T*M (a four-
dimensional manifold) has two independent conserved quantities (the
speed f and angular momentum L). One says that the flow is completely
integrable, which implies that the geodesic equations can be solved quite
explicitly by quadrature using the conserved quantities f and L. See e.g.
(Taylor, 2011, Chapter 1) for more details on these facts.

2.1.2 Geodesics of a radial sound speed

We will now begin to analyze geodesics in this setting, following the
presentation in Bal (2019). Let M = D\ {0} where D is the unit disk in
R?. Assume that

gir(@) =c(r) 28k, =l

where ¢ € C*°([0,1]). Note that the origin is a special point and g;x(z)
is not necessarily smooth there, hence we will consider geodesics only
away from the origin.
We write
x

r(t) =z, &= ER

Then f(z,€) = ¢(r)|£|e and the Hamilton equations (2.1.2) become

i(t) = c(r(t)E),
{f'(t) = — 6L (r (1) (0): (21.3)

Consider geodesics starting on 9D, i.e. r(0) = 1, and write

£0) = —— (VI () +p2(0)).  0<p<l  (214)

Note that £(0) points inward, and hence also #(0) = ¢(1)2£(0) points
inward. The normalization yields [£(0)|, = |£(0)|; = 1, so that the
geodesic has unit speed.
We wish to study how deep the geodesic goes into M, which boils
down to understanding r(¢). Computing the derivative of r(t) gives
x-z  cr)

B |x|e - T|§‘e(m£) (215)

In particular, we see that 7(¢) has the same sign as x(t) - £(¢). The latter
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quantity can be analyzed by (2.1.3). We compute

d .
Loy =i-tra-é=ellc—rd(r)
e L
=c |§|ed7" (C(T)) r—r(t) (2.1.6)
Next we make use of the conserved quantities:
F conserved —> c(rE)ED)]e =1 —> [¢(8)], = C(Tl(t)), (2.1.7)
L conserved = &(t) - z(t)* = £(0) - z(0)*. (2.1.8)
Then (2.1.6) becomes
d d r
a(x &) = c(r)ﬂ (c(r)) ety (2.1.9)

Remark 2.1.4. We note that one can derive a useful ODE for r(¢). By
(2.1.5) one has 7 = ¢(2 - ). Decompose & = (£ - #)& + (£ -21)2+. Noting

~ ~ 2
that |2 - €| = L—@-ﬁﬁ?:,/1—(ﬁgo by (2.1.7), (2.1.8) and

(2.1.4), we see that r(t) solves the equation

2
. pe(r) .
==+ 1-— +£-2>0. 2.1.1
p=sern1- () seazo (2.1.10)
This is an autonomous ODE for r(¢) (all other dependence on ¢ has been
eliminated).

To simplify the behaviour of geodesics we would like that 7(¢) has a
unique zero at some ¢ = t,, is negative for ¢ < t,, and positive for ¢ > ¢,,.
This means that geodesics curve back toward the boundary after they
reach their deepest point. Since 7(¢) has the same sign as x(t) - £(¢), the
identity (2.1.9) shows that this is guaranteed by the following important
condition.

Definition 2.1.5. We say that a radial sound speed ¢ € C*°([0,1])
satisfies the Herglotz condition if

$(45>>Q r e [0,1]. (2.1.11)

Assuming this condition we can describe the behaviour of geodesics.
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Theorem 2.1.6. Assume that ¢ € C*([0,1]) satisfies the Herglotz con-
dition. Let 0 < p < 1, and consider the geodesic with z(0) € 0D and
£(0) given by (2.1.4). There is a unique time t, > 0 such that

7(t) <0 for 0<t <ty 7(tp) =0, 7(t) >0 for t, <t <2t,

One has 0 < r(t) <1 for 0 <t < 2t, and r(0) = r(2t,) = 1. Moreover,
the geodesic is symmetric with respect to t = t, so that x(t, + s) =
R, (z(t, — s)) where R, is reflection about &(t,).

Proof By (2.1.4) one has

z(0) - £(0) = —¢(1)"1/1—p2 <0, (2.1.12)

and (2.1.5) implies that 7(0) < 0. Thus z(¢) stays in D\ {0} at least

for a short time. Note also that by (2.1.7) (conservation of f) and the

positivity of ¢, one has |£(t)|. > €9 > 0 whenever the geodesic is defined.
Let T be the maximal time of existence of the geodesic x(t), i.e.

T = sup{t > 0; x5 stays in D\ {0}}.

There are two ways that x(¢) can exit D\ {0}: either x(t) can go to 0,
or z(t) can go to dD. Let us show that the first case cannot happen.
If z|jo,7 stays in D\ {0} and z(t;) — 0 as t; — ¢, then (2.1.8) implies
that £(0) - z(0)+ = 0. But (2.1.4) gives that £(0) - z(0)* = p/c(1), which
is impossible since we assumed that 0 < p < 1. This shows that either
T = oo, or T is finite and z(T) € ID.

Now we go back to (2.1.9) and note that the positivity of ¢ and the
Herglotz condition (2.1.11) imply that

4

dt
Thus z(t) - £(¢) is strictly increasing. By (2.1.12) one has z(0) - £(0) < 0
and

(z(t)-£(t) >0 >0, tel0,T).

2(t) - €(t) > 2(0) - £(0) + eot, e [0,T). (2.1.13)

Now if 2(¢)-£(t) were negative for t € [0,T"), then by (2.1.5) r(¢) would be
strictly decreasing for t € [0,T"), and the maximal time would be T' = oo
since z(t) could not go to ID. This is a contradiction with (2.1.13), hence
there must be a unique ¢, > 0 with z(¢,) - £(t,) = 0. By (2.1.5) one has
7(t) < 0 for t < tp, 7(t,) =0, and also 7(¢) > 0 for ¢t > ¢, since x(t) - £(t)
is strictly increasing.

The other claims follow if we can show the symmetry z(t, + s) =
R, (z(t,—s)). Since everything is rotationally symmetric, we may assume
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that #(t,) = (1,0) and Ry,(z1,22) = (21, —x2). Define n(s) = (z(t, +
9),E(ty +5)) and C(s) = (Ry(e(ty — 5)), — Ry(€(ty —))). Then both n(s)
and ((s) satisfy the Hamilton equations (2.1.3) with the same initial
data when s = 0 (since x(t,) - £(t,) = 0), and the symmetry condition
follows by uniqueness for ODEs. O

2.2 Travel time tomography

We will now consider a variant of the travel time tomography problem
discussed in the introduction, and prove the classical result of Herglotz
(1907) showing that travel times uniquely determine a radial sound speed
satisfying the Herglotz condition.

If ¢ € C*([0,1]) satisfies the Herglotz condition, then by Theorem
2.1.6 the unit speed geodesic starting at z(0) € D having codirection
£(0) = ﬁ(—\/l — p22(0) + pz(0)*) where 0 < p < 1 returns to OD
after time 2¢,. Note that the travel time 2¢, does not depend on the
choice of x(0) € ID because of radial symmetry. Thus we may define
the travel time function

T.(p) =2t,, 0<p<lL.

Theorem 2.2.1 (Travel time tomography). Assume that c € C*°([0,1])
is positive and satisfies the Herglotz condition. From the knowledge of the
value ¢(1) and the travel times

T.(p), 0<p<l,
one can determine c(r) for r € (0,1].

Remark 2.2.2. The problem of determining a radial sound speed from
travel time measurements was known to geophysicists in the early 20th
century. A mathematical treatment based on inverting Abel integrals
was given in Herglotz (1907) and independently in Bateman (1910),
and the problem was further analyzed in Wiechert and ger (1910).
In geophysics the approach based on these ideas goes by the names of

Herglotz, Wiechert and Bateman.

To prove this theorem, we start with the ODE (2.1.10) which gives

that
dr pe(r) 2
— = 1-— t, <t <2t,.
dt e(r) <rc(1)) ’ p="=""
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We use this fact and a change of variables to obtain

2t 1
P 1
Tc(p) =2t, = 2/ dt = 2/ dr (2.2.1)
ty s

[ pe(r) 2

where 7, = r(t,). Thus, from the measurements T,(p) with 0 < p < 1 we
know the integrals (2.2.1) involving ¢(r). We wish to recover ¢(r) from
these integrals.

To simplify (2.2.1), we make the change of variables

_ <C(,=((17~);>2 . (2.2.2)

This is a valid change of variables by the Herglotz condition (2.1.11).
Note that since 7(t,) = 0, the ODE (2.1.10) shows that r, = r(t,)
satisfies

Tp . P

o(ry) (1)

Hence r = 7, corresponds to u = p?. Then T,(p) becomes

gy L [t L
e\P (1) Jpe dur Sy — p2

This is an Abel integral, of the kind encountered in Abel (1826) when
determining the profile of a hill by measuring the time it takes for a
particle with different initial positions to roll down the hill. This work
of Abel is considered to be the first appearance of an integral equation

du. (2.2.3)

in mathematics.

These Abel integrals can be inverted by the following result, where
we also pay attention to various mapping properties of the Abel trans-
form. See Gorenflo and Vessella (1991) for a detailed treatment of Abel
integral equations.

Theorem 2.2.3 (Abel transform). Let a < (3, and define the Abel
transform

P
Au(z) := /;1; Wu(y) dy, a<z<p.

The Abel transform takes LL _((a, B]) to itself. Define the space

loc

A((a, B]) := {f € Lbo((e, B]) s Af € W (e, B])}-
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The Abel transform is a bijective map between the following spaces:

A LL (e, B) = Al(a, B]), (2.2.4)
At A((a, B]) = {f € Wige (@, 8]); £(B) = 0}, (2.2.5)
A C=((a,8]) = {(B—2)Y?h(x); he CF((a, B)}.  (2.2.6)

Given any f € A((a, f]), the equation Au = f has a unique solution
u € L (o, B]) given by the formula

Ld (7 fl2)

u(y) = “ady de. (2.2.7)

If additionally f € Wlf)’cl((a,ﬂ]) with f(B) = 0, one has the alternative
formula

IR B L i C)
u(y) = /y CEE dx. (2.2.8)

™

Remark 2.2.4. Here

Llloc((a,ﬁ]) = {u; u|[%5] € Ll(['y,ﬂ]) whenever o < v < 8},

and similarly for Wlf)’cl((a, B]). Recall that in one dimension W11 co-
incides with the space of absolutely continuous functions, and hence
functions in VVIOC ((ar, B]) can be evaluated pointwise at .

Proof 1If a < v < 3, we may use Fubini’s theorem to show that

u(y
/|Au \d:r<// | 1/2c1ld // 1/2 dx dy

—2/ (4 — 1) Juy)| dy < 2(8 - 71/2/|u )l dy.

This shows that A maps L _((«, B]) to itself. We use the definition of A
and Fubini’s theorem to compute

F Au(z

2

Au(z):/( 1/2 // 1/2 )1/2dydx
=

The last quantity may be written as fzﬁ k(z,y)u(y) dy where, using the
change of variables z = z + (y — 2)w,

Y 1 ! 1
k(z,y)Z/Z (@ — 2)12(y — )1/ dx:A wi/2(1 — w)1/2 dw.
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Thus k(z,y) is a constant, given by the beta function B(1,3) = .
The constant can be computed directly as follows: changing variables

141 - i
w =35+ v and v = sin f gives

1 1 1 1 7\'/2
—dw: d’U: d9:ﬂ'.
/o wl/2(1 —w)l/2 /71 V1—? /71'/2

This shows that for any u € L, ((«, 8]) one has

B
Au(z) = 77/ u(y) dy. (2.2.9)

Thus (A(Au))'(z) = —mu(z), so A maps L. ((a, f]) into A((cv, ).
We next show that the map (2.2.4) is bijective. By (2.2.9), if Au =0
it follows that v = 0, so A is injective. Now let f € A((«, 8]). Setting

u:=—12Af we have u € L ((a, 8]) and

B
7 [ ulwdy = Af)

since one always has Af(5) = 0. Combining this with (2.2.9) we get
Af = A(Au), and since A is injective we have Au = f. We have proved
that (2.2.4) is bijective and that one has the inversion formula (2.2.7).

Next let f € W'licl((a,ﬂ}) with f(8) = 0, and integrate by parts to
obtain

B8
Af(z) = / f(y)d%(%y—x)l/z)dy
B8
- / (y— 2) /() dy.

It follows that Af € L _((a, 8]) and

loc

B /
@ = [ U dy = A

(y — )
By (2.2.7) the function u := —1(Af)’ satisfies Au = f. But now one
also has u = — 2 A(f’), which proves the second inversion formula (2.2.8).

The fact that (2.2.5) is a bijective map follows immediately.
Finally, if v € C°°((a, B]) we change variables y = z + (8 — z)s and
obtain

7 u(y) 12 [ ulz+ (B —x)s)
Au(z) = /I 7(2/ — z)l/z dy = (8 —x)Y/ /0 i ds.

Since u is smooth, one has Au(x) = (8—x)'/?h(x) where h € C*((v, B]).
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Conversely, if f(x) = (8 — z)'/2h(z) where h € C*((, f]), the change
of variables z = y + (8 — y)s gives

P f@) _a o [T =8)Ph(y + (B - y)s)
/y T dx = (B y)/o ds.

) st/
If w is defined by (2.2.7), we see that u € C*®((a, f]) and u solves
Au = f. Thus (2.2.6) is a bijective map. O

We now return to (2.2.3). Since the value ¢(1) is known, using (2.2.3)

and Theorem 2.2.3 we can determine the function f(u) := 4= =)

the knowledge of T,(p) for 0 < p < 1 . We rewrite this as d% logr(u) =
fu)

u )

from

which shows that we can recover the function

r(1) = exp (- /u1 fi)v)dv) .

By taking the inverse function, we can determine u(r). By (2.2.2), we
have determined the function ¢(r) = ¢(1)r/+y/u(r). This completes the
proof of Theorem 2.2.1.

Remark 2.2.5. If we assume that the sound speed extends smoothly
to M :=D, then Theorem 2.2.1 can be reformulated using the notation
of Chapter 3 as follows: if g; and go are two Riemannian metrics on M
corresponding to radial sound speeds satisfying the Herglotz condition, if
g1lont = g2lonr and if 7y, |0, sar = Tg,|a, sar (the travel times of maximal
geodesics for g1 and go agree), then g1 = gs.

In the boundary rigidity problem, one considers measurements given
by the boundary distance function dg|9 MxoMm instead of the travel time
function 74. It follows from equation (11.2.1) that if dg, |omxom =
dg,|omxon and the boundary is strictly convex, then gi|onm = g2lonm-
Moreover, if the manifolds are simple then by Proposition 11.3.2 one has
Toilo.sm = Tgola,sar- Thus in the setting of simple metrics, Theorem
2.2.1 also solves the boundary rigidity problem for radial sound speeds.

Remark 2.2.6. Theorem 2.2.1 assumes that ¢(1), i.e. g|aas, is known.

Often one can determine g|pas by looking at short geodesics. However,

in the present setting one gets something slightly different. In (2.2.3),
dr _u

write f(u) = §- ) and note that f is smooth in [p?, 1]. The change of

variables u = p? + (1 — p?)s yields

1
du = (1 — P2)1/2/0 £’ _:(11/2_ r)3) ds.

! U
f
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Thus we obtain

lim =

=1 /1 — p2 o

From (2.2.2) we see that % = ¢(1)? ( 2 — ZTQC/(T)). This implies that

c(r)? c(r)?
f)=49(1)=(2- QCCES))” = 2(0(1§(E2:,(1)). Hence, by looking at travel
times of short geodesics one recovers the quantity ¢(1)—¢/(1) from T.(p).

T.(p) 4f(1)
o

2.3 Geodesics of a rotationally symmetric metric

For the rest of this chapter, it will be convenient to switch from Cartesian
coordinates (x1, z2) to polar coordinates (r, ), where x = (r cosf,rsin6).
Recall that the Euclidean metric g = dz? +dx3 looks like g = dr?+r? d6?
in polar coordinates. Hence the metric g = ¢(r)~2(dz? +dx3) with radial
sound speed ¢(r) becomes

g=c(r)2dr® + (r/c(r))* db>. (2.3.1)

We will work in the region M = {(r,0); ro < r < ri} where 1o < rq
(note that 7o is not necessarily required to be positive), and consider
metrics of the form

g =a(r)*dr® + b(r)? do* (2.3.2)

where a,b € C*([rg,r1]) are positive. Clearly this includes metrics
(2.3.1) with radial sound speed, with a(r) = 1/¢(r) and b(r) = r/c(r).

However, the two forms turn out to be equivalent:

Exercise 2.3.1. Show that a metric of the form (2.3.2) can be put in
the form (2.3.1) by a change of variables.

Working with the form (2.3.2) will be useful in view of the following
example.

Example 2.3.2 (Surfaces of revolution). Let r be the z-coordinate in
R3, and let h : [ro,r1] — R be a smooth positive function. Let S be the
surface of revolution obtained by rotating the graph of r — h(r) about
the z-axis. The surface S is given by S = {q(r,0);r € (ro,71], 0 €
[0, 27]} where

q(r,0) = (h(r)cosO, h(r)sind,r).
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Then S has tangent vectors
8. = (W' (r)cos B, h'(r)sin 0, 1),
0p = (—h(r)siné, h(r) cosb,0).

Equip S with the metric g induced by the Euclidean metric in R3. Since
Oy 0 =1+ h'(r)% 0,09 =0 and 9y - 99 = h(r)?, one has

g=1+n ()% dr* + h(r)? d6>.

Thus surfaces of revolution have metrics of the form (2.3.2), where a(r) =
1+ R/(r)? and b(r) = h(r).

The geodesic equations for the metric (2.3.2) can be determined by
computing the Christoffel symbols

1 m
Fé‘k = égl (0j9km + Okgjm — Omijk)-

A direct computation shows that
I, =0,a/a, T},=T% =0, Ti,=—bdb/ad?
F%1 =0, F%z = F%l = 0,:b/b, ng =0.

Thus the geodesic equations are

L O,y bOD s,
_ - 2.3.
it =)= (0 =0, (2.3.3)
0+ —Q%bﬁé =0. (2.3.4)

The conserved quantities (speed and angular momentum) corresponding
to (2.1.7) and (2.1.8) are given as follows:

(a(r))? + (b(r)d)? is conserved, (2.3.5)
b(r)20 is conserved. (2.3.6)

In fact, the first quantity is conserved since geodesics have constant
speed, and the fact that the second quantity is conserved follows directly
by taking its t-derivative and using the second geodesic equation.

As in Theorem 2.1.6, we would like that when a geodesic reaches its
deepest point where 7 = 0, it turns back toward the surface (i.e. ¥ > 0).
Now the equation (2.3.3) implies that

P=0 = i=——(0)°

Thus, when 7 = 0, one has # > 0 iff ¥ > 0. This is the analogue of
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the Herglotz condition. For a radial sound speed as in (2.3.1), one has
b(r) = r/c(r) and the condition b’ > 0 is equivalent with - (ﬁ) > 0.

Definition 2.3.3. A metric ¢ = a(r)?dr? + b(r)? d9?, where a,b €
C*([ro,r1]) are positive, satisfies the Herglotz condition if

b (r) >0, r € [ro,m1].
The following result is the analogue of Theorem 2.1.6.

Theorem 2.3.4 (Geodesics). Let g satisfy the Herglotz condition as in
Definition 2.8.8. Let (r(t),0(t)) be a unit speed geodesic with r(0) = rq
and 7(0) < 0. There are two types of geodesics: either r(t) strictly de-
creases to {r = ro} in finite time, or the geodesic stays in M and goes
back to {r = r1} in finite time. Geodesics of the second type have a
unique closest point (p,«) to the origin, and they consist of two sym-
metric branches where first r(t) strictly decreases from r1 to p, and then
r(t) strictly increases from p to r1. Moreover, for any (p,o) € M there
is a unique such geodesic v, o(t) = (r(t),0(t)) with 0(0) > 0, and it
satisfies
1

= ¥Wb(7’) b(T)2 — b(p)z, (2.3.7)
" g (r
0(t) = a F b(p) /,) b((r)) ; (T)Ql_ o dr, (2.3.8)

where — corresponds to the first branch where r(t) decreases, and +
corresponds to the second branch where r(t) increases.

Proof Since the geodesic has unit speed, (2.3.5) implies that
(a(r)™)? + (b(r)8)? = 1. (2.3.9)
Moreover, (2.3.6) implies that
b(r)*0 = p (2.3.10)
for some constant p. Combining the above two equations gives that

(a(r)f‘)Q + (p/b(T))Q =1, and thus

(a(r)i)?=1- L. (2.3.11)

Let I be the maximal interval of existence of the geodesic (r(t), 8(t))
in M, so I is of the form [0,T), [0,7] or [0,00) for some T > 0. Now,
since 7(0) < 0, there are two possible cases: either 7(¢) < 0 for all ¢ € I,



40 Radial sound speeds

or 7(t) = 0 for some ¢ € I. Assume that we are in the first case. Taking
the t-derivative in (2.3.11) gives

d

2a(r)r£

(a(r)i) = 2p*b(r) =3V (r)7, tel
Since 7(t) < 0 for all ¢t € I, we may divide by 7 and obtain

d N p2b(r) =30 (r)
%(a(r)r) - a(T) ’ tel

Using the Herglotz condition we have b'(r) > 0 for all r € [rg,71]. Thus
there are g > 0 and ¢y € R so that

a(r)i > ¢co + eot, tel. (2.3.12)

Now if T' = oo one would get 7(f) = 0 for some ¢ € I, which is a
contradiction. Hence in the first case where 7(t) < 0 for all ¢t € I, the
geodesic must reach {r = 7} in finite time and r(t) is strictly decreasing.

Assume now that we are in the second case where 7(t) < 0for 0 < ¢ < ¢
and 7(t) = 0 for some t € I. Let p = r() and o = 6(f). Since both
n(s) = (r(t+s),0(t + s)) and ¢(s) = (r(t — s),2a — (t — s)) solve the
geodesic equations with the same initial data when s = 0, the geodesic
has two branches that are symmetric with respect to t = £. Note that we
must have p = +b(p) upon evaluating (2.3.11) at ¢ = ¢. If additionally
6(0) > 0 then by (2.3.10) one has p > 0, so in fact p = b(p).

Moreover, given any (p,a) € M we may consider the geodesic with
(r(0),0(0)) = (p,) and (#(0),6(0)) = (0,1/b(p)) where the value for
0(0) is obtained from (2.3.9) (the geodesic must have unit speed). The
arguments above show that this geodesic has two symmetric branches,
and reaches {r = r1} in finite time by (2.3.12). The required geodesic
Vp,a 18 obtained from (r(t),0(t)) after a translation in t.

The equation for 7(t) follows from (2.3.11), where p = b(p). Finally,
(2.3.10) with p = b(p) gives

0(t') = a+ b(p) /t m dt

We change variables ¢t = t(r) and use that by (2.3.7) one has

ﬁ(r) __ 1 _ a(r)b(r)
ar” ") T BrE bR

This proves (2.3.8). O
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2.4 Geodesic X-ray transform

In this section we prove the result of Romanov (1967) (see also Romanov
(1987); Sharafutdinov (1997)) showing invertibility of the geodesic X-
ray transform for rotationally symmetric metrics satisfying the Herglotz
condition. Let

g = a(r)?dr® 4 b(r)? do?

be a metric in M = {(r,0); ro < r < r1} satisfying the Herglotz con-
dition ¥/(r) > 0 for r € [rg,r1]. For f € C°(M), we wish to study the
problem of recovering f from its integrals over maximal geodesics start-
ing from {r = r1}. By Theorem 2.3.4 there are two types of geodesics:
those that go to {r = r¢} in finite time, and those that never reach
{r = ro} and curve back to {r = r1} in finite time. We only consider
integrals of f over geodesics of the second type. This corresponds to
having measurements only on {r = r1} and not on {r = 7}, which is
relevant for instance in seismic imaging where {r = 1} corresponds to
the surface of the Earth.

By Theorem 2.3.4, for any (p,«) € M there is a unique unit speed
geodesic 7, o(t) joining two points of {r = r1} and having (p, @) as its
closest point to the origin. Denote by 7(p, «) the length of this geodesic.
Given f € C°(M), we define its geodesic X-ray transform by

T(p,)
)= [ fGpa)dt () e

The main result in this section shows that under the Herglotz condition
the geodesic X-ray transform is injective, i.e. f is uniquely determined

by If.

Theorem 2.4.1 (Injectivity). Let g satisfy the Herglotz condition in
Definition 2.3.3. If f € C°°(M) satisfies I f(p,a) =0 for all (p,a) € M,
then f = 0.

To prove the theorem, we first note that by Theorem 2.3.4 one has

Ypa(t) = (r(t),a FY(p,r(t)))
where

) q(r
orr) = b0 [ 5

p

dr. (2.4.1)
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Moreover,
dr 1

& = Tty VI 02

Here the sign — corresponds to the first branch of the geodesic where
r(t) decreases from r; to p, and + corresponds to the second branch
where 7(t) increases.

Changing variables ¢t = t(r), we have

T(p,Oé)
H@ﬂ%:A F(r(), 0(2)) dt
37(p,)
=A Fr(t), o — (o, r(8))) dt

7(p,)
*L, F(r (), 0+ p(p, () dt

(p,)

= b —a(r)b(r) T, — T T
-/ o e vlp )

" a(r)b(r)
[ fra dpydr (242
p o VO(r)? = b(p)?

Assume for the moment that f is radial, f = f(r). This is analogous
to the result in Theorem 2.2.1 of determining a radial sound speed ¢(r)
from travel times, and the proof will use a similar method. If f = f(r),
we obtain

T1 b
If(p,a) = 2/ __Ambr) iy ar. (2.4.3)
o VB — b
We change variables
s = b(r)>. (2.4.4)
This is a valid change of variables since b(r) is strictly increasing by the
Herglotz condition. One has
Y% a(r(s)b(r ()" (s)
If(p7a)=2/ —b(p)2)1/2
b(p)2 (s (r)?)
This is an Abel transform as in Theorem 2.2.3, where x corresponds to
b(p)2. If If(p, ) = 0 for ro < p < 7y, it follows from Theorem 2.2.3 that

a(r(s)b(r(s))r'(s)f(r(s) =0, b(ro)* < s < b(r1)*.

Since a, b and ' are positive, we get f(r(s)) = 0 for all s and thus
f(r) =0 for rg < r < ry as required.

F(r(s)) ds.
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We next consider the general case where f = f(r,0) € C*°(M). For
any fixed r, the function f(r, -) is a smooth 2m-periodic function in R,
and it has the Fourier series

Fr,0) = > fulr)e. (2.4.5)
k=—oc0
Here the Fourier coefficients fi,(r) = 5= [T f(r,0)e="*? df are smooth
functions in (rg,71], and the Fourier series converges absolutely and uni-
formly in {7 < r < r;} whenever ro < 7 < ry.
Inserting (2.4.5) in (2.4.2), we have
c- " a(r)b(r) ik
1= > |f filr)2 cos(kib(p, 1)) dr | .
2 |, Gorwor
Denote the expression in brackets by Ay fir.(p). Thus, if If(p,«) =0 for
(p, ) € M, then the Fourier coefficients Ay fx(p) vanish for each k and
for ro < p < r1. It remains to show that each generalized Abel transform
Ay, is injective. Note that if £ = 0, then Ay is exactly the Abel transform
in (2.4.3) and this was already shown to be injective.
For k # 0, we make the same change of variables as in (2.4.4) and
write

gk(s) = 2a(r(s))b(r(s))r' () fi(r(s))-
Then Ay fi(p) = Trgr(b(p)?), where

b(r1)® Ki(z,s
Trgr(x) :/ (3—(;1:)1/)2916(8) ds

where x = x(p) = b(p)? takes values in the range b(rg)? < z < b(r1)?,
and

Ki(x,8) = cos(kip(p(x), 7(5)))-

Since a, b, and 7’ are positive, the injectivity of A is equivalent with
the injectivity of Tj.
We now record some properties of the functions K.

Lemma 2.4.2. For any k € Z, Ky (z, s) is smooth in {b(rg)? <z < s <
b(r1)?} and satisfies Ki(z,x) =1 for all x.

Proof Changing variables s = b(r)?, we have

b(r)? 5
Y(p,7) = b(p) /bw (SZ((p;Q)UzdS
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where ¢(s) = %()5’)(3) is smooth. We further make another change of

variables s = b(p)? + (b(r)? — b(p)?)t to obtain that

Y(p.r) = (b(r)* = b(p)*)'2G(p, )

where

1 2 r 2 _ 2
Gior) =) [ OO0,

Here G is smooth since ¢ and b are smooth. Using that cosz = n(a?)
where 7(t) is smooth on R (this can be seen by looking at the Tay-
lor series of cosz), it follows that Ki(z,s) = n(k?y(p(x),r(s))?) is
smooth. Finally, note that * = s corresponds to p = r, which shows
that Ki(z,x) = cos(ky(p(x), p(x))) = 1. O

The equation Trgr = F is a singular Volterra integral equation of the
first kind (see Gorenflo and Vessella (1991) for a detailed treatment of
such equations). The injectivity of T} now follows from the next result
that extends Theorem 2.2.3 (which considers the special case K = 1).
This concludes the proof of Theorem 2.4.1.

Theorem 2.4.3. Let K € CH(T) where T := {(z,t); a < x <t < 3},

and assume that K(x,z) = 1 for x € [, B]. Given any f € A((«, 5]),

there is a unique solution u € L _((«, B]) of

B X
/I mu(t) dt = f(x). (2:4.6)

Moreover, if K € C®(T) and if f(x) = (8 — z)'/?h(x) for some h €
C*((a, B]), then u € C*((o, F]).

Proof We define
H(z,t) := K(z,t) — 1.

Note that H(xz,z) = 0 by the assumption on K. The equation (2.4.6)
may be written as

Au+ Bu=f (2.4.7)
where Au(x) = f (t_ug(f))l/z dt is the Abel transform, and
B H(x,t)
Bu(z) ::/ mu(t) dt.

If B = 0 then (2.4.7) is a standard Abel integral equation and it can
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be solved using Theorem 2.2.3. More generally, we will show that the
perturbation B can be handled by a Volterra iteration.

We first show that B maps any function u € L{ _((«, A]) into A((a, 3]),
i.e. that ABu € W} ((e, B]). We use Fubini’s theorem and the change
of variables s = x 4 (¢t — z)r to compute

ABulz // 1/2 =1) Lty ds

// (s — ) 1/2 )1/2u(t)dsdt

H(x —x)r,t
:/z [ 0 7(’1/;_(1(—7“)3/2 )dr u(t) dt.

Thus ABu(x f G(z,t)u(t) dt where G € C1(T) since K € CY(T). It
follows that ABu ewl 1(( ,B]). By Theorem 2.2.3 we may write

loc

BU = ARU, u € Llloc((a7ﬂ])a

where Ru = —1-L ABu. Since H(z,z) = 0 we have G(z,z) = 0, and
thus using the above formula for ABu we have

x) = —% /B 0 G(z, t)u(t) dt

In particular, the integral kernel of R is in C°(T), and it follows that
B
\Ru(z)| < C / u(t)] dt. (2.4.8)

Since Bu = ARu, the equation (2.4.7) is equivalent with
A(u+ Ru) = f.

Since f € A((a, f]), one has f = Aug for some ug € L ((a,B]) by
Theorem 2.2.3. Because A is injective, (2.4.7) is further equivalent with
the equation

u~+ Ru = up. (2.4.9)

It is enough to show that (2.4.9) has a unique solution u € L _((«, 8])
for any uy € L] ((«,]). For uniqueness, if u + Ru = 0, then (2.4.8)

implies that
B
x)| < C/ lu(t)] dt.
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Gronwall’s inequality implies that « = 0. To prove existence, we iterate
the bound (2.4.8) which yields

\Riu(z |<c/ \RI~Yu(ty)] dty <

cof [ e

Cj(ﬁ(j_w)l)_”UHLl [x,8])

Thus whenever a < v < 8 one has

[ R ul| 1y, < ((j!))”UHLl(['y,ﬂ])- (2.4.10)

The series

oo
= Z(_
§=0
converges in Li ((a, 8]) by (2.4.10), and the resulting function u solves
(2.4.9).
We have proved that given any f € A((«, 8]) the equation (2.4.6) has
a unique solution u € L{ ((a,B]). Let now K € C®(T) and f(z) =
(B — x)Y2h(x) for some h € C*((a, f]). By Theorem 2.2.3 one has
f = Aug for some ug € C*°((«, f]), and it is enough to show that the
solution u of (2.4.9) is smooth. But if K € C*°(T') the operator R above
has C*° integral kernel, hence Ru is smooth, and thus also u = —Ru+ug
is smooth. This concludes the proof of the theorem. O

2.5 Examples and counterexamples

In this section we give some examples of manifolds where the geodesic
X-ray transform is injective, and some examples where it is not injective.
We first begin with some remarks on the Herglotz condition.

Let g = a(r)? dr? 4+ b(r)? df? be a metric in M = {ro < r < r1}, where
a,b € C*®([rg,r1]) are positive. We first give a definition.

Definition 2.5.1. The circle {r = 7} is strictly convexr (resp. strictly
concave) as a submanifold of (M, g) if for any geodesic (r(t),0(t)) with
r(0) =7, 7(0) = 0 and 0(0) # 0, one has #(0) > 0 (resp. #(0) < 0).
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Strict convexity means that any tangential geodesic to the circle {r =
7} curves away from this circle toward {r = 71}, with exactly first order
contact with the circle when ¢ = 0. More precisely, we should say that the
circle is strictly convex when viewed from {r = r;} (there is a choice of
orientation involved). Strict convexity is equivalent to the fact that {r =
7} has positive definite second fundamental form in (M, g). Conversely,
strict concavity means that tangential geodesics to the circle {r = 7}
have first order contact and curve toward {r = ro}.

Lemma 2.5.2. Letrg <7 <.

(a) {r =T} is strictly convex as a submanifold of (M, g) iff ¥/ (7) > 0.
(b) The circle t — (7,t) is a geodesic of (M, g) iff V' (7) = 0.
(c) {r =7} is strictly concave as a submanifold of (M, g) iff ¥/ (7) < 0.

Proof 1If (r(t),0(t)) is a geodesic with r(0) = 7 and 7(0) = 0, then by
(2.3.3)
#(0) = l’(;’zg)(zf)(é(o»?. (2.5.1)

If §(0) # 0, then #(0) has the same sign as ¥'(7) since b is positive.
This proves parts (a) and (c). For part (b), if b'(F) = 0, then ¢ — (7, )
satisfies the geodesic equations (2.3.3)—(2.3.4). Conversely, if t — (7, t)
satisfies the geodesic equations, then #(0) = 0 and (2.5.1) implies that
bd,b/a?|,—+ = 0. One must have b'(7) = 0. O

Thus, if the Herglotz condition is violated, either " = 0 somewhere
and there is a trapped geodesic (one that never reaches the boundary),
or b’ < 0 somewhere and tangential geodesics curve toward {r = ro}.
We also obtain the following characterization of the Herglotz condition.

Corollary 2.5.3. The following conditions are equivalent.

(a) The circles {r =T} are strictly convez for ro <7 < rj.
(b) V(1) > 0 and no circle {r = 7} is a trapped geodesic for ro <7 < ry.
(c) b'(r) >0 forr € (ro,r].

We now go back to Example 2.3.2 and surfaces of revolution. Recall
the setup: r correspond to the z-coordinate in R?, h : [rg,71] — R is a
smooth positive function, and S is the surface of revolution obtained by
rotating the graph of r — h(r) about the z-axis. The surface S is given
by

S ={(h(r)cosb,h(r)sinb,r); r € (ro,r1], 0 € [0,2x]}.
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Figure 2.1 Small spherical cap

The metric on S induced by the Euclidean metric on R? has the form
g = (1+h ()2 dr* + h(r)*do>.
Thus a(r) = y/1+ h/(r)? and b(r) = h(r).

Finally we give five illustrative examples: two examples where the
geodesic X-ray transform is injective, two examples where it fails to be
injective, and one example related to Eaton lenses.

Example 2.5.4 (Small spherical cap). Let h : [rg,r1] — R, h(r) =
V1 =72 where rp = —1 and r{ = —a where 0 < a < 1. Then S = S,
corresponds to a punctured spherical cap strictly contained in a hemi-
sphere (cf. Figure 2.1):

So={x€5?; 23 < —a}\{—es}.

Clearly A’ > 0 in [rg,71]. Thus the Herglotz condition is satisfied, and by

Theorem 2.4.1 the geodesic X-ray transform on S, is injective whenever
0 < a < 1. More precisely, a function f can be recovered from its
integrals over geodesics that start and end on the boundary {z5 = —a},
with the geodesics going through the south pole excluded. Of course,
geodesics in S, are segments of great circles.

Example 2.5.5 (Large spherical cap). Let h : [rg,r1] — R, h(r) =
V1 —72 where ro = —1 and r1 =  where 0 < 8 < 1. Then S = Sj cor-
responds to a punctured spherical cap that is larger than a hemisphere:

Sp={x €S x5 < B\ {—es}.
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Figure 2.2 Large spherical cap

Now the Herglotz condition is violated: one has h'(r) > 0 for r < 0, but
R'(0) = 0 and R'(r) < 0 for » > 0. In particular, the geodesic {r = 0},
which is just the equator, is a trapped geodesic in S3. The great circles
close to the equator are also trapped geodesics, and Sg is an example of
a manifold with strong trapping properties (cf. Figure 2.2).

In fact the geodesic X-ray transform is not injective on Sg (even if
the south pole is included). To see this, let f : S? — R be an odd
function with respect to the antipodal map, i.e. f(—x) = —f(x), and
assume f is supported in {—f < x3 < }. For example, one can take
f(z) = p(x) — p(—x) where ¢ is a C* function supported in a small
neighborhood of e; with ¢ > 0 near e;.

Using the support condition for f, the integral of f over a maximal
geodesic in (M,g) (a segment of a great circle C' in S?) is equal to
the integral of f over the whole great circle C'. But since f is odd, its
integral over any great circle is zero. This shows that the geodesic X-ray
transform If of f in Sg vanishes, but f is not identically zero.

Example 2.5.6 (Catenoid). Let h : [-1,1] — R, h(r) = cosh(r) =
%. The corresponding surface of revolution is the catenoid (cf. Fig-

ure 2.3)
S = {(cosh(r) cos(8), cosh(r)sin(d),r); r € [-1,1],0 € [0, 27]}.

One has h/(r) = sinh(r) = ET_;fT. Thus in particular A’'(0) = 0 and
R (r) > 0 for r > 0. Define

Sy ={re€S; £x3>0}.
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Figure 2.3 Catenoid

Then S corresponds to h : (rg,71] — R with 7o = 0 and r; = 1.
By Theorem 2.4.1 the geodesic X-ray transform in S is injective, when
considering geodesics that start and end on S N{x3 = 1}. By symmetry,
also the geodesic X-ray transform on S_ is injective for geodesics that
start and end on S_ N {zx3 = —1}. Since S = Sy U S_ U Sy where
So = SN {x3 = 0} has zero measure, it follows that also the geodesic
X-ray transform on S is injective (any smooth function on S can be
recovered from its integrals starting and ending on 9.5).

Note that since h'(0) = 0, the geodesic Sy is a trapped geodesic in
S. The manifold S has also other trapped geodesics that start on 05
and orbit Sy for infinitely long time. The catenoid is an example of a
negatively curved manifold with weak trapping properties (the trapped
set is hyperbolic). Because the trapping is weak, the geodesic X-ray
transform is still invertible in this case.

Example 2.5.7 (Catenoid type surface with flat cylinder glued in the
middle). Let h: [—1,1] — R with h(r) = 1 for r € [-1, 1], b/(r) > 0 for
r> 1 and h/(r) <0 for r < —3, and let S be the surface of revolution
obtained by rotating h|[_11j. Then SN{—3 < a3 < 1} is a flat cylinder.

Consider a smooth function f in S given by
f(h(r)cosb,h(r)sind,r) =n(r)

where 1) € C2°(—3, %) is nontrivial and satisfies fiﬁQ n(r)dr = 0. Then

f integrates to zero over any geodesic starting and ending on 9S. To
see this, note that f vanishes outside the flat cylinder, and any geodesic
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that enters the flat cylinder must be a geodesic of the cylinder. Since
h =1 in the cylinder, the metric is dr? + d6?, one has a = b = 1, the
geodesic equations are 7 = 6 = 0, and unit speed geodesics are of the
form C(t) = (r(t),0(t)) = (at+ B, yt+06) where ()2 +(0)% = a?++2 = 1.

Thus it follows that
/fdt = /n(at+ﬁ)dt:0.
¢

Thus S is an example of a manifold that has a large flat part (the cylin-
der) with many trapped geodesics, and the geodesic X-ray transform is
not injective. The reason for non-injectivity is that S contains part of
R xSt and the X-ray transform on R is not injective (there are nontrivial
functions that integrate to zero on R).

Example 2.5.8 (Eaton lenses). Geodesics of a sound speed may also
be interpreted as the paths followed by light rays when a suitable in-
dex of refraction n is introduced. According to Fermat’s principle light
rays propagate along geodesics of the metric gjr = n?d;;, and thus by
setting ¢ = 1/n our previous analysis applies. Let us consider an index
of refraction n which is radial and work in polar coordinates, so that
the metric is n?(dr? + r2df?) and hence a(r) = n(r) and b(r) = rn(r).
Besides travel times between boundary points we might also be inter-
ested in how incoming light rays come out after traversing through our
Riemannian surface (the lens) determined by n(r). From this point of
view there are choices of n that produce interesting effects. We mention
here two noteworthy instances depicted in Figures 2.4 and 2.5.

The original Eaton lens (Figure 2.4) is given by

n(r) = \/F

while for the invisible Eaton lens (Figure 2.5), n is determined by

1 1

nr

In both cases n(r) is defined for r € (0,1] and in the second case, n is
given intrinsically as the solution of the equation above. In the first case
we see light rays rotating by 7 and in the second case we see light rays
rotating by 27 and hence becoming indistinguishable from the light rays
of n = 1, hence the name invisible Eaton lens. The index of refraction
becomes infinite (in both cases) at the origin.
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Figure 2.4 Original Eaton lens
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Figure 2.5 Invisible Eaton lens

Exercise 2.5.9. Show that in both Eaton lenses, the Herglotz condition
is satisfied for all » € (0,1) but the circle {r = 1} at the boundary
is a trapped light ray. Moreover, show that the geodesics behave as
depicted in the pictures (use Theorem 2.3.4). Can you design a lens so
that lights rays come out of the lens experiencing a rotation of 7/27 (See
Leonhardt and Philbin (2010) for details on these lenses.)

Exercise* 2.5.10. Investigate if the X-ray transform is injective for the
Eaton lenses and for the case &« = 1 in Example 2.5.4.
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3

Geometric preliminaries

In this chapter we discuss certain geometric preliminaries required for
studying the geodesic X-ray transform on a general compact Rieman-
nian manifold (M, g) with boundary. We will discuss the concept of a
compact non-trapping manifold with strictly convex boundary. We will
also introduce the exit time function 7, the geodesic vector field X, the
geodesic flow ¢y, the scattering relation «, and the vector fields X
and V. The chapter will conclude with a discussion of conjugate points
and with the important notion of a simple manifold, including several
equivalent definitions.

3.1 Non-trapping and strict convexity

Let (M, g) be a compact, connected and oriented Riemannian manifold
with smooth boundary M and dimension n > 2. We will denote the
inner product induced by the metric g on tangent vectors by (v, w), and
the norm by |v|,. The subscript g will often be omitted for brevity.

Geodesics travel at constant speed, so we fix the speed to be one. We
pack positions and velocities together in what we call the unit sphere
bundle SM. This consists of pairs (x,v), where x € M and v € T,M
with norm |v|, = 1. Given (z,v) € SM, let v, , denote the unique
geodesic determined by (x,v) so that v;,(0) = = and 4, ,(0) = v. For
any (z,v) € SM the geodesic v, is defined on a maximal interval of
existence that we denote by [—7_(x,v), 74 (z,v)] where 74 (z,v) € [0, o0],
so that

Yz,v - [—T_(IZ,U),T_;,_(J?,U)] - M

93
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is a smooth curve that cannot be extended to any larger interval as a
smooth curve in M.

Definition 3.1.1. We let
7(z,v) = 14 (2, V).
Thus 7(z,v) is the exit time when the geodesic 7, exits M.

Exercise 3.1.2. Give examples of compact manifolds (M, g) with bound-
ary and points (x,v) € SM where the following holds:

(a) The first time when v, hits OM is different from the exit time
7(z,v).

(b) 7(x,v) is not continuous on SM.

(¢) Tx(z,v) = 0.

(d) 7—(z,v) is finite but 74 (z,v) = cc.

If some geodesic has infinite length, one needs to be careful when
studying the geodesic X-ray transform since the integral of a smooth
function over such a geodesic may not be finite. For the most part of
this book, we will be working on manifolds where this issue does not
appear.

Definition 3.1.3. We say that (M, g) is non-trapping if 7(z,v) < oo for
all (z,v) € SM. Equivalently, there are no geodesics in M with infinite
length.

Example 3.1.4. Compact subdomains in R™ and in hyperbolic space
are non-trapping, and so are the small spherical caps in Example 2.5.4.
Large spherical caps, catenoid type surfaces and flat cylinders have
trapped geodesics (see Examples 2.5.5-2.5.7).

Unit tangent vectors at the boundary of M constitute the boundary
OSM of SM and will play a special role. Specifically

OSM :={(x,v) € SM : x € OM}.

We will need to distinguish those tangent vectors pointing inside (“in-
flux boundary”) and those pointing outside (“outflux boundary”), so we
define two subsets of dSM as

0+SM = {(x,v) € 0SM : £(v,v(x))y > 0}

where v denotes the inward unit normal vector to the boundary (cf.
Figure 3.1). The convention of using the inward unit normal instead of
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Outflux vector in d_SM

M

Influx vector in d,.5M

Figure 3.1 Influx and outflux boundaries

the outward unit normal will eliminate some minus signs in the volume
form dp in Section 3.6 and certain other places. We also denote

0oSM := 0, SM NO_SM.
Note that one has pSM = S(OM).

Definition 3.1.5. The geodesic X-ray transform of a function f €
C° (M) on a compact non-trapping manifold (M, g) with smooth bound-
ary is the function I f defined by

(z,v)
If(z,v) = /0 FOma(®)dt,  (w,0)€0,SM.  (3.1.1)

The idea is that if M is non-trapping, then any geodesic v going
through some point (y, w) € SM has an initial point (z, v) = vy (—7-(y, w)).
We must have (z,v) € dSM, since if we had (z,v) € SM™" then the
geodesic could be extended further in both directions. Moreover, we
must have (z,v) € 91SM since any geodesic starting at a point in
OSM \ 01 SM could be extended further for small negative times.

The argument in the preceding paragraph shows that on non-trapping
manifolds, there is a one-to-one correspondence between the set of unit
speed geodesics and the set 0. SM of their initial points. Parametrizing
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geodesics by their initial points in 0;.SM means that we are using the
fan-beam parametrization of geodesics.

Remark 3.1.6. Note that the fan-beam parametrization is different
from the parallel-beam parametrization that we used in Chapter 1, and
also from the parametrization used in Section 2.4 for geodesics of a radial
sound speed under the Herglotz condition based on their closest point
to the origin.

Since f is smooth and the point v, , () depends smoothly on (z, v), the
formula (3.1.1) shows that the regularity properties of I f are decided by
the regularity properties of the exit time function 7(z, v). If the boundary
of M is not strictly convex, it can happen that 7 is discontinuous. On
the other hand, if M is strictly convex then 7 will be continuous and
in fact smooth in most places, and the theory will be particularly clean.

For a precise definition of when the boundary OM is strictly convex,
we will use the second fundamental form of OM that describes how OM
sits inside M. Recall that the (scalar) second fundamental form is the
bilinear form on TOM given by

I, (v, w) := —(Vyr,w)g,

where x € M and v,w € T,0M. Here V is the Levi-Civita connection
of g, and on the right hand side v is extended arbitrarily as a smooth
vector field in M (recall that VxY'|,, only depends on X|, and the value
of Y along any curve 7(t) with 9(0) = X|,, so that II, (v, w) does not
depend on the choice of the extension of v).

Definition 3.1.7. We shall say that OM is strictly convez if I, is
positive definite for all x € OM.

The combination of non-trapping with strict convexity of the bound-
ary will produce several desirable properties. In fact, many results in
this book will be stated either for compact non-trapping manifolds with
strictly convex boundary, or for simple manifolds which satisfy the ad-
ditional condition that geodesics do not have conjugate points.

We already encountered the notion of strict convexity in Section 2.5,
where this notion was related to the behaviour of tangential geodesics.
We wish to show that a similar characterization exists in the general
case. To do this, it is convenient to introduce the following notions.

Lemma 3.1.8 (Closed extension). Let (M,g) be a compact manifold
with smooth boundary. There is a closed (=compact without boundary)
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connected manifold (N,g) having the same dimension as M so that
(M, g) is isometrically embedded in (N, g).

Proof (Special case) The lemma has an easy proof in the special case
where M is a subset of R™. In that case it is enough to consider some
cube N = [-R, R]" with M C N'™ and to extend g smoothly as a 2R-
periodic positive definite symmetric matrix function in N. Identifying
the opposite sides of N, we see that (N, g) becomes a torus with (M, g)
embedded in its interior. Then (N, g) is the required extension. O

Exercise 3.1.9. Prove Lemma 3.1.8 in general, by considering the dou-
ble of the manifold M.

If (N,g) is a closed extension of (M, g), we continue to write v, ,(¢)
for the geodesic in (N, g). One benefit of working with a closed extension
is that now -, ,(¢) is well defined and smooth for all ¢ € R.

Lemma 3.1.10 (Boundary defining function). Let (M, g) be a compact
manifold with smooth boundary, and let (N,g) be a closed extension.
There is a function p € C*°(N), called a boundary defining function, so
that p(x) = d(x,0M) near OM in M, and

M={xe N :p>0},
OM ={xe N : p=0},
N\M={zeN :p<0}.

One has Vp(z) = v(z) for all x € OM.
Exercise 3.1.11. Prove Lemma 3.1.10.

The following result shows that the second fundamental form of M
is given by the Riemannian Hessian of p, defined in terms of the total
covariant derivative V by

Hess(p) = V?p = (05, 00,.p — Fg-k@x,p) da? @ da®.

Moreover, strict convexity of the boundary can indeed be characterized
by the behaviour of tangential geodesics.

Lemma 3.1.12 (Strictly convex boundary). If (M, g) is a compact man-
ifold with smooth boundary and p is as in Lemma 3.1.10, then for any
(x,v) € DgSM one has

d2

—s (v, 0) = Hesse (p) (v,0) = 25 0(72.0())

=0
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Thus OM s strictly convez iff any geodesic in N starting from some
point (x,v) € 99SM satisfies %p<7$’v<t))|t20 < 0. In particular, any
geodesic tangent to OM stays outside M for small positive and negative
times, and any mazimal M -geodesic going from OM into M stays in
M"t except for its endpoints.

The proof will follow from the next lemma, which will also be useful
later.

Lemma 3.1.13. Let p be as in Lemma 3.1.10, and consider the smooth
function

h:SN xR =R, h(z,v,t) = p(Yzu(t))-

If (x,v) € SN and if to is such that xo := vy (to) € OM, then one has

h(z,v,tg) =0,
Oh .
a(x,v,to) = <V(x0)77z,v(t0)>7
8%h

ﬁ(xvvvtO) = <V~'/w,v(to)v9a '.Vw,v(tO» = Hess, (p)(;yw,v(tO)a'yw,v(tO))-

Proof Write y(t) = 7z,(t). Since plagasr = 0 one has h(x,v,ty) = 0.
Moreover, using that Vp|ayn = v we compute

oh

a(%vﬂfo) = dpls, (Y(to)) = (v(w0),¥(t0))-

Finally, one has

9?h

O wv,t0) = S (Aphy (HO))]_, = Vb 3(0)

t=to
= (V50 Vp, 7)) + (Vo Vi) ¥(#)) li=to -

The last term is zero since 7 is a geodesic (i.e. V4;)7(t) = 0). The defini-
tion of the total covariant derivative V gives that (V) Vp,¥())|t=¢, =
V2p(5(to),(to)), which finishes the proof. O

t=to

Proof of Lemma 8.1.12 Let (z,v) € 0pSM and write y(t) = Yz (t)
and h(z,v,t) = p(v(t)). By Lemma 3.1.13 one has

h(z,v,0) =0,
%(%070) =0,
9%h

ﬁ(%vﬂ) = (V,Vp,v) = Hess;(p)(v,v).
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But Vploa = v, which shows that (V,Vp,v) = —II,(v,v). This proves
the required formula.

Now OM is strictly convex <= Il (v,v) > 0 for all (z,v) € JpSM
<= 02h(x,v,0) <0 for all (z,v) € JpSM. By the Taylor formula

p((8)) = h(z,v,8) = ~ ST (0,0)¢% + O

when |¢| is small. This shows that for small positive and negative times
p(y(t)) <0, ie. vy o(t) isin N\ M. O

3.2 Regularity of the exit time

We will now discuss in detail the regularity of the fundamental exit
time function 7 on a compact non-trapping manifold (M, g) with strictly
convex boundary. Note that by definition 7|5_gas = 0.

Example 3.2.1. Let M = D be the closed unit disk in the plane,
and let g = e be the Euclidean metric. Take z = (0,—1) and let vy =
(cosf,sinf). An easy geometric argument shows that

( ) = 2sinf, 0 €0, 7],
TAE Vo) = 0, 60€l-m0

Thus 7 is continuous on dSM but fails to be continuously differentiable
in tangential directions. However, the odd extension of 7| . sm Wwith
respect to (z,v) — (z, —v),

. 2sinf, 0 €[0,7],
7w, ve) := { 2sinf, 0 € [—m,0]

is clearly smooth on 9SM.
Exercise 3.2.2. Verify the claims in Example 3.2.1.

We will now show that the properties of the exit time function in
Example 3.2.1 are valid in general.

Lemma 3.2.3. Let (M,g) be a compact non-trapping manifold with
strictly convex boundary. Then T is continuous on SM and smooth on

SM \ 9o SM.

Proof The proof that 7 is continuous is left as an exercise. Let (IV, g)
be a closed extension of (M, g) and let p be a boundary defining function
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as in Lemma 3.1.10. Define h : SN x R — R, h(z,v,t) := p(y5,(t)) as
in Lemma 3.1.13. Then

O 0,1) = Aol (1)) = (V1) (1)

Assume that (z,v) € SM\9ySM, and set y := v, ,(7(z,v)) € OM. Since
y is the final point of the geodesic, one must have 4, ,(7(z,v)) € 0_SM
(otherwise the geodesic could be extended further). By strict convexity,
one must also have 4, ,(7(z,v)) ¢ 9SM (since otherwise 7(z,v) = 0
and (z,v) would be in 9p.SM).

Thus Yy (7(z,v)) € ISM \ 0LSM, i.e. (Yp(7(z,v)),v) < 0. Since
Vp agrees with v on OM, we see that

oh

a(mmm(m,v)) < 0.
Since h(x,v, 7(x,v)) = 0 and h is smooth, the implicit function theorem
ensures that 7 is smooth in SM \ 9pSM. O

The set 0pSM, where geodesics are tangential to M and 7 is not
smooth, is often called the glancing region. This terminology comes
from the theory of boundary value problems for hyperbolic equations
085, Chapter 24).

(Hormander, 19831

Exercise 3.2.4. Show that 7 is continuous in SM.

Exercise 3.2.5. Show that 7 is indeed not smooth at the glancing region
0o SM.

The next result shows that the odd extension of 7|5, sas is smooth on
oSM.

Lemma 3.2.6 (Odd extension of 7 on 9SM). Let (M,g) be a com-
pact non-trapping manifold with strictly convex boundary and define
7:05M — R by

- a 7(z,v), (x,v) € 04 5M,
(@, v) = { —7(z,—v), (x,v) € 8—|_FSM.

Then 7 € C*>(0SM); in particular T|s, spr : 0+ SM — R is smooth.

Proof As before we let h(z,v,t) = p(7Vz.,(t)) for (z,v) € ISM and
t € R. Note that by Lemma 3.1.13 with the choice ¢y = 0 one has

o h(z,v,0) = 0;
° %(z,v,O) = (v(x),v);
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¢ %(%U,O) = Hess,(p)(v,v).

Hence the Taylor formula shows that for some smooth function R(z,v,t)
we can write

1
hz,v,t) = (v(z),v)t + iHesng(p)(v,v)t2 + R(x, v, t)t?
=tF(z,v,t)
where F' is the smooth function

F(z,v,t) := (v(z),v) + %Hessm(p)(v,v)t + R(z,v,t)t2.

Since h(z,v,7(z,v)) =0, we have 7F(z,v,7) = 0 and hence
F(z,v,7(z,v)) =0. (3.2.1)

Here we used that 7(z,v) = 0 implies (v(x),v) = 0 by strict convexity.
Moreover,
OF

1
E(m, v,0) = §Hessw(p)(v, v).

But for (z,v) € 9pSM, Hesszp(v,v) = —II,(v,v) < 0 by strict convexity.
Thus by the implicit function theorem, 7 is smooth in a neighbourhood
of 9pSM. Since T is smooth in ISM \ 9pSM by Lemma 3.2.3, the result
follows. O

Remark 3.2.7. Note that we can define 7 on all SM by setting 7(x, v) :=
T(z,v) — 7(x,—v). The restriction of this function to dSM coincides
with the definition of 7 given by Lemma 3.2.6. It turns out that in fact
7 € C*°(SM). This stronger result is proved in Lemma 3.2.11 below.

Define
w(x,v) = (v(z),v), (x,v) € OSM.

This expression appears in Santaldé’s formula, which is an important
change of variables formula on SM (see Section 3.6). We record the
following result for later purposes.

Lemma 3.2.8. Let (M,g) be a compact non-trapping manifold with
strictly convex boundary. The function p/T extends to a smooth positive
function on OSM whose value at (x,v) € gSM is

I, (v, v)
—
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Proof Using (3.2.1) we can write

w(z,v) = —%Hessx(p)(v, V)7 — R(zx,v,7)7>

and hence for (x,v) € 9SM \ 9o SM near 9ypSM we can write
1
w/T = —§Hessw(p)(v,v) — R(x,v,7)T.

But the right hand side of the last equation is a smooth function near
0pSM since R and 7 are; its value at (z,v) € 0ySM is Il;(v,v)/2.
Finally, observe that p and 7 are both positive for (z,v) € 0; SM\JySM
and both negative for (x,v) € 9_SM \ 9pSM. O

Even more precise regularity properties of the exit time function 7
near 0pSM can be obtained from the next lemma. This will be the
main tool when studying regularity properties of solutions to transport
equations. The proof is motivated by the theory of Whitney folds, cf.
985, Appendix C.4) and Section 5.2.

(Hormander, 1983

Lemma 3.2.9. Let (M, g) be compact with smooth boundary, let (xq,vg) €
0oSM, and let OM be strictly convex near xg. Assume that M is em-
bedded in a compact manifold N without boundary. Then, near (xg,vo)
in SM, one has

7(z,v) = Q(v/a(z,v),x,v),
—T(.’E, _U) = Q(—\/M7.T,U),

where @Q is a smooth function near (0,xg,v9) in R X SN, a is a smooth
function near (xg,vo) in SN, and a >0 in SM.

Proof This follows directly by applying Lemma 3.2.10 below to h(t, z,v) =
P(Va,u(t)) near (0,z0,vo), where p is a boundary defining function for M
as in Lemma 3.1.10. O

Lemma 3.2.10. Let h(t,y) be smooth near (0,yo) in R x RN, If
h(0,90) =0, 9:h(0,90) =0, 9Fh(0,) <0,
then one has

h(t,y) =0 near (0,y9) when h(0,y) >0 <= t=Q(£va(y),y)

where Q is a smooth function near (0,3y0) in R x RY, a is a smooth
function near yo in RY, and a(y) > 0 when h(0,y) > 0. Moreover,

Q(Valy),y) = Q(=v/aly),y) when h(0,y) > 0.
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Proof We use the same argument as in (Hormander, 1983-1985, The-
orem C.4.2). Using that 02h(0,yo) < 0, the implicit functlon theorem
gives that

8th(ta y) = 0 near (07 yO) — = g(y)
where g is smooth near yo and g(yo) = 0. Write
hi(s,y) == h(s + g(y),y)-

(s +
Then 9,h1(0,y) = 0 and 92h1(0,99) < 0. Thus by the Taylor formula
we have

hl (S?y) = hl (O7y) - SQF(Svy)
where F' is smooth near (0,y0) and F(0,y0) > 0. We define
r(s,y) = sF(s,y)"/?

and note that r7(0,y0) = 0, 95s7(0,y0) > 0. Thus the map (s,y) —
(r(s,y),y) is a local diffeomorphism near (0,yp), and there is a smooth
function S near (0,y0) so that

r(s,y) =7 <= s=5(,y).
Moreover, 9,.5(0,yo) > 0. Define the function
hg(?", y) = hl (07 y) - 7"2.

Now
h(t,y) = hi(t = g(y),y) = h1(0,y) — (¢ — 9(¥)*F(t = g(y),y)
= ha(r(t —g(v)v),y)-
Thus h(t,y) = 0 is equivalent with
r(t = 9(y),y)* = hi(0,y) = h(g(y), y)- (3.2.2)
We claim that
h(g(y),y) > 0 near yo when h(0,y) > 0. (3.2.3)

If (3.2.3) holds, then we may solve (3.2.2) to obtain

h(t,y) = 0 near (0,yo) when h(0,y) >0
= r(t—g(y),y) = =Vh(g(y),v).

The last condition is equivalent with

t—g(y) = S(EVh(9(y),y),v)
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This proves the lemma upon taking Q(r,y) = g(y) + S(r,y) and a(y) =
h(g(y),y) (note that r — Q(r,y) is increasing since 9,5(0,yo) > 0). To
prove (3.2.3), we use the Taylor formula

ha(y) + s,y) = h(g(y),y) + Oh(g(y),y)s + G(s,y)s>

where G(0,y0) < 0. Choosing s = —g(y) and using that d;h(g(y),y) =0
shows that h(g(y),y) > h(0,y) near y = yo, and thus (3.2.3) indeed
holds. O

Lemma 3.2.11. Let (M,g) be a compact non-trapping manifold with
strictly convexr boundary. Then the functions

7(z,v) :=7(x,v) — 7(x, —v), and T(z,v):=7(x,v)7(x —"2)
are smooth in SM.

Proof Given the properties of 7 in Lemma 3.2.3 we just have to prove
smoothness near a glancing point (xg,v9) € 9pSM. By Lemma 3.2.9
given (z,v) € SM near (z9,v9) € 99pSM we have:

7~—(xav):CQ( CL(J?,’U),Z‘,U)"‘Q(— a(x,v),a:,v).
Since we can write Q(r,z,v) + Q(—r,x,v) = H(r? x,v), where H is
smooth near (0, xzg, vg) (see Exercise 3.2.12), we deduce that

7(z,v) = H(a(z,v),z,v)

thus showing smoothness of 7. The statement for T' follows by taking
products, rather than sums. O

Exercise 3.2.12. If f € C*®(R) satisfies f(t) = f(—t) for all t € R,
show that there is h € C°°(R) with f(t) = h(t?) for all t € R.

Remark 3.2.13. Using Lemma 3.2.11, it is possible to write the func-
tions @ and a from Lemma 3.2.9 in terms of 7 and 7. Indeed, since T
satisfies the quadratic equation

T(r—7)=T
we have
T+ T2+ 4T
T:7
2

with 7,7 € C*°(SM). Thus Q(t,z,v) = (7(x,v) +t)/2 and a = 72 +47T.
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3.3 The geodesic flow and the scattering relation

Let (M, g) be a compact, connected and oriented Riemannian manifold
with boundary OM and dimension n > 2. By Lemma 3.1.8 we may
assume that (M, g) is isometrically embedded into a closed manifold
(N, g) of the same dimension.

The geodesics of (N, g) are defined for all times in R. We pack them
into what is called the geodesic flow. For each t € R this is a diffeomor-
phism

pr: SN — SN
defined by
et(z,0) = (Ya,0(t), Vo, (t))-

This is a flow, i.e. pirs = @ 0 s for all s,t € R. The flow has an
infinitesimal generator called the geodesic vector field and denoted by
X. This is a smooth section of TSN that can be regarded as the first
order differential operator X : C*°(SN) — C*°(SN) given by

d
(Xu)a) = gilullz,0))| (3.3.1)

where u € C*°(SN). Observe that X : C*°(SM) — C*°(SM). The non-
trapping property can be characterized using the operator X as follows:

Proposition 3.3.1. Let (M, g) be a compact manifold with strictly con-
vex boundary. The following are equivalent:

(i) (M,g) is non-trapping;
(ii) X : C®°(SM) — C™(SM) is surjective;
(iii) there is f € C°(SM) such that X f > 0.

Proof 1If (i) holds, let f = —7 where 7 is smooth by Lemma 3.2.11.
By Exercise 3.3.3 below X f > 0, thus (i) = (iii). Clearly (iii)) =
(i): if there is a geodesic in M with infinite length, since X f > ¢ > 0,
integrating along it we would find f(p:(x,v)) — f(x,v) > ct for all t > 0
which is absurd since f is bounded. The implication (ii) = (iii) is
obvious, so it remains to prove that (i) = (ii).

Given h € C*(SM), we need to find v € C®(SM) with Xu =
h. Consider (M, g) embedded in a closed manifold (N, g). Since strict
convexity and X f > 0 are open conditions there is a slightly larger
compact manifold M; with M C Mi" c N and such that 9M; is strictly
convex and (Mj, g) is non-trapping. Let 7; denote the exit time of M,
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and given h € C*°(SM) extend it smoothly to SM;. For (x,v) € SM,
set

71(z,v)
u(z,v) == 7/0 h(et(z,v))dt.

Since 7 |gas is smooth, v € C°(SM). A calculation shows that Xu = h
and thus X : C*°(SM) — C*>°(SM) is surjective. O

Remark 3.3.2. The assumption of M being strictly convex is not
necessary. See (Duistermaat and Hormander, 1972, Theorem 6.4.1) for
a proof of the same result for arbitrary vector fields.

Exercise 3.3.3. Let (M, g) be a compact non-trapping manifold with
strictly convex boundary. Show that

X7 =-2,
where 7 is the function from Lemma 3.2.11.

Definition 3.3.4. Let (M, g) be a non-trapping manifold with strictly
convex boundary. We define the scattering relation as the map «a :
OSM — OSM given by

ox,v) = ©i(g0) (2, 0).

Lemma 3.3.5. Let (M,g) be a compact non-trapping manifold with
strictly convex boundary. Then « is a diffeomorphism 0SM — 0SM
whose fixed point set is JgSM. One has
a(0+SM) = 0+SM,
aoa=Id.
Proof By Lemma 3.2.6, the map « is smooth on dSM. By definition
of 7 we see that o : 0 SM — 0_SM and o : 9_SM — 0;SM. One

can check that 7 oa = —7, which shows that a o « = Id and that « is a
diffeomorphism whose fixed point set is 9y SM. O

Exercise 3.3.6. Check that Toa = —7.

3.4 Complex structure

In this section we discuss the fact that on an oriented two-dimensional
manifold M, a Riemannian metric g induces a complex structure and
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thus (M, g) becomes a Riemann surface. In fact, there is a 1 — 1 corre-
spondence between conformal classes of Riemannian metrics and com-
plex structures on M. In this way we can talk about holomorphic func-
tions and harmonic conjugates in (M, g). We also discuss the impor-
tant notion of isothermal coordinates (both local and global) on two-
dimensional manifolds.

3.4.1 Generalities

We begin with some generalities.

Definition 3.4.1 (Complex manifold). An N-dimensional complex man-
ifold is a 2N-dimensional smooth (real) manifold with an open cover
U, and charts ¢, : U, — CV such that g o ¢! is holomorphic
0o (Ua NUg) — CN. The charts ¢, are called complez or holomor-
phic coordinates. The atlas {(Ua, pa)}a is called a complezr atlas. Two
complex atlases are called equivalent if their union is a complex atlas. A
complex structure is an equivalence class of complex atlases.

Definition 3.4.2 (Surface). A one-dimensional complex manifold is
called a surface (or Riemann surface).

By Theorem 3.4.9 below, we will also use the term surface for any
oriented two-dimensional (real) Riemannian manifold (M, g).

Definition 3.4.3 (Almost complex structure). If M is a differentiable
manifold, an almost complex structure on M is a (1,1) tensor field J
such that the restriction J, : T,M — T, M satisfies Jg = —Id for any
pin M. If g is a Riemannian metric on M, we say that J is compatible
with ¢ if g(Jv, Jw) = g(v,w) for all v,w € T, M.

If M is a complex manifold, let z = (z1,...,25) be a holomorphic
chart U, — C¥, and write z; = xj +4y; with x; and y; real. There is
a canonical almost complex structure J on M, defined for holomorphic

0 0 0 0
J(axj)—ay; J(ay)—‘axa

Conversely, if M is a differentiable manifold equipped with an almost

charts by

complex structure J (so it is necessarily even dimensional and orientable),
then by the Newlander-Nirenberg theorem M has the structure of a com-
plex manifold, having J as its canonical almost complex structure, if J
satisfies an additional integrability condition.
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Definition 3.4.4 (Holomorphic functions). If M is a complex manifold
with complex charts ¢, : Uy — CV, a C function f : M — C is called
holomorphic (resp. antiholomorphic) if f o o1 is holomorphic (resp.
antiholomorphic) from ¢, (U,) C CV to C for any a.

It is clear that all local properties of holomorphic functions in domains
of CN are valid also for holomorphic functions on complex manifolds.

3.4.2 Complex structures in two dimensions

Let now (M, g) be a two-dimensional oriented (real) manifold with Rie-
mannian metric g. In this case everything becomes very simple. In par-
ticular, the almost complex structures correspond to rotation by 90°.

Definition 3.4.5 (Rotation by 90°). For any v € T, M, let v € T,M
be the unique vector (the rotation of v by 90° counterclockwise) such
that

|’UL|g = |vlg, (v,vt) =0,
and (v,v1) is a positively oriented basis of T, M when v # 0.

Exercise 3.4.6. Show that in local coordinates, if g(z) = (g;x(x)), the
vector vt is given by vt = g(z)~/2(—(g9(2)*?v)a, (g(x)'/?v),) where
AY/2 ig the square root of a positive definite matrix A.

Lemma 3.4.7 (Almost complex structures). If (M,g) is an oriented
two-dimensional manifold, then J is an almost complex structure com-
patible with g iff

J(v) = +vt, veTM.

Proof Let J be an almost complex structure compatible with g. Given
p € M and v € T,M, the fact that J is compatible with g implies that
|Jv| = |v|. Moreover, one has

(Ju,v) = —(Jv, J?) = —(v, Jv)

which implies that (Jv,v) = 0. Thus Jv is orthogonal to v and has the
same length as v. Since T, M is two-dimensional, one must have Jv =
+vt. Conversely, Jv = +vt clearly satisfies J? = —Id and (Jv, Jw) =
(v, w). O

We wish to find a complex structure on M associated with J(v) = vt.

The following fundamental result, proved by Gauss in 1822 in the real-
analytic case, will yield complex coordinates that are compatible with
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J. We will prove later in Theorem 3.4.16 that if M is simply connected,
then there exist global isothermal coordinates.

Theorem 3.4.8 (Isothermal coordinates). Let (M,g) be an oriented
two-dimensional manifold. Near any point of M there are positively ori-
ented local coordinates © = (x1,x2), called isothermal coordinates, so
that the metric has the form

gin(x) = gy,
where \ is a smooth real-valued function.

Given the existence of isothermal coordinates, it is easy to show that
any 2D Riemannian manifold has a complex structure. The proof uses
the basic complex analysis fact that a smooth bijective map ¢ between
open subsets of R? is holomorphic iff it is conformal and orientation
preserving. Recall that ¢ being conformal means that

@*h =ch

for some smooth positive function ¢ where h is the Euclidean metric on
R2.

Theorem 3.4.9 (Complex structure induced by g). Let (M,g) be an
oriented 2D manifold, and let (U,) be an open cover of M so that there
are isothermal coordinate charts @o : Uy — R2. Then gagl 0 @q 15 holo-
morphic po(Uy N Ug) — R? whenever U, NUg # 0. Thus the charts
(Uas @) induce a complex structure on M corresponding to J(v) = v*.
This complex structure is independent of the choice of the isothermal

coordinate charts, and hence it is uniquely determined by g.

Proof The fact that gjx(z) = €>*@)§;; in isothermal coordinates can
be rewritten as

(pa')g =€ h

where h is the Euclidean metric in R?. Suppose that U, N Us # §) and
let ® = g0yt Then @ is a smooth map from an open set of R? to
R?, and one has

h = (03 ) phh = (93 ) (e723Neg) = PP,

Since h is the Euclidean metric, the identity ®*h = ch, where ¢ =
e2(Xa=2"A5) {5 g positive smooth function, means that ® is a confor-
mal bijective map between open sets in R?. Since isothermal coordinate

charts are positively oriented, ® is orientation preserving. Thus ® must
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be holomorphic. This proves that any atlas consisting of isothermal co-
ordinate charts is a complex atlas. It is also clear from this argument
that if one uses different isothermal coordinate charts, then one obtains
an equivalent atlas.

It remains to show that the almost complex structure J given by
isothermal coordinates satisfies J(v) = v*. But in isothermal coordi-
nates J(0p,) = Op, = (0p,)" and J(0y,) = —0p, = (0x,)", s0 one must
have J(v) = vt. O

If (M, g) is a two-dimensional oriented Riemannian manifold, we will
always use the complex structure induced by g on M. In fact the complex
structure only depends on the conformal class

[g] = {cg; c € C°°(M) positive},

and conversely any complex structure on M arises from some conformal
class.

Theorem 3.4.10 (Complex structures vs conformal classes). Let M be
an oriented two-dimensional manifold. There is a 1 — 1 correspondence
between conformal classes of Riemannian metrics on M and complex
structures on M.

Proof Isothermal coordinates for a metric g are also isothermal for cg:
if (p~1)*g = €2 h with h the Euclidean metric, then (¢ ~1)*(cg) = e®*h
for p = A+ 1 log((¢~1)*c). Thus the complex structure on M obtained
in Theorem 3.4.9 is the same for g and cg.

Conversely, suppose that M is equipped with a complex structure. We
wish to produce a metric g which induces this structure. Such a metric
can be defined locally: if p € M and if (U, y) is a complex coordinate
chart near p, we can define g = ¢*h in U where h is the Euclidean
metric in p(U) C R%. More generally, if M is covered by complex coor-
dinate charts (U,, pa) and if (xo) is a locally finite partition of unity
subordinate to the cover (U,), we can define

9= Xapih-

Then g is a Riemannian metric on M. The complex coordinate charts
(Uq, o) above are isothermal for g, since

(P29 =Y (") xs8) (@0 0a" ) h = (') x8)cash = ch
5 5

for some positive smooth functions ¢, and c. Here we used that pgop;!
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is holomorphic, hence conformal, and thus satisfies (pgop;!)*h = coph.
This shows that the complex structure on M induced by g is the same
as the original one. O

It remains to prove Theorem 3.4.8. It is convenient to consider rota-
tions on T* M instead of T'M.

Definition 3.4.11 (Hodge star). For any & € ToM let £ € TxM be
the rotation of £ by 90° counterclockwise, i.e.

*€ = (€)1,
where £,b are the musical isomorphisms associated with g.

Clearly ¢ is the unique covector so that [x{|, = [£]g, (&,%€) = 0, and
(&, *€) is a positively oriented basis of T, M when £ # 0. The operator * is
just the Hodge star operator specialized to 1-forms on a two-dimensional
manifold. We can identify the almost complex structure J(v) = v with
the operator *.

Proof of Theorem 8.4.8 Let p € M. We wish to show that there are
smooth functions u and v near p so that

|dulg = |dv|, > 0, (du,dv) =0 near p. (3.4.1)

Since du and dv are linearly independent at p, the inverse function the-
orem shows that choosing z; = u, x2 = v and A = —log|du|, yields the
required coordinate system near p.

The equations (3.4.1) state that du and dv should be orthogonal and
have the same (positive) length. Since M is two-dimensional, it follows
that dv must be the rotation of du by 90° (either clockwise or counter-
clockwise). Thus, given u with dul, # 0, it would be enough to find v
such that

dv = xdu (3.4.2)
where * is the Hodge star operator in Definition 3.4.11.
Now if the metric were Euclidean, the equations (3.4.2) would read
Ou = Oyv, Oyu = —0yv.

These are exactly the Cauchy-Riemann equations for an analytic func-
tion f = w 4 iv in the complex plane. In particular, v and v would
necessarily be harmonic. The same is true in the general case: by Exer-
cise 3.4.14 below, on a two-dimensional oriented manifold one has

Agu=—xd*du
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Since d? = 0, it follows from (3.4.2) that v and v have to be harmonic.

We use Lemma 3.4.13 below which shows that there is a harmonic
function u near p with dul, # 0. Then xdu is a closed 1-form (since
d(xdu) = *Agu = 0), and the Poincaré lemma shows that in any small
ball near p one can find a smooth function v satisfying (3.4.2). Since
dul, # 0, one has (3.4.1) in some neighborhood of p which proves the
theorem. O

We formulate part of the above proof as a lemma:

Lemma 3.4.12 (Harmonic conjugate). Let (M, g) be a simply connected
oriented 2-manifold. Given any u € C*°(M) satisfying Agu = 0 in M,
there is v € C°°(M) satisfying

dv = xdu in M.

The function v, called a harmonic conjugate of w, is harmonic and
unique up to an additive constant. The function f = w + iv is holo-
morphic in the complex structure induced by g. Conversely, the real and
imaginary parts of any holomorphic function are harmonic.

Lemma 3.4.13. Let (M, g) be a Riemannian n-manifold and letp € M.
There is a harmonic function u near p with dul, # 0.

Proof We will work in normal coordinates at p. Writing out the local
coordinate formula for A, it follows that

Agu = Acu + Qu, Qu = ajkajku + bk u,

where A, is the Euclidean Laplacian and a/* b* are smooth functions
near 0. Since in normal coordinates one has g;1(0) = d,, and 9;gx(0) =
0, it follows that

a’*(0) = b*(0) = 0.
We will look for w in the ball B, = B,(0), where r > 0 is small, in the
form
u(z) == x1 + w(z).
The idea is that if 7 is small, then Ayzq ~ 0 in B, (since Ay is close to

A, and A.z1 = 0), so there should be a solution of Aju = 0 close to z;.
We choose w as the solution of

Agw = —Ayz; in By, wlgp, = 0.
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Clearly Aju = 0 in B,.. In order to estimate w, note that w solves
A.w = —Qu in B, wlap, = 0.

Writing w, () = w(rz) etc, we can rescale the previous equation to the
unit ball:

Agw, = frz(Qu)r in By, wrlop, = 0.

For any m > 0, we may use elliptic regularity for the Dirichlet problem
to get that

[wr | grmvzcsy) S Q) am(By)

with the implied constant independent of r. Now a’*(0) = b¥(0) = 0 and
u = x1 + w, so a short computation gives that

P(Qu) | rm s,y S7° A+ rllwellamsz(s,)-
If r is small enough, combining the last two equations gives
[wr || gms2(my) S 72

Choosing m+2 > n/2+1, the Sobolev embedding gives ||Vw,| 1~ ,) <
r3, which yields

[Vwl|pee(s,) <72
If we choose r small enough, it follows that du|o = dz1]o+dw|o # 0. O

Exercise 3.4.14. Prove the formula Aju = —xd*du used in the proof
of Theorem 3.4.8.

3.4.3 Global isothermal coordinates

We will now prove the existence of global isothermal coordinates on
simply connected surfaces. This is part of the uniformization theorem
for Riemann surfaces, and reduces to the following result. (Recall that
D denotes the unit disk in R2.)

Theorem 3.4.15 (Riemann mapping theorem for surfaces). Let (M, g)
be a compact oriented simply connected 2-manifold with smooth bound-
ary. There is a bijective holomorphic map

oM™ —D
which extends smoothly as a diffeomorphism M — D.

The result can be reformulated as follows:
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Theorem 3.4.16 (Global isothermal coordinates). If (M, g) is a com-
pact oriented simply connected 2-manifold with smooth boundary, then
there are global coordinates (x1,x2) in M so that in these coordinates

gir(x) = g
where X\ is a smooth real-valued function.

Remark 3.4.17. By Proposition 3.7.22 any compact non-trapping man-
ifold with strictly convex boundary is contractible. In particular such
manifolds are simply connected. Thus by Theorem 3.4.16 any compact
non-trapping 2-manifold with strictly convex boundary is diffeomorphic
to the unit disk and admits global isothermal coordinates.

There are several proofs of this theorem. Our proof, following Farkas and Kra

(1992), will involve the Green function for the Laplacian in M and the
fact that simply connected surfaces satisfy the monodromy theorem.
To state this result, let 3 be a Riemann surface without boundary. If
v :]0,1] — X is a continuous curve and fj is analytic in a connected
neighborhood Dy of v(0), we say that fy admits an analytic continuation
along « if for each ¢ € [0, 1] there is ; > 0 and an analytic function f;
in a connected neighborhood D; of 4(t), so that

fs = fi+ in Dy N Dy whenever s € [0,1] and |s — t| < .

Theorem 3.4.18 (Monodromy theorem). Let 3 be a simply connected
Riemann surface without boundary. If fy is analytic near some p € 3
and admits an analytic continuation along any curve starting at p, then
there is an analytic function f in 3 with f = fo near p.

We first construct a candidate for the map ®.
Lemma 3.4.19. For any p € M'™, there is a holomorphic map
o:M™ —D

which extends smoothly as a smooth map M — D, so that p is a simple
zero of ® and there are no other zeros of ® in M.

Proof Let z be a complex coordinate chart in a neighborhood U of p
so that z(p) = 0 and g;;, = €?)#)§}; in these coordinates. Then locally
near p the function ® = z has the property that p is a simple zero
and there are no other zeros. In order to obtain a global function in M
with this property, we formally look for ® in the form ® = e/ where
f is holomorphic in M \ {p}, near p one has f = logz + h where h
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is harmonic, and Re(f)|apsr = 0. This argument is only formal since
Im(log z) is multivalued. To rectify this we instead construct the real
part u = Re(f), which should be harmonic in M \ {p}, look like log|z| +
harmonic near p, and vanish on 9M. This means that u is just (a constant
multiple of) the Green function for Ay in M.

To construct u precisely, note that A, (log|z|) = e 72*A.(log|z|) = 0 in
U\{p}, where A, is the Laplacian in R?. Fix a cutoff function 8 € C°(U)
with 0 < 8 <1 and 8 = 1 near p. We define

u = Blog|z| + u1
where u; is the solution of the Dirichlet problem
Agulein ]\47 ul|31\/[:07

and where F is the extension of —Ay(8logl|z|) € C*°(M \ {p}) by zero
to p. Noting that F' € C(M), elliptic regularity ensures that u; is
a real valued function in C°°(M). Then we have the following desired
properties:

w is harmonic in M \ {p}, wu =log|z| + u1 near p, wulop = 0.

We want to prove that there is a holomorphic ® in M with |®| = .
First we show that such a function exists near p. In fact, since Aju; =0
near p, by Lemma 3.4.12 there is a harmonic conjugate v; of w1 in some
small ball centered at p. The function

U = zetatinn

is holomorphic and satisfies |¥| = e* near p.

The above argument already proves the result if M is contained in a
complex coordinate patch. In the general case, we wish to continue ¥
analytically to M™t If 4 : [0,1] — M™ is any continuous curve with
~(0) = p, define the set

I:={s€[0,1]; ¥ admits an analytic continuation along 7|
so that |fi| = e for ¢ € [0, s]}.

Clearly 0 € I and I is open. To show that I is closed, let ¢y € [0,1]
be such that [0,t9) C I. There is an analytic function ¥ near (o)
with [¥] = e*: if y(to) = p one can take ¥ = ¥, and if y(tg) # p one
can take ¥ = €%t in a small ball U centered at ~(ty) where v is a
harmonic conjugate in U of the smooth harmonic function u. Choose
e > 0 so that y([to — &, 10]) C U. Since tg — e € I, ¥ admits an analytic
continuation along v|(o -] We continue this for ¢ € [tg — €,t0] by
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choosing D, = U and f; = ¥. It remains to show that fto—e = ¥ near
Y(to —€). But |fy,—c| = |¥| = e* near ~(ty — €), which means that the
holomorphic function fy, _./® has modulus 1 near y(to — ¢) (this is true
also if y(tp — &) = p, since both the numerator and denominator vanish
simply at p). Thus f;,_./V is a constant e’ € S near v(to —¢) (it must
have vanishing derivative by the open mapping theorem). Replacing g by
¢ above shows that U admits an analytic continuation along Y0,t5] SO
that | fi| = e*. Thus I is closed, and connectedness implies that I = [0, 1].

We have proved that U admits an analytic continuation along any
curve in M, By the monodromy theorem, there is an analytic function
® in M™ extending ¥, and one has |®| = e in M, In particular, ®
has a simple zero at p and no other zeros in M™. Near any boundary
point one has ® = e+ where the local harmonic conjugate v of u can
be continued smoothly to M, showing that ® extends smoothly to M.
Since |®||gar = e*|oar = 1, the maximum principle implies that ® maps
M to D. O

Remark 3.4.20. We sketch an alternative to the analytic continuation
argument in the proof above, following Hubbard (2006). After construct-
ing the Green function wu, one could proceed by constructing a multival-
ued harmonic conjugate v for u in M \ {p}. The harmonic conjugate
should formally satisfy dv = xdu in M \ {p}. To solve the last equation,

we fix ¢ € M \ {p} and define

v(x) = / *du, x € M\ {p}, (3.4.3)
Vg,
where 7, , is a smooth curve from ¢ to z in M \ {p}. (Note that M \ {p}
is connected since M is.) Of course the value v(x) depends on the choice
of vq.4. If 74,5 is another such curve and if 7 is the concatenation of v, ,
and the reverse of 7, ,, then v is a closed curve in M \ {p}.

We now invoke the following topological fact: since M is simply con-
nected and two-dimensional, any closed curve v in M\ {p} is homologous
to a small circle centered at p winding k times around p for some k € Z.
Since *du is closed in M\ {p} and u = log|z| + harmonic near p, an easy
computation gives that

/*du € 2nZ.
¥

This shows that (3.4.3) defines v(z) modulo 27Z. It follows that e is a
well defined smooth function in M \ {p}, and ® = e**% is holomorphic
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in M\ {p}. It is also bounded near p, and hence extends to the desired
holomorphic function ® near p.

Proof of Theorem 3.4.16 We shall show that the map from Lemma
3.4.19 gives the desired map ®. First observe that by construction we
have ®(0M) C 9D and let v denote a parametrization of M. An ap-
plication of the argument principle shows that ® : M™ — D is a bi-
jection: indeed since ® has a unique simple zero at p, the index of the
curve ® o v around zero is one and thus there is a unique solution to
®(z) = w for any w € D. A standard complex analysis argument gives
that ® : M'™ — D is a biholomorphism. It remains to show that the
smooth extension ® : M — D is a diffeomorphism. We already know that
the Jacobian determinant of ® is non-zero for any z € M™* and we claim
that it is also non-zero for z € OM. Since ® is smooth on M, it satisfies
the Cauchy-Riemann equations on M and thus it suffices to show that
some directional derivative of ® at z € M is non-zero. But this is clearly
the case since the harmonic function log |®| attains its global maximum
at every point of OM. It follows that the map ®|gpr : OM — ID is a
diffeomorphism since it has degree one. This gives that ® : M — D is a
bijection with smooth inverse. O

3.5 The unit circle bundle of a surface

We consider now the unit sphere bundle SM when dim M = 2. Many
of the results in this section have natural counterparts in higher dimen-
sions as discussed in Section 3.6, but when dim M = 2 there is special
structure which simplifies many arguments.

3.5.1 The vector fields X, X| and V

When dim M = 2 the manifold SM is three-dimensional, and there is
a very convenient frame of three vector fields on SM that will be used
throughout this book. We will first consider this frame in the case of the
Euclidean metric.

Example 3.5.1. (Frame of T'SM in the Euclidean disk) Let M =D C
R? and let g = e be the Euclidean metric. Then

SM = {(z,v); v € M, 6 €[0,2m)} = M x S*
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where vg = (cosf,sind). We identify (x,vg) with (z,0). The geodesic
vector field acting on functions u = u(z, #) on SM has the form

d
Xu(z,0) = au(l’ + tvg, 0) b = Vo Vau(z,0).

Write (vg) 1 = (sinf, — cos 6) for the rotation of vy by 90° clockwise, and
define another vector field

Xiu(z,0) = (vg)L - Vyu(z, ).

The vector fields X and X, encode all possible x-derivatives of a func-
tion on SM. We define a third vector field V' by

Vu(z,8) = dou(x,0).

Now the vectors {X, X, ,V} are linearly independent at each point of
SM and thus give a frame on T'SM. It is easy to compute the commu-
tators of these vector fields:

X, V]=X,, [V,X.=X, [X,X.]=0.

Let now (M, g) be a two-dimensional oriented Riemannian manifold.
We wish to define analogues of the vector fields X | and V in the example
above.

Definition 3.5.2 (Rotation by 90° clockwise). For any (z,v) € SM,
we define

vy = —’UL.
Definition 3.5.3. Define the vector field X | : C*®°(SM) — C>*(SM)
by

X u(z,v) = %(u(%(l‘,v))) o

where ¢ (x,v) = (Yp,0, (1), W(t)) and W (t) is the parallel transport of
v along the curve 7y, ,, (¢).

Moreover, define the vertical vector field V : C*(SM) — C*>*(SM)
by

Vu(z,v) = %M%(gﬁv)) =0

where p;(z,v) = (z,e"v) and ev denotes the rotation of v by angle t
counterclockwise in (T, M, g(x)), i.e.

e''v := (cost)v + (sint)v.
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Exercise 3.5.4. If the metric is Euclidean, show that i (z,v) = (z +
tv,,v) and etyg = vg4¢ and thus X | and V have the forms given in
Example 3.5.1.

The next result gives all the commutators of the vector fields X, X, V.
These are also called the structure equations (of the Lie algebra of
smooth vector fields on SM).

Lemma 3.5.5 (Commutator formulas). One has

(X, V] =X,
[XJJV] = 7X7
X,X.]= KV

where K is the Gaussian curvature of (M, g).

One way to prove Lemma 3.5.5 is by local coordinate computations.
For later purposes it will also be useful to have explicit forms of the
three vector fields in local coordinates. Since M is two-dimensional, it is
particularly convenient to use the isothermal coordinates (x1, z3) intro-
duced in Theorem 3.4.8. This induces special coordinates (x1, z3,6) on
SM, and the following local coordinate formulas are valid.

Lemma 3.5.6 (Special coordinates on SM). Let (x1,x2,0) be local co-
ordinates on SM where (x1,x2) are isothermal coordinates on M and 6
is the angle between a unit vector v and 0/0x1, i.e.

v=e )‘(cosﬂi + sm@i)

0x1 0xo
In these coordinates one has the formulas
X=e" (cos@a8 +sm98i2 + (—88/\1 sinf + 88/\20089> §9>
X, =—e? (—sm&aal—kcoseai ((;9;\1 9—&—;)\ sm9> §0>
V=2

Remark 3.5.7. We will use the special coordinates (x1,x2,6) on SM
several times throughout this book. Note that (z1,x2,6) are not isother-
mal coordinates on SM, since the Sasaki metric G introduced in Def-
inition 3.5.10 below is not even diagonal in these coordinates (one can
check that G(0,,,09) = —0z,A and G(0y,, 0g) = Oz, ).

Exercise 3.5.8. Prove Lemma 3.5.6.
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Exercise 3.5.9. Prove Lemma 3.5.5 by using Lemma 3.5.6 and the fact
that the Gaussian curvature of a metric g;;, = e”‘(‘”)éjk is K =—-Ag\=
—e 2N 02N + 02)N).

3.5.2 Integration on SM

Above we introduced the fundamental vector fields X, X |,V on the unit
sphere bundle of a two-dimensional manifold. These vector fields encode
all possible derivatives of functions in SM. We will now discuss how
to integrate functions on SM. We will consider the case dim M = 2,
but all the results in this subsection have natural counterparts in higher
dimensions as discussed in Section 3.6.

Let (M,g) be a compact oriented Riemannian surface with smooth
boundary. The manifold (M, g) has a volume form dV? induced by the
Riemannian metric. In local coordinates

dv? = |g(x)|"/? dxy A das.

For any « € M, the metric g induces a Riemannian metric (inner prod-
uct) g(x) on T, M. The subset S;M = {v € T,M : |v|; = 1} also
becomes a Riemannian manifold. Denote by dS, the volume form of
(Sz M, g(x)). Defining a volume form requires a choice of orientation on
S. M, but we make the natural choice that S, M is oriented according
to the orientation of the surface.

Now the integral of a function f € C'(SM) over SM is just

/ flz,v)dS;(v) dV2(x).
M J S, M

This integral induces a natural volume form (or measure) on SM called
the Liouville form. We shall denote it by d¥3. At a point (z,v) € SM
it can be written as

d¥3 = dv? A dS,.

In the special coordinates (71, 2,6) in Lemma 3.5.6, one has dV? =
e22M®) day Adag and dS, = d (to see the latter, note that 0y corresponds
to e M#)(—sinh, cos§) on T'S, M which has unit length). Thus

dy? = @ dgy A dao A d6. (3.5.1)

We will next show that dX? is actually the volume form of a canonical
Riemannian metric on SM.
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Definition 3.5.10. The Sasaki metric G on SM is the unique Rieman-
nian metric on SM for which the vector fields {X, X, , V'} are orthonor-
mal at each point of SM.

Clearly, the Sasaki metric satisfies
G(aX +bX, +cV,aX +bX, +&V) = ad + bb + ct.

Defining the volume form dVg of the Sasaki metric requires an orienta-
tion on SM. We already chose an orientation on S, M, and then SM is
oriented so that (X, —X,V) is a positively oriented basis at each point
of SM.

Lemma 3.5.11. dVg = d¥3.

Proof The volume form dV is the unique 3-form on SM which satisfies
dVe(X,—X1,V) = 1. On the other hand, a short computation using
(3.5.1) and Lemma 3.5.6 shows that

d¥3(X,—X.,V)=1.
Thus it follows that d¥3 = dV. O
Similarly as above, the integral of h € C(0SM) over 9SM is

/BM /SmM h(z,v) dSs(v) AV ()

where dV'! is the volume form of (M, g). This integral induces a volume
form on OSM given by

d¥? ;= dV*' A dS,.

The Sasaki metric on SM induces a metric G on 0SM, and d¥? coincides

with the volume form of (0SM, G). This follows as in Lemma 3.5.11 since

d¥%(w,0p) = 1 when w is a positively oriented unit vector in TOM.
The volume forms on SM and dSM induce L? inner products

(u,w)SM:/ ww dX3,
SM

(hy1)osm = hi dX2.
oSM
We denote the corresponding L? spaces by L?(SM) and L?(0SM).
The next result establishes basic integration by parts formulas related
to the vector fields X, X; and V. In particular, it shows that X, X
and V are formally skew-adjoint operators. Recall that v is the inward
unit normal of OM.
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Proposition 3.5.12 (Integration by parts). Let u,w € C*(SM). Then

(XU,'LU)S]V[ = _('U/7X'U})SM - (</U7 V>’U/7U))a$’]\/[,
(Xiu,w)sym = —(u, X1 w)sy — ((vi, v)u, w)asm,
(Vu,w)spr = —(u, Vw) sar.

Proof We only prove the first formula. Consider coordinates (z, ) as
in Lemma 3.5.6. Then

(Xu,w)gar

m ou 13)) 152 ou\ _
/M/ (COb@—‘rbl 982+( a—l 1r19—|—a—2 059) aa)wdmd@.

Integrating by parts in « and 6, we see that the terms obtained when the
x-derivatives hit e* and when the f-derivative hits sin# and cosf add
up to zero. The resulting expression is —(u, Xw)sy — ({(v, v)u, w)asm
as required. O

Remark 3.5.13. Recall that if (N, g) is a compact manifold with bound-
ary, if Y is a real vector field on N and u,w € C°(N™") one has

(Yu,w)p2(ny = —(u, Yw +divy(Y)w) 2 ()

where div, (Y) = |g|71/20;(|g|*/?Y7) is the metric divergence. Moreover,
the Lie derivative of the volume form dV; satisfies

Ly (dV,) = div,(Y) dV.

Thus Proposition 3.5.12 implies that X, X | and V are divergence free
with respect to the Sasaki metric, and they all preserve the volume form
dy3.

Next we state Santal6’s formula, which is a fundamental change of
variables formula on SM. The proof boils down to the fact that X is
divergence free. Recall the notation u(z,v) = (v(z),v) for (z,v) € 9SM.

Proposition 3.5.14 (Santald’s formula). Let (M, g) be a compact non-
trapping surface with strictly convex boundary. Given f € C(SM) we
have

7(z,v)
3 _ 2
SMde = /z9+SM/ flos(x,v)p(x,v) dt dE°.

Proof We give the proof for f € C2°(SM™) (the general case follows
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by approximation). For any (z,v) € SM define

7(x,v)
uw (z,v) = (v . 5.
(2, ) / f(pe(e,v0)) dt (35.2)

Since 7 € C(SM)NC>®(SM \ 9oSM), clearly u/ € C(SM)NC>(SM \
0oSM) and u'|s_sp = 0. But if f has compact support in the interior
of M, then u/ vanishes near tangential directions and thus «/ is in fact
smooth. A simple computation shows that

Xul = —f. (3.5.3)

We now apply Proposition 3.5.12 as follows:

fd¥? = —(Xu! , D)sn = (pu! , Dosn = w! (2, 0)p(z, v) d22.

SM oSM
The result follows by inserting the formula (3.5.2) and using the fact
that uf|a_5M = 0. O

Exercise 3.5.15. Prove (3.5.3), and show that Santalé’s formula holds
for f € C(SM) (in fact for f € L*(SM)) using that it is has been proved
for f € C(SMnY).

3.6 The unit sphere bundle in higher dimensions

In this section we present some aspects of the geometry of the unit sphere
bundle in arbitrary dimensions. We use this to describe how the strict
convexity of M reflects at level of the geodesic vector field and to give
a proof of Santald’s formula in any dimension. We shall also use some
of these preliminaries when discussing the various definitions of simple
manifolds and in Section 5.2 to give an alternative proof for the main
regularity result for transport equations.

Let (M, g) be a compact Riemannian manifold with unit sphere bundle
7w : SM — M. For details of what follows see for example Knieper (2002);
Paternain (1999). It is well known that SM carries a canonical metric
called the Sasaki metric. If we let V denote the vertical subbundle given
by V = kerdm, then there is an orthogonal splitting with respect to the
Sasaki metric:

TSM=RX&®&HaV.

The subbundle H is called the horizontal subbundle. Elements in H(z, v)
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and V(z,v) are canonically identified with elements in the codimen-
sion one subspace {v}* C T, M. A vector in RX @ H is canonically
identified with the whole T,M. In order to describe these identifica-
tions, we first introduce the connection map X : T, ,\SM — T, M.
Given ¢ € T(,.)SM, consider any curve Z : (—¢,e) — SM such that
Z(0) = (z,v) and Z(0) = £ and write Z(t) = («(t), W(t)). Then
Kﬁ = l)tVV|t:07

where D stands for the covariant derivative of the vector field W along
« given by the Levi-Civita connection. Using dm and K we set

V :=kerdr, H :=kerk.
It is straightforward to check that
dﬂ"ﬂ(wyv) : H(z,v) = T, M, and K[y (z,0) 2 V(z,0) = {v}t
are linear isomorphisms and thus § € T(, ) SM may be wrriten as

§=(€u,év), (3.6.1)

where £ = dm(€) and &y = KE. In this splitting, the geodesic vector
field has a very simple form

X(z,v) = (v,0). (3.6.2)
Using the splitting, one can also define the Sasaki metric G of SM as

(&ma = Emnu)g + Evinv)g. (3.6.3)

Finally using the Sasaki metric, we decompose orthogonally H = RX ®&H
and we obtain the desired identifications of H(z,v) and V(z,v) with
{v}*. The canonical contact 1-form e is uniquely defined by a(X) =1
and kera = H@® V. Its differential da defines a symplectic form on HEGV
which can be shown to be

da(gvn) = <£V777H>9 - <§H,77V>g' (364)

The next lemma identifies the tangent spaces to dSM and SOM =
0oSM using this splitting.

Lemma 3.6.1.
T(o)OSM = {(én,&v) : &u € TLOM, &y € {v}'};
Ta)00SM = {(&u,&v) : €u € ToOM, &y € {v}+,
<§Vv l/(l‘)> = Ha:(vagH)}'
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Proof To prove the first statement consider a curve Z : (—¢,e) = 0SM
with Z(0) = (z,v) and € = Z(0). Then if we write Z(t) = (a(t), W (t))
with a : (—g,6) — M, we see that &g = dm(§) = &(0) € T,0M.
Differentiating (W (t), W (t)) = 1 at t = 0 we get that (§y,v) = 0. The
first statement follows by counting dimensions.

To prove the second statement we need to take a curve Z : (—e,e) —
0pSM which gives the additional equation (W (t),v(a(t))) = 0. Differ-
entiate this at t = 0, to get using the definition of the connection map
K:

(&v,v(z)) + (v, Ve, v) = 0.

This is equivalent to (£y,v(x)) — . (v,€y) = 0 and the result follows.
O

3.6.1 The geodesic vector field and strict convexity

When does X fail to be transversal to SM? Using Lemma 3.6.1 and

(3.6.2) we see that this happens iff (z,v) € 9pSM. In addition, the

characterization of T{; )00 SM tells us that X is always transversal to

0oSM under the assumption that the boundary M is strictly convex.
We summarize this in the following lemma:

Lemma 3.6.2. The geodesic vector field X is transversal to OSM \
00SM. If OM is strictly convex, then X is transversal to 0gSM. We
always have X (x,v) € T(4 ., )0SM for (x,v) € OgSM.

The picture described by the lemma will be helpful later on when
discussing regularity results for the transport equation and it may be
visualized in Figure 3.2.

Exercise 3.6.3. Show that the horizontal vector (v(x),0) is a unit nor-
mal vector to ASM in the Sasaki metric. Moreover, show that the inner
product of this vector with X is precisely the function p introduced
before Lemma 3.2.8.

3.6.2 Volume forms and Santal6’s formula

Let (M, g) be a compact, connected and oriented Riemannian manifold
with smooth boundary, of dimension n = dim M > 2. We wish to dis-
cuss integration of functions on SM and dSM. The manifold (M, g)
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oSM

Figure 3.2 In the 2D case, 9SM is a 2-torus (assuming M is a disk) and the
glancing region 0o SM is given by two circles. The figure shows the geodesic
vector field X being transversal to dSM \ 99 SM and at dpSM, X becomes
tangent to OSM but remains transversal to 99 SM if OM is strictly convex.

has a volume form dV™ induced by the Riemannian metric. In local
coordinates

v = |g(2)|Y? dxy A - A diy,.

For any x € M, the metric g induces a Riemannian metric (inner prod-
uct) g(z) on T, M. The subset S;M = {v € T,M : |v|, = 1} also
becomes a Riemannian manifold. Denote by dS, the volume form of
(S,M, g(x)),

Now the integral of a function f € C'(SM) over SM is just

/ flz,v)dS;(v) dV"™(x).
MJS, M

This integral induces a a natural volume form (or measure) on SM called
the Liouwville form. We shall denote it by dX?"~!. At a point (x,v) € SM
it can be written as

d¥?" 1 = qv™ A dS,.

This form can also be interpreted as the volume form of the Sasaki
metric on SM or the volume form associated with the contact form of
the geodesic flow. Liouville’s theorem in classical mechanics asserts that
the geodesic flow preserves dX2"~!. In terms of the Lie derivative Lx
this can be written as follows:
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Lemma 3.6.4. Lx(dx*""1)=0.
Similarly, the integral of h € C(9SM) over SM is

/a ; /S |, 0 S 0) v

where dV"~! is the volume form of (OM,g). This integral induces a
volume form on 0SM given by

dx?=2 .= qv" 1t A dS,

where dV"~! is the volume form of (9M, g). This is just the volume form
of the Sasaki metric restricted to SM. Restricting d¥?"~2 to dLSM
gives the natural volume form on these sets. The next lemma will be
useful when proving Santald’s formula.

Lemma 3.6.5. We have j*izd%*"~! = —d%?"=2 where v = (v,0) is
the horizontal lift of the unit normal v and j : 0SM — SM is the
inclusion map. Moreover, j*ixdX?" ! = —pdx?"=2,

Proof Consider a positively oriented orthonormal basis (&1, ..., &mn—2)
of T4,,)OSM. Since ¥ is the inward unit normal in the Sasaki metric,
by definition of boundary orientation we have

d22n_1(va 517 e 5527172) =-1

which gives the first claim. Writing X = (X — u7) 4+ pv and noting that
X — uv is tangent to S M, the second claim follows. O

The volume forms on SM and 8SM induce L? inner products

(u, w)L2(snr) =/ uw d$?
SM

(har)L2(8SM) = / hi dx?" =2,
9SM

One has corresponding L? spaces L?(SM) and L?(0SM), with norms
induced by the inner products.

Next we state and prove Santald’s formula. Recall that p(z,v) =
(v(z),v) for (z,v) € OSM.

Proposition 3.6.6 (Santalé’s formula). Let (M, g) be a compact non-
trapping manifold with strictly convex boundary. Given f € C(SM) we
have

7(z,v)
deQn—l :/ dlu(gj,v)/ f(spt(l‘,v))dta
SM 04 SM 0
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where dp = pdx? 2.

The proof will be very similar to the proof in two dimensions that we
have already seen. We shall need the following lemma which is an easy
consequence of Stokes’ theorem (its proof is left as exercise).

Lemma 3.6.7. Let N be a compact manifold with boundary, © a volume
form, Y a vector field and w € C*°(N). Then

/NY(u)@: —/]VuLy@—i—/(?Nj*(uiy@)

where j : ON — N is the inclusion map.

Proof of Proposition 3.6.6 Recall that 7 € C(SM). Given f € C°(SM),
define for (x,v) € SM,

7(z,v)
uf (x,v) ::/0 fo(z,v))dt. (3.6.5)

Clearly u/ € C(SM) and u'|s_sa = 0. But if f has compact support
in the interior of M, then u/ is in fact smooth. A simple computation
shows that

Xul = —f. (3.6.6)

We now apply Lemma 3.6.7 for the case N = SM, Y = X and u = u/.
Since Lxd%?"~! =0 and uf|s_sas = 0 we deduce

/ deQn—l = —/ j*(’u,fideZn_l).
SM 84 SM

The proposition now follows from the fact that j*i xdX?" ! = —p dx2" 2
(Lemma 3.6.5) and Exercise 3.5.15. O

The next proposition shows that there is a natural positive smooth
density that is preserved by the scattering relation. It is also shows that
the scattering relation is an orientation reversing diffeomorphism.

Proposition 3.6.8. Let (M, g) be a non-trapping manifold with strictly
convex boundary. Then

a* (’u d22n72) — ‘ud22n72.

Moreover

o (g dZZ"_2> _ _g dx2n—2.
T T
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Proof Recall that a(x,v) = P (z,v) (x,v), thus using the chain rule we
obtain for £ € T, , OSM:

dot] (z,0) (§) = d7(§) X (a(@,v)) + dpz(2,0) (€)- (3.6.7)

Let us compute a*j*ixd%?" ! = (ja)*ixd¥X?" 1. For this take a basis
{&1, -, §an—a} of T(3.,)0SM and write

(ja)*ixd22n_l(£1;~"7£2n 2)
:dEanl(X( ( )) dOé| xv( ) da|(my)(€2n 2))
= dX2 (X (a2, ), dpr (o0 (1), - .7d@f(m7v)(§2n72))
= dY?" (X (2,0),€1, ..., Em_2),

where in the third line we used (3.6.7) and in the fourth we used that
the geodesic flow preserves d¥2*~!. Thus

a*j*iXdZ2n—1 _ j*iXd22n_1

and the first identity in the proposition follows from Lemma 3.6.5. The
second identity follows from 7 o a = —7 and Lemma 3.2.8. O

3.7 Conjugate points and Morse theory

In this section we review basic properties of conjugate points (see e.g.
Lee (1997); Jost (2017)). The following two facts will be important for
later applications:

e Absence of conjugate points implies positivity of the index form. This
will imply the positivity of certain terms in the Pestov identity used
in the proof of injectivity of the geodesic X-ray transform on simple
manifolds.

e Absence of conjugate points implies that the exponential map is a
global diffeomorphism onto a simple manifold. This gives an analogue
of polar coordinates, which can be used to prove that the normal op-
erator of the geodesic X-ray transform is an elliptic pseudodifferential
operator.

We will also state some related facts coming from Morse theory.
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3.7.1 Conjugate points and Jacobi fields

Let (M,g) be a Riemannian manifold, and let v : [a,b] — M be a
geodesic segment. A family of curves (vs)se(—c.) depending smoothly
on s is called a variation of v through geodesics if each s : [a,b] — M
is a geodesic (not necessarily unit speed) and if vy = 7. We say that
the variation vy fizes the endpoints if vs(a) = v(a) and ~,(b) = v(b) for
s € (—¢,¢).

Intuitively, conjugate points are related to situations where a family
of geodesics starting at a fixed point converges to another point after
finite time. The following is a basic example of this behaviour.

Example 3.7.1. (Family of geodesics joining the south and north pole)
Let S™, n > 2, be the sphere and consider the geodesic segment

v [=7m/2,7/2] = S™, ~(t) = (cost)e + (sint)eni1.
Define
Yo i |=m/2,7/2] = S™, 7s(t) = (cost)((coss)e+(sin s)es)+(sint)e,y1.

Then (v;) is a variation of v through geodesics which fixes the endpoints
—ep+1 (south pole) and e,y (north pole).

Any smooth variation (vys) of v has a variation field 0575 (t)|s=0, which
is a smooth vector field along 7. If (v5) is a variation through geodesics,
then each v4(t) satisfies the geodesic equation. Consequently the vari-
ation field 9;svs(t)|t=o satisfies the linearized geodesic equation, also
known as the Jacobi equation. Below we write Dy = V) for the covari-
ant derivative along ~(¢) and use the curvature operator

R,J = R(J, %)%
where R(X,Y)Z is the Riemann curvature tensor of (M, g).

Lemma 3.7.2 (Jacobi equation). Let v : [a,b] — M be a geodesic
segment, and let (vs) be a variation of v through geodesics. Then the
variation field J(t) = Os7vs(t)|s=o0 satisfies the Jacobi equation

D} J(t)+ R, J(t) =0, t € [a,b].

Conversely, if J(t) is a smooth vector field along v satisfying the Jacobi
equation, then there is a variation (vs) of v through geodesics so that

8373(t)|t=0 = J(t)
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Proof Write T'(s,t) = v5(t), so that I : (—¢,¢) x [a,b] = M is smooth.
Then J(t) = 9,I'(0,t), and we wish to compute DZJ(t). Write Dy =
Va,~,- Since V is torsion free, one has

Dy0575(t) = Ds0Oys(t).
Moreover, the definition of the Riemann curvature tensor gives that
DyD,W — D,D;,W = R(8ys, Ds7s)W.
These facts imply that

Dt2‘](t) = DtDtas’Ys(th:O = DtDsat'Ys(tﬂs:O
= DsDi0ys(t))|s=0 + R(¥(t), J (£))(t).

One has D;0;vs(t) = 0 since each 7, is a geodesic. Thus J(t) satisfies
the Jacobi equation.

For the converse, if J(t) solves the Jacobi equation it is enough to
consider a variation

Vs (t) = exp, ) (AW (5)) = V()W (s) (£)

where 7 is a smooth curve with n(0) = v(a), and W(s) is a smooth vector
field along n with W(0) = 4(a). Then (v;) is a variation of v through
geodesics, and its variation field Y (t) = 047:(t)|s=0 satisfies Y (0) = 7(0)
and

DY (0) = Ds0uys(t)|s=t=0 = DsW(0).

Now if we choose n and W so that 1(0) = J(0) and D;W(0) = D.J(0),
then both J(t) and Y (¢) satisfy the Jacobi equation with the same initial
conditions. Uniqueness for linear ODEs shows that Y = J. O

Definition 3.7.3 (Jacobi field). A smooth vector field along + that
solves the Jacobi equation is called a Jacobi field.

If a geodesic v : [a,b] — M admits a variation through geodesics
that fixes the endpoints, then by Lemma 3.7.2 it also admits a Jacobi
field vanishing at the endpoints. This leads to the definition of conjugate
points.

Definition 3.7.4 (Conjugate points). Let v : [a,b] — M be a geodesic
segment. We say that the points vy(a) and ~(b) are conjugate along v
if there is a nontrivial Jacobi field J : [a,b] — TM along + satisfying
J(a) = J(b) = 0.
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Remark 3.7.5. If y(a) and (b) are conjugate along -, it follows from
Lemma 3.7.2 (by choosing 7(s) = «(a) in the proof) that there is a
variation (vys) of y through geodesics that fixes the initial point v(a) and
almost fixes the endpoint (b) in the sense that 0s7vs(b)|s=o = 0.

The next lemma contains some basic properties of Jacobi fields. We
say that a Jacobi field is normal (resp. tangential) if J(t) L 4(t) (resp.
J(t) || 4(¢)) for all ¢t.

Lemma 3.7.6. Let v : [a,b] — M be a geodesic segment. Given any
v,w € Tyq)M there is a unique Jacobi field with

J(a) = v, D;J(a) = w.

The space of Jacobi fields along v is a 2n-dimensional subspace of the
set of smooth vector fields along v. The space of normal Jacobi fields
is (2n — 2)-dimensional, and the space of tangential Jacobi fields is
span{¥(t), ty(t)} and hence 2-dimensional. The following conditions are
equivalent:

(a) J is normal.
(b) J(to) and D:J(tg) are orthogonal to ¥(tg) at some tg.
(c) J(t1) L A(t1) and J(t2) L 4(t2) for some t1 # ta.

Proof The first claim follows from existence and uniqueness for linear
ODEs. The map (v,w) — J is linear and bijective, showing that the
space of Jacobi fields is 2n-dimensional. The geodesic equation D;¥(t) =
0 together with the antisymmetry of the curvature tensor imply that

7 (J,A) = (DFJA) = (D}J + R(J, )%, %)

Thus for any Jacobi field, (J,%) = ct + d for some ¢,d € R, and taking
the t-derivative gives that (D,J,7) = c. It follows that (a), (b) and (c)
are equivalent. By part (b) one sees that the space of normal Jacobi
fields is (2n — 2)-dimensional, and it is easy to check that %(¢) and t(¢)
are linearly independent tangential Jacobi fields. O

The tangential Jacobi fields are not very interesting (they correspond
to the variations vs(t) = (¢t + s) and vs(¢t) = ~y(e’t), which are just
reparametrizations of v(¢)). Thus we will focus on normal Jacobi fields.
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3.7.2 Jacobi fields in dimension two

If dim M = 2 there is a very simple description of Jacobi fields in terms
of solutions of the ODE §j(t) + K (v(¢))y(t) = 0, where K is the Gaussian
curvature. Recall that v* is the rotation of v by 90° counterclockwise.

Lemma 3.7.7 (Jacobi fields in two dimensions). Let (M,g) be two-
dimensional and 7 : [a,b] = M a unit speed geodesic segment. The set
of normal Jacobi fields along ~y is spanned by o(t)5(t)* and B(t)5(t)*,
where a, § € C([a,b]) satisfy the equations

i) + K(®)at) =0, ala) =1, da) =0,
Bt)+ K(y(1)B(t) =0,  Bla) =0, fla)=1
Proof We first observe that +(¢)* is parallel, i.e.
Dy(%(t)*) = 0. (3.7.1)

In fact, since Dyy(t) = 0 we have
(Dt 4) = 0u((3™,4)) = 0:(0) = 0,

(DA 3) = 303 = 301 = 0.

This proves (3.7.1).
When dim M = 2 the Jacobi equation reduces to

D?J(t) + K(vy(t))J(t) = 0.

If o(t) and B(t) satisfy the given equations, it follows from (3.7.1) that
a(t)y(t)*+ and B(t)¥(t)* solve the Jacobi equation. Since they are lin-
early independent and normal, they span the space of normal Jacobi
fields along ~. O

We can also present an alternative derivation of the Jacobi equation
based on the structure equations given in Lemma 3.5.5 and the geodesic
flow ¢, acting on SM.

Let (M,g) be an arbitrary Riemannian surface that we assume ori-
ented for simplicity. Fix a point (z,v) € SM. We adopt the following
notation: let X (t) = X (¢¢(z,v)) and X, = X, (0) = X, (x,v), and
similarly for X (t), V(t) etc. Let & € T(;.)SM. We can write

E=aX —yX,| +2V

for some constants a,y,z € R. Moreover, there exist smooth functions
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a(t),y(t), z(t) satisfying
dpi(§) = a(t) X (t) — y() XL (t) + 2(H)V (2), (3.7.2)
subject to the initial conditions a(0) = a, y(0) =y and z(0) = z.

Proposition 3.7.8. The functions a(t), y(t) and z(t) satisfy the equa-
tions

a=0,
y—Z:O,
2+ Ky=0.

Proof We begin by applying dy_; to both sides of (3.7.2) to obtain
§=a(t)dp_(X(t)) — y(t)do—t(XL(1) + 2(t)dep—e(V (1))

Differentiating both sides with respect to ¢ and recalling the Lie deriva-
tive formula LxY (¢;) = L (dp_¢(Y(p:))) we obtain

0
= a(t)dp—(X(t) + a(t)de—([X, X](¢)) — (X1 (1))
—y(O)dp—+([X, X1]) + 2dp_+(V (1)) + 2(t)dp— ([X, V] (?)),
and then applying Lemma 3.5.5 and grouping like terms we obtain
0 = do_i[a(t)X(t) + (2(t) = §(1)) X L(t) + (2 + K(t)y(t))V (t)].

Since dy_; is an isomorphism and {X (¢), X, (), V(¢)} is a basis of each
tangent space Ty, (5,,)SM the coefficients of X (¢), X, (t) and V() must
vanish for all ¢, and this is precisely what we wanted to show. O

0

The proposition implies in particular that dy, leaves the 2-plane bun-
dle spanned by {X,V} invariant. Moreover, if £ = —yX | + 2V, then

dpi(§) = —y(t) XL () + 9OV (1)

where y(t) is uniquely determined by the Jacobi equation § + Ky = 0
with initial conditions y(0) = y and §(0) = z. We see that drdp(§) =
—y(t)dm (X1 (t)) = y(t)5+(t) is the normal Jacobi field J with initial
conditions J(0) = y4(0), J(0) = z31(0).

Thus Jacobi fields and their covariant derivatives describe how the
differential of the geodesic flow evolves. The same is true in higher di-
mensions. Using the splitting described in Section 3.6 we may write for
§ € Tipw)ySM:

dpi(§) = (Je(t), DiJe(t)), (3.7.3)
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where J¢ is the unique Jacobi field with initial conditions J¢(0) = dm(§)
and D;J¢(0) = K&, where K is the connection map.

Exercise 3.7.9. Prove (3.7.3).

3.7.3 Exponential map

We discuss the exponential map on a compact manifold with boundary
and evaluate its derivative in terms of Jacobi fields.

Proposition 3.7.10 (Exponential map). Let (M, g) be a compact non-
trapping manifold with strictly convex boundary. For any © € M define

D, :={tveT,M;veS;M andtec|0,T1(x,v)]} (3.7.4)
The exponential map
exp, : Dy — M, exp,(tv) = vz (1)
is smooth. For any tv € D, and w € T, M, one has
(dexp,)|ew (tw) = J (1)
where J is the Jacobi field along vz, with J(0) =0 and D;J(0) = w.

Proof The assumption on (M, g) guarantees that any point of D, is the
limit of some sequence in (D, )™*. Thus it is enough to verify the claims
for any smooth extension of exp, to some larger manifold containing
D, (the values of dexp, on 0D, do not depend on the choice of the
extension). Let (IV,g) be a closed extension of (M, g). Then geodesics
on N are well defined for all time and the exponential map of N, exp? :
T, N — N, is smooth. It follows that exp, = exply |p, is also smooth.

Given tv € D, and w € T, M, consider the smooth curve n(s) =
tv + stw on T, N. By the definition of the derivative one has

d
(dexpy)|uw(tw) = ——expg (n(s))| _ .
Consider v5(r) = exp (r(v+sw)) = Ya.vtsw (7). Then v,(r) is a variation
of v, »(r) through geodesics in N, hence J(r) = 957s(7)|s=0 is a Jacobi
field along 7, with J(0) = 0 and D, J(0) = Ds(v + sw)|s=0 = w. It
follows that (dexply)|s,(tw) = 057s(t)|s=0 = J(t). O

Corollary 3.7.11. Given tv € D,, the derivative dexp,, |, s invertible
iff Yeu(t) is not conjugate to x along Ye..-

We will also need the Gauss lemma.
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Proposition 3.7.12 (Gauss lemma). Let x € M and tv € D,. For any
w € T, M one has

(dexp, (), dexp, [w(w)) = (v, w).
In particular, dexp,, |w(w) L Yz(t) iff v L w.

Proof Note first that d exp,, |¢,(v) = 44,0 (t), and by Proposition 3.7.10
one has dexp,, |1, (tw) = J,,(t) where J,,(¢) is the Jacobi field along v, ,
with J,,(0) = 0 and D;J,,(0) = w. Define

f(t) == (dexp, [ (v), dexp, |t (tw)) = (2.0 (t), Ju(t)).

Since DYy () = 0, taking derivatives and using the Jacobi equation
gives that

f”(t) = <"7m,v(t)th2Jw(t)> = *<;Ym,v(t)aR'yJW(t)>-

The symmetries of the curvature tensor imply that the last quantity is
zero. Thus f(t) is an affine function, and

(dexpy [ew(v), dexp, [w(tw)) = f(0) + f/(0)t = t{¥a,(0), DeJw(0))
= t{v,w).

This proves the result for ¢ > 0, and the case t = 0 follows since
dexp, |o = id. O

The following result shows that among curves that are exponential
images of curves in the domain of exp,, the radial geodesics always
minimize length.

Proposition 3.7.13 (Minimizing curves in domain of exp,). Let x € M
and w € Dy, let no : [0,1] — D, be the curve no(t) = tw, and let
7 :10,1] = D, be any smooth curve with n(0) =0 and (1) = w. Then

1 1
[ Vexp,om) 0]t < [ I(exp,ony @) de
0 0
with equality iff n is a reparametrization of ng.

Proof We may assume that w # 0 and n(¢) # 0 for 0 < ¢t < 1 (if not,
let to be the last time with 7(¢9) = 0 and replace n by 7|f,,1) rescaled
to the interval [0, 1]). We write n(t) = r(t)w(t) where r(t) = |n(t)| and
|w(t)] = 1. Then for ¢ > 0 one has
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The condition |w(t)] = 1 implies (w(t),w(t)) = 0. Using the Gauss
lemma, we obtain that
(dexpy [ (w(t)), dexpy [, (@(t))) = 0,
|dexp, |y (w(t))] = |dexp, [y (@(t))] = 1.
Combining these facts gives that
[(expy 01)' (1)]* = |dexp, [y (1()[* > 7(8)*.
Thus the lengths satisfy

/ (exp, o)’ (1)) dt > / #(6)] > (1) - r(0) = Ju]
0 0
1

= [ |(exp, omo)'(t)] dt.
0

Equality holds iff w(t) = 0 and 7(¢) > 0, which corresponds to the case
where 7 is a reparametrization of 7. O

3.7.4 Index form

Next we consider a bilinear form on ~ related to the Jacobi equation.

Definition 3.7.14 (Index form). Let v : [a,b] = M be a geodesic
segment, and let H'(y) be the Sobolev space of vector fields along
equipped with the norm

b 1/2
¥y = ( [ aror+ |DtY<t)|2>dt> .

Define H}(y) = {Y € H'(y); Y(a) = Y(b) = 0}. The index form of
is the bilinear form

b
(Y, Z) = / ((D,Y, D, Z) — (R,Y, Z)) dt

defined for Y, Z € Hi (v).

The index form I, is the bilinear form associated with the elliptic op-
erator —D?— R, acting on H{ (v) (i.e. with vanishing Dirichlet boundary
values). It arises as the second variation of the length or energy func-
tionals. Namely, if 5 : [a,b] — M is a variation of a unit speed geodesic
~ through geodesics which fixes the endpoints, then

d2 b .
i [l —ney) (375)
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where Y (¢) is the component of 0s7s(t)|s=o normal to 4(t). Thus if v
minimizes length between its endpoints among the curves v, then nec-
essarily I,(Y,Y) > 0.

The main result for our purposes is that absence of conjugate points
guarantees that I, is positive definite.

Proposition 3.7.15 (Positivity of index form). Let «y : [a,b] — M be a
geodesic segment, and consider the index form I, on H}(v). Then

I, > 0 iff there is no pair of conjugate points on 7.

There are many possible proofs of the above proposition. We will give
one based on PDE (or in this case ODE) type ideas.

Proof For r € (a,b], let L, be the elliptic operator —D? — R, act-
ing on H(7|(q,)- Then L, has a countable set of Dirichlet eigenvalues
A1(r) < Aa(r) < ... with corresponding L?([a, r])-normalized eigenfunc-
tions Y;(-;r) satisfying

(=D} = Ry)Y;(-31) = Ai(r)Y;(-37) on (a,7), Yj(air) =Yj(rir) =0.

We will be interested in the smallest eigenvalue A1 (r), also given by the
Rayleigh quotient

L (YY)

Ai(r) = min e
( YeH! (V(a,~)\{0} HYH%z(y)

Clearly I, > 0 iff A\;(b) > 0.
We claim the following facts:

(1) A1(r) > 0 for r close to a.
(2) Aq(r) is Lipschitz continuous and decreasing on (a, b].

(3) If Ay(ro) =0, then y(a) and y(rg) are conjugate.

The result now follows: if there are no conjugate points, then A\;(r) is
never zero and hence A\ () is positive on (a, b], showing that I is positive
definite. Conversely, if there is a pair of conjugate points then there is
a nontrivial Jacobi field J vanishing at some a’ and b'. Extending it by
zero to [a, b] gives a nontrivial vector field J in H{(v), and integrating
by parts shows that I,(J,J) = 0. Thus I, is not positive definite.
Claim (1) above follows from a Poincaré inequality: if Y € HE (7] [a,a+¢])>
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then
a+e a+e a+e
/ Y2 dt = / Oyt — Q)Y 2 dt = —2/ (t— a)(DyY,Y) dt
1
< 26| DYV < 282D Y |1* + S Y.

Absorbing the last term on the right to the left gives | DY > £[|Y].
If € is chosen small enough, we get that I,(Y,Y) > ¢|Y][]?, for some
¢ > 0 whenever Y € H} (V](q,a+e])-

Claim (2) is standard: rescaling the interval [a, 7] to [a, b], we see that
A1(r) is related to the smallest eigenvalue of a second order self-adjoint
elliptic operator on Hg(y) whose coefficients depends smoothly on 7.
Hence A1(r) is Lipschitz continuous and decreasing (both facts can be
checked directly from the Rayleigh quotient). Claim (3) is immediate
from the definition of conjugate points and elliptic regularity. O

Exercise 3.7.16. Prove claim (2) in the proof of Proposition 3.7.15.

The proof of Proposition 3.7.15 combined with the second variation
formula (3.7.5) also gives the following result.

Proposition 3.7.17 (Geodesics do not minimize past conjugate points).
If v : [a,b] = M is a geodesic segment having an interior point conjugate
to y(a), then there is X € H} () with I(X,X) < 0 and v is not length
MiNIMIZing.
The kernel of I, is the set of Jacobi fields vanishing at the endpoints,
T (v) ={J € Hy(v); D}J + RyJ =0, J(a) = J(b) = 0}.

By elliptic regularity any J € J(v) is C*°, and hence one can use Hg
vector fields J in the definition of conjugate points.

We will next state the Morse index theorem (cf. Jost (2017)) involving
the two indices

Ind(vy) = dim V (v),
Indy(y) = dim Vo (),
where V() (resp. V(7)) is a subspace of Hg () with maximal dimension

so that the index form I, is negative definite (resp. negative semidefi-
nite).

Theorem 3.7.18 (Morse index theorem). Let v : [a,b] — M be a
geodesic segment. Then there are at most finitely many times a < t; <
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. <ty < b so that y(t;) is conjugate to y(a) along . The indices
Ind(y) and Indg(7y) are finite, and they satisfy

Ind(y) = > dim T (Y],

tj€(a,b)

Indo(v) = Y dimJ(lau,)-

t; E(a,b]

3.7.5 Morse theory facts

The classical Morse theory of the energy functional on loop spaces pro-
vides several relevant results. These results are pretty standard on com-
plete manifolds without boundary or closed manifolds. Given a compact
manifold (M, g) with strictly convex boundary, throughout this sub-
section, we will assume that (N, g) is a no return extension with the
following properties.

Lemma 3.7.19 (No return extension). Let (M, g) be a compact mani-
fold with strictly convex boundary. There is a complete manifold (N, g)
of the same dimension as M so that (M, g) is isometrically embedded
in (N, g) and geodesics leaving M never return to M. Moreover N \ M
can be taken as to be diffeomorphic to (0,00) x OM, so that M is a
deformation retract of N.

Exercise 3.7.20. Prove that this extension exists (for a proof see (Bohr,
2021, Lemma 7.1)).

Proposition 3.7.21. Let (M,g) be a compact manifold with strictly
convez boundary. Then given any two points x,y € M, any N -geodesic
joining x and y is completely contained in M. Moreover, there is a min-
imizing geodesic in M connecting x to y.

Proof If v :[0,1] — N is a geodesic with v(0) = x and (1) = y,
then 7([0,1]) C M since otherwise some v(ty) would be outside M and
then also (1) = y would be outside M, which is impossible. Moreover,
since (N, g) is complete, the Hopf-Rinow theorem ensures that there is a
minimizing geodesic in N connecting = and y and by the above argument
this geodesic stays in M. O

Proposition 3.7.22. Let (M,g) be a compact non-trapping manifold
with strictly convex boundary. Then M is contractible.

Proof Since M is a deformation retract of N, it follows that M is
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contractible iff N is. A classical result in (Serre, 1951, Proposition 13),
proved using Morse theory, asserts that if x,y € IV are distinct and if V
is not contractible, there are infinitely many geodesics connecting x to y.
Let now z be fixed and consider the map f : T,N — N, f(w) = exp,(w).
Sard’s theorem applied to f shows that almost every y € N is a regular
value. In particular such points y are not conjugate to x. Moreover, given
T > 0 there are only finitely many w € T,,M with f(w) =y and |w| < T.
This shows that there are geodesics connecting = to y with arbitrarily
large length.

Since N is a no return extension, if we pick  and y in M, then M
itself admits geodesics of arbitrarily large length connecting x to y thus
violating the non-trapping property. It follows that M is contractible.

O

Remark 3.7.23. The proposition also follows from another well-known
fact in Riemannian geometry: a compact connected and non-contractible
Riemannian manifold with strictly convex boundary must have a closed
geodesic in its interior (Thorbergsson, 1978, Theorem 4.2). This is also
proved with Morse theory, but using the space of free loops.

Proposition 3.7.24. Let (M,g) be a compact Riemannian manifold
without conjugate points and with strictly convex boundary. Let v be a
geodesic with endpoints x,y € M. If o is any other smooth curve in M
connecting x to y that is homotopic to v with a homotopy fixing the end
points, then the length of a is larger than the length of v. Moreover,
there is a unique geodesic connecting x to y in a given homotopy class
and this geodesic must be minimizing.

Proof We follow (Guillarmou and Mazzucchelli, 2018, Lemma 2.2) where
this very same proposition is proved. We let Q(x,y) denote the Hilbert
manifold of absolutely continuous curves ¢ : [0,1] — N with ¢(0) = «,
¢(1) = y and finite energy

1 1
E(c) == 5/0 |é|? dt.

It is well known that F : Q(z,y) — R is C? (Ma
sition 3.4.3) and satisfies the Palais-Smale condition. The critical points
of F are precisely the geodesics connecting x to y. Moreover, since there
are no conjugate points, the Morse index theorem 3.7.18 guarantees that
the Hessian of E at a critical point is positive definite (recall that N is
a no return extension, so it suffices to assume that M has no conjugate

zzucchelli, 2012, Propo-

1CC.
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points). Thus all critical points of E are local minimizers of E and are
isolated. We now argue with F restricted to the connected component
of Q(z,y) containing v, which we denote by Qp,(z,y). This coincides
with the set of paths connecting x to y and homotopic to . We claim
that ~ is the unique minimizer of F |Qh](x’y). Indeed a mountain pass
argument shows that if there is another local minimizer, then there is
a geodesic 0 € Qp(z,y) that is not a local minimum of Elg (x4 (cf.
(Struwe, 1996, Theorem 10.3) and Hofer (1985)). Again by the Morse
index theorem ¢ must contain conjugate points, and since it must be
entirely contained in M we get a contradiction. O

3.8 Simple manifolds

In this section we introduce the notion of simple manifold and we prove
several equivalent definitions. We start with the following:

Definition 3.8.1. Let (M, g) be a compact connected manifold with
smooth boundary. The manifold is said to be simple if

e (M, g) is non-trapping,
e the boundary is strictly convex, and

e there are no conjugate points.
Our main goal will be to establish the following theorem.

Theorem 3.8.2. Let (M, g) be a compact connected manifold with strictly
convez boundary. The following are equivalent:

(i) M is simple;

(ii) M is simply connected and has no conjugate points;

(iii) for each x € M, the exponential map exp, is a diffeomorphism onto
its image;

(iv) given two points there is a unique geodesic connecting them depending
smoothly on the end points;

(v) consider (M, g) isometrically embedded in a complete manifold (N, g).
Then M has a neighbourhood U in N such that any two points in U
are joined by a unique geodesic;

(vi) the boundary distance function dglonrxom is smooth away from the
diagonal.
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Remark 3.8.3. Conditions closely related to simplicity appear in Michel

82); Muhometov (1977), and the term “simple manifold” goes
QL
1

|
arafutdinov (1994). There may be other variations of

~

back at least to S
the definition of simple manifold in the literature not listed above, but
as far as we can see, they all follow easily from one of the statements
above. An example is to say that a compact manifold (M, g) is simple if
OM is strictly convex, every geodesic segment in M is minimizing and
there are no conjugate points. Indeed, if every geodesic segment in M is
minimizing, then (M, g) is non-trapping since all geodesic segments in
M have length bounded by the diameter of M. We could also say that
(M, g) is simple if M is strictly convex, every two points are connected
by a unique geodesic and there are no conjugate points.

We shall break down the proof of Theorem 3.8.2 into several proposi-
tions. The first is:

Proposition 3.8.4. Let (M, g) be a simple manifold. Given x,y € M,
there is a unique geodesic connecting x to y and this geodesic is mini-
mizing.

Proof Since OM is strictly convex, Proposition 3.7.21 ensures that there
is a minimizing geodesic connecting x to y. Since M is non-trapping,
it must be simply connected by Proposition 3.7.22. Thus Proposition
3.7.24 implies that there is only one geodesic connecting x to y and this
geodesic must be minimizing. O

Proposition 3.8.5. Let (M, g) be simple. Given x € M, let D, C T, M
be the domain of the exponential map given in (3.7.4). Then

exp, : Dy = M
is a diffeomorphism. In particular, M is diffeomorphic to a closed ball.
Proof The previous proposition asserts that if M is simple, then
expy : Dy = M

is a bijection. Since there are no conjugate points, Corollary 3.7.11 gives
that exp, is a local diffeomorphism at any tv € D,. Hence exp,, : D, —
M is a diffeomorphism. This implies in particular that M is diffeomor-
phic to a closed ball in Euclidean space: if x is in the interior of M, then
D, is a closed star-shaped domain around zero with smooth boundary
and hence diffeomorphic to a closed ball. O
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Proposition 3.8.6. Let (M, g) be a compact manifold with strictly con-
vex boundary. The following are equivalent:

(i) (M, g) is simple;

(ii) M is simply connected and has no conjugate points.
Any of these two properties implies:

o Given two points in M, there is a unique geodesic connecting them
and this geodesic s minimizing.

Proof (1) = (ii): If M is simple, then it has no conjugate points by
definition. It is simply connected due to Proposition 3.7.22.

(il) = (i): Suppose M has strictly convex boundary, is simply con-
nected and has no conjugate points. Proposition 3.7.24 implies that be-
tween two points in M there is a unique geodesic and this geodesic must
be minimizing. It follows that all geodesics have length less than or equal
to the diameter of M, hence the manifold is non-trapping and (M, g) is
simple. O

Proposition 3.8.7. Let (M,g) be simple manifold. Any sufficiently
small neighbourhood U of M in N whose boundary is C?-close to that
of M has the property that U is simple.

Proof Clearly any sufficiently small neighbourhood U with U C?-close
to OM has the property that its closure U has strictly convex boundary
and is simply connected. To see that the property of having no conjugate
points persists when we go to U, let p be a boundary distance function
for OM and let U, := p~![-r,00) with r > 0. If we cannot find a
neighbourhood for M without conjugate points, there is a sequence r, —
0 and points (zn, vpn), (Yn, wn) € SU,., such that @¢ (Xn,vn) = (Yn, Wn),
det, (V(zn, vn))WV(Yn, wy) # {0} with ¢, > 0 and pi(x,, vy,) € SU,., for
all t € [0,¢,] (conjugate point condition, see (3.7.3)). By compactness
we may assume that (x,,v,) converges to (z,v) € SM and (y,,w,)
converges to (y,w) € SM.

If the sequence t,, is bounded, by passing to a subsequence we deduce
that there is ¢g > 0 such that doy,(V(z,v)) N V(y,w) # {0} and thus
M has conjugate points (the sequence t,, is bounded away from zero).
Indeed, we have unit vectors (in the Sasaki metric) &, € V(z,, vy) such
that

dmrodepy, (§&n) =0
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and passing to subsequences if necessary we find a unit norm £ € V(z,v)
for which

dm o dpy, (§) = 0.

If ¢,, is unbounded, we may assume by passing to a subsequence that
t, — co. Since we are assuming that M is non-trapping there is 7' > 0
such that every geodesic in M has length < T'. Since t,, — oo, there is
ng such that for all n > ng, @i(zn,v,) € SU,, for all t € [0,T+ 1]. Thus
oi(z,v) € SM for all t € [0,T + 1] and we have produced a geodesic in
M with length T+ 1 which is a contradiction. O

Exercise 3.8.8. Use the continuity of the cut time function ¢, : SN —
(0,00) (cf. (Sakai, 1996, Chapter III, Proposition 4.1)) to give an alter-
native proof of Proposition 3.8.7 (take the extension N to be closed): if
geodesics on M have no conjugate points and between two points there
is only one, then cut points do not occur in M (again cf. (Sakai, 1996,
Chapter III, Proposition 4.1)), i.e. for all (z,v) € SM, 7(z,v) < t.(x,v).
This means that one can go a bit further along any geodesic and by a
uniform amount.

Exercise* 3.8.9. Construct an example of a compact surface with
strictly convex boundary such that any two points are joined by a unique
geodesic, but the surface is not simple. Such an example must have con-
jugate points between points at the boundary.

3.8.1 Proof of Theorem 3.8.2 except for item (vi)

The equivalence between (i) and (ii) is the content of Proposition 3.8.6.
Proposition 3.8.5 gives that (i) implies (iii). To prove that (iii) implies
(i), note that if exp,, is a diffeomorphism for each x, then every geodesic
is minimizing by Proposition 3.7.13 and hence there are no geodesics
with infinite length, thus M is non-trapping. We also know that the
differential of exp, is a linear isomorphism and hence there are no con-
jugate points (cf. Corollary 3.7.11). The equivalence between (iii) and
(iv) follows right away if we note that v, ,(z.4)(1) = exp,(v(z,y)) = ¥,
where v(z,y) is defined uniquely if exp, is a bijection. Smooth depen-
dence of the geodesic on end points is precisely the statement that the
map (z,y) — v(z,y) is smooth. Let us complete the proof by showing
that (i) <= (v). Proposition 3.8.7 gives that (i) = (v). If we assume
(v) we see right away that M is non-trapping and also that it is free
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of conjugate points (including boundary points) since U is a neighbour-
hood. O

3.8.2 The Hessian of the distance function

The main purpose of this subsection is to complete the proof of Theorem
3.8.2 by establishing the equivalence of simplicity with item (vi) in the
theorem. This result will not be subsequently used in the text.

Let (N,g) be a complete Riemannian manifold, fix p € N and let
f(z) :=d(p, z). It is well known that f is smooth away from {p} U Cut,,
where Cut, denotes the cut locus of p. It is also well known that the
cut locus is a closed set of measure zero. Consider the open set Ny :=
N\ ({p} U Cut,) and define

T, :={tv: t € (0,t:(v)), vE S,N}
where t. is the cut time function. Then

exp, : Z, = No

is a diffeomorphism; for a proof of these facts see (Sakai, 1996, Chapter
III, Lemma 4.4). The gradient of f on the full measure open set Ny
defines a vector field W that has unit norm and hence gives a smooth
section W : Ny — SNy. The vector field W has the property of being
geodesible, i.e. its orbits are geodesics of g, or in other words Vyy W = 0,
where V is the Levi-Civita connection of g.

Exercise 3.8.10. Prove that Vyy W = 0.

For each x € Ny, the Hessian of f at x, denoted by Hess, (f), defines a
bilinear form on T, V. We shall consider its associated quadratic form for
v € T, N with unit norm, and we write this as Hess,(f)(v,v). Moreover

d2

5| fOra®) = (X2f) (@)

t=0

Hess, (f)(v,v) =

where X is the geodesic vector field. In terms of the vector field W we
see right away that

Hessz(f)(v,v) = (V, W, v). (3.8.1)

Exercise 3.8.11. Using that W is a gradient, show that (V,W,w) =
(Vo W,v) for any v,w € T, N. In other words, the linear map T, N >
v— V,W €T, N is symmetric.
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In fact, since W has unit norm, (V,W,W) = 0 for any v € T, N,
and thus 8, (v) := V, W defines a symmetric linear map 3, : W(z)* —
W (x)*.

Given z € No we define a subspace E C T(, w(2))SNo by setting

Bz, W(z)) := desa)(V(p, w)), (3.8.2)

where (p,w) = ¢_f()(z, W(z)). The subspace E is a Lagrangian sub-
space in the kernel of the canonical contact form of SN with respect
to the symplectic form given by (3.6.4) (since V is Lagrangian and dip;
preserves the symplectic form). Moreover, in terms of the horizontal and
vertical splitting we may describe E as

E(z,W(z)) = {(v, V,W) : v € W(z)*}. (3.8.3)

In other words F is the graph of the symmetric linear map ;. To check
the equality in (3.8.3) we proceed as follows. Fix w € S), and t < t.(w).
Let = mpi(p, w) so that ¢i(p,w) = (x, W(z)). Consider a curve z :
(—e,e) = SpM with z(0) = w, so that £ := 2(0) € V(p,w). We let J¢
denote the normal Jacobi field with initial conditions determined by &
as explained when discussing (3.7.3). Now write

e1(p, 2(5)) = (mpi(p, 2(s)), W(mpr(p, 2(s)))

and differentiate this at s = 0 to obtain in terms of the vertical and
horizontal splitting that

dpi(§) = (Je(t), Vi iyW).

This gives (3.8.3) right away.
We wish to use the following well known fact. We only sketch the proof
leaving the details as exercise.

Proposition 3.8.12. Let (N,g) be a complete Riemannian manifold.
Take v # y € N. Then the distance function d, is smooth in a neigh-
bourhood of (z,y) iff x and y are connected by a unique geodesic that is
minimizing and free of conjugate points.

Sketch 1f the condition on geodesics hold, write d(z,y) = |exp; ! (y)|
and smoothness of d follows. For the converse fix x and set f(y) :=
d(x,y). Then if f is differentiable at y and there is a unit speed mini-
mizing geodesic y connecting x to y, then V f(y) is the velocity vector of
v at y. If we have more than one minimizing geodesic the gradient would
take two different values at the same point; absurd. For the conjugate
points we have to go to the second derivatives of d and see that if x and
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y are conjugate along the unique minimizing geodesic joining them, then
the Hessian blows up. O

Exercise 3.8.13. Complete the proof of Proposition 3.8.12.

Now we come to the main result of this subsection that completes the
proof of Theorem 3.8.2.

Proposition 3.8.14. Let (M,g) be a compact manifold with strictly
convex boundary. Then M is simple iff the boundary distance function
dglomxom is smooth away from the diagonal.

Proof Let (M, g) be a compact manifold with strictly convex boundary.
We consider (M, g) isometrically embedded in a no return extension
(N,g) as in Lemma 3.7.19.

If M is simple, by Proposition 3.8.12 we know that the distance func-
tion d, of N is smooth in a neighbourhood of (z,y) € M x M for
x # y. Hence its restriction to M x dM is obviously smooth away from
the diagonal.

The converse is more involved as we cannot use Proposition 3.8.12
directly since we are only assuming that the restriction to OM x OM is
smooth away from the diagonal.

Take z,y € OM with z # y. We know (by strict convexity, see Propo-
sition 3.7.21) that there is a minimizing geodesic between z and y. We
claim there is only one. Let f(z) = d(z, z) for z € M and let h:= f|an.
We know that h is C* (away from x). Thus if v : [0,£] — M is a unit
speed length minimizing geodesic joining x and gy, then Vh(y) is the
orthogonal projection of 4(¢) onto T,0M. Indeed f is always C' on the
interior of v and

Vh(y) = projection (tllr? Vf(’y(t))) .

This shows that the minimizing geodesic between = and y is unique.

Let O, be the open set in S, M given by those unit vectors pointing
strictly inside M and consider the map F : OM \ {z} — O,, where
F(y) is the initial velocity vector of the (unique) minimizing geodesic
from x to y. This map is continuous and injective and by topological
considerations it must also be onto.

Exercise 3.8.15. Prove that F' is surjective.

Thus every v € O, is the initial velocity of some minimizing geodesic
hitting the boundary. In particular this implies that any geodesic starting
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on the boundary and ending in the interior is minimizing and has no
conjugate points.

The next step is to show that (M, g) is non-trapping. Indeed let p € M
be an interior point. Consider the set of all geodesics that start at p
and hit the boundary. The set of their initial directions is open and
closed (from minimality and transversality to the boundary due to strict
convexity), hence it must be all S, M.

The final step in the proof is to show that there are no conjugate
points on the boundary. For this we will use the previous discussion on
the Hessian of the distance function.

Let p € OM and consider as above f(x) = d(p,x). We have seen that
the interior of M is contained in Ny. Take y € M and suppose that p
and y are conjugate. Consider a sequence of points y,, along the unique
minimizing geodesic connecting p to y such that they are in the interior
of M, but y,, — y. Using (3.8.2) we see that E(y,, W(y,)) converges to
a Lagrangian subspace at (y, W (y)) that intersects the vertical subspace
non-trivially (note that W is defined at y). This in turn implies that there
is a sequence of unit vectors v, € W (y, )", such that v,, - v € W(y)*
for which (V,, W, v,,) — o0o. Going back to (3.8.1) we see that Hess,, (f)
blows up as y, — y.

We are assuming that h = f|gas is smooth away from p, so to derive
a contradiction from the blow up of the Hessian of f we need to observe
that Vi W = 0, and thus Hess,,, (f)(W (yn), w) = 0 for any w € T,,, M.
But W (y) is transversal to OM and thus the blow up of the Hessian of
h at y also holds contradicting the fact that A must be C? near y. [
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4

The geodesic X-ray transform

In this chapter we begin the study of the geodesic X-ray transform on a
compact non-trapping manifold with strictly convex boundary. We prove
L? and Sobolev mapping properties, and discuss a reduction that allows
us to convert statements about the X-ray transform to statements about
transport equations on SM involving the geodesic vector field. We then
prove a fundamental energy identity, known as the Pestov identity, for
functions on SM. As the main result in this chapter, we prove injectivity
of the geodesic X-ray transform Iy on simple two-dimensional manifolds
by using the Pestov identity. We also give an initial stability estimate
for the geodesic X-ray transform (improved stability estimates will be
given later). Results in higher dimensions are discussed in the end of the
chapter.

4.1 The geodesic X-ray transform

We have already encountered the geodesic X-ray transform acting on
functions f € C*°(M) in Definition 3.1.5. The same definition applies
more generally to functions in C*°(SM).

Definition 4.1.1. Let (M, g) be a compact non-trapping manifold with
strictly convex boundary. The geodesic X-ray transform is the operator

I1:C®(SM) — C*°(0+5M)
given by

7(z,v)
= [ faleod (o) osu
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The geodesic X-ray transform on C*° (M) is denoted by
Io : C*(M) = C™(04.5M), Iof =1(tof)

where £ : C°(M) — C*°(SM) is the natural inclusion, i.e. o f(z,v) =
f(z) is the pull-back of functions by the projection map 7 : SM — M.

Recall from Lemma 3.2.6 that 7|s, spr € C*°(045M), so indeed I
maps C®(SM) to C*(9+SM). We next study the mapping properties
of I on L? based spaces. Recall that

L*(SM) = L*(SM, dx*~1),
L*(0,SM) = L*(0, SM, dx*"~?).

If p € C*°(0+5M) is nonnegative, we also consider the weighted space

L2(04SM) consisting of L*-functions on 84 SM with respect to the

measure pd¥?" 2,

Proposition 4.1.2 (L? boundedness). I extends to a bounded operator
I:L*(SM) — L*(0,SM).

Proof Since p := p/7 is in C*(0SM) and it is strictly positive by

Lemma, 3.2.8, it suffices to prove the lemma using the measure p d%2" 2

in the target space. Take f € C*°(SM) and write using Cauchy-Schwarz

P dEQn—Q

7(z,v) 2
/0 F (i) dt

£ 10,500 = |

84 SM

7(z,v)
3/ (/ |f(<Pt(33aU))|2dt> Tpdx?n—2
o.M \Jo
7(x,v)
:/ (/ If(%(w,v))ﬁdt) pdx?n?
ay5M \Jo

- /S AP A = B,

where in the last line we have used Santalé’s formula in Proposition
3.6.6. 0

The geodesic X-ray transform is also bounded between Sobolev spaces.
The proof of the next result is given in Section 4.5.

Proposition 4.1.3 (Sobolev boundedness). For any k > 0, the operator
I extends to a bounded operator

I:HY(SM) — H*(0,SM).
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We also have I(H'(SM)) C HE (0, SM).

In the literature, one often sees the statement that I extends to a
bounded operator

I:L*(SM) — L2(0,SM) (4.1.1)

where p(z,v) = (v(z),v). Since |u| < 1, this is a special case of Proposi-
tion 4.1.2. However, the Li space is a useful setting for studying I since
the adjoint I* of the operator (4.1.1) is readily computed by Santald’s
formula. Moreover, as we will see in Chapter 8, on simple manifolds the
normal operator I} Iy (where I is I restricted to functions on M) is an
elliptic pseudodifferential operator of order —1 just like in the case of
the Radon transform in the plane.

We conclude this section by computing the adjoint of the operator
(4.1.1).

Lemma 4.1.4 (The adjoints I* and I%). The adjoint of I : L*(SM) —
L2(04+SM) is the bounded operator

I*: L2(04SM) — L*(SM)
given for h € C>(04SM) by I*h = h* where
hﬁ(xa v) 1= h(@—‘r(w,—v) (z,v)).
The adjoint of Iy : L*(M) — L2 (0, SM) is given by

Ih(z) = /S W) S,

Proof Consider f € C*°(SM) and h € C*(0;SM) and write

(Lf,h) 20, s0) = / (If)hpdx?"—2
0,.SM

7(z,v) o
- / </ CACRIENRD dt) pds?n=?,
0+SM 0

We can write the above expression as

(Lf,h)rz (o, sar)

7(z,v) -
= / </ f(%(%”))hﬂ(@t(%v))dt) pdxin=2,
84+SM 0
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Using Santald’s formula we derive
(Ih)e,sm = [ FRAS = (1) s
SM

and hence I*h = ht.
Choosing f = f(z) gives

(Lof h)rz(o, sm) = /M f() [/s Mhﬁde] av”®

= (f/ h* dSI) .
Sz M L2(M)

This gives the required formula for Ijj. O

Exercise 4.1.5. Let £y : C*°(M) — C*°(SM) be the map given by
Lof = fom, where m: SM — M is the canonical projection. Show that
the adjoint ¢ is given by

(L5h)(z) :/S Mh(x,v) dS.(v).

4.2 Transport equations

We will next show that it is possible to reduce statements about the
geodesic X-ray transform to statements about transport equations on
SM involving the geodesic vector field X. We first define two important
notions which have already appeared before in Chapter 3.

Definition 4.2.1 (The functions v/ and h¥). Let (M, g) be a compact
non-trapping manifold with strictly convex boundary. Given any f €
C>*(SM), define

7(x,v)
wf (z,v) = / floe(x,v)) dt, (x,v) € SM.
0
For any h € C*°(0+SM) define
R (z,v) = (o r(z,—v)(z,0)), (z,v) € SM.

It follows that u/ solves the transport equation Xuf = —f and If
is given by the boundary value of uf on d,SM. Moreover, h? is con-
stant along geodesics. In other words A? is an invariant function (or first
integral) with respect to the geodesic flow, i.e. Xhf = 0.
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Lemma 4.2.2 (Properties of u/ and h¥).

(a) For any f € C>(SM), one has uf € C(SM)NC>(SM\dySM) and
ul is the unique solution of the equation

Xu' =—finSM,  uf|o_su =0.

Moreover, uf|a+SM =1f.
(b) For any h € C>®(0,SM), one has h* € C(SM)NC>®(SM \ 8,SM)
and h¥ is the unique solution of the equation

Xht =0 in SM, hﬁ|3+sM=h~
Moreover, h¥|g_sar = ho alo, s -

Proof The regularity properties of uf and h¥ follow from the regularity
properties of 7 given in Lemma 3.2.3. We note that for (z,v) € SM™t,

d T(ps(x,v))
Xuf (z,v) = £/0 flpe(ps(z,v))) dt »
d T(z,0)—s
o B e
7(x,v) d
= _f(sp‘r(m,v) (ZL‘, U)) + /0 @f(g@t(!& ’U)) dt
= —f(z,v).

Clearly X h* = 0. The statements about the boundary values of uf and h*
follow from the definitions of I and « and the fact that 7|s_gp = 0. O

We note that u/ is in general not smooth on SM. For instance, if f = 1
then uf = 7 and we know from Example 3.2.1 that 7 is not smooth on
S M. However, if f is a function whose geodesic X-ray transform vanishes,
then the following result shows that uf € C°°(SM) and the somewhat
annoying issue with non-smoothness disappears. The result follows from
the precise regularity properties of the exit time proved in Lemma 3.2.9.
We defer its proof to Chapter 5, where regularity results for transport
equations will be studied in more detail.

Proposition 4.2.3 (Regularity when I'f =0). Let (M, g) be a compact
non-trapping manifold with strictly conver boundary. If f € C*(SM)
satisfies [f =0, then uf € C>(SM).

The next result characterizes functions in the kernel of the geodesic
X-ray transform in terms of solutions to the transport equation Xu = f.
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Proposition 4.2.4. Let f € C°(SM). The following conditions are
equivalent.

(a) If =0.
(b) There is u € C°(SM) such that ulgsyr =0 and Xu = —f.

Proof Suppose that I f = 0. Proposition 4.2.3 guarantees that u = u/ €
C*(SM), and Lemma 4.2.2 gives that Xu = —f.

Conversely, given u € C*®°(SM) with Xu = —f, if we integrate along
the geodesic flow we obtain for (z,v) € 04 SM that

(z,v)
woalz,n) —ue.0) == [ flaa)de = ~If(z.0)

Hence if ulgsasr = 0, the above equality implies If = 0. O

4.3 Pestov identity

In this section we consider the Pestov identity in two dimensions. This is
the basic energy identity that has been used since the work of Muhometov
(1977) in studying injectivity of ray transforms in the absence of real-
analyticity or special symmetries. Pestov type identities were also used
in Pestov and Sharafutdinov (1987) to prove solenoidal injectivity of the
geodesic X-ray transform for tensors of any order on simple manifolds
with negative sectional curvature. These identities have often appeared
in a somewhat ad hoc way. Here, following Paternain et al. (2013), we
give a point of view which makes the derivation of the Pestov identity
more transparent.

The easiest way to motivate the Pestov identity is to consider the
injectivity of the ray transform on functions. As in Section 4.1 we let
Iy : C°(M) = C*°(9;SM) be defined by Iy := I o £y, where {; is the
pull-back of functions from M to SM.

The first step is to recast the injectivity problem for Iy as a uniqueness
question for the partial differential operator P on SM where

P:=VX.

This involves a standard reduction to the transport equation as we have
done already in Proposition 4.2.4.

Proposition 4.3.1. Let (M, g) be a compact oriented non-trapping sur-
face with strictly convex boundary. The following statements are equiva-
lent.
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(a) The ray transform Iy : C°(M) — C*(0+SM) is injective.

(b) Any smooth solution of Xu = —f in SM with ulpsyr = 0 and f €
C>(M) is identically zero.

(¢) Any smooth solution of Pu =0 in SM with u|lsgsyr = 0 is identically
zero.

Proof (a) = (b): Assume that Iy is injective, and let u € C*°(SM)
solve Xu = —f in SM where u|gsys = 0 and f € C°°(M). By Propo-
sition 4.2.4 one has 0 = If = Iyf. Hence f = 0 by injectivity of Iy,
which shows that Xu = 0. Thus u is constant along geodesics, and the
condition u|gspr = 0 gives that u = 0.

(b) = (c): Let u € C*°(SM) solve Pu =0 in SM with u|gsas = 0.
Since the kernel of V' consists of functions on SM only depending on
x, this implies that Xu = —f in SM for some f € C*°(M). By the
statement in (b) we have u = 0.

(¢) = (a): Assume that the only smooth solution of Pu = 0 in
SM which vanishes on dSM is zero. Let f € C*°(M) be a function
with Iy f = 0. Proposition 4.2.4 gives a function u € C*°(SM) such that
Xu = —f and u|psy = 0. Since f only depends on x we have V f = 0,
and consequently Pu = 0 in SM and u|gspy = 0. It follows that uw =0
and also f = —Xu = 0. O

We now focus on proving uniqueness for solutions of Pu = 0 in SM
satisfying u|gsps = 0. For this it is convenient to express P in terms of
its self-adjoint and skew-adjoint parts in the L?(SM) inner product as

P+ P P - P
P=A+iB, A:= a , B:= —.
2 24
Here the formal adjoint P* of P is given by
P = XV.

The commutator formula [X,V] = X, in Lemma 3.5.5 shows that
X+ X 1
u7 B=-—X,.
2 24
Now, if u € C*®(SM) with u|psy = 0, we may use the integration
by parts formulas in Proposition 3.5.12 (note that the boundary terms
vanish since u|psps = 0) to obtain that
|Pull® = (A +iB)u, (A+iB)u)
= || Au|]® + || Bu||* + i(Bu, Au) — i(Au, Bu) (4.3.1)
= [[Aul® + || Bull* + (i[A, Blu, u).

A:
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This computation suggests to study the commutator i[4, B]. We note
that the argument just presented is typical in the proof of L? Carleman
estimates, see e.g. Lerner (2019).

By the definition of A and B it easily follows that i[A, B] = 1[P*, P).
By the commutation formulas for X, X | and V in Lemma 3.5.5, this
commutator may be expressed as

[P",Pl=XVVX -VXXV=VXVX+ X, VX -VXVX-VXX,

=VX, X -X?-VXX, =V[X,,X]-X?=-X?’+VKV.
(4.3.2)

Consequently
([P*, Plu,u) = | Xu|* = (KVu, Vu).

If the curvature K is non-positive, then [P*, P] is positive semidefinite.
More generally, one can try to use the other positive terms in (4.3.1).
Note that

1 .
1 Aul® + [[Bull* = S ([1Pull* + [|P*u]]*).
The identity (4.3.1) may then be expressed as
[Pl = [|P*ul]* + ([P*, Plu, ).

We have now proved a version of the Pestov identity which is suited for
our purposes. The main point in this proof was that the Pestov identity
boils down to a standard L? estimate based on separating the self-adjoint
and skew-adjoint parts of P and on computing one commutator, [P*, P].

Proposition 4.3.2 (Pestov identity). If (M,g) is a compact oriented
surface with smooth boundary, then

IVXull? = [ XVul|* = (KVu, Vu) + || Xul|?

for any w € C*°(SM) with u|apsy = 0.

4.4 Injectivity of the geodesic X-ray transform

We now establish the injectivity of the geodesic X-ray transform Iy on
simple surfaces.

Theorem 4.4.1. Let (M, g) be a simple surface. Then Iy is injective.
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In fact the proof gives a more general result, showing injectivity of
I acting on functions of the form f(z,v) = fo(z) + a;j(x)v! modulo a
natural kernel. In particular, this implies solenoidal injectivity of the
geodesic X-ray transform on 1-tensors (see Section 6.4).

Theorem 4.4.2. Let (M,g) be a simple surface, and let f(xz,v) =
fo(x) + a|z(v) where fo € C°(M) and o is a smooth 1-form on M.
If1f =0, then fo =0 and o = dp for some p € C™(M) with plop = 0.

Using Proposition 4.3.1, the injectivity of Iy is equivalent with the
property that the only smooth solution of VXu = 0in SM with u|asy =
0 is u = 0. In the special case where the Gaussian curvature is non-
positive, this follows immediately from the Pestov identity.

Proof of Theorem 4.4.1 in the case K <0 If VXu = 0 in SM with
u|asy = 0, Proposition 4.3.2 implies that

| XVu||? = (KVu, Vu) + || Xul|* = 0.

Since K < 0, all terms on the left are non-negative and hence they all
have to be zero. In particular || Xu|? = 0, so Xu = 0 in SM showing that
u is constant along geodesics. Using the boundary condition u|spsy = 0,
we obtain that u = 0. O

In order to prove Theorem 4.4.1 in general, we show:

Proposition 4.4.3. Let (M,g) be a simple surface. Then given ¢ €
C>®(SM) with ¥)|ssa = 0 we have

with equality iff ¥ = 0.

Proof 1t is enough to prove this when v is real valued. Using Santalé’s
formula, we may write

X2 — (Ko, ) = / (X0)? — K?) ds®

SM

(@)

= [ L w0 - K opauatar,
a.5M Jo

(4.4.1)

where ¥(t) = ¥z (1) = ¥(p(z,v)). We wish to relate the t-integral
to the index form on v, , (see Definition 3.7.14). In fact, if we define a
normal vector field Y'(¢) along v, ., by

Y(t) = Yo (t) = w(t);}/x,v(t)l_a
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then Y € H} (72 .,) since 1(0) = 1 (7(z,v)) = 0. Using that D%, () =
0 (see (3.7.1)), we have

T(zw) |
L V) = [ 602 = KO0 0)] de.

Thus we may rewrite (4.4.1) as

X0~ (Ko) = [ 1 (Ve Ve )nds?,
8y SM

The no conjugate points condition implies that I,, , is positive definite
on H} (vz,») (see Proposition 3.7.15). Since p > 0 it follows that || X[|?—
(K1,) > 0. If equality holds then Y, , = 0 for each (z,v) € 0;.5M,
which gives that ¢ = 0. O

Alternative proof of Proposition 4.4.8 By (4.4.1), it is enough to prove
that for any fixed (z,v) € 0+ SM \ 9pSM one has

7(z,v) .
A (B = K (o (0)02(8)) dt 2 0

with equality iff ¢ = 0, where ¥(t) = ¥,.,(t) := ¥(pi(x,v)). Observe
that ¢(0) = ¢(7(x,v)) = 0. Since (M, ¢g) has no conjugate points, the
unique solution y to the Jacobi equation §j+ K (v, (t))y = 0 with y(0) =
0 and ¢(0) = 1, does not vanish for ¢ € (0, 7] (otherwise one would have
a Jacobi field vanishing at two points by Lemma 3.7.7). Hence we may
define a function ¢ by writing

P(t) = q(t)y(t), for t € (0, 7].

Since 1(0) = y(0) = 0 and y(0) = 1, we have ¥(t) = th(t), y(t) = tr(t)
where h and r are smooth and r(0) = 1. It follows that that ¢(t) =
h(t)/r(t) extends smoothly to ¢ = 0. Using the Jacobi equation we com-
pute

d,. o
g (dy°).
Integrating by parts and using that y(0) = ¢(7) = 0 (since ¥(7) = 0 and
y(7) # 0) we derive

() + K =

o T d v
| @ retyie= - [ oGt a =l + [ @ a

0 0 0

:/ y*dt > 0.
0
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Equality in the last line holds iff ¢ is constant. Since ¢(7) = 0, it follows
that equality holds iff ¢ = 0. O

We can now combine these results to prove the injectivity of Ij.

Proof of Theorem 4.4.1 By Proposition 4.3.1 it suffices to show a van-
ishing result for V Xu = 0 with u|spsp = 0. Proposition 4.3.2 gives

I XVu|* = (KVu, Vu) + || Xul> =0

and combining this with Proposition 4.4.3 (note that Vu|ssy = 0) we
derive Vu = Xu = 0 and hence u = 0 as desired. O

The same method also yields the more general Theorem 4.4.2.

Proof of Theorem 4.4.2 Let f(x,v) = fo(z) + a|.(v) satisfy If = 0,
and let u := uf so that Xu = —f and u|gsas = 0. By Proposition 4.2.3
one has u € C*°(SM). We wish to use the Pestov identity and for this
we need to compute V Xwu. In this case V Xu is not identically zero, but
it turns out that using the special form of f the term ||V Xwul||? can be
absorbed in the term || Xu|? in the other side of the Pestov identity.

In the special coordinates in Lemma 3.5.6, one has

VI =8(folx) + e ) (ay () cos O + aa(z) sin 0))

= e M—aysinh + azcosb).

Then, using (3.5.1) and computing simple trigonometric integrals, we
have

2
IV Xu|? = HVfH2:/M/ |~ sinf + o cos 0] df da
0

— /N (lon @)+ aa(a) ) do.

On the other hand,
2
[ Xul? = £1I? :/ / le* fo + ay cos O + ag sin 0] df dx
M Jo

_on /M| fo(@)2dV? + /M<|a1<x>|2 + |as () [2) da.

Inserting the above expressions in the Pestov identity in Proposition
4.3.2, we obtain that

X Vul* = (KVu, Va) + 27| fol 22 (ar) = 0.
Since || XVul|? — (KVu,Vu) > 0 by Proposition 4.4.3, we must have
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fo =0 and also || XVul||?> — (KVu,Vu) = 0. Using the equality part of
Proposition 4.4.3 gives Vu = 0. This implies that u(z,v) = u(z). Writing
p(z) := —u(x) € C°°(M) we have plgpr = 0, and for any (x,v) € SM
one has

a|r(v) = f(il’,?)) = *XU(QJ,’U) = dp‘z('l)) O

4.5 Stability estimate in non-positive curvature

In this section we show how the Pestov identity can be used to derive
a basic stability estimate for Iy when the Gaussian curvature is non-
positive, i.e. K < 0. This estimate will be generalized in Section 4.6,
and in Chapter 7 we give another improvement and extend the estimate
to include tensors.

Theorem 4.5.1 (Stability estimate for K < 0). Let (M, g) be a compact
non-trapping surface with strictly convex boundary and K < 0. Then
1
< ——||1 1
I fllz2ar) < \/EH of | (o, 501
for any f € C™®(M).

The H'(0,SM) norm appearing in the statement is precisely defined
via a suitable vector field T' as follows.

Definition 4.5.2 (Tangential vector field). Let (M, g) be a compact
oriented surface with smooth boundary. We define the tangential vector
field T on OSM acting on w € C*(0SM) by

Tw(x,v) = %w(m(t),v(t))

where x : (—e,e) — OM is any smooth curve with z(0) = = and #(0) =
v(x) 1, and v(t) is the parallel transport of v along x(t) so that v(0) = v.

t=0

Definition 4.5.3 (H! norms on dSM and 9;SM). We define the
H'Y(0SM) norm of w via

||w||§11(aszv1) = ||w|\%2(aSM) + ||Tw||2L2(aSM) + HVUJH%%@SM)-
Similarly, if w € C*(04+SM) we define its H*(04+SM) norm as

w3, sar) = [wll72(0, 520y + 1TwI 20, 520y + IV0lI720, 51

We state a few important facts about the vector field T. Recall the
notation p = (v,v) on dSM.
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Lemma 4.5.4 (Properties of T'). One has
T=VwX+upX1|g,
In the splitting (3.6.1), T is given by
T=(v.,0).

The vector fields T and V' form an orthonormal frame of T(OSM) with
respect to the Sasaki metric. This frame is commuting in the sense that
[T,V] =0, and T andV are skew-adjoint in the L*>(0SM) inner product.

Proof Let (M, g) be contained in a closed manifold (N, g). Fix (xg,v0) €
OSM and choose Riemannian normal coordinates x = (z!,2?) near zg
in (V,g). Let 8 be the angle between v and 9/0x;. This gives coordi-
nates (z,0) near (zg,vp). Note that these coordinates are not the same
as the special coordinates in Lemma 3.5.6.

In the (x, 8) coordinates the curve (z(t),v(t)) corresponds to (z(t), 8(t)),

and one has
Tw|(:co,vg) = amw(l/J_)l + amzw(’/l_)g + (8911})9(0)

_ v2(t)
Note that tan6(t) = VT

. Differentiating in ¢ gives
2ol — 0ot

(v1)?
Since v(t) is parallel and the.Christoffel symbols vanish at zg, one has
©9(0) = 0. This implies that (0) = 0 and thus

(1+tan0)f =

Tw(z,00) = Op,w(vy )t + 8x2w(1/L)2.

Writing V,w = (0, w, 05,w), this can be rewritten in Euclidean nota-
tion as

Tw'(mo,vo) =V, - Vg;w.
On the other hand, in the (z,6) coordinates above one has

Xw'(l’o,vo) =g - VoW,
X1 w](gg,00) = (v0) L - Vow.
It is easy to check using the special coordinates in Lemma 3.5.6 that

Viu=V({v,v)) = (v,ot) = (v ,v). Since p = (v,v) = (v1,v,), we have

(Vi) Xw + pX 1 wl(ggw) = (VL - v0)v0 - Vew + (v - (v0) 1) (vo) L - Vew

=v, -V,w.
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This proves that T = (Vu)X + puX | since both sides are invariantly
defined.

The formula T = (v,,0) in the splitting (3.6.1) also follows. Since
V = (0,v}) in this splitting, it follows from the definition (3.6.3) of the
Sasaki metric that T and V are orthonormal. The fact that [T, V] = 0
follows from the commutator formulas in Lemma 3.5.5 and the fact that
V2 = —p. Finally, since T and V give an orthonormal commuting
frame on 9SM they are divergence-free: for T' this follows from

div(T) = (V2T,T) + (VvT,V) = %T(|T\2) + %T(\V\Q) =0

since |T| = |V|=1and VyT — VgV = [V,T] = 0. Hence T and V are
skew-adjoint. O

The proof of Theorem 4.5.1 is also based on the Pestov identity, how-
ever instead of the condition Ipf = 0 (so ulspsy = 0) we will use that
ula, sm = Iof. Thus we need to prove a version of the Pestov identity
for functions that may not vanish on dSM. There will be a boundary
term involving the vector field T

Proposition 4.5.5 (Pestov identity with boundary terms). Let (M, g)
be a compact two-dimensional manifold with smooth boundary. Given
any u € C>*(SM), one has

IV Xul* = [ XVu|? = (KVu, Vu) + || Xul|* + (Tu, Vu)as -

Proof We begin with the expression ||V Xu||? — || XVu||? and integrate
by parts using Proposition 3.5.12 (note that integrating by parts with
respect to V' does not give any boundary terms). This yields

IV Xu|? = || XVu|? = (VXu,VXu) — (XVu, XVu)
=—(VVXu,Xu)+ (XXVu,Vu) + (XVu, uVu)osm
= (XVVX —VXXV)u,u) + (XVu,uVu)osy + (VVXu, pu)osn-

From (4.3.2) we have XVVX — VXXV = VKV — X2, Integrating by
parts again, we see that

[V Xul|? = | XVu|? = || Xul|* = (KVu, Vu) + (Xu, pu)asm
+ (XVu, uVu)asm + (VV Xu, pu)gsn-

We continue to integrate by parts with respect to V' in the boundary
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terms. Thus
(VVXu, pu)osy = —(VXu, V)u)asa — (VXu, uVu)ssn
= (Xua (VQILL)U)(?SM + (XU, (VM)VU)GSJW - (VXuanU)(?SM-
Combining this with the other boundary terms and using the identities
[X,V] =X, and V2u = —pu, we obtain that
IV Xl = | X Vul* = || Xul]® = (KVu, Vu)+((V ) XutpX Lu, Va)osa-
Thus the boundary term is (Tu, Vu)asa as required. O

We are now going to prove some additional regularity properties of the
function 7. As in Lemma 3.1.10, consider a function p € C*°(N) in a
closed extension N of M such that p(z) = d(z,0M) in a neighbourhood
of OM in M and such that p > 0 in M and M = p~1(0). Clearly
Vp(x) = v(z) for x € OM. Using p, we extend v to the interior of M as
v(z) = Vp(z) for z € M.

As before we let u(z,v) := (v, v(z)) for (x,v) € SM, and

T:= (Vu)X + MXJ_.

Note that T' is now defined on all SM and agrees with the vector field
T in Definition 4.5.2 on 0SM. In fact T and V are tangent to every
OSM. = {(z,v) € SM : z € p~'(e)}, where M. = p~1([g, 0)).

Exercise 4.5.6. Prove that [V,7] =0 in SM.
Lemma 4.5.7. The functions TT and VT are bounded on SM\ 0pSM.

Proof We set h(z,v,t) := p(Vz,0(t)) for (z,v) € SM \ pSM and use
the identity X, = [X, V] to compute

T(h(z,v,0)) =T(p) = (V) Xp+puXip= (V) Xp—puV(Xp) =0

since Xp(z,v) = p(x,v). Therefore, there exists a smooth function
a(x,v,t) such that

T(h(z,v,t)) = ta(z,v,t).

Next we apply T to the equality h(x,v,7(z,v)) = 0 to get

oh
T(h(x,v,1))]t=r(2) + a(m,v,T(m,v))TT =0.
If we write (y, w) = (Yo, (T(x,v)), Y20 (7(z,v))), then the identity above
can be re-written as

T(z,v)a(z,v,7(x,v)) + ply, w)TT = 0.
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If (x,v) € SM \ 0pSM, then u(y,w) < 0 and we may write

T(z,v)a(z,v,7(x,v))

Tr=—
p(y, w)

and since
r@v) _ rly—w)
T —uly,w) T oy, —w)
it follows that T'7 is bounded by Lemma 3.2.8. Since V(p) = 0, the proof
for V7 is entirely analogous. O

The following corollary is immediate.

Corollary 4.5.8. Let (M,g) be a compact non-trapping surface with
strictly convex boundary. Given f € C>°(SM), the function

i 7(z,v)
o (2,0) = / F(oe(z,v)) dt

has Tuf and Vuf bounded in SM \ 8y SM.
We can now prove Proposition 4.1.3:

Proof of Proposition 4.1.3 We only prove the case K = 1 and refer to
(Sharafutdinov, 1994, Theorem 4.2.1) for the general case in any dimen-
sion n > 2. Recall the formula

7(z,v)
u (z,v) = / F(oe(z,v)) dt.

Then If = uf|,9+SM, and we have proved in Proposition 4.1.2 that
I1fllz2a, 50y < CllfllL2(sa1)- From Definition 3.5.3, we have

7(z,v)
Vil (2,0) = F(0r (o) (@ 0)) VT (@, 0) + /0 df (Zo(,v)) dt

where Zy(z,v) = L¢y(ps(2,v))|s=0. By Lemma 4.5.7 we have

Vil <C [|f<%>| +f Idfl%dt} .

As in Proposition 4.1.2, the L?(0.SM) norm of the second term is
< C|fllar(smy- For the first term, we use that ¢|s, sp = alo, sum-
Then Lemma 3.3.5 and the trace theorem on SM imply that

[ f(or)llL2o, 50 < Cll fll2asmry < Cllfllm (s
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Thus [|[V(If)|lz2o,sm) < Clfllar(sar)- A similar argument works for
T(If), showing that I : H*(SM) — H'(0,SM) is bounded.

Finally, note that If vanishes on the boundary of 0, SM whenever
f € C®°(SM). Thus I(C*(SM)) C H}(0.SM), which implies that
[(HY(SM)) C H}(8+SM) by density. O

Proof of Theorem 4.5.1 We wish to use the Pestov identity from Propo-
sition 4.5.5 for /. Since this identity was derived for smooth functions
and «/ fails to be smooth at the glancing region 9,SM, we apply the
identity in SM, (as defined above) and to the function u = u/|gxs. for
¢ small. Since K <0, Xuf = —f and V f = 0, we derive

||f|\2L2(SM€) < _(Tufv V“f)z?SMs'

Letting ¢ — 0 and using Corollary 4.5.8 we deduce (cf. Exercise 4.5.9
below)

1£1Z2(s00) < —(Tu!, Vul)asm. (4.5.1)

Since uf|g_sapr = 0 and Ipf = uf|a+SM € HE (04 SM) we deduce

1 1
12250y < =(Thof, Vo f)osm < 5T fIP+IVIofI?) < 5110 f Iz
and the theorem is proved. O

Exercise 4.5.9. Consider the vector field N := uX — V()X and let
F; be its flow. Show that for € small enough F. : 9SM — 0SM.. Write
F*d¥? = q.d%?%, where ¢. is smooth and ¢o = 1 since Fy is the identity.
Show that

(Tu! , Vul)osa. = (qe(Tul o F.), Vul o F.)aswm.

Use Corollary 4.5.8 and the dominated convergence theorem to conclude
that ase — 0

(¢ (Tu! o F.),Vul o Fo)asu — (Tu!, Vul)asu.

Exercise 4.5.10. Let (M, g) be a non-trapping surface with strictly
convex boundary and let f € C°(SM). Using the Pestov identity
with boundary term and Corollary 4.5.8 show that XVu/ € L2(SM).
Using that X, = [X,V] conclude that X, u/ € L2(SM) and thus
uf € HY (SM).
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Vv e(:n;. 1,’) = dﬁ’gm[.r.—r)(l’;)

v A8 _x,
Lo

Figure 4.1 The vector field e and the function a = tan 6.

4.6 Stability estimate in the simple case

In this section we show how to upgrade the stability estimate in Theo-
rem 4.5.1 from the case of non-positive curvature to the case of simple
surfaces. A glance at the Pestov identity with boundary terms in Propo-
sition 4.5.5 reveals that we need to find a better way to manage the
“index form” like-term || X Vu|* — (KVu, Vu). We shall do this by using
solutions to the Riccati equation; these exist for simple surfaces as we
show next.

Proposition 4.6.1. Let (M,g) be a simple surface. There exists a
smooth function a : SM — R such that

Xa+a®>+ K =0.

Proof Consider My a slightly larger simple surface such that its inte-
rior contains M (see Proposition 3.8.7), and let 75 denote the exit time
function for My. We define a vector field at (z,v) € SM as follows:

e(l‘7 U) = d‘P‘ro(w,—v) (V(@—To(x,—v)))a

where ; is, as usual, the geodesic flow, see Figure 4.1. Since 79|sps i8
smooth, the vector field e is also smooth. As discussed in Section 3.7.2,
the geodesic flow preserves the contact plane spanned by X, and V' and
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thus there are smooth functions y, z : SM — R such that
e=—yX, | +zV.

It was proved in Section 3.7.2 that t — y(p:(z,v)) solves a Jacobi
equation. We can see this also as follows: note first that

e(pi(z,v)) = dpi(e(w,v))
and therefore [e, X] = 0. This implies
0=[-yX.L+ 2V, X]
and expanding the brackets using Lemma 3.5.5 we obtain:
—(Xz+ Ky)V+ (Xy—2)X, =0.

Hence Xz = —Ky and Xy = z. In particular, X%y + Ky = 0 and

Yo, sm, = 0.
Since My has no conjugate points, y # 0 everywhere in SM and we
may define a := z/y. It follows that Xa = —K —a? in SM as desired. [

Exercise 4.6.2. Using the vector field

d(z,0) = dp_ry(w.0)(V (Pro(w.0)))s

show that one can construct a smooth function b such that Xb+b2+K =
0 and a — b # 0 everywhere, where a is the solution constructed in the
proof above.

Using the solution a to the Riccati equation given by Proposition 4.6.1
we will show:

Lemma 4.6.3. Let (M, g) be a simple surface. For any 1 € C*°(SM)
we have

X9 — (K, ) = [|X¢ — ay||* — (nav, )osn-

Proof 1t is enough to consider real valued . Using that a satisfies
Xa+ a® + K = 0 we easily check that

(X — ay)? = (X¢)* = K¢ — X (ap?).

Integrating over SM and using Proposition 3.5.12 to derive

X(an) as?® = —(pap,)asm,
SM

the lemma follows. O
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‘We now show:

Theorem 4.6.4 (Stability estimate for simple surfaces). Let (M, g) be
a simple surface. Then

[ fll2ary < CllIof || a0, 500
for any f € C™(M), where C is a constant that only depends on (M, g).

Proof As in the proof of Theorem 4.5.1, the starting point is the Pestov
identity with boundary terms given in Proposition 4.5.5. We apply it on
M. (as defined in Section 4.5) and to the function u = uf|gy. for e
small. Since Xuf = —f and V f = 0, we derive

1172500 = =IXV Ul 2 sary + (BEVUS ul)sar, — (Tu!, Vul)asar, -
Applying Lemma 4.6.3 for ¢ = Vu/|g),. we obtain
£ 1172500y < —(Tu!, Vul)asar, + (paVu!, Vu)asu.,

where p is defined on SM using the extension of v explained in Section
4.5 (for small € it is the inward normal to M.). We can clearly find a
constant C' > 0 depending only on (M, g) such that

(naVu!, Vu)asn, < ClIIVu! 72080,
If we let € — 0 and use Corollary 4.5.8 we obtain
1172500y < —(Tw!,Vu)asar + ClIVE! (12 0500)-
Since uf|s_sy = 0 and Inf = ul|o, sm € HE(0+SM) we deduce that
there is constant C such that
1172 (sary < ClHof 30, sary»
and the theorem is proved. O

Exercise 4.6.5. Use the fact that v/ is smooth for f even (cf. Theorem
5.1.2 below) to give a proof of the stability estimate of Theorem 4.6.4
that does not require the approximation argument with SM..

4.7 The higher dimensional case

Although the results in Sections 4.3-4.6 have been stated in dimension
two, they remain valid in any dimension n > 2. In this section we will
give the corresponding higher dimensional results. The proofs are vir-
tually the same as in the two-dimensional case, but the Pestov identity
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will take a slightly different form. We will follow the presentation in
Paternain et al. (2015a), which contains further details.

Let (M, g) be a compact oriented n-dimensional manifold with n > 2.
When n = 2 the analysis on the unit sphere bundle SM was based on
the vector fields X, X, and V. The geodesic vector field X is well de-
fined in any dimension (see (3.3.1)). We wish to find higher dimensional
counterparts of X | and V.

Recall the splitting TSM = RX @ H @ V in Section 3.6, where the
horizontal and vertical bundles H, .y and V, ,) are canonically identi-
fied with elements in {v}+ C T, M. Then for any u € C*°(SM) we can
split the gradient Vgpsu with respect to the Sasaki metric G as

h v
Vsmu = ((Xu)X, Vu, Vu).
h v
The horizontal gradient V and wvertical gradient V are operators
h v
V,V:C®(SM) = Z

where Z :={Z € C*(SM,TM) : Z(z,v) € T,M and Z(x,v) L v}.
We define an L? inner product on Z via

(Z,Z") 12 (s :/ (Z(x,v),Z'(z,v)) d2* 1,
SM

The horizontal divergence d}ilv and wvertical divergence d\ilv are defined as
the formal L? adjoints of —% and —%, respectively. They are operators
div, div : Z — C*(SM),

We also need to define the action of X on Z as
XZ(z,v) = Di(Z(pt(z,v)))lt=0

where D; denotes the covariant derivative on M.

h v
The operators V and V are the required higher dimensional analogues
of X| and V, as indicated by the following example:

Example 4.7.1. When n = 2, one has Z = {z(z,v)vt : 2 € C°(SM)}.
It is easy to check (see (Paternain et al., 2015a, Appendix B)) that

%u(x, v) = — (X u)vt,
%u(x, v) = (Vu)vt,
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and
h
div(z(z,v)vt) = =X 2,
d‘i,v(z(m,v)vl) =Vz.

The following result is the analogue of the basic commutator formulas
in Lemma 3.5.5. Below, R(z,v) : {v}* — {v}* is the operator deter-
mined by the Riemann curvature tensor R via R(z,v)w = Ry (w,v)v.

Lemma 4.7.2 (Commutator formulas). The following commutator for-
mulas hold on C*(SM):

\4 h
[X,V]=-V,

h v
[X,V]=RV,

h v v h
divV —divV = (n—-1)X.
Taking adjoints, we also have the following commutator formulas on Z:

\ h

[X, div] = —div,
h v

[X,div] = divR.

We also have integration by parts formulas (cf. Proposition 3.5.12):

Proposition 4.7.3 (Integration by parts). Let u,w € C*°(SM) and
Z € Z. Then

(Xu,w)sp = —(u, Xw) sy — ((v, v)u, w)asn,
h h

(vu7 Z)SM = _(uadiVZ)S]V[ - (u7 <Z7 V>)8$'M>

(Vu, Z)sar = —(u, divZ) g

The formulas above imply the higher dimensional version of the Pestov
identity. The proof is the same as for n = 2, and we can also include
boundary terms (see e.g. Ilmavirta and Paternain (2020)).

Proposition 4.7.4 (Pestov identity with boundary term). Let (M, g)
be a compact manifold with smooth boundary. If u € C*>°(SM), then

IVXul|2 = | XVul? - (RVu, Vu) + (n — D)[|Xu|® + (Tu, Va)gsar

h v
where Tu := pVu — XuVpu.
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Remark 4.7.5. The identity in Proposition 4.7.4 is an “integrated”
form of the Pestov identity. In previous works, also “pointwise” or “dif-
ferential” versions of this identity appear. In fact, using the commutator
formulas it is easy to prove the pointwise Pestov identity

IVXul? — [ XVul? + (RVu, Vi) — (n — 1) Xul?
h v h v \4 h
=X {(Vu, Vu>} —div {(Xu)Vu} + div [(Xu)Vu}

for any u € C*°(SM). Proposition 4.7.4 could be obtained by integrating
this identity over SM.

The injectivity of the X-ray transform Iy on simple manifolds follows

from the Pestov identity if we can prove that HX%UHQ - (R%u, %u) >
0 when ulgsps = 0. This follows by using Santalé’s formula and the
index form as in Proposition 4.4.3. Moreover, we have the more precise
counterpart of Lemma 4.6.3 which also includes boundary terms:

Lemma 4.7.6. Let (M, g) be a simple manifold. There is a smooth map
U on SM so that U(x,v) is a symmetric linear operator {v}+ — {v}+
solving the Riccati equation

XU+U*+R=0in SM.
For any Z € Z we have
IXZ||* = (RZ,Z) = |XZ = UZ|]* = (WU Z, Z)osm1-

The proof of this lemma is very similar to the proof of (Paternain et al.,
2015a, Proposition 7.1). The term XU in the Riccati equation is de-
fined using the Leibniz rule, that is, by demanding that X(UZ) =
(XU)Z + UXZ. The solution to the Riccati equation (cf. (Paternain,
1999, Chapter 2)) is obtained by enlarging (M, g) slightly and flowing
the (Lagrangian) vertical subspace by the geodesic flow exactly as in the
proof of Proposition 4.6.1.

We now state the injectivity result for I, and the more general injec-
tivity result involving functions and 1-forms as in Theorem 4.4.2.

Theorem 4.7.7 (Injectivity of Iy). Let (M,g) be a simple manifold,
and let f(xz,v) = fo(x) + alz(v) where fo € C*(M) and « is a smooth
1-form on M. If If =0, then fo =0 and a = dp for some p € C°(M)
with plapr = 0. In particular, Iy is injective on C*°(M).
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Following the argument in Section 4.6, we also obtain a stability result
for I in any dimension.

Theorem 4.7.8 (Stability estimate for simple manifolds). Let (M, g)
be a simple manifold. Then

| fllz2ary < Cllof a1 o, 500

for any f € C°(M), where C is a constant that only depends on (M, g).
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Regularity results for the transport equation

In this chapter we discuss regularity results for the transport equations
used in this monograph. We begin with a discussion on smooth first
integrals and how they be characterized in terms of the operator of
even continuation by the scattering relation. Once this is established
we discuss transport equations including matrix attenuations and we
show a corresponding regularity result (Theorem 5.3.6); this will cover
all necessary applications in subsequent chapters. We introduce here the
attenuated X-ray transform and we compute its adjoint, although we
leave for Chapter 12 a more thorough discussion of its significance.

5.1 Smooth first integrals

Let (M,g) be a compact non-trapping manifold with strictly convex
boundary. Recall that for w € C*>°(04+SM) we set (see Definition 4.2.1)

w? (1‘, U) = w(‘ﬂ*‘r(z,fv) (.73, U))

The function w* is a first integral of the geodesic flow, i.e. it is constant
along its orbits. From the properties of 7 we know that w! is smooth on
SM\ 9pSM, but it may not be smooth at the glancing region 9pSM. In
this section we will characterize when smoothness holds. We can easily
guess a necessary condition. Indeed, since w#(z,v) = w o a(x,v) for
(z,v) € 0_SM where « is the scattering relation in Definition 3.3.4, we
see that if w® € C°°(SM), then the function

ﬂ| _ ’LU(LL‘,U), (fE,'U) S 8+SM7
w*losm = woa(zr,v), (z,v)€I_SM

134
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must be smooth in dSM. We shall show that this condition is also
sufficient.

Following Pestov and Uhlmann (2005) we introduce the operator of
even continuation with respect to a: for w € C*°(9;.5M) define

Aot = { 0L G e o0tut
Clearly Ay : C*°(0+SM) — C(0SM). We also introduce the space
C(0+SM) :={w € C°(0+SM) : Ayw e C*(0SM)}.
The main result of this section is the following characterization.

9NN

Theorem 5.1.1 (Pestov and Uhlmann (2005)). Let (M, g) be a compact
non-trapping manifold with strictly convex boundary. Then

C(0LSM) = {w € C®(8,SM) : w* € C>(SM)}.
Proof We assume (M, g) isometrically embedded in a closed manifold
(N, g) of the same dimension as M. Assuming that Ayw € C*(0SM),
we need to show that w# € C°°(SM). Consider some smooth extension
W of Ayw = w|psp into SN. Writing F(t,z,v) = W (p(z,v)), it
follows that

1
wﬁ(xa ’U) = 5 I:W(SQT(QZ,’U) (I’, ’U)) =+ W(SD—T(I,—’U) (.CC, U))]
= F(r(z,v),z,v) + F(—7(z, —v),z,v).

Recall that we already know that w! is smooth in SM \ 9ySM, so let us

discuss what happens at the glancing region. Fix some (zq,v0) € 995 M
and use Lemma 3.2.9 to write

wh(x,v) = F(Q(v/a(z,v),z,v), ,v) + F(Q(—/a(z,v),z,v), z,v)

near (xg,vp) in SM. Setting G(r, z,v) := F(Q(r,z,v), z,v), we have
wh(x,v) = G(v/a(z,v),z,v) + G(—/a(z,v),z,v)
near (zg, vp) in SM, where G is smooth near (0, zg,vp) in R x SN. Now
G(r,z,v) + G(—r,z,v) = H(r* x,v)
where H is smooth near (0,z0,v9) (cf. Exercise 3.2.12). This finally
shows that
w*(z,v) = H(a(z,v),z,0)

near (xg,vo) in SM, proving that w? is smooth near (zg,v) in SM.
Since (z0,v) € 9pSM was arbitrary, we have wf € C>(SM). O
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We make right away an application of this result to the function u/ in
Definition 4.2.1 solving Xuf = —f and uf|5_sas = 0. If u is a function
on SM we denote the even and odd parts with respect to v by

ut(z,v) = %(u(gc,v) +u(z, —v)), u_(z,v)= %(u(x,v) — u(x, —v)).

Theorem 5.1.2. Let (M,g) be a non-trapping manifold with strictly
convex boundary and let f € C°(SM). If f is even then u’ is smooth
in SM. Similarly, if f is odd then ufr is smooth in SM .

Proof Assume f is even, the proof for f is odd is almost identical. Since
X maps odd/even functions to even/odd functions, we have X ul =—f.
By Proposition 3.3.1 there is h € C*°(SM) such that Xh = —f. Thus
w:=h—u' is a first integral, i.e. Xw = 0. We claim that w is smooth
and hence so is u/ (if f is odd then h — ui would be smooth).
Let a denote the flip a(z,v) = (2, —v). Since ao; = p_ro0a and f is
even, we have

7(x,—v) 7(x,—v)
ufua—v>=té Lﬂwda@avﬁdt=té Foi(,0)) dt

—7(z,—v)
:—A Fleula,v)dt.

Hence
1

7(z,v) 1 —7(z,—v)

and therefore for (z,v) € dSM we have

7(z,v)
wao) =) =5 [ flaao)t

By Lemma 3.2.6, 7 € C*°(0SM) and as a consequence w|ssps is smooth.
By Theorem 5.1.1, w € C*°(SM) and the result follows. O

5.2 Folds and the scattering relation

The original proof of Theorem 5.1.1 was based on a result in (Hormander,
1983-1985, Theorem C.4.4) which is in turn underpinned by a result
similar to Lemma 3.2.10. In this section we explain the original approach
in Pestov and Uhlmann (2005) as it is geometrically quite illuminating.
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We start with a general definition from differential topology; for what
1985, Appendix C) for details.

YO O

follows we refer to (Hormander, 1¢

Definition 5.2.1. Let f : M — N be a smooth map between manifolds
of the same dimension n. We say that f has a Whitney fold at m € M
if dfy, : TnM — Ty(yN has rank n — 1 and given smooth n-forms wy,
and wy that are non-vanishing at m and f(m) respectively, we have

f WN = )\wM
where A\ € C°°(M) is such that A(m) = 0 and d\|ier gf|,, 7 O-

Remark 5.2.2. This definition is a little different from the one given
n (Hormander, 1983-1985, Appendix C), but it is easily seen to be
equivalent (and a bit easier to use for computations). Note that the
function A is well-defined up to a non-vanishing C'°°-multiple, so the
conditions imposed on A are indeed independent of the choices of n-
forms. To gain more insight, note that if df|,, has rank n — 1, we can
choose local coordinates in N such that the map f can be represented
as f = (f1,..., fn) with df,, = 0 at m. Then dfy,...,df,—1 are linearly
independent at m, so we can choose local coordinates in M with y; = f;,
j < n. It follows that we can represent f as

f(y) = (ylv' o 7ynflafn(y))'

Using this representation and the canonical volume form in Euclidean
space we see that A(y) = 0fn(y)/0yn, so to have a fold at m we need

0%£1(0)/0y;; # 0.

If f has a fold at m € M, there exists an involution ¢ : M — M
(locally defined) such that ¢? = Id, 0 # Id, f oo = f and the set of
fixed points L of ¢ coincides with the set of points near m where df has
rank n — 1. In fact, f has a very simple normal form near m, that is, in
suitable coordinates f has a local expression at zero:

f(ylv"'7yn) = (yla"wyn—layi)'

Moreover, the involution is just given by o(y',yn) = (v, —yn) where
v = W1,---,Yn-1), and L is determined by y,, = 0. Using this normal
form it is not hard to show that the following result holds:

Theorem 5.2.3. (Hormander, 1983-1985, Theorem C.4.4) Suppose f
has a fold at m and let u be C°° mn a nezghbourhood of m € M. Then,
there exists v € C* in a neighbourhood of f(m) € N with vo f = u iff
uo T =u.
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One implication in the theorem is straightforward: if v exists with
vof =u,then uooc =vo foo =vof = u, sothe content of the
theorem is the converse statement.

Let us return now to the situation we are interested in, namely, let
(M, g) be a compact non-trapping manifold with strictly convex bound-
ary. Consider a slightly larger manifold My engulfing M so that (My, g)
is still non-trapping with strictly convex boundary and let 7y be the
exit time of My. The existence of such (My, g) follows right away from
Proposition 3.3.1 since X f > 0 is an open condition (strict convexity of
the boundary is also open under small perturbations).

We define a map ¢ : 9SM — 0_SMy by

d)(l‘, U) = Pro(x,v) (l‘, ’U).
This map is C*° since 19|gps is C*°. Here is the main claim about ¢:

Proposition 5.2.4. The map ¢ has a Whitney fold at every point of the
glancing region 0ySM . Moreover, the relevant involution is the scattering
relation a.

Proof Let us first check that ¢ o a = ¢. Indeed

P((T,0)) = Pro(pr 2,0y (0,0)) (PF(2,0) (T3 V) = P50 (,0)) 47 (2,0) (T, V)

and since 7o(P#(x0) (2, v)) = T0(z,v) — 7(2,v) the claim follows.
To prove that ¢ has a Whitney fold at 9y M we first show that given
(z,v) € 0pSM we have

ker d¢(1’v) ® T(I’U)CK)OSM = T(x’v)asM. (5.2.1)

To this end, we consider £ € T{; ,,y0SM and we compute using the chain
rule

d¢(x,v) (5) = dTO (E)X(QS(ZL', U)) + dcp'ro(z,’u) (5) (522)

and from this it follows that RX (z,v) = ker d¢(, ) since dro(X (z,v)) =
—1 and dpr(z0) (X (2,v)) = X(é(z,v)). Note that if do,.)(§) = 0,
then § € RX (x,v) since dp;(5,,) is a linear isomorphism. Since we are
assuming that OM is strictly convex, (5.2.1) follows directly from Lemma
3.6.2.

To complete the proof we need to show the non-degeneracy condi-
tion in Definition 5.2.1. As a top dimensional form on d_SM, we take
Ji(ixdX?* 1), where jo denotes inclusion of 9SMjy. Using Lemma 3.6.5
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we see that this form does not vanish at ¢(x,v). Using (5.2.2) we com-
pute its pull-back under ¢ to be

" (jo (ixdE*" ™)) = j* (ixdS*" ™)

since the geodesic flow preserves dX2"~!. This is checked exactly as in
the proof of Proposition 3.6.8.

Using Lemma 3.6.5 again we deduce that we can use A = p, so
to complete the proof we need to show that dj(,,.)(X(z,v)) # 0 for
(z,v) € 0pSM. But if p is a boundary defining function as in Lemma
3.1.10, we have seen that p(z,v) = (Vp(z),v) for (z,v) € 0SM and
dpi(e,0) (X (2,v)) = Hessy(p)(v,v) = —II.(v,v) < 0 for (z,v) € 9pSM.

O

We now explain how to use Theorem 5.2.3 to give a proof of The-
orem 5.1.1. Consider a function w € C*°(9;SM) such that A w €
C>(0SM). Clearly A w is invariant under o and thus by Theorem
5.2.3, there is a smooth function v defined in a neighbourhood of ¢(9.SM)
such that vo ¢ = w.

Consider the map W : SM — 0_SM given by V(z,v) = @r(z.)(z,v)
and the analogous one Wq : My — 0_SM;, using 79. Note that w® =
woaoW and that ¢ oo ¥ = Wy|gps. Hence

w* =woaoV =vopoaoW =uvoWy|sy

and since v and Wy|gps are C* it follows that w? is C as desired.

5.3 A general regularity result

Let (M,g) be a non-trapping manifold with strictly convex boundary
and let A : SM — C™*™ be a matrix-valued smooth function. We
sometimes refer to A as a matriz attenuation.

We would like to study regularity results for solutions v : SM — C™
to equations of the form

Xu+Au=f

where f € C°(SM,C™) and u|psyy = 0. We shall show that under
these conditions v must be C'*°.

As we have done before, consider (M, g) isometrically embedded in a
closed manifold (NV,g) and we extend A smoothly to N. Under these
assumptions A4 on N defines a smooth cocycle over the geodesic flow ¢y
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of (N, g). The cocycle takes values in the group GL(m,C) and is defined
as follows: let C': SN x R — GL(m, C) be determined by the following
matrix ODE along the orbits of the geodesic flow

d
dt
The function C is a cocycle:

C(l’,’U,t—F 5) = O(‘ﬂt(xav%S) C(JC,’U,t)
for all (z,v) € SN and s,t € R.

C(z,v,t) + A(pe(z,v))C(z,v,t) =0, C(z,v,0) =1d.

Exercise 5.3.1. Prove the cocycle property by using uniqueness for
ODEs and the fact that ¢, is a flow.

Having this cocycle is just as convenient as having ¢, defined for t € R
in SN. We shall see that using it we can reduce smoothness questions
to 7; a recurrent theme.

Consider as before (M, g) non-trapping with strictly convex boundary
and containing (M, g) in its interior. Let 79 be the exit time of Mj.

Lemma 5.3.2. The function R: SM — GL(m,C) defined by
R(z,v) := [C(z,v, 7o(x,v))] ",
is smooth and satisfies
XR+ AR =0,
X(RYHY-R1'A=0.
Proof Since 19|sas is smooth and the cocycle C' is smooth, the smooth-
ness of R follows right away. To check that R satisfies the stated equation,
we use that 79(¢¢(x,v)) = 70(x, v) —t together with the cocycle property
to obtain
R(‘Pt(x’ v)) = [C(th@;, U)’ To(pt(z, U))]_l
= C(z,v,t)[C(z,v,7o(z,v))] " .
Diiferentiating at ¢ = 0 yields
XR=—-AR.
It also follows that X(R™!) = —-R"}(XR)R™! = R~ A O

In subsequent chapters, we will discuss the attenuated X-ray transform
in detail, but for now we give the most basic definitions as they are
useful for phrasing the main regularity result for the transport equation
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with general matrix attenuation. In the scalar case, the attenuated X-ray
transform I, f of a function f € C*°(SM, C) with attenuation coefficient
a € C*°(SM,C) can be defined as the integral

L) = | " o)) exp [ / a(pale.0) ds} it

for (z,v) € 04 SM. Alternatively, we may set I, f := u|s, sps where u is
the unique solution of the transport equation

Xu+au=—f in SM, ulo_sym =0.

The last definition generalizes without difficulty to the case of a gen-
eral matrix attenuation A. Let f € C*(SM,C™) be a vector valued
function and consider the following transport equation for a function
w:SM — C™,

Xu+Au=—f in SM, ulsg_sm =0.

On a fixed geodesic the transport equation becomes a linear ODE with
zero final condition, and therefore this equation has a unique solution
that will be denoted by u = uf; in this chapter.

Definition 5.3.3. The attenuated X-ray transform of f € C*°(SM,C™)
is given by
Iaf = uylo, sm-

It is a simple task to write an integral formula for ui using a matrix

integrating factor as in Lemma 5.3.2.
Lemma 5.3.4. With R as in Lemma 5.3.2 we have
7(z,v)
ui(m,v) = R(Jc,v)/ (R 1) (pi(z,v)) dt for (z,v) € SM.
0
Proof Letu= ug. A computation using X R~! = R~ A (which follows
easily from XR + AR =0) and Xu + Au = — f yields
X(R'u)=(XR YHYu+ R 'Xu=—-R'f.
Since R™u|s_sar = 0, the lemma follows. O

Remark 5.3.5. It is useful for future purposes to understand how the
formula in the lemma changes if we consider a different integrating fac-
tor, i.e. another invertible matrix Ry satisfying X R; + AR; = 0. Since

X(R'R)=X(RYRi + R'X(R)) =R AR, — R 'AR; =0
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we derive
Ry = RW*
where W = R™' Ry, sm-
Lemma 5.3.4 shows that uf:l is in general as smooth as 7, i.e. smooth

everywhere except perhaps at the glancing region 9o SM. However, the
next result will show that if Iy f = 0, then u/, is C.

Theorem 5.3.6 (Paternain et al. (2012)). Let (M, g) be a non-trapping
manifold with strictly convex boundary. Let A € C*(SM,C™*™) and
f € C®(SM,C™) be such that I4f = 0. Then u’, € C=(SM,C™).

Proof 1t is enough to show that the function r := ]%*lufc4 smooth.
According to Lemma 5.3.4, r satisfies

Xr=—-R'f in SM, 7rlspspm =0.

Choose h € C®°(SM,C™) such that Xh = —R~!f. We know such a
function exists either by appealing to Proposition 3.3.1 or by using the
enlargement My of M, extending R~ f smoothly to N and setting

70 (x,v)
h(z,v) = /0 (R ) (pi(z,v)) dt for (x,v) € SM.

Recall that 79| sas is smooth. Thus the function h—r satisfies X (h—r) =0
and since (h — r)|asy = hlogsm € C(0SM,C™), Theorem 5.1.1 gives
that A — r is smooth in SM and thus r is smooth as desired. O]

We conclude this section with a brief discussion as to what happens
if we swap the choice of boundary conditions in the transport equation.
Suppose that we consider the equation

Xu+Au=f in SM, wulsp,sm =0.

Note the change of sign in the right hand side of the transport equation
and the fact that we now demand u to vanish on the influx boundary.
Let us call w/ the unique solution.

Lemma 5.3.7. We have the following identity on 0L SM :
w! oa =R/
where R is the unique integrating factor for A with R|s_sa = Id.

Exercise 5.3.8. Prove the lemma.
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5.4 The adjoint I

Let (M,g) be a non-trapping manifold with strictly convex boundary
and let A : SM — C™*™ be a smooth matrix attenuation. In this
section we shall compute the adjoint % of

Ia:L*(SM,C™) — L2(9+SM,C™).

We endow C™ with its standard Hermitian inner product, so the L2
spaces are defined using this inner product and the usual volume forms
d¥? 1 and dp = pdx?" 2.

Using the same arguments as in Proposition 4.1.2 one shows:

Proposition 5.4.1. The operator I 4 extends to a bounded operator
Iy: L*(SM,C™) — L2,(0+SM,C™).

Moreover, the following stronger result holds: I4 extends to a bounded
operator

Iq: L*(SM,C™) — L*(0,SM,C™).
Exercise 5.4.2. Prove the proposition.

Lemma 5.4.3. If R : SM — GL(m,C) is such that XR + AR = 0,
then

I'h = (R*)"Y(R*h)*.
Proof Recall that given R we can write

7(z,v)
Laf = o, sar = Rlx,v) / (R1) (e, v)) dt

for (z,v) € 01 SM. Let us compute using Santald’s formula:

(Laf.h) = /6  ULafben du

/8+SJV[ A </0T(R1f)(% (@,0)) diy R*h><Cm
e [ Gt

:/ (R (RR)F) ., dE*!
SM
= (f,(R")""(R"h)")
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and thus I h = (R*)"1(R*h)* as desired. O

Remark 5.4.4. Observe that U = (R*)~! solves the matrix transport
equation XU — A*U = 0 and since (R*h)* is a first integral of the
geodesic flow, f = I’y h solves

{Xf—A*sz

flopsm = h.

We conclude this chapter by discussing the closely related X-ray trans-
form with a matrix weight.

Definition 5.4.5. Let (M, g) be a compact non-trapping manifold with
strictly convex boundary. Given a smooth matrix weight W : SM —
GL(m,C), the matrix weighted X-ray transform is the map

Iy : C°(SM,C™) — C*°(0+SM,C™),
s = [ o) i
where (z,v) € 04 SM.
Note that one always has
Iwf =u"]5, sm
where © = «"/ is the unique solution of
Xu=-Wfin SM, ulo_sam = 0.

The following result shows that one can always reduce a matrix weighted
transform Iy for W € C*°(SM,GL(m,C)) into an attenuated X-ray
transform I 4 for a general attenuation A € C°(SM,C™*™), and vice
versa. We note that there is a slight abuse of notation, but we hope that
it will be clear from the context whether the transform involves a weight
or an attenuation.

Lemma 5.4.6. Let (M,g) be a compact non-trapping manifold with
strictly conver boundary, and let f € C*(SM,C™).

(a) Given any W € C*°(SM,GL(m,C)), one has
Ly f =WIaflo,sm

where A :== W= XW) € C>°(SM,Cm*x™).
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(b) Given any A € C*(SM,C™*™), one has
Iaf =W 'Iyflo,sm

where W is any solution in C*°(SM,GL(m,C)) of XW — WA =0
in SM (e.g. W could be obtained from Lemma 5.3.2).

Proof (a) If A has the given form, then
(X + AWy = (X (W + AW DV L Wi X" = — f.

Since u"f|5_sar = 0, one has uly = W™/ and thus Iyy f = WI/|a, s
(b) If W is as stated, then

X(Waly) = (XW)ul + W(—Auly - f) = W],
Thus Wuly = «™/ and WIaflo, sm = Iwf. O

Remark 5.4.7. Using the argument in Proposition 4.1.2, one can show
that Iy is bounded L?(SM,C™) — L?(04SM,C™) and thus it is also
bounded L*(SM,C™) — L2 (9;.SM,C™). The adjoint

Ly« L2(04SM,C™) — L*(SM,C™)
is easily computed as above and it is given by

Liyh = W*h,
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6

Vertical Fourier analysis

In this chapter we will study Fourier series expansions of functions on
SM, where dim M = 2, with respect to the angular variable. It turns
out that such Fourier expansions can be invariantly defined and that
the geodesic vector field decomposes as X = n; 4+ n— where L maps
Fourier modes of degree k to degree k+1. The Fourier expansions make it
possible to consider holomorphic functions and Hilbert transforms with
respect to the angular variable, and a certain amount of complex analysis
becomes available. We also obtain an identification of symmetric tensor
fields on M and functions on SM having finite Fourier expansions. In
the final section we explain how this analysis extends to dim M > 3.

6.1 Vertical Fourier expansions
Let us begin with a basic example.

Example 6.1.1 (Unit disk). Let M = D be the closed unit disk and
let ¢ = e be the Euclidean metric. One can identify SM with M x S*.
For any u € C*°(SM), if we keep x € M fixed then u(z, -) is a smooth
function on S! and has the Fourier expansion

oo

u(z,0) = Z ug (z)e*?

k=—oc0

where the Fourier coefficients uy(z) are smooth functions on M given
by
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As discussed in Example 3.5.1, the geodesic vector field is given by
Xu(z,0) = (cos0)0y, u(x,0) + (sin0)d,,u(z, 0).

We write z = 1 + ixo and introduce the complex derivatives

0. = L0 — D), De= (0, +id) (6LD)
A short computation using the formulas cosf = ew*;_is and sinf =
e’ _2?71.8 shows that X may be written as
Xu=e%9u+ e "0:u.
Write
nyu = e0,u, n-u=e “Yo;u.

Note that since X = (cos#,sinf) -V, and X, = (sind, —cosf)-V,, one
also has the expressions

1 . 1 .
ny = §(X +iX1), n- = §(X —iX). (6.1.2)
Now u € C>®(SM) is of the form a(z)e’*? iff
—i0pu = ku. (6.1.3)

The equation (6.1.3) characterizes the Fourier modes of degree k (i.e.
functions of the form a(x)e’*?). Moreover, one has

Ny (a(x)e™) = d.a(z)e’ ™+, n—(a(x)e™*?) = d:a(x)eF 10

Thus X = 4 + n— where n+ maps Fourier modes of degree k to degree
k+1.

We wish to extend the notions in Example 6.1.1 to general surfaces.
Let (M, g) be a compact oriented two-dimensional manifold with smooth
boundary. Let (x,6) be the special coordinates on SM introduced in
Lemma 3.5.6 where x = (x1,x2) are isothermal coordinates. Then the
vertical vector field is given by V = 2

59> and the following definition
generalizes (6.1.3).
Definition 6.1.2 (Fourier modes of degree k). For any k € Z define

Hy = {u € L*(SM) : —iVu = ku},
Q. ={ueC>®(SM) : —iVu=ku}.
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Lemma 6.1.3 (Fourier expansions). Any u € L?(SM) has a unique
L?-orthogonal decomposition

oo
u = E Uk
k=—o00

where uy, € Hy,. In particular, in terms of L*(SM) norms one has

oo
lal® = > fuxl.

k=—o0

If u € C*(SM), then uy € Qi and the sum converges in C*°(SM). In
the special coordinates (x,0) in Lemma 3.5.6, one has

2m
ug(z,0) = g (z)e™?, g (z) = ZL/ e~y (x,0) db.
T Jo

The Fourier modes uy, are intrinsically given by

ug(z,v) = 2—/0 7ru(pt(x,v))eﬂ']“t dt, (6.1.4)

™

where p; is the flow of the vertical vector field V as in Definition 3.5.3.
In particular, up(x) is the average

1
uo(z) = %/S Mu(a:,v) ds;.

Proof 1If u € L?(SM), then in the special coordinates (z,) one has
u(x, -) € L*(SY) for a.e. x € M. Thus the L? expansions and formulas
for Fourier modes follow directly from the corresponding properties of

Fourier series on S1. The fact that for u € C°°(SM) the sum converges
in C*°(SM) will be proved below. O

The following definition, which generalizes (6.1.2), introduces the so
called Guillemin-Kazhdan operators ni+ from Guillemin and Kazhdan

Definition 6.1.4 (The operators 7+). Define the first order operators
1 . 1 .
Ny = §(X +iX 1), n_ = §(X —iX)).

From the structure equations for the frame {X, X |, V} we obtain the
following basic properties of the operators 7.
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Lemma 6.1.5 (Properties of ). One has X = ny +n_. The following
bracket relations hold:

e, iV] = £y, [ne,n-] = %KV. (6.1.5)
For any k € Z one has
Nt Q= Qg1 Vi — Q.
Moreover, if u,w € C1(SM) one has the integration by parts formula
(nxu, w)sm = —(u,nzw)sm — (Hx1u, w)osm

where piy1 = 1((v,v) £i{vy,v)) are the Fourier modes of = (v,v), so
that p = pq1 + p—1.

Proof Clearly ny +n— = X, and (6.1.5) follows easily from the com-
mutator formulas in Lemma 3.5.5. Let now u € 2, so that —iVu = ku.
Then

—iV(neu) = ne(=iVu) + [ns,iV]u = ne(ku) £ neu = (k + Dnru.
This shows that niu € Qgyq. Moreover, if u € Qp then Vu = iku
and —iV(Vu) = ik*u = kVu so Vu € Q. The integration by parts
formula for ny follows directly from Proposition 3.5.12. Note also that

for p = (v,v), one has Vi = —(vy,v) and therefore p has Fourier
coeflicients

1 , 1 .
Ht1 = i(M:FZV#) = §(<va>iz<vLal/>)' 0
Exercise 6.1.6. Prove (6.1.5).

We now finish the proof of Lemma 6.1.3.

End of proof of Lemma 6.1.3 Let u € C*(SM), and let u = > wuy
with convergence in L?(SM). The sum converges in C*°(SM) if we can
show that for any vector fields Yi,...,Y,. on SM where r > 0, one
has Y7 --- Yyu = Y. Y; - - - Yyuy, with convergence in L?(SM). (Note that
up € C*(SM) by (6.1.4).) Since {X, X ,V} is a frame of TSM, it is
enough to consider the case where Y; € {n,n_,V}.

We claim that for u € C°°(SM) and k € Z one has

(mxwk = nrupgr, (V) = Vug. (6.1.6)

We prove this for 1y (the other claims are analogous). It is enough to
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show that n,u — nyu,_; is L?-orthogonal to Hy. Now if w € Qy, by
Lemma 6.1.5 one has

(nyu —nyup—1, w)sn = —(u— up—1,n-w)sar — (1 (U — up—1), w)asm
= —(u — Up—1, h—1W)asM

since n_w € Qi_1. Additionally, p_jw is a Fourier mode of degree k — 1

in the sense that (—iV — (k — 1))(p—1w) = 0 on 9SM. Tt follows that

niu — nyup_1 is L?-orthogonal to Qy, and since Qj is dense in Hy by

(6.1.4) it follows that (nyu)r = nyug—1.
Choosing Y7 = 74 above, we have by (6.1.6)

N

N
> Yiwe= > (npu)pir-

k=—N k=—N

This converges to Yiu in L2(SM) as N — oo since nyu € L2(SM).
Repeating this argument for Y7,...,Y,. € {n4,n—, V} shows that indeed
the sum u = Y uy converges in C*°(SM). O

Exercise 6.1.7. Let I C Z be a subset and P; : L>(SM) — L?(SM)
the orthogonal projection onto @;cyHy. Show that Pr(C*°(SM)) C
C>*(SM).

We will next give a local coordinate expression for 74.

Lemma 6.1.8 (Formulas for ny). In the special coordinates (x,0) of
Lemma 3.5.6 where v = (x1,x2) are isothermal coordinates, we can
write the operators ni as

Ny =e el ﬁ—i—zﬁg n_=e te Q—ZQQ
" 0z 9200)° B 0z 09z00)°

In particular
Ny (h(z)e*?) = eF=DAG, (he k) eik+1)0 (6.1.7)
n_ (h($)€ik9) _ e—(l+k))\82(hek)\)ei(k—l)ﬁ7 (618)
where h = h(x1,22) and 0., 05 are as in (6.1.1).

Exercise 6.1.9. Prove Lemma 6.1.8 by using Lemma 3.5.6 and the
definitions of 7.

We next consider the decomposition u = u4 + u_ of u into its even
and odd parts with respect to the antipodal map (x,v) — (z, —v).
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Definition 6.1.10. The even and odd parts of u with respect to v are
given by

uy(z,v) = %(u(x, v) + u(z, —v)),

u_(z,v) = %(u(az,v) —u(z, —v)).

This decomposition can be expressed in terms of Fourier coefficients:

Lemma 6.1.11 (Even and odd parts). One has
Uy = Zuk, u_:Zuk.
k even k odd
Exercise 6.1.12. Prove Lemma 6.1.11 by using the special coordinates

(z,0).

Exercise 6.1.13. Show that X and X, map even functions to odd
functions and odd functions to even functions. Show that V' maps even
functions to even functions and odd functions to odd functions.

The next definition introduces holomorphic and anti-holomorphic func-
tions with respect to the 6 variable.

Definition 6.1.14 (Holomorphic functions). A function u : SM — C
is said to be (fibrewise) holomorphic if u; = 0 for all k¥ < 0. Similarly, u
is said to be (fibrewise) anti-holomorphic if uj = 0 for all & > 0.

Remark 6.1.15. A quick word on the terminology. In the setting (M, g) =
(D, e) of Example 6.1.1, a function u(z, ) = u(z, ) is holomorphic if

o0
u(z,e?) = Z ug (z)e*?
k=0

and anti-holomorphic if

u(z,e?) = Z ug (z)e™*?

k=—o00

Thus if u is holomorphic, one can define a function @(z,¢) in the unit
ball bundle M x D by

(z,¢) = Z ug ()¢
k=0

This function is analytic in ¢ and its restriction to M x 9D is u(x, ™).

Similarly, a holomorphic function «v € C*°(SM) can be understood as
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the restriction to the boundary of a function % in the unit ball bundle,
obtained by “filling in” the unit circle S; M into the unit ball, where @
is fibrewise analytic.

Exercise 6.1.16. Show that if f : S' — C is a smooth function with
Fourier coefficients ax = 0 for k < 0, then the power series > - axz®
defines a function f in C°°(D) which is holomorphic in D). Conversely, the
restriction of any such f to S* has vanishing negative Fourier coefficients.

Remark 6.1.17. Later on we will be dealing with situations where
we have both types of holomorphicity, namely, the fibrewise described
above (vertical) and holomorphicity due to the underlying Riemann sur-
face structure of (M, g) as discussed in Section 3.4 (horizontal, variable
“2” above in isothermal coordinates). In most cases the type of holo-
morphicity is given by the context, but if necessary we might use the
word fibrewise to indicate that we mean the one in Definition 6.1.14.

We will use several times the next basic properties of holomorphic
functions.

Lemma 6.1.18. Ifu,w € C*°(SM) are holomorphic (resp. anti-holomorphic),
then the functions

u+ w, uw, e
are holomorphic (resp. anti-holomorphic).

We conclude this section by explaining an identification between ele-
ments of €, and smooth sections of certain vector bundles over M. For
some of the concepts related to Riemann surfaces that arise below we
refer to Donaldson (2011).

As we have seen in Theorem 3.4.9, the Riemannian metric g makes
M naturally into a Riemann surface. The cotangent bundle 7*M of M
turns into a complex line bundle over M denoted by x and known as
the canonical line bundle. The sections of this bundle consist of (1,0)-
forms and locally have the form w(z) dz. The conjugate bundle % is the
complex line bundle obtained by letting the complex numbers act by
multiplication by their conjugates. The sections of & are the (0, 1)-forms
and locally have the form w(z) dz.

The dual x* of k is called the anti-canonical line bundle and we shall
also denote it by x~!. With this bundle we can make sense of tensor
powers k®F for any k € Z. The Riemannian metric induces a Hermitian
inner product on x and using this inner product we can also identify £~*
with the conjugate bundle .
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Lemma 6.1.19 (Q; as smooth sections). For k > 0, elements in Q
can be identified with smooth sections of the bundle k®*. Similarly, for
k < 0, elements in Qi can be identified with smooth sections of the
bundle ®®F.

Proof We only consider the proof for £ > 0, leaving the case k < 0 as
an exercise. Let T'(M, x®¥) denote the space of smooth sections of the
k-th tensor power of the canonical line bundle x. Given a metric g on
M, there is map

g : T'(M, /§®k) — O

given by restriction to SM. In other words, an element f € T'(M, k®F)
gives rise to a function in SM simply by setting f,(v,...,v). Let us
——

k
check what this map looks like in isothermal coordinates. An element
of T'(M, k®%) is locally of the form w(z) (dz)*. Any unit tangent vector
is of the form v = e *(cosf3,, + sinfd,,). Hence the restriction of
w(z) (dz)* to SM is

w(z)e Fretk?,

Observe that ¢, is surjective because given u € ) we can write it
locally as u = h(z)e’*® and the local sections heF* (dz)* glue together to
define an element in I'(M, s®¥) (see Exercise 6.1.20). Since ¢, is clearly
injective, it is a complex linear isomorphism. [

Exercise 6.1.20. Check that in the proof above, the local sections
heF* (dz)* glue together to define an element in T'(M, k®F).

Using the identification from the lemma, we can explicitly conjugate
71— to a J-operator. Similarly as for ¢4, there is a restriction map

Vg : T(M, k% @ k) — Qi
which is an isomorphism. The restriction of w(z) (dz)* ® dz to SM is
w(z)e—(k-i-l)kei(k—l)@’

because unit tangent vectors have the form v = e=*(cos 9, +sin 0 ds,).

Given any holomorphic line bundle & over M, there is a d-operator
defined on:

9:T(M,&) = T(M,§ ®F).

In particular we can take & = k®*. Combining this with (6.1.8) we derive
the following commutative diagram:
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L(M, &%) —225

2 [
P(M,K®k®l§) L) Q1
In other words:
n- =100, (6.1.9)
In particular, the discussion above for k = 0 gives the following lemma.

Lemma 6.1.21. A function h € C°°(M) is holomorphic iff its pull-back
to SM (still denoted by h) satisfies n_h = 0.

6.2 The fibrewise Hilbert transform

The fibrewise Hilbert transform and the commutator formula for the
Hilbert transform and the geodesic vector field had a prominent role in
Pestov and Uhlmann (2005) and many subsequent works on geometric
inverse problems in two dimensions. In this monograph we will mostly
use the vertical Fourier expansions instead. However, on various occa-
sions the Hilbert transform will be quite helpful; an instance is given by

the Fredholm inversion formulas in Section 9.4.

Definition 6.2.1 (Hilbert transform). The fibrewise Hilbert transform
H :C>®(SM) — C*(SM) is defined in terms of Fourier coefficients as

(Hu)y, := —isgn(k)ug.
Here sgn(k) is the sign of k, with the convention sgn(0) = 0.

Note that u is holomorphic iff (Id—iH )u = ug and u is anti-holomorphic
iff (Id 4+ ¢H)u = ug.

Proposition 6.2.2 (Commutator of H and X). Let (M,g) be a two
dimensional Riemannian manifold. For any smooth function u on SM
we have the identity

[H, X]u =X up+ (XJ_U)O

where

is the average value.
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Proof 1t suffices to show that
[Id + iH, X]U = iXLUO + Z.(XLU)O.

Since X = n4 +n_ we need to compute [Id+iH, 7], so let us find [Id +
iH,ny]u, where u = 3, uy. Recall that (Id +iH)u = ug + 2, .
Since the sums converge in C°°(SM) by Lemma 6.1.3, we find that

(Id+ iH)npu=npu_y +2Y_ nyu,
k>0

Ny (Id +iH)u = nyug + 2 Z N U-
k>1
Thus
[Id + iH,ny]u = nyu—_1 + nyuo.
Similarly we find
[Id 4+ iH,n_]Ju=—n_ug — n-uj.
Therefore using that :X; = ny — n— we obtain
[Id+iH, X]u =iX uo + (X1 u)o
as desired. O

Exercise 6.2.3. Let S be the holomorphic projection operator, i.e.
Su =Yy o uk. Show that

[X, SJu=n_uo —nyu—_1.

6.3 Symmetric tensors as functions on SM

In order to prepare for the results on tensor tomography, we discuss an
identification between symmetric tensor fields and certain functions on
SM. Let (M,g) be any compact Riemannian manifold. We denote by
C>(S™(T*M)) the set of smooth complex-valued covariant symmetric
tensor fields of rank m. There is a natural map

U 2 C(S™(T* M) — C=(SM)
given by
Lo (R)(2,v) = hy(v, ... 0).

m times
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If h is a tensor field of rank m, its total covariant derivative VA induced
by the Levi-Civita connection V is an (m + 1)-tensor field defined as
follows:

m

Vi(Z,Y1,...,Ym) = Z(h(Y1,...,Yn)) —Zh(Yl,...7VZYi LY.

i=1
However, if h is symmetric, Vh is in general not symmetric. We can
make it symmetric by applying the symmetrization operator o, defined

as
1
a(Vh)(Y1,.. ., Y1) = (m+ 1) Z Vh(Yo1) s Yo(m+1))
0ESm4+1
where Sy, 41 is the set of permutations of {1,2,...,m + 1}.

Definition 6.3.1. The inner derivative on symmetric m-tensor fields is
the map

ds:= 00V :C®(S™(T*M)) — C=(S™TH(T*M)).
The next lemma shows that the maps ¢, intertwine d, and X:

Lemma 6.3.2. For any p € C>®(S™ YT*M)) we have Xty _1p =
ldsp.

Proof By definition
L (dsp)(z,v) = (dsp)s(v,...,v) = (Vp)s(v,...,v)

since all entries in the tensor Vp are the same and hence symmetrization
is innocuous. Writing v(t) = vz,,(t) and using that Vs, 45, = 0, we
have

d . .
= @(p'y(t) (’Y(t)v ce 77(t))) =0 = Xgmp O
Suppose from now on that dim M = 2. We would like to understand

the relationship between the maps ¢, and the vertical Fourier decom-

(Vp)u(v,...,v)

position introduced above. We will use the following terminology:

Definition 6.3.3 (Finite degree). We say that a function u € L?(SM)
has degree m if uy, = 0 for |k| > m + 1. We say that u has finite degree
if it has degree m for some m > 0.

Lemma 6.3.4 (Tensor fields have finite degree). Given h € C*(S™(T*M)),
the function £,,h € C°(SM) has degree m. Moreover, if m is even (resp.
odd), £y, h is an even (resp. odd) function on SM.
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Proof Indeed, observe that in the special coordinates (x,6) in Lemma
3.5.6 one has

L h(z,0)
= (e ((cos0)Dy, + (50 60)y,), ..., e *((cos0)Dy, + (sin0)D,,)).
Thus the function ¢,,h is a trigonometric polynomial of degree < m,

hence all its Fourier coefficients are zero for |k| > m + 1. The last claim
is obvious. O

The next proposition identifies symmetric tensor fields of order m with
even/odd functions on SM of degree m. A more precise version of this
will be given in Proposition 6.3.9.

Proposition 6.3.5 (Identification of symmetric tensors). Let m = 2N
be even. Then the map

N
b : C(S™(T*M)) = P D
j=—N

is a linear isomorphism. Similarly, if m = 2N + 1 is odd, the map
N
Km : COO(STn(T*M)) — @ ng+1
j=—N—1

s a linear isomorphism.
The following lemma will be used in the proof.

Lemma 6.3.6. Whenever k > 0 and f € Qi & Q_g, there is a unique
Fy € C°(S*(T*M)) with (xFy, = f. If (x,0) are the special coordinates
on SM in Lemma 8.5.6 and if f(x,0) = fr(z)e’*® 4+ f_p(x)e™0, then
Fy. is locally given by

Fy, = PO (fi(@)(d2)* + f-r(2)(d2)¥) (6.3.1)
where z = x1 + 1x9.

Proof Clearly ¢y is injective, since any covariant symmetric k-tensor is
determined by its values on k-tuples of the form (v,...,v). Thus it is
enough to prove that there is some Fy, with £ Fy, = f. The case k =0 is
clear. For k > 1 consider the function f = fi + f_. If x = (x1,x2) are
isothermal local coordinates on M and (z,0) are corresponding special
coordinates on SM, we have

fr 4 for = fu()e™® + fp(x)e™ k0



158 Vertical Fourier analysis

for some functions fik. In these coordinates we define the tensor field
Fi, by (6.3.1). It follows that

Eka(x, v)
= (Fp)o(e ((cos )0y, + (5in6)ds,), ..., e ((cos0)d,, + (sin)d,,))
= fi+ f-k

These local expressions glue together to yield a symmetric k-tensor field
F}, on M such that

bpFy = fro + [k

A similar argument appears in Lemma 6.1.19. To see this, note that
if F} is defined in an open set U C M and Fy in U where UNU #*
0, and if €,F, = fu 4+ f—r in SU and €,F, = fi + f—r in SU, then
lp(Fy, — Fk)‘S(UﬂU) =0 and hence Fj, = F), in UNU by the injectivity
of £;. This concludes the proof. O

For the proof of Proposition 6.3.5 we also introduce the following
operator.

Definition 6.3.7 (The operator ). For any m > 0, define
K C®(S™(T*M)) — C®(S™T2(T*M)), r(h)=0c(h® g).

In other words, « raises the degree of h by two by first tensoring with
the metric ¢ and then symmetrizing the result.

Proof of Proposition 6.3.5 We do the proof for m even; the proof for
m odd is analogous. We first observe that Lemma 6.3.4 shows that ¢,,
indeed maps into the given space, and as observed in Lemma 6.3.6 ¢,,
is injective. Hence we need to show it is also surjective.

Suppose that we are given a smooth function f € C*°(SM) such that
fr=0for |[k| >m+1. For 1 <k <m,let F € C>®(S*¥(T*M)) be as
in Lemma 6.3.6 so that £y Fy, = fi + f_r. For k =0 let Fy = fy. Finally,
define

F:=Fp+kFp_o+...+"2F,. (6.3.2)

This is a symmetric m-tensor field. Note also that for any symmetric
k-tensor field Gy, one has

lrro(kGy) = (0(Gr®9))(v,...,v) = (Gr®9g)(v,...,v) = Gy (6.3.3)
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since g restricts as the constant function 1 to SM. It follows that

k=—m
and thus ¢, is surjective. O
We can refine Proposition 6.3.5 by considering trace-free tensor fields.
For m > 2, define the trace (with respect to the last two indices)
trg : C°(S™(T*M)) — C>®(S™2(T*M)),

2
trg(h)e (V1. Um—2) = Y ha(vi,. . Umoa,€5,€;) (6.3.4)

j=1

where {e1,e2} is an orthonormal basis of T,, M. Note that the definition
is independent of the choice of basis, and since h is symmetric we could
have used any pair of indices in the definition above. If h is an m-tensor
field with m = 0,1 we define try(h) = 0.

We will also need an L? inner product on S™(T*M), defined via

(fs )2y = /M<f, h)dV (6.3.5)

where (f, h) = gikt...gimFm . . R, ..k, is the inner product on ten-
sors induced by g.

Proposition 6.3.8 (Identification of trace-free tensors). The map
by i {h € C°(S™(T*M)) : trg(h) =0} = Qp, & Qi
is a linear isomorphism, which is an L? isometry in the sense that
VnhlFasan = gog IRlFacry,  when try(h) = 0.
Proposition 6.3.9 (Identification of symmetric tensors, version 2). Any
h € C>(S™(T*M)) has a unique L?-orthogonal decomposition
[m/2]

h= Z Hjhmfzj

7=0
where each hy,—o; € C*°(S™™21(T*M)) is trace-free. The corresponding
function on SM is given by

[m/2]
bnh =3 lon—2hm_2j.
j=0
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Conversely, given any f = 25'7262](fm72j+f_(m_2j)) with fi. € Qy there
is a unique h € C°(S™(T*M)) with Ly,h = f given by

[m/2]
h = Z Kljg;llfzj(fm—zj + ff(m72j))'

Jj=0

There is Cp, > 0 so that for any h € C*°(S™(T*M)) one has
1
o hllczny < Mmbliczsary < Crmllbllzz - (6.3.6)

For the proof we need a lemma.

Lemma 6.3.10. If h € C*>°(S™(T*M)), then

4 m(m — 1)
trgleh) = S Y D+ )

ktrg(h).

Moreover, for any j > 1
4j(m +j)
(m+25)(m+2j—1)

try (k7 h) = KT R+ e ikt (B)

for some constants ¢, j > 0.

Proof Using the definitions and (6.3.3), we have

The last term is

1
T 2 (B9l )
0ESmi2

where w; = v for j < m and w; = v+ for j > m. We divide permutations
in Sy, 12 in three categories and evaluate (h ® g)z(Wo (1 - - -, Wo(m+2)):

o If o(m+1) <m and o(m + 2) < m, then
(h®g)z( ’ ) = hz(va s 7'07'UJ_7UJ_) = trg(h)z(v7~ .- 77)) - hz(”w . .,1})

since h is symmetric.

e Ifo(m+1),0(m+2)>m+1then (h®g)y(--+) = hz(v,...,v).

e For all other permutations o one has (h ® ¢),(---) = 0 because
g(v,vt) = 0.
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There are m(m —1)(m!) permutations in the first category and 2-1-(m!)
permutations in the second one. It follows that

Uy (trg(Kh))
_ 4 _mm=1) ;
= 2€m(h) + (m+ 1) (m+2) lin—2(trg(h)).

Since ¢y, is injective and £,,, _o(trg(h)) = €y (ktrg(h)) by (6.3.3), the first
result follows. The second statement follows by induction. O

Proof of Proposition 6.3.8 If f = fo + fom € Qpy @® Q_,py, the corre-
sponding tensor F,,, with ¢,,F,,, = f asin (6.3.1) is trace-free since (dz)™
and (dz)™ are trace-free (and this in turn follows from the m = 2 case).

Conversely, let h be a trace-free symmetric m-tensor where we assume

m even (the case where m is odd is analogous). If f = £,,h, we have as
in (6.3.2) that f = ¢,,F where

F=F,+kFn_o+...+x™?F,

and where each F}, is a symmetric trace-free tensor of rank k. Since ¢,,, is
injective we have h = F. By Lemma 6.3.10, since F' and F}, are trace-free
one has

0=trg(F) = c1Fp_o+ ...+ Cppar™* 1 F

where ¢; > 0. Taking further traces eventually gives 0 = cFy where ¢ > 0,
showing that Fiy = 0. Repeating this argument gives Fo = ... = F};,_o =
0. Hence h = F,,,, which proves that ¢,,h = fr, + [ € Q0 D Q0.

It remains to prove the statement on L? norms. Using the special
coordinates (x,0) in Lemma 3.5.6 and (3.5.1), this reduces to showing
that

T
[ bt 0P do =
for any z. Writing £mh = fm(2)e™ + f_,.(x)e~ ™ we have
/glwmh(xae)\zd@ =27 (| fn (@) * + | fom (2) %)

On the other hand, we have h = e™®@)(f,.(2)(d2)™ + f_p(x)(dZ)™)
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with z = 21 + ixe by (6.3.1), which implies that
|haly = | (@) (d2)™ + [ (@)(d2)™ 2
= (@)™ (@) + | F-m(2)])

where e is the Euclidean metric (we used that ((dz)™, (dz)™). = 0 and
[(dz)™|. = |(dZ)™]c; recall that (-, -). is complex linear in both entries).
The claim follows since |(dz)™|? = 2™. O

Exercise 6.3.11. Prove Proposition 6.3.9. For the fact that the de-
composition h = Zg.:éQ] K hyn—o; is L2-orthogonal, note that tr, is the
adjoint of x in the L? inner product and by Lemma 6.3.10 the differ-
ent terms in the decomposition for h belong to different eigenspaces of
try o K.

6.4 The X-ray transform on tensors

Let (M,g) be a compact non-trapping manifold with strictly convex
boundary. Recall the operator

Uy : C°(S™(T*M)) — C(SM)

which identifies symmetric m-tensor fields on M with even/odd func-
tions of degree m on SM (see Proposition 6.3.5). The geodesic X-ray
transform on tensor fields is defined as follows.

Definition 6.4.1. The geodesic X-ray transform acting on symmetric
m-tensor fields is the operator

I, : C®(S™(T*M)) — C*(0+SM)
defined by I, f := (¢ f), i.e.

7(z,v)
Inf@0) = [ fr GO A0 d
0
In local coordinates, if f = fj,..j, () d2/' ® - -- @ dzi™, one has

7(z,v) ) )
L f(2,v) = / Firein (o (D)3 (£) - 497 (8) dt.

The most important special cases are m = 0,1,2. For example, recall
from the preface that I arises as the linearization of the boundary rigid-
ity problem in a fixed conformal class, I; arises in the scattering rigidity
problem for connections, and I is the linearization of the boundary
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rigidity problem (see Section 11.1). The operator I, describes the per-
turbation of travel times of compressional waves propagating in slightly
anisotropic elastic media; see (Sharafutdinov, 1994, Chapter 7).

When m > 1 the transform I,,, always has a nontrivial kernel:

Lemma 6.4.2. Ifm > 1 andp € C®(S™ Y (T*M)) is such that ploar =
0, then

L, (dsp) = 0.

Proof By Lemma 6.3.2, we have I,,(dsp) = I(lmdsp) = I(Xlp—1p) =
0. O

Tensors of the form dgp are called potential tensors. The tensor to-
mography problem asks if these are the only elements in the kernel of
I,,,. We will show below in Theorem 6.4.7 that any symmetric m-tensor
f has the decomposition

f:fs+dsp

where f* is a so called solenoidal tensor field, and p satisfies p|oas = 0.
This means that one can only expect to recover the solenoidal part f*
of f from the knowledge of I, f.

Definition 6.4.3. The transform I, is solenoidal injective, or s-injective,
it any h € C>°(S™(T*M)) with I,,h = 0 is a potential tensor, i.e. of the
form h = dgp for some p € C®°(S™YT*M)) with plays = 0. We say
that Iy is s-injective if it is injective, i.e. any f € C°°(M) with Iof =0
must satisfy f = 0.

The problem of s-injectivity of I, can be reduced to a correspond-
ing question for the transport equation. This reduction for m = 0 was
already given in Proposition 4.3.1.

Proposition 6.4.4. Let (M, g) be a compact non-trapping surface with
strictly convex boundary, and let m > 1. The following are equivalent.

(a) I, is s-injective.

(b) If u € C*(SM) satisfies Xu = —f in SM and ulspspr = 0, where f
has degree m and f is even/odd if m is even/odd, then u has degree
m— 1.

Proof (a) = (b): Suppose that I,,, is s-injective, and assume that u
satisfies the conditions in (b). Since u|g_gps = 0, one must have u = u/
(see Lemma 4.2.2(a)) and hence I'f = ulp, sy = 0. By Proposition
6.3.5 there is a unique h € C°(S™(T*M)) so that f = ¢,,h, and one
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has I,h = I({;,h) = If = 0. Since I,,, was assumed to be s-injective,
h = dgp for some p € C>°(S™~(T*M)) with p|gpsr = 0. Then by Lemma
6.3.2

X(u+£m—1p) = 7f+£mdsp: 7f+f:0

Since both w and ¢,,_1p vanish on 9SM, we have u = —£,,,_1p. Thus u
has degree m — 1.

(b) = (a): Suppose that the statement in (b) holds and let I,,,h = 0.
Writing f = ¢,,h we have that If = 0, and by Proposition 6.3.5 f has
degree m and f is even/odd if m is even/odd. By Proposition 4.2.4 there
is u € C®°(SM) with Xu = —f and u|psy = 0. By the statement in (b)
we know that u has degree m — 1 and f = —Xwu. Applying £} to the
last equation we get h = dsl,,,—1(—u) where p := £,,,_1(—u) vanishes on
OM, showing that I, is s-injective. O

We now discuss the solenoidal decomposition of symmetric m-tensor
fields (see Sharafutdinov (1994)). This is a natural decomposition that
generalizes the Helmholtz decomposition of vector fields.

The inner derivative on symmetric m-tensor fields was the operator

dy = 00V : C®(S™(T*M)) — C*=(S™(T* M)).

We consider its formal adjoint Js, which is a divergence type opera-
tor. We recall from (6.3.5) the L? inner product on S™(T*M), and
consider the corresponding L? space L2(S™(T*M)) and Sobolev space
H*(S™(T*M)) for any k > 0.

Definition 6.4.5. Let m > 1. The divergence on symmetric m-tensor
fields is the operator

s : C(S™(T*M)) — C=(S™ HT*M))
defined via the formula
((ssfa h)L2 = (fa dsh)L2

where f € C°°(S™(T*M)) and h € C>=(S™~Y(T*M)) vanish on M. A
symmetric tensor field f is called solenoidal if é5f = 0.

The operator ds has the following local coordinate expression, which
shows that it is indeed a divergence type operator.

Lemma 6.4.6. One has

0sf = —trg(VF) = —g" firjpip da? ® - @ da?m
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where try is the g-trace with respect to the last two indices from (6.3.4),

. . L L m L . . q
and fjy-joust = O, firjm — 2oret Jivgeordirsrim Ly, are the compo-
nents of Vf.

We can now state the solenoidal decomposition of symmetric m-tensor
fields. In the case m = 1 this is just the Helmholtz decomposition of a
vector field into divergence free and potential parts.

Theorem 6.4.7 (Solenoidal decomposition). Let (M,g) be a compact
oriented manifold with smooth boundary, let m > 1 and let k > 1. Given
any f € HF(S™(T*M)), there is a unique L?-orthogonal decomposition

f=f+dsh
where f* € H¥(S™(T*M)) is solenoidal and h € H*1(S™=1(T*M))
satisfies hlaopr = 0. One has
15 e + 1Bl ess < ClLf e
where C' is independent of f. If f is C°°, then also f* and h are C*°.

The proofs of Lemma 6.4.6 and Theorem 6.4.7 may be found in
(Sharafutdinov, 1994, Section 3.3), but for completeness they are also
given here.

Proof of Lemma 6.4.6 Suppose that f € C°(S™(T*M)) and h € C>°(S™~(T*M))
are supported in a coordinate patch. Then dg(hg,...k,,_, dz*' @ -+ ®
K, 2™ @ - ® da®m . Since
symmetric tensor fields are orthogonal to antisymmetric ones, we have

dz*m-1) is the symmetrization of hy, ...

m—1;

s doh)zz = / G g f o ok |91 .
M
Integrating by parts and using that f and h vanish on OM, we see that
0sf = (_gjmkma’vkm Fivejon F T s) d2?t @ -+ @ da?m =

where each term 7,...;,._, contains a Christoffel symbol or first order
derivative of gP4 or |g|'/2. If we fix a point of interest 2 and choose a
normal coordinate system there, the terms r;, ...; _, vanish at x. We
thus have

Sf = *gj’"k’"fjl-AAjm;km dr’' ® - ® daxlm—1

at x. Both sides are invariantly defined (the right hand side is —try(V f)).
In particular the last identity is valid in any local coordinate system. [



166 Vertical Fourier analysis

Proof of Theorem 6.4.7 Since f° and dsh are L2-orthogonal, the de-
composition is unique. To show that it exists, it is enough to find h €
HF1(S™m=1(T*M)) solving

Ssdsh = 08,f,  hlon = 0.

We need to show that the operator d,ds, acting on sections of the vector
bundle S™~Y(T*M), is strongly elliptic in the sense of (Taylor, 2011,
formula (11.79) in Section 5.11). Then the map

HF(Sm=1(T* M) (1 HA(S™1(T* M) — HE=1(S™1(T* M),
{ U 0sdsu
(6.4.1)

will be Fredholm with index zero by (Taylor, 2011, exercise 3 in Section
5.11). If we can also prove that the map (6.4.1) has trivial kernel, then
this map will be a linear isomorphism. This proves the theorem.

To show that dsds is strongly elliptic, we observe that the principal
symbol p(x, &) of dg acting on C°(S™(T*M)) is given by

Pz, u=o(u®g)

where u is a symmetric m-tensor on T, M. Assume that p(z,&)u = 0
where £ # 0. Let €!,...,e" be an orthonormal basis of T M such that
el = ¢/|¢|, and write

— s s N edm
U= Ujy...j, €' Q- Q™.

Evaluating the tensor p(z, §)u = o(u®§) at (vq,. .., Umy1) where (v}, §) =
0 for 1 < j <m and v,11 = & gives that

Uj,...5,, = 0 unless at least one of ji,...,Jm, is 1.

Repeating this argument with vy, = vy41 = £ shows that u;,...;,, =0
unless at least two of ji,...,j, are 1. Continuing in this way gives that
u=0af®- - -®E&, and evaluating at v1 = ... = V41 = £ gives u = 0. We
have proved that ds has injective principal symbol p(x,&). Hence d5ds
has invertible principal symbol p(z, £)*p(z, £), and since p is real valued
we have p(x,&)*p(x, &) > c|¢|? proving strong ellipticity.

Let us next show that the map (6.4.1) has trivial kernel. By elliptic
regularity any element in the kernel is smooth. Now if §,d;u = 0 and
u|apr = 0, then also dsu = 0. By Lemma 6.3.2, when v is considered as a
function on SM, one has Xu = 0 and u|gsa; = 0. For any x € M™* let
z be a closest point on M to z and let v be the geodesic starting at z in
the direction of the inner unit normal v(z) of OM. Then 7 reaches = in
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halov et al.,

some finite time ¢y (actually to = d(x,0M)), see e.g. (Katcl
2001, Lemma 2.10). Write vg = —4(f9). Then the geodesics 7, for
v € S M close to vg reach OM in finite time. Since v is constant along
geodesics and ulggpy = 0, it follows that u(xz,v) = 0 for v close to vy.
Finally, since u has finite degree the function u(x,v) is polynomial in
v, which implies that « = 0. This shows that the kernel is trivial and

concludes the proof. O

6.5 Guillemin-Kazhdan identity

Throughout this section, we assume that (M, g) is a compact oriented
two-dimensional Riemannian manifold with smooth boundary. We begin
with an important energy identity involving the operators n; and 7_.

Lemma 6.5.1 (Guillemin-Kazhdan identity). One has the identity

1
In—wl® = lInyull* = S (KVu,w) = (-u, paw)osar + (04w, uasm

for any w € C>°(SM). In particular, for u|lapsy = 0 one has
)
ln—ul® = {lnul® — 5 (EVu, ).

Proof Lemma 6.1.5 gives integration by parts formulas for ni as well
as the commutator formula

)
[n+a 77*] = iKV

This implies that for u € C*°(SM) one has

In—ull® = l[neull® = (0=, 4 ]u, w)
— (m—u, p_1w)asm + (N4, p1v)osn-

This gives the required result. O

In fact the identity above (for u|ssps = 0) is equivalent to the Pestov
identity in Proposition 4.3.2: we will show at the end of this section that
Lemma 6.5.1 is just the Pestov identity applied to u € €, and on the
other hand summing the Guillemin-Kazhdan identities over all k € Z
gives back the Pestov identity. The Guillemin-Kazhdan identity turns
out to be very convenient in cases where one wishes to exploit frequency
localization.

We next state a useful immediate consequence of the Guillemin-Kazhdan
identity:
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Proposition 6.5.2 (Beurling weak contraction property). Suppose that
(M, g) has Gaussian curvature satisfying K < —kg on M, where ko > 0
s a constant. For any k > 0 one has

K
17— ]* + 707@\|Uk\\2 <npukl? uk €, urlosam = 0.
Similarly, for any k <0 one has
K
7+ ||* + §0|k| lugll® < lIn-well®,  wn € Qi urlosa = 0.

It is important that there is no (large) constant on the right hand
side of the inequalities above; non-positive curvature ensures that the
constant is 1.

The name for Proposition 6.5.2 comes from the fact that it is related
to the weak L? contraction property of the Beurling transform By in
Proposition 6.5.3 below, i.e. the fact that ||B1||p2_r2 < 1 when the cur-
vature is non-positive. For completeness we will next give the basic facts
on the Beurling transform following (Paternain et al., 2015a, Appendix
B). However, these facts will not be used later in this book.

Proposition 6.5.3 (Beurling transform). For k > 0, there is an oper-
ator
By i Qp = Qkio, [ frao,

where frro € Q1o is the unique solution of N_ fryo = —nyfr in SM
with minimal L?(SM) norm. Similarly, for k < 0 there is an operator

B_:Q, — Qkfg, fk = fk72a

where fr_2 € Qi_a2 is the unique solution of ny fr_o = —n_fr in SM
with minimal L?(SM) norm.
If (M, g) has Gaussian curvature < 0, then one has the norm estimates

| B+ frll2(sary < 1fkllz2(sar),s fr € Qg, £k >0.

Note that by the local coordinate formulas in Lemma 6.1.8, n_ is a 0
type operator and 7 is a 0, type operator. Now the operator B, may
formally be written as B, = —n~'n,, which is similar to the classical
Beurling operator d; ', in complex analysis. This explains the name.

The proof of Proposition 6.5.3 is based on the following three lemmas.

Lemma 6.5.4 (Solvability for n_ny). Given any f € Qg, there is a
unique w € Uy, solving

n_niw = f in SM, wlosym = 0. (6.5.1)
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Proof We first assume that one has global isothermal coordinates on
(M, g). The local coordinate formulas for n4 in Lemma 6.1.8 give that

7],77+(h(.%‘)€ik9) — 6_(2+k))\85(e2k)‘az(h€_k>\))eike.

Since 4050, = 6%1 + 02, the operator 1_7, acting on € is a Laplace

20
type operator. Moreoverz7 it has trivial kernel: if h € Qy, satisfies n_n h =
0 and hlpsar = 0, then ||ny hl|? = (n_nyh,h) = 0 and hence n h = 0.
The local coordinate expression for nih implies that h satisfies a 0,
equation with vanishing boundary values, showing that h = 0. Then
(6.5.1) reduces to a Dirichlet problem in the disk for a Laplace type
equation with trivial kernel, and hence (6.5.1) has a unique solution w.

In the general case we may identify ) with sections of the vector
bundle x®* as in Lemma 6.1.19. The local coordinate computation above
shows that n_n4 is a uniformly elliptic operator on this vector bundle,
and that any h € € solving n_nyh = 0 with hlpsys = 0 satisfies
h = 0. By (Taylor, 2011, Section 5.11) the Dirichlet boundary condition
is elliptic in this setting, and since the kernel is trivial we obtain the
unique solvability of (6.5.1). O

Lemma 6.5.5 (Decomposition of Q). Given any u € Qy, there is a
unique L*(SM)-orthogonal decomposition

u=nyw+q
where w € Qp_1 satisfies w|gsy = 0, and g € Qy, satisfies n_q = 0.

Proof 1t is enough to use Lemma 6.5.4 and find w € Qj_1 solving
n-niw = n_u with w|ssyr = 0. Then ¢ := v — nyw € Ker(n_). The
decomposition is clearly L?-orthogonal and hence unique. O

Lemma 6.5.6 (Solvability for n_). Given any f € Q, there isu € Qg1
satisfying
n_u=f in SM.

The solution u is unique under any of the following equivalent conditions:

(a) w is the solution with minimal L*>(SM) norm.
(b) u is L?-orthogonal to Ker(n_).
(c) w=mnyw for some w € Oy, with w|asy = 0.

Proof By Lemma 6.5.4 there exists a unique solution u satisfying (c).
It remains to prove the equivalence of (a)-(c). By Lemma 6.5.5 any
solution u € Q41 of n_u = f can be decomposed as u = niw + g with
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wlgsy = 0 and n_q = 0. Then niw is also a solution, and since this
solution is unique it follows that it must be the minimal norm solution
as well as the only solution L?-orthogonal to Ker(n_). O

Proof of Proposition 6.5.3 The fact that B is well defined follows from
Lemma 6.5.6. The corresponding result for B_ follows by taking complex
conjugates (recall that 2ny = X +iX ). We now assume that K < 0 and
prove the inequality for By. Let k > 0, let f = fi, and let u = By fx.
Then n_u = —n4 f, and by Lemma 6.5.6 u = nyw for some w € Q41
with w|ssar = 0. We have

||U’H2 = (u7 ’I’]+’LU) = _(n*uaw) = (77+f?w) = _(f7 n*w)
By Cauchy-Schwarz and Theorem 6.5.2, we have
lull < 1 In-wll < IfIHInwl = L] el
This shows that ||u|| < ||f]| as required. O

To conclude this section, we now show that the Pestov identity in
Proposition 4.3.2 applied to u € Qy, is just the Guillemin-Kazhdan iden-
tity in Lemma 6.5.1 for u € Q4 with u|spspsr = 0. Indeed, we compute

IV Xull? = [[Vorul? + IVo-ul? = (k + 1)?Ingull® + (k= 1)?[[n-ul/?
and

IXVul? = (KVu, Va) + | Xul?
= k(s ul® + n-ull®) + ik (K Vu, w) + [null® + [Jn-ul|*.

The Pestov identity and simple algebra show that
2k ([|nsull® = In-ull?) = ik(KVu,u)

This is the Guillemin-Kazhdan identity if k& # 0.
In the converse direction, assume that we know the Guillemin-Kazhdan
identity for each €,

1 .
Inrunll” = In-uel® = §(KVUk,uk)7 u € Q with ulpsay = 0.

Multiplying by 2k and summing gives

D2k (s unl® = In-well?) = Y ik (K Vg, u).
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On the other hand, the Pestov identity for u = >, __ uy reads

> Kl ur—r + n-up |
= I+ (Vak—1) 40— (Vg [P +ik (K Vg, we)+ [0 ur—1+n-uria|*).
Notice that
k20 up—1+n-upa || = k2 (Incup— [P +n-wrs |2)+25Re(nug—1, n-upi1)
and

114 (Vatg—1) + 10— (Vg ) 1? + [0 up—1 + n-upia ||
= (E*=2k+2) |0y up_1 |2+ (E*4+2k+2) |n_ups1 ||*+2k*Re(n up—_1, n_tug11)-
Thus the Pestov identity is equivalent with

S [ — 2l — 2+ 2w ] = SR Vg, )

This becomes the summed Guillemin-Kazhdan identity after relabeling
indices.

6.6 The higher dimensional case

In this section we explain how to extend some of the results in this chap-
ter to any dimension n > 2. The main change is that instead of consid-
. ug where uy(z,0) = iy (z)e™*?, we need
to consider spherical harmonics expansions u = »_,° u; where w(z,v)
is a spherical harmonic of degree [ with respect to v as was first done

ering Fourier series u = ) ;-

in Guillemin and Kazhdan (1980b). We refer to Paternain et al. (2015a)

A
[§]

and Dairbekov and Sharafutdinov (2010) for more detailed treatments.

Let (M, g) be a compact oriented manifold having smooth boundary,
with n = dim M > 2. Given any fixed x € M, there is an Rieman-
nian isometry between (S"~!,e) where e denotes the round metric and

(SzM, g,), given by

w = g(z) 2w

where g(z) = (gjx(z)) is the metric in some local coordinates, and
(¥',....y") € R" is identified with 478,, € T, M. Using this isome-
try we can identify a function v — u(x,v) on S, M with a function on
S"~1 and then everything reduces to spherical harmonics expansions
on S™~ L.
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Recall (see e.g. (Stein and Weiss, 1971, Chapter IV)) that the spher-
ical Laplacian —Ag on L?(S™ ') has eigenvalues {\;}{°, with
A =1ll+n-2).

The \;-eigenspace of —Ag consists of the restrictions to S®~! of homo-
geneous harmonic polynomials of degree [ in R™, and its elements are
called spherical harmonics of degree [. This space has dimension 1 when
! = 0, dimension n when [ = 1, and dimension

l+n—1 B l+n—3 when 1> 2,
l -2

Any function f € L?(S"~!) has a unique L2-orthogonal spherical har-
monics expansion

fw) =" filw).
1=0

Here f; is the projection of f to the A;-eigenspace of —Ag.

The isometry between S™~! and S, M, where z varies over points in
M, takes the spherical Laplacian Ag to the vertical Laplacian, which is
the operator

A= divV : C%(SM) — C(SM).

v v
The operators div and V were defined in Section 4.7. This leads to an
invariant form of the spherical harmonics expansion.

Definition 6.6.1. For any integer [ > 0 define
B = {ue L*(SM) : —Au = \u},
O, ={ueC°(SM) : “Au= A}

Lemma 6.6.2 (Spherical harmonics expansions). Anyu € L*(SM) has
a unique L?-orthogonal decomposition

o0
u = E up
=0

where w; € Ey. If u € C*°(SM), then u; € ©; and the sum converges in
C>(SM).

Example 6.6.3. If n = 2, then A = V2 and one has
Oy = Qp, O, =0®0Q_; forl>1.
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Next we discuss an analogue of the two-dimensional decomposition
X = ny +n_ where ny = %(X + 14X, ) are the Guillemin-Kazhdan
operators. If u € Q; and zg € M is fixed, and if z are normal coordinates
at xo and (z,v) are associated coordinates on SM near zg, then one has

Xu(zg,v) = vjawju(xo, v).

The function v’ is a spherical harmonic of degree one, and Oz, u(x0,v)
is a spherical harmonic of degree [ with respect to v. It is a basic fact
that then the product v’ Oz, u(z0,v) is the sum of spherical harmonics of
degree [ 4+ 1 and [ — 1. This proves the mapping property

X:0, - 0111960

where we understand that ©_; = {0}. The corresponding decomposition
of X is as follows.

Lemma 6.6.4 (The operators Xt). One has X = X + X_, where for
u e C>®(SM)

Xyu=) P (XPu)
1=0
and P, denotes the orthogonal projection from L?*(SM) to E;. The op-
erators Xy : C®(SM) — C*(SM) satisfy for anyl >0

X1 :0; — 0.
The formal adjoint of Xy in the L*(SM) inner product is —X+.

Example 6.6.5. When n = 2, one has X |q, = n++7- and X_|q, = 0.
When [ > 1 one has

Xi(fit fo) =nsfi+n-f, X (fi+fa)=n-fi+nifa
for fi € Q;and f_; € Q.

Note that the operators X are not vector fields, unlike 4. Using the
identification of ©; with trace-free symmetric tensor fields of rank [ given
below, one can think of X |g, as an overdetermined elliptic operator and
of X_|e, as a divergence type operator between vector bundles having
different ranks. There is no obvious analogue in dimensions n > 3 of
fibrewise holomorphic functions in Definition 6.1.14, or of the fibrewise
Hilbert transform in Section 6.2, at least in a form that would be useful
for our purposes. This is just an indication that some complex analysis
notions are special to two dimensions.
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Next we discuss symmetric tensor fields on SM. The identification
with finite degree functions on SM, using the map

by : C°(S™(T*M)) — C®(SM), ln(h)(z,v) = hgy(v,...,v)
——
m times
holds in any dimension. We have the following counterpart of the results
in Section 6.3 (see Dairbekov and Sharafutdinov (2010)).
Proposition 6.6.6 (Identification of tensors). For any m > 0, the map
lp induces linear isomorphisms
[m/2]
m s C(S™(T*M @ Om—2;>
by, i {h € C°(S™(T*M)) : trg( ) =0} — 06,
Any h € C=(S™(T*M)) has a unique L?-orthogonal decomposition

[m/2]

h—znhm 2

where each hy,—o; € C°°(S™™21(T*M)) is trace-free. The corresponding
function on SM is given by

[m/2]

h—zgm 2]m2j

where Ly —ojhm—2; € ©p,_9;. Conversely, given any f = Z[m/2 frm—2j
With fm—2j € Op_a; there is a unique h € C°(S™(T*M)) wzthé h=f
given by
[m/2]
h= Z K,Jg;li%-fmfgj.

Jj=0

There is C = Cyypp > 0 so that for any h € C°(S™(T*M)) one has
1
5Hh||L2(M) < |[lmhllLz(sar) < CllRllL2(ar),

and there is ¢ = ¢pmn > 0 so that for any h € C®(S™(T*M)) with
trg(h) =0 one has

1€mhllL2(sary = cllbllL2(ar)
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The solenoidal decomposition of symmetric tensor fields and the other
results in Section 6.4 are valid in any dimension. It remains to study
the higher dimensional version of the Guillemin-Kazhdan identity in
Lemma 6.5.1. As explained in Section 6.5, this identity can be obtained
by restricting the Pestov identity to ©;. The higher dimensional Pestov
identity was given in Proposition 4.7.4. The corresponding Guillemin-
Kazhdan type identity was proved in Paternain and Salo (2018). We
state the version of this identity with boundary term given in (Paternain and
2021, Proposition 4.1).

Proposition 6.6.7 (Guillemin-Kazhdan identity). For any ¢ > 0, one
has the identity

ar||X—ull* = (RVu, Vu) + | Z(w)|* + (Tu, Vu)osar = B | Xsul|?

(1 i) 1
Bi=X\ [1(1})2] —(n—1)

h v v
with the convention a—1 = 0, T = uNVu—XuVpu, and Z(u) is the div-free

for any u € O, where

ap =N\ +(n*1)7

h
part of Vu.

As an immediate consequence, we have the Beurling weak contraction
property on manifolds with nonpositive sectional curvature:

Proposition 6.6.8 (Beurling weak contraction property). Suppose that
all sectional curvatures of (M, g) satisfy K < —kg on M, where kg > 0
is a constant. For any |l > 0 one has

v
ap || X-ul® + roAdl[ull® + (Tu, Vu)asar < Brar|| Xy ull?
whenever u € ©.

In particular, if u|psp = 0 the last result implies that

ﬁl+1

A
Xl + ro 1|| ull* < — X ull?

for u € ©;. It is easy to check that the constants satisfy ﬁ ~ | and

Bit1

o~ 1 (with % <1 in most cases). Thus formally this result states
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that on nonpositively curved manifolds the Beurling transform X ,X;l
on ©; is a contraction (has norm < 1) with respect to the L? norm in

most cases.
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7

The X-ray transform in non-positive
curvature

Consider the geodesic X-ray transform I,,, acting on symmetric m-tensor
fields. We have proved in Theorem 4.4.1 that Iy is injective on any
simple surface. It follows from Theorem 4.4.2 that also I; is solenoidal
injective. In this chapter we make the additional assumption that (M, g)
has nonpositive Gaussian curvature, and prove the classical result of
Pestov and Sharafutdinov (1987) that I, is solenoidal injective for any
m. The proof at this point follows easily from the vertical Fourier analysis
and the Guillemin-Kazhdan identity in Chapter 6. We will prove later
in Chapter 10 the solenoidal injectivity of I, on any simple surface, but
this requires additional technology.

We will also use the assumption of non-positive curvature to improve
the H'! stability estimate for Iy given in Theorem 4.6.4 to a sharper H%/Q
estimate, which parallels the classical Radon transform estimate in The-
orem 1.1.8. A similar stability estimate will be given for I,,. Finally, on
simple surfaces with strictly negative Gaussian curvature, we give rather
strong Carleman estimates which in particular imply the injectivity of
the attenuated geodesic X-ray transform. All these results are based on
the Guillemin-Kazhdan identity, considered as a frequency localized ver-
sion of the Pestov identity and shifted to a different Sobolev scale. The
stability estimates were first given in Paternain and Salo (2021) and the
Carleman estimates in Paternain and Salo (2018).

7.1 Tensor tomography

Recall from Section 6.4 that the geodesic X-ray transform I, acting on
symmetric m-tensor fields is said to be s-injective if any h € C°(S™(T*M))
with I,,h = 0 is a potential tensor, i.e. h = dgp where p € C°(S™~1(T*M))

177
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with p|laasr = 0. The following result settles the uniqueness question for
I, on simple surfaces with nonpositive curvature.

Theorem 7.1.1. Let (M, g) be a simple surface with non-positive cur-
vature. Then I, is s-injective for any m > 0.

The case m = 0 was already established in Theorem 4.4.2 so we will
assume that m > 1. Using the reduction to a transport equation problem
given in Proposition 6.4.4, it is sufficient to prove the following result.

Theorem 7.1.2. Let (M, g) be a simple surface with non-positive cur-
vature. If u € C*°(SM) satisfies Xu = f in SM and u|psy =0, and if
f has degree m > 1, then u has degree m — 1.

The proof relies on the following basic fact stating that the equation
Xu = f can be written in terms of the Fourier coefficients of u and f
using the splitting X =ny +n_.

Lemma 7.1.3 (Fourier coefficients of Xu). Let (M,g) be a compact
oriented surface with smooth boundary, and let w € C*°(SM) satisfy
Xu=f. Then

Nyuk—1 + N-tugy1 = fr, keZ.
In particular, if f has degree m, then
Nytp—1 +N—tukr1 =0, |k| > m+ 1.
Proof We use the following facts from Lemma 6.1.3 and Lemma 6.1.5:

e u=> o _ u with convergence in C*°(SM);
o Xu=n,u+n_uwhere ny : Q. — Qpi1;
o f=>3 712 _ fr with convergence in C>°(SM).

Using these facts and collecting terms of the same order, the equation
Xu = f implies that

Nyup—1 +N-Upyr = fr
The result follows. O

The main result now follows by using the Guillemin-Kazhdan iden-
tity, or more precisely its consequence (Beurling contraction property)
in Proposition 6.5.2.
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Proof of Theorem 7.1.2 By Lemma 7.1.3 one has
Nytk—1 + N—ups1 =0, |k] > m+ 1. (7.1.1)

Assume first that & > m + 1. Since the Gaussian curvature is non-
positive, the Beurling contraction property (Theorem 6.5.2) implies that

-kl < [[n4up—all
Combining this with (7.1.1) yields
Il < I sl k>m1 (7.1.2)
Iterating (7.1.2) N times yields
Il < In-wn_rpanll, k> meL,

We now note that since u € C°°(SM), one has n_u € L*(SM). This
implies that >||[n_w||* < oo, which in particular gives ||n_u|| — 0 as
I = +o0. We can thus let N — oo above to obtain that

N-tup—1 =0, k>m+1. (7.1.3)
We may combine (7.1.3) and (7.1.1) to obtain that
n-u; = nyu; =0, [ >m.
Since X = 14 + n_, we thus have for [ > m that
Xu; =0, uosam = 0.

This shows that u; is constant along geodesics and vanishes at the bound-
ary. Thus we must have

u; =0, > m.

A similar argument for k¥ < —m — 1, using the second part of Theorem
6.5.2, yields that

u; =0, I < —m.
This concludes the proof. O

Remark 7.1.4. The proof above has historical significance as it is virtu-
ally identical to the original proof in Guillemin and Kazhdan (1980a) of
solenoidal injectivity for closed surfaces of negative curvature. Guillemin
and Kazhdan were originally interested in the problem of infinitesimal
spectral rigidity.
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7.2 Stability for functions

Let (M, g) be a compact simple surface, and let Iy be the geodesic X-ray
transform. Recall from Theorem 4.6.4 that the X-ray transform enjoys
the stability estimate

| fllz2ary < Cllofla o, 500y

for any f € C*°(M). We compare this with the stability estimate for
the Radon transform in R? from Theorem 1.1.8, which states that

1
1fllz2e2) < ﬁ”RfHH;/Q(Rxsl)

for f € C2°(R?). Note that the estimate for Rf is stated in parallel-beam
geometry, whereas the estimate for Iyf is stated in fan-beam geometry.

There are two important differences between the above stability es-
timates: the latter estimate involves an H'/2 norm instead of H', and
the H%/z norm is only taken with respect to the s-variable in Rf(s,w)
in the sense that

IRFN /2 g sy = 1L+ o)A RE) (0, 0) |2t

In this section we will improve the stability estimate for Iy f and replace
the H' norm with a suitable H%/Q norm. This will be done by using
vertical Fourier expansions and the Guillemin-Kazhdan identity. How-
ever, we will need the additional assumption that (M, g) has non-positive
curvature.

We introduced in Section 4.5 the vector field T that is tangent to
dSM. Define the H-(0SM) norm via

||w||§1;(aSM) = ||w||%2(BSM) + HTU}”%?(@SM)'

Note that this is different from the H!(9SM) norm, which was given by

Hw”?'-ll(aSM) = ”wH%Z(BSM) + HTU/”%W)SM) + ||Vw||%2(asM)-

Thus the H} norm only involves the horizontal tangential derivatives
along OM, but not the vertical derivatives.

The space H%/ 2 (0SM) is defined as the complex interpolation space
between L?(0SM) and H(0SM) (for interpolation spaces, see Berg!
(1976)). The spaces H+(04+SM) and H%/Q(('LSM) are defined in a simi-
lar way. The following stability estimate is the main result in this section.
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Theorem 7.2.1. Let (M,g) be a compact simple surface with non-
positive Gaussian curvature. Then

1 o0
19020y < Z5=Wof oo, sapy S € C(80)

The first step in the proof is to rewrite the boundary term in the
Guillemin-Kazhdan identity in terms of the tangential vector field T’
from Definition 4.5.2.

Proposition 7.2.2. Let (M, g) be a compact surface with smooth bound-
ary. For any u € C*°(SM) one has

i 1
In—ull® = llnsul® = 5 (KVu,u) + 5(Tu, wosn.

Proof From Lemma 6.5.1 we have

1
In—ul® = llnull® = 5 (KVu,u) = (-u, paw)osu + (n3u; pnu)osn
Since p = (v,v) and V= —(v1,v), so that py1 = 3(u FiVp), the

boundary terms become

1 . .
5 [, (= iViw)osan — (n-u, (n+iVi)u)osn]
Using that 7+ = 2(X £iX ), the boundary terms further simplify to

1 . . 7
3 [—(Xu,i(Vu)uwasn + 1(X 1w, pu)asn] = 5((VM)XU+/,LXJ_U, U) oS M-

By Lemma 4.5.4 the last expression is equal to %(Tu,u)asn- O

Next we consider a version of the Beurling contraction property with
boundary terms on surfaces with non-positive curvature.

Proposition 7.2.3. Let (M, g) be a compact surface with smooth bound-
ary. Suppose that K < —kq for some kg > 0, and let w € Q. If k>0
then

Ko i
- ul® + 7’<fIIUI|2 < lngul® + 5 (Tu, w)osn,
whereas if k <0 one has
Ko 7
I ull® + 7|’€|||UH2 < ln-ull® - 5 (T, w)osnr-

Proof This follows directly from Proposition 7.2.2. O
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Given f € C*°(M), we wish to apply the Beurling contraction prop-
erty to the Fourier coefficients of u/. The function u/ is not in general in
C>*(SM), so we will work in slightly smaller sets as in Section 4.5. Let
p € C®(M) satisfy p(x) = d(x,0M) near M with p > 0 in M™ and
OM = p=1(0). Define v(z) = Vp(z) for z € M, let p(x,v) := (v,v(x))
for (z,v) € SM, and define

T:=VuX+pX,.

Thus T extends the tangential vector field from 0SM into SM. By Exer-
cise 4.5.6 it satisfies [V, T] = 0 in SM. Define M, := {x € M ; p(x) > €}.

We start the proof of Theorem 7.2.1 with the following result, which
estimates f in terms of an inner product on dSM involving u/|ssas,
the tangential vector field T', and the fibrewise Hilbert transform H (see
Section 6.2). Recall that in (4.5.1) we proved the estimate

||f||2L2(SM) < —(Tu!, Vul)asu.

The estimate below is better, since the right hand side does not involve
vertical derivatives of u.

Lemma 7.2.4. Let (M, g) be a compact simple surface with non-positive
curvature. For any f € C*(M), one has

||f||2L2(SM) < (TUf,HUf)E)SM~

Proof Let f € C°(M) and let u = uf, so that Xu = —f and u is
smooth in SM, for € > 0 small. Since the curvature is non-positive, for
any k > 0 Proposition 7.2.3 gives that

1
In-uellBar, < InsunlBas, + 5 (T udosa. (721)

Notice also that the equation Xu = —f gives niug + n_ugs2 = 0 for
k > 0 (see Lemma 7.1.3). Combining this with the inequality above
yields

v
2

We iterate (7.2.2) for k = 1, 3,5, ... and use the fact that ||n_w;||srr. —
0 as [ — oo (which follows since n_u € L?(SM.)). This gives that

-l Ear, < In-unsallEn, + 5 (Tur, ur)osn. - (7.2.2)

o0

1
In—u1l|Zp, < 3 (Tw1425, u1425)asM. -
3=0
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A similar argument for £ < —1, using the second part of Proposition
7.2.3, shows that

. OC

9 i
m+u—1llsn, < ~5 Z(Tu—l—zjvu—1—2j)aszwg~
Jj=0
Combining the above estimates and using the equation Xu = — f again

gives

£ I3 s, = In—ur + nuilEar, < 20n-wllEn, + lIn+u—1l3ar)

<i Y (Tuk, we)osn,
k odd

where
Uk, k>0,

wk:—iHuk—{_Uk k<0

We next use the fact that [T, V] = 0, which implies that T" maps Q to
Q. Hence the estimate for f may be rewritten as

1f %0 < (Tu, Hu)as. -

Since uf|a+SM = Iof and u'|s_spr = 0, one has ulpsy € L2(OSM).
By Corollary 4.5.8 one also has Tuf|gsys € L?(0SM). In particular
u‘aSM S H%(@SM) One also has Hu|aSM S H%((‘)SM), since

1Hull3sar <D llurlBsar = lullsar, (7.2.3)
||Hu||§1%(8SM) < Z(”uk||t29SM + | Tuk|3sar) = ||U||?{;(33M)- (7.2.4)

The last identity used again that [V, T] = 0. Taking the limit as ¢ — 0
as in Exercise 4.5.9 gives that

1F18ar < (T, Hu)osar. O
Next we give an estimate for the right hand side of the previous lemma.

Lemma 7.2.5. Let (M, g) be a compact surface with smooth boundary.
For any u,w € H-(OSM) one has

(Tu, Hw)asnm| < ||UHH;/2(SSM)HwHH;ﬂ(aSM)'

Proof Given s > 0, let H;*(0SM) be the dual space of H7.(0SM). We
first use the estimate

[(Tu, Hw)asn| < HTUHH;W(@SM) HHw”H;/Q(aSM)
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Interpolating (7.2.3) and (7.2.4) shows that H satisfies
||HWHH;/2(35M) < ||wHH;/2(BSM)'
It remains to estimate the norm of Tu. First note that

1Tullrzos0m) < llull mr o5y

Next we estimate the H," norm using that 7T is skew-adjoint (see Lemma
4.5.4):

HTU”H;l((f)SM) = sup (Tu,w)osm =— sup (u,Tw)osm
llwll 2, =1 llwll 2, =1

< Jullz2osn1)-
Interpolating the two estimates above gives

HTU‘”H;UZ < ”uHH;N

(8SM) (8SM)

as required. O

Combining Lemma 7.2.4 and Lemma 7.2.5, we obtain a stability esti-
mate for f in terms of uf:

Lemma 7.2.6. Let (M, g) be a compact simple surface with non-positive
curvature. For any f € C*(M), one has

Hf||L2(SM) < ||uf||H71/2(35M)'
We can now prove the main stability result.

Proof of Theorem 7.2.1 Recall that uf|,9+SM = Iof and uf|5_sp = 0.
Thus v/ |ps = Eo(Iof) where Ej is the operator that extends a function
by zero from 04SM to OSM. It follows from Lemma 7.2.6 that

1A z2sary < NE (o) 1112 a5 (7.2.5)
We clearly have
| Eohllz2asn) < IhllL2 o, s01)5 h e L*(0,SM).
Let Hro(91SM) be the closure of C((04SM)™) in H:(04SM). Then
| Eohll 1 asnr) < Hh”H,}YO(BJrSM)

first for h € C°((01.SM)™) and then for h € H}, ((0;.SM) by density.
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Let H :}/ g (01 SM) be the complex interpolation space between L?(9,.SM)
and Hp,((01SM). Interpolation gives that

||E0h||H;/2(aSM) < ||h||H;{g(a+SM)'

Since Inf € HE(0+SM) by Proposition 4.1.3, it follows in particular
that Iof € Hy/g (94 SM). Thus

HEO(IOf)HHT{/Q(aSM) < ||IOf||H:1F/2(8+SM)' (7'2'6)
Combining (7.2.5) and (7.2.6) gives the desired estimate
Var| fllezany = [ llezsay < Hofll 2o, sary: H

7.3 Stability for tensors

We will now give a stability estimate for I,,, where m > 1. Recall that
solenoidal injectivity of I,,, means that the only symmetric m-tensors sat-
isfying I,,f = 0 are of the form f = dsh where h € C(S™~1(T*M))
and hlgys = 0. This means that from the knowledge of I, f one only
expects to recover the solenoidal part f® of f (see Theorem 6.4.7). The
following result gives a stability estimate for this problem. A very sim-
ilar estimate was obtained in Boman and Sharafutdinov (2018) for Eu-
clidean domains, but phrased using parallel-beam geometry.

Theorem 7.3.1. Let (M,g) be a compact simple surface with non-
positive Gaussian curvature. For any m > 1 one has

12200y < Cln Sl gssao sary 1 € C(S™(T™M)).

The proof will be similar to that of Theorem 7.2.1. As in Section 6.3, it
will be convenient to identify a symmetric m-tensor field f on M with a
function f € C*°(SM) having degree m and to work with the transport
equation Xuf = —f in SM. We begin with an analogue of Lemma 7.2.4
for m-tensors.

Lemma 7.3.2. Let (M, g) be a compact simple surface with non-positive
curvature. For any f € C*(SM) having degree m > 1, one has

1
||f + X(u_(m_l) +...+ um—l)H%%SM) < i(TU, Hu)aSM.

where u = u? .
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Proof We work in a slightly smaller set M. as in the proof of Lemma
7.2.4, so that u is smooth in SM,. Since Xu = —f and f has degree m,
one has nyuy + n—ugy2 = 0 for &k > m. Thus from (7.2.1) we obtain an
analogue of (7.2.2):

)
In-uklar, < In-ursolns, + 5 (T, ur)osa, — k=m.

Iterating this for k = m, m+2,... and using that n_ug — 0 in L?(SM,)
as k — oo gives

. o0

In-umllZar, < 5> (Ttm2j, tm2i)osn.

j=0

v
2
Starting with & = m + 1 instead and adding the resulting estimates
yields that

17—t | $ar, + I-tma [ $ar. <

N | =,

o0
Z(Tum—i-ja Um+5)0SM. -
=0

A similar argument for k¥ < —m, using the second part of Proposition
7.2.3, shows that

. oo
)
H77+ufm||%ME + ||77+u7m71||%M5 < D) Z(Tufmfjaufmfj)é?SMs'
j=0

The equation Xu = —f, where f has degree m, and the fact that both
T and H map Qf to Qf imply that

IIf+ X(u,(m,l) +...+ Umfl)H%Me

= In-umllZns, + In-vms1 1Ens, + n+u—mllEns, + n+u—m—1lEas,

1
< §(TU, Hu)ps, -
Taking the limit as ¢ — 0 as in the end of proof of Lemma 7.2.4 proves
the result. O

Combining Lemma 7.3.2 and Lemma 7.2.5 gives the desired stability
estimate for f in terms of u/:

Lemma 7.3.3. Let (M, g) be a compact simple surface with non-positive
curvature. For any f € C°°(SM) having degree m > 1, one has

1
I+ X meny + - A tm)llzzan < S lell g2 osa)

where u = uf.
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Theorem 7.3.1 will now follow by rewriting the above estimate in a
form that involves the solenoidal part f*.

Proof of Theorem 7.5.1 Given f € C*(S™(T*M)), we will use the
isomorphism /,,, in Proposition 6.3.5 and write f := ¢, f, @ := u/ and

G:=— Z Uk (7.3.1)
|k|<m—1
k is odd/even

where the sum is over odd k if m is even, and over even k if m is odd.
Using Lemma 7.3.3 and the parity of f and X ¢, we have

- - . . _ 1. -
If = XqlI> < If + X(@—n-1) + - - + Gm-1)[* < 5”“”2;/2(351\4)‘

Let ¢ = £;)1 1§, so that X§ = ¢,,dsq by Lemma 6.3.2. Using (6.3.6), we
obtain that

Ilf = dsqllz2ar) < Coll f - Xqllz2(sam) < Cm||ﬂ|\H;/2(3SM)- (7.3.2)

Let f have solenoidal decomposition f = f*+dsp. Writing w := p—gq,
we have

If = dsall* = I1f* + dsw|* = [ £*]]* + 2Re(f*, dsw) + [|dsw]|*.

Since f* is symmetric and solenoidal and plgas = 0, an integration by
parts gives that

(fsv dsw) = (fsv vw) = (inqu)aM
where 4, f*(v1,...,0m—1) := f*(v1,...,Um—1,V). Thus
1f = dsall® = 1£°11% = 2/ f*, @)onal
Combining this with (7.3.2) and using Young’s inequality with & > 0
yields that
s _ o 1
IIf H%Z(M) < CH“H;;/Z(E)SM) + elliv f ||§1*1/2(8M) + g”‘JH?ﬁ/Z(aM)'

By Lemma 7.3.4 we have [|i, f*|| g-1/290) < C|lf*[|L2(ar), and choosing
€ > 0 small enough allows us to absorb this term to the left hand side.
In addition, using Lemma 7.3.5 gives that

12 an) < CH{LHH;”(BSM)'

It remains to note that u|gsyr = Eo(I,,f) where Ey denotes extension
by zero from 0.5M to OSM. Using (7.2.6) with Iof replaced by I, f
concludes the proof. O
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Lemma 7.3.4. If (M,g) is compact with smooth boundary and f €
C>(S™(T*M)) is solenoidal, then

v flla-1r20n0) < CllfllL2(an)-

Proof The idea is that since f solves dsf = 0 in M, the boundary
value i, f|aar can be interpreted weakly as an element of H~/2(9M).
Let E : HY/?(OM) — H'(M) be a bounded extension operator on
tensors (such a map can be constructed from a corresponding extension
map for functions by working in local coordinates and using a partition
of unity). Then, since d5f = 0,

liv fll—1r200m) = sup (i fi7m)om
HT‘”Hl/Z(GJM):l

= sup 7(fa VET)M

HT”Hl/Z(Bz\/j)=1

< sup o [fllzellErlla < Cllf]lea- O

17l g1/2 onry=1
Lemma 7.3.5. Ifq = E;ll_léj where q is defined by (7.3.1), then

lallzrr2oa0y < Cllall g2 pgary-

Proof We prove the statement by interpolation. Since ¢ = ¢,,-1q,
(6.3.6) and orthogonality imply that

4172000y < Clldl 72080y < Cllal2050)- (7.3.3)

Consider now the H'(9M) norm. In local coordinates we may write

q = qjyjp_ 1Azt @ -+ @ dx?m=1, and the H'(OM) norm involves the

L?(OM) norms of the components g¢j,...;,. , and drg;,...;,. ,, where dp

is the tangential derivative. Locally ¢ = gj,...j,, ,v’* -+ -vIm=1. By Defi-
nition 4.5.2, we have

Tq= (aqul'“jm—l)vjl cevdmet
where . . . denotes terms whose L? norms can be controlled by ||q|| L2(OM)-
Thus, using (6.3.6) again,
gl onry < Clldll . osn)-
Finally, by Lemma 4.5.4, the operators V and T' commute on 9SM . This
implies that (TU}k,TU}l)@SM =0 if wg € Qg, w; € & and k # [. Thus

HT‘1||2L2(65M) = Z ||Tak||2L2(E)SM) < ||T’a||%2(8SM)'
[k|<m—1
k is odd/even
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Using the definition of the H} norm, this shows that

~112 ~ 12
11153 0500y < N8ll5r3 9501)-

Thus we have proved that

lall e oney < Cllal| gz osar)- (7.3.4)

Interpolating (7.3.3) and (7.3.4) proves the statement. O

7.4 Carleman estimates

In the previous sections, we used the Guillemin-Kazhdan identity to
prove uniqueness and stability results for the X-ray transform on simple
surfaces with nonpositive Gaussian curvature. Here we show that if the
curvature is strictly negative, one can apply weights to the Guillemin-
Kazhdan identity and obtain stronger Carleman estimates that are ro-
bust under certain perturbations. We will use this to prove uniqueness
for an attenuated X-ray transform.

Let (M, g) be a simple surface, and let A € C*°(SM). In Section 5.3
we introduced the attenuated X-ray transform of f € C*°(SM) as

Iaf =ul|o, s
where v/ is the solution of
Xu—i—Auz—f in SM, u|afSM=0.

Clearly I4 is the standard geodesic X-ray transform when A = 0. We
will specialize to the case where f = f(x) € C*°(M), so that I 4 is acting
on O-tensors, and

A=a_1+ag+a1 € Q1D D Q.

Thus the attenuation A is the sum of a scalar function ag(z) and a
1-form a1 + a_;.

Theorem 7.4.1. Let (M, g) be a simple surface with negative Gaussian
curvature. If A = a_1 + ag + a1 with ai € Qy, then [4 is injective on
C>(M).

This is a consequence of the following energy estimate:
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Theorem 7.4.2. Let (M, g) be a simple surface with Gaussian curvature
K < —kq for some kg > 0. For any m >0 and 7 > 1, one has

T 2 T
> kP u® < p Do KT

[k|>m |k|>m+1
whenever u € C*°(SM) with ulasy = 0.

The previous theorem involves a large parameter 7, and the constant
on the right is of the form C/7 which becomes very small when 7 is
chosen large. As discussed in Pater: and Salo (2018) this behaviour
is typical of Carleman estimates, and in fact the weights |k|?"
written as €>7?(*) where @(k) = log|k| corresponds to a logarithmic
Carleman weight. Adjusting the parameter 7 > 0 will allow us to deal
with a possibly large attenuation and prove injectivity of the attenuated
X-ray transform. The estimate in Theorem 7.4.2 can also be understood
as a version of the Pestov identity shifted to a different vertical Sobolev
scale.

This argument based on Carleman estimates is quite robust and it
immediately extends to complex matrix valued attenuations (even some
nonlinear ones) and tensor fields. However, it requires the additional
assumption that the Gaussian curvature is negative. We will remove
this curvature assumption later in Chapter 12 (in the scalar case) and
Chapters 13-14 (in the matrix case).

Proof of Theorem 7.4.1 Let f € C°°(M) satisfy I4f = 0. By Theorem
5.3.6 one has u := uf € C*°(SM), and u solves the equation

can be

Xu+ Au= —f in SM, ulpsar = 0. (7.4.1)
Note that for |k| > 1, since f = f(x) one has
[(Xwell = [[(Auw)kl = llarus—1 + aour + a—ruri|
< Cllun—all + llunll + w1 l)-
We now insert u in the estimate of Theorem 7.4.2, which yields that

C
> T gl < = Y RPNl A loanll? + i)

Ik[>m k[ >m+1
C
<SS (R 1
[E|=m
If we additionally assume that m > 27, then for |k| > m one has

(1Kl +1)%7 = [B[*" (1 + 1/[K])*" < elk|*".
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Thus, whenever m > 27 we have
C
>R ] < 71 > KT un?
[k|>m |k|>m

where C is independent of 7 and u. Choosing 7 so that 7 > 2C; implies
that

Uk :0, |]€| 2401

It follows that uw must have finite degree.
Finally we need to show that u = 0. Suppose that u has degree [ > 0.
Then uy, = 0 for k > 1 + 1. Using the equation (7.4.1), u; satisfies

nyuy +ayjuy =0, uilasar = 0.

Using the special coordinates (x,6) and Lemma 6.1.8, so that M = D,
we have u;(,0) = @;(x)e'? and a; = @;(2)e?? where @, € C>(D) solves
the equation

D2, (e ™) + a1l =0in D, dylsp = 0.

We choose an integrating factor h € C*°(D) (for instance by using the
Cauchy transform) that solves

d,h = e*ay in D.
Then
d.(e"ye™™) =0in D,  @lop = 0.

The only solution of this equation is u; = 0. Thus we must have u; = 0.
This argument shows that uy = 0 for £ > 0, and similarly one obtains
that up = 0 for k& < 0. O]

Proof of Theorem 7.4.2 Let u € C*(SM) with u|ssp = 0. We begin
with the Guillemin-Kazhdan identity: for any & > 0, Proposition 6.5.2
gives that

Ko
In-well® + - kllwel® < llns ]
In order to get the term ||(Xu)g41||? on the right, we write

Xu)py1 — - uprol®
Xu)pra]* = 2Re((Xu) g1, 1-ukr2) + [|n-ugi2]?

I uel|* = |
|

(
II(

IN

1t ) (Xestl? + (L + )l uesal?
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where the parameter €, > 0 will be chosen soon. Inserting this estimate
in the previous inequality yields that

Ko 1
Il + |2 < (1 n k) NXweralP + (4 ) n-tpe]®

We multiply this inequality with a weight v, > 0, which will be fixed
later, and add up the resulting inequalities over k > m. This shows that

[e’e) Ko
>~ e (-l + 52kl |2)

k=m

< 4 Tk ((1 + 51k> (Xw)gea|® + (1 + ak)|nuk+2||2> . (7.4.2)

k=m

In order to get an estimate with only ||(Xu)g.1|? terms on the right,
we would like to absorb the ||n_ugi2|? terms from the right to the left.
This is possible if the parameters are chosen so that

(I + &) < Yrso-
In particular, we need to assume 742 > v for this to work. To keep the
weights v (1 + i) on the right as small as possible, we fix the choice
_ YE+2 Tk
Yk
With this choice, (7.4.2) takes the form

€k

[ee] Ko e o] 1
D Gkl < 3 (1 + ) el (X |
k=m k=m k
- L) (X2 (7.4.3)
ka1 TR+ T Vk—1

The estimate (7.4.3) is true for any weights v, > 0 with vyr12 > Y,
and by taking limits also whenever v, > 0 and yx42 > ;. However, the
weights can grow at most polynomially if we want the left hand side to
be well defined (recall that Xu € C*°, so V¥ (Xu) € L? showing that
SRV |[(Xu)g||? is finite for N > 0). We let s > 0 and fix the choice

Ve = k°.

To estimate the coefficient %, we note the following elementary
bounds for ¢ € (0,1):

log(1+t) > tlog(2), log(l —t) < —t < —tlog(2).
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Hence
(1+1t)°— (1 —1¢)° > 2sinh(stlog(2)) > 2log(2)st > st.
This yields for £ > 1 the bound

Ve+17k-1 (k2 —1)° < lks+1_
Verr — Ye—1 k(L +1/k)* = (1 -1/k)*) s
Using the last estimate in (7.4.3) gives that

(oo} 1 o0
Estl 2 o= s+1 2
(] > ETHI(Xu)]
k=m k=m+1

o
2

Analogously, using the second part of Proposition 6.5.2 gives the esti-
mate

—m—1

R0 o s+1 2 1 s+1 2
5 >R k] <3 R (Xw)?

k=—00 k=—oc0

Combining these two estimates and setting 27 = s + 1 proves the theo-
rem. O

7.5 The higher dimensional case

The results in this chapter were proved by using vertical Fourier analysis
and the Beurling contraction property, which was a consequence of the
Guillemin-Kazhdan identity. Since these results have higher dimensional
counterparts as described in Section 6.6, all the results in this chapter
extend to higher dimensional manifolds whose sectional curvatures are
non-positive. We state the results below and refer to Paternain and Salo
(2021, 2018) for the proofs.

Let (M,g) be a compact simple manifold of dimension n > 2. The
first result gives the solenoidal injectivity of the X-ray transform I,,, on
symmetric m-tensor fields.

Theorem 7.5.1. Let (M, g) be a simple manifold with non-positive sec-
tional curvature. Then I, is s-injective for any m > 0.

In order to state the stability results we need to discuss the H;/ 2
space in higher dimensions. Given u € C*°(SM), we first define the full

horizontal gradient
b h
Vu :=Vu+ (Xu)v.
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h
Note that Vu is the horizontal part of Vguu (the gradient of u with
respect to Sasaki metric) in the splitting £ = ({u,&v) for £ € TSM
given in (3.6.1). The tangential part of Vu on SM is defined by

h h

h
YVl :=Vu - (Vu,v)v

where v is the inner unit normal for OM. Next we define the Hjl« norm
on 0, SM by

h
HuH?{;(aJrSM) = JlullZzo, 500 + ||VHU||2L2(5+SM)-

The space Hilp/ 2 (0+SM) is defined as the complex interpolation space
halfway between L?(9;SM) and HL(0.SM).

The following result states the stability estimates for the X-ray trans-
form on tensor fields.

Theorem 7.5.2. Let (M, g) be a simple manifold with non-positive sec-
tional curvature. Then

1 lz2n) < Cllofllyyzo, sy 1 € CF(M).

For any m > 1 one has
HfS||L2(M) < C||Imf||H;/2(a+5M)a Ie CDO(Sm(T*M))-

The injectivity result for the attenuated X-ray transform takes the
following form. We consider attenuations A that are sums of scalar func-
tions and 1-forms, which is written as A € Oy ® O, in the notation of
Section 6.6.

Theorem 7.5.3. Let (M, g) be a simple manifold whose sectional cur-
vatures are all negative. If A = ag+ay with ai € O, then I 4 is injective
on C*®(M).

The Carleman estimate required for proving the previous theorem is
as follows.

Theorem 7.5.4. Let (M, g) be a simple manifold whose sectional cur-
vatures satisfy K < —kg for some kg > 0. For any m > 1 and 7 > 1,
one has

2 (n+4)?° < o
S el < LS (a2
l=m 0 l=m+1

whenever u € C°(SM) with u|spsy = 0.
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8

Microlocal aspects, surjectivity of I;

This chapter provides the key microlocal input of the monograph. We
will prove that on a simple manifold M the normal operator Il is an
elliptic pseudodifferential operator of order —1 in the interior of M, thus
establishing an analogue of Theorem 1.3.16 for the Radon transform in
the plane. Combining this result with the injectivity of Iy we will prove
a surjectivity result for the adjoint Ij. This surjectivity result may be
rephrased as an existence result for first integrals of the geodesic flow
with prescribed zero Fourier modes and it will play a prominent role in
subsequent chapters. At the end of the chapter we shall extend these
properties to include matrix weights and attenuations.

8.1 The normal operator

Let (M,g) be a compact non-trapping manifold with strictly convex
boundary, and let Iy be the geodesic X-ray transform acting on C*°(M).
By (4.1.1) Iy is a bounded operator L*(M) — L2 (04 SM), and Lemma
4.1.4 states that the adjoint of this operator is given by

I = [ W) dS,e).
S, M
We will consider the normal operator
N =1y : L*(M) — L*(M).

The following result is an analogue of the fact proved in Theorem
1.3.16 that the normal operator of the Radon transform in the plane is
an elliptic pseudodifferential operator (¥DO) of order —1. For our ge-

Q

ometric setting this can be traced back to (Guillemin and Sternberg,

195
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1977, Section 6.3) and Stefanov and Uhlmann (2004). The reference
Guillemin and Sternberg (1977) states the property under the so called
Bolker condition, which is seen to be equivalent in our case to the absence
of conjugate points. The references Stefanov and Uhlmann (2004) and
(Pestov and Uhlmann, 2005, Lemma 3.1) provide a more recent version
of this result fitting with our presentational aims.

Theorem 8.1.1 (The normal operator is elliptic). Let (M, g) be a simple
manifold. Then N' = I} 1y is a classical elliptic WDO on M™ of order
—1 with principal symbol

Upr(N) = Cn‘a;l

We discussed ¥DOs in R™ in Section 1.3. YDOs on manifolds can
be defined in terms of local coordinates. See (Hormander, 19831985,
Section 18.1) for the following facts.

Definition 8.1.2 (¥DOs on manifolds). Let Z be a smooth manifold
without boundary and let A : C°(Z) — C°°(Z) be a linear operator.
We say that A is a YDO of order m, written A € U™(Z), if for any local
coordinate chart s : U — U where U C Z and U C R”™ are open sets the
operator

Ay S(RY) = S(RY), Aof = (AG(for)))or

is in ¥ (R™) whenever ¢, 1 € C°(U). We say that A is a classical ¥DO,
denoted by A € U7 (Z), if each A, is in U} (R™).

We also need the notion of ellipticity. For the case of ¥ (R"™) we gave
a definition involving the full symbol. On manifolds we need to deal with
fact that the full symbol is not invariant under changes of coordinates.
However, for classical YDOs the principal symbol can be invariantly
defined as a smooth function on 7*Z that is homogeneous in &.

Proposition 8.1.3 (Principal symbol). For anym € R, there is a linear
map
opr : Vi (Z) = O (T Z\ {0})
such that op(A) is homogeneous of degree m in & and op(A) = 0 iff
A € OY(Z). Moreover, if A € ¥ (Z) and B € U™ (Z) then AB €
U (Z) and
opr(AB) = opr(A) oy (B).
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Definition 8.1.4 (Ellipticity). An operator A € U}(Z) is elliptic if its
principal symbol o}, (A) is nonvanishing on T*Z \ {0}.

To motivate the proof of Theorem 8.1.1, note that from the Schwartz
kernel theorem we know that the bounded operator N : L?(M) —
L?(M) must have a Schwartz kernel K (z,y) so that

/ K(x,y)f(y)dV"™(y). (8.1.1)

For general operators K could be very singular, in general it is just
a distribution on M™* x M but WDOs are characterized by having
kernels of a very special type, namely K is what is called a conormal
distribution with respect to the diagonal of M™ x M This means that
it is smooth off the diagonal and at the diagonal, it has a singularity of
a special type. We refer to (Hormander, 1983-1985, Section 18.2) for
further details.

Our first task is then to find out what the Schwartz kernel K of N/
looks like. We begin by deriving an integral expression for N.

Lemma 8.1.5 (First expression for ). Let (M,g) be a compact non-
trapping manifold with strictly convex boundary. Then

7(z,v)
<N7xm::zéﬂ44 f (e() dt dSa(v). (3.1.2)

Proof From the definitions we have

/szM(IOf) (z,v) dSq( /SM/T(I’U) (Va0 (1)) dt dSy (v).

Thus
7(z,v)
w=éml F (e (t)) dt dS, (v)

0
+/SIM /T(z,@ f (Va0 (t)) dt dSy(v).

The result follows after performing the change of variables (¢,v) —
(—t,—v) in the second integral. O

The next example determines the Schwartz kernel K when M is a
Euclidean domain.

Example 8.1.6 (N in the Euclidean case). Let M = Q where Q) C R" is
a bounded domain with strictly convex smooth boundary, and let g = e
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be the Euclidean metric. Extend f by zero to R™. Then the formula
(8.1.2) becomes

Nf)(z) = 2/0OO /Sn_1 flz+tv)dS(v)dt

Let = be fixed. It is natural to change to polar coordinates, i.e. consider
y = x + tv where t > 0 and v € S®~ . This requires that we introduce
the Jacobian ¢t"~! as follows:

/ / CC +1tv tnfl dS(”U) dt = 2/ f(y) — dy
gn-1 " e |2 —y["

We have proved that the Schwartz kernel of N has the simple form

K(ry) = —

[z =yt

We would like to determine K (z,y) in a similar way for more general
manifolds (M, g). First we show that one can always change to polar
coordinates in 7, M. Recall from Proposition 3.7.10 the notation

D,={tveT,M :veS,M, tel0,1(x,v)]}

Also recall that T, M has metric g|, whose volume form is denoted by
dry.

Lemma 8.1.7 (Second expression for ). Let (M, g) be a compact non-
trapping manifold with strictly convex boundary. Then

(N F)(x _2/ feXpw ))dT( ). (8.1.3)

The proof uses the following basic result.

Lemma 8.1.8 (Change of variables). Let (M, g) and (N, h) be oriented
Riemannian manifolds and let ® : M — N be a diffeomorphism. Then

/deh:/ (f o @)|det dd| dV,
N M
where

det d®|,, := det((f;, d®|pex)n)

where (ex) and (f;) are positively oriented orthonormal bases of T, M
and T,y N, respectively (the definition of det d® is independent of the
choice of such bases).

Exercise 8.1.9. Prove Lemma 8.1.8.
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Proof of Lemma 8.1.7 Fixz € M™*. We will change variables in (8.1.2)
from (¢,v) € Dy := (0,7(z,v)] X SuM to w =tv € T, M. In fact, define

q: Dy — D\ {0}, q(t,v) = to.

Then ¢ is a diffeomorphism. Noting that the manifold D, carries the
metric dt? + g, and volume form dt A dS,, we can write (8.1.2) as

V() =2 /D f(expy(a(t,v))) dt A dS,.

We wish to use Lemma 8.1.8, which involves the Jacobian det dg|,y).

For v € S, M let {e; = v,ea,...,e,} be a positive orthonormal basis of
T, M. Then {0;,es,...,e,} is a positive orthonormal basis of T(; ) Dy
Moreover, {e1,ea,...,e,} is a positive orthonormal basis of Ti, D, =~

T, M with metric g, and volume form dT;. Now dq . (0;) = v = e;
and dg| ;) (ej) = te; for 2 < j < n. This shows that

det dq|(t,v) =L

We can now change variables using Lemma 8.1.8:

f expfn : )))tn 1dt/\d5
f expz (w) 0
wlg™

Finally, to determine the Schwartz kernel of N" we would like to make
another change of coordinates y = exp,(w) in (8.1.3). This boils down
to the property that the exponential map

expy : Dy = M

should be a diffeomorphism onto M for any fixed x € M. By Proposition
3.8.5 this always happens (M, g) is a simple manifold.

Lemma 8.1.10 (Schwartz kernel of ). Let (M, g) be a simple mani-
fold. Then

W) = [ ) av)
where the function

1
det(dexp,, |

a(z,y) = ]
expy ' (y)

is smooth and positive in M x M and satisfies a(xz,x) = 1.
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Proof Since exp,, : D, — M is a diffeomorphism when (M, g) is simple
by Proposition 3.8.5, we can change variables y = exp,(w) in (8.1.3)
using Lemma 8.1.8. Since |w|, = d4(z,y), we obtain the formula

2a(z,y)

e WAV W)

where a(x,y) has the given expression. Now exp,, is an orientation pre-
serving diffeomorphism, so det d exp,, |+, is a smooth positive function of
w € D, and it also depends smoothly on = € M. Since dexp, |o = id,
we obtain that a(z,z) = 1. O

Remark 8.1.11. The function a(x,y) in Lemma 8.1.10 can be studied
further by using the fact that d exp, can be expressed in terms of Jacobi
fields. In fact, let (e; = v,ea,...,e,) be a positive orthonormal basis of
T, M. Proposition 3.7.10 implies that

dexpx |tU(el) = ;}/x,v(t),
dexpy |w(ter) = Ji(t) for 2 <k <n

where Ji(t) is the Jacobi field along 7, , with initial conditions Jj(0) =
0 and D;Ji(0) = eg. Note that {e1(t) = Fuo(t),ea(t),...,en(t)} is a
positive orthonormal basis of Toyp (1) M if we let e; (t) be the parallel
transport of e; along 7y;,,,. Thus we obtain from Lemma 8.1.8 that

t" " det dexp, | = det((ej (1), Ju(1)))} jma = Au(v,1).

The last expression is an ubiquitous quantity in Riemannian geometry
as it dictates how to compute the volume of balls in M of radius r
by integrating over S, M x [0,7]. Note that since M is simple, exp,, is
an orientation preserving diffeomorphism and therefore A, > 0 for all
(t,v) € D,.

We have now proved that on simple manifolds, the Schwartz kernel of
the normal operator A/ has a singularity at the diagonal that behaves
like W. At this point we shall need the following lemma:

g\ &Ly

Lemma 8.1.12. In local coordinates, there are smooth functions Gji(z,y)
such that Gji(z,x) = gjr(z) and

[dy(z,9)]> = Gz, y)(z — y) (x — y)*.

Exercise 8.1.13. Prove the lemma. Hint: do a Taylor expansion at x
of the function f(y) = [exp; ' (y)|2.
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To show that we have a DO, by Definition 8.1.2 we need to localize
matters by considering two cut-off functions ¢ (z) and ¢(y) supported
in a chart of M (since M is simple, M™" is in fact diffeomorphic to a
ball so one chart will do). Working in local coordinates, if we let

K(z,y) = () K (z,y)\/det g(y)d(y)

we need to show that the operator whose Schwartz kernel is K is a ¥DO
in R™. (Recall that in local coordinates dV™ = \/det g(y) dy.)
By Lemmas 8.1.10 and 8.1.12, one has

o 20’(‘Tay)
K(x,y) =v(x ‘ —/d .
(,y) = ( )(ij(%y)(x_y)j(x_y)k) —r V/det g(y)(y)

Since a(z,y) and G, (x,y) are smooth and ¢ and 1 have compact sup-

port, the kernel k(z, 2) := K(z,x — z) satisfies estimates of the form

920%k(2, )| < Caple| "1,

By the next result (see (Stein, 1993, VI.4 and VI.7.4)) this implies that
the operator with Schwartz kernel K is a DO of order —1.

Proposition 8.1.14 (Schwartz kernel of a ¥DO in R™). Let m < 0. If
ke C®R" x (R™\ {0})) satisfies

10209 k(@, 2)| < Cap|2]~—m1AI=N (8.1.4)

whenever n+m + |8] + N > 0, then the operator A defined by

Af(@) = [ b - )1 dy

belongs to O™ (R™) and its full symbol a € S™(R™) is given by

a(z,§) = /n e k(x, 2) dz.

Conversely, if A € UV™(R"™) and if K(x,y) is the Schwartz kernel of A,
then k(x,z) = K(x,x — z) satisfies (8.1.4).

We have now proved that N' € U—1(M). The last part of the proof
consists in proving ellipticity, which requires that we compute the prin-
cipal symbol of N'. We first show that N € W ' (M™). Tt is enough to
compute a corresponding expansion in local coordinates. Write

% —(n—1)7, r—y
Ray) = o -y “h(x,u—m,)
|z —y|
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where

il(% rw) = $(x) 2a(xz,x — rw)y/det g(x ;_le) bz — rw).

(Gjk(z,z — rw)wiwk) =

Then & is smooth in R” x [0,00) x S™~1 (this uses the support properties
of ¢ and v). Taylor expanding h at r = 0 leads to the formula
~ N ~
K(z,y) =Y K-1-j(z,y) + Ry (z,y)
§=0

where

oih (2,0, =)

J! '
By Proposition 8.1.14, f(,l,j is the Schwartz kernel of some WDO
with symbol @_;_; € S7!7(R") and Ry corresponds to a symbol in
S~N=2(R"™). This shows that N is a classical ¥DO, and its principal
symbol in local coordinates (computed in the set where ¢ = ¢ = 1) is

Koij(z,y) = |z —y[ "+

a_q1(x, &) = /n e K (zx— 2)dz
:/ e*izf( 24/det g(x) o

gj(z) 2 2k) "5

ol 2
:/ne_’z'g(l’) 1/25|z|7—1 dz

= cn|§|;1

Here we used the change of variables z +— g(x)~'/2z and the fact that the
Fourier transform of z + 2|z|*~" is ¢,|¢|~!. Thus the principal symbol
of N'is cplé|; " and N is elliptic. This concludes the proof of Theorem
8.1.1.

8.2 Surjectivity of I

Let (M,g) be a compact simple manifold. In this section we prove a
fundamental surjectivity result for I which underpins the successful
solution of many geometric inverse problems in two dimensions. Recall
from Theorem 5.1.1 the space

C(0,SM) = {h € C®(0,SM) : h* € C®(SM)}.



8.2 Surjectivity of I 203
Recall the notation 4y in Exercise 4.1.5. Since

Ih)e) = [ W) dS.o) = (G0,
8o M
we see that I maps C°(0;5M) to C*°(M).
Theorem 8.2.1. Let (M, g) be a simple manifold. Then the operator
I; : CX(0+SM) — C(M)
18 surjective.

We can reformulate the result in another very useful form. Recall from
Lemma 6.1.3 that f{w = 2mwy where wy is the zeroth Fourier mode of
w € C*(SM).

Theorem 8.2.2 (Invariant functions with prescribed zeroth Fourier
mode). Let (M,g) be a manifold with I surjective. Given any f €
C>*(M), there is w € C*(SM) so that

Xw=01in SM, Lw = f.

Proof Given f € C*°(M), use surjectivity of I} to find h € C3°(04+SM)
with Ith = f. Writing w = h¥, we have w € C*(SM) since h €
C2(04SM). Clearly Xw = 0, and £iw = £5hf = I;h = f. O

The proof of Theorem 8.2.1 is based on the following two facts:

e ]y is injective.
e [i1y is an elliptic ¥DO.

Here I is a linear operator between infinite dimensional spaces, and in
general surjectivity of the adjoint I would follow from injectivity of I
combined with a suitable closed range condition for Iy. The ellipticity of
the normal operator ensures the closed range condition. In the argument
below it is convenient to extend Iy to an elliptic operator P in a closed
manifold and use the fact that P has closed range.

As usual, we consider (M, g) isometrically embedded into a closed
manifold (N,g). Since M is simple, by Proposition 3.8.7 there is an
open neighborhood U; of M in N such that its closure M; := U, is
a compact simple manifold. Let I ; denote the geodesic ray transform
associated to (Mi,g) and let Ny = Ig ;1o 1.

As in Pestov and Uhlmann (2005) we may cover (N, g) with finitely
many simple open sets Uy with M C Uy, M NU; = 0 for j > 2, and
consider a partition of unity {¢} subordinate to {Ux} so that pp >
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0, suppyr C U and Y. 9% = 1. We pick ¢; such that ¢; = 1 on a
neighborhood of M and compactly supported in U;. Hence, for Iy the
ray transform associated to (Uy, g), we can define

Pf:=3 ouIgilop)erf),  feCT(N). (8.2.1)

k
Lemma 8.2.3. P is an elliptic VDO of order —1 in N.

Proof Each operator Ny := I Iox : C2°(Uy) — C°°(Uy) is an elliptic
UDO of order —1 with principal symbol ¢,|¢|~!. By Proposition 8.1.3,
the operator P has principal symbol

ope(P) = Z‘Pkapr(lg,klmk)‘pk = Cn‘ﬂ_l Z‘pi = Cn‘ﬂ_l'
k k

Thus also P is elliptic. O

Having P defined on a closed manifold is convenient, since one can use
standard mapping properties for YDOs without having to worry about
boundary behaviour. For instance for P defined by (8.2.1) we have

P:H*(N)— H*"Y(N)  for all s € R,

where H*(N) denotes the standard L? Sobolev space of the closed man-
ifold N.

Remark 8.2.4. There are other natural ways of producing an ambient
operator P with the desired properties. Let i be a smooth function on
N with support contained in U; and such that it is equal to 1 near M.
Let A, denote the Laplacian of (V, g). Define

Pi=ypNip+ (1 =) (1= Ag) 21— ).

As we have already mentioned, N is an elliptic ¥DO of order —1 on
U; and thus P is also an elliptic ¥DO of order —1 in N. Instead of
(1—A,)~"/2 we could have used any other invertible self-adjoint elliptic
UDO of order —1.

Lemma 8.2.5. The operator P is injective. Moreover, P : C*°(N) —
C>™(N) is a bijection.

The proof follows from the injectivity of Iy (Theorem 4.4.1) together
with basic properties of elliptic ¥DOs which we recall next. Part (a) gives
the existence of a parametriz (approximate inverse), part (b) is elliptic
regularity, and parts (¢) and (d) are related to Fredholm properties.
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Proposition 8.2.6. Let N be a closed manifold and let A € W'(N) be
elliptic.

(a) There is an elliptic B € V"™ (N) so that

AB =1d + Ry,
BAZId+R2,

where R; are smoothing operators, i.e. they have C* integral kernels
and map H*(N) to H'(N) boundedly for any s,t € R.

(b) If Au= f and f € H*(N), then u € H**T™(N).

(c) Ker(A) = {u € C*®(N) : Au =0} is finite dimensional.

(d) Given f € C*°(N), the equation

Au=f
has a solution uw € C*(N) iff (f,w)r2(n) =0 for all w € Ker(A*).

Proof Part (a) is a standard parametrix construction for elliptic ¥DOs

follow from this.
To prove (b), note that if Au = f then by (a)

Bf = BAu = u+ Rau.

Thus u = Bf — Rou where Bf € H*"™(N) and Rou € C*(N), so
ue HsT™(N).
To prove (c), note that if Au = 0 then by (a)

0= BAu = (Id + R2)u.

Now R, is compact on L?(N) (it is bounded L?(N) — H'(N) and the
embedding H'(N) — L?(N) is compact). Thus the kernel of Id + Ry on
L?(N) is finite dimensional, and hence so is Ker(A).

Finally, to prove (d) consider the operator A acting between the spaces

A:H™(N) =Y :={f € L*(N) : (f,w)p2(x) = 0 for all w € Ker(A*)}.

Equip Y with the L2(N) norm. If u € H™(N) then Au is indeed in Y,
since (Au,w)r2(ny = (u, A*w)r2(n) = 0 for any w € Ker(A*). We wish
to prove that A is surjective.

e A has dense range: if f € Y satisfies (Au, f)r2(ny) = 0 for all u €
H™(N), then (u, A* f)p2(n) = 0 for u € H™(N) which yields A* f = 0.
Thus f € Ker(A*), and by the definition of Y one has (f, f)r2n) =0
showing that f = 0.
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e A has closed range: if u; € H™(N) and Au; — f in Y, then by (a)
one has uj + Rou; — Bf in H™(N). Since R, is compact on H™(N),
some subsequence (Rauj, ) converges in H™(N). Then (uj, ) converges
in H™(N) to some v € H™(N). It follows that f = Au.

By the above two points A : H™(N) — Y is surjective. Part (d) follows
from this and part (b). O

Proof of Lemma 8.2.5 Since P is elliptic, any element in the kernel of
P must be smooth. Let f be such that Pf = 0 and write

0=(Pf, flre(vy = Z(Ig,kfo,k(@kf),@kf)Lz(m)
3

- 2
= ;Hfovk(@kf)HLﬁ(aJrSUk)'

Hence Iy 1 (prf) = 0 for each k. Using injectivity of Iy on simple mani-
folds it follows that ¢ f = 0 for each k and thus f = 0.

We have proved that P is injective. Since P is self-adjoint, P* is also
injective. Then surjectivity follows from Proposition 8.2.6(d). O

Exercise 8.2.7. Prove that P : H*(N) — H*"1(N) is a homeomor-
phism for all s € R.

We are now ready to prove the main result of this section.

Proof of Theorem 8.2.1 Let h € C°°(M) be given and extend it smoothly
to a smooth function in N, still denoted by h. By Lemma 8.2.5 there is
a unique f € C*°(N) such that Pf = h. Let wy := Iy 1(p1f). Clearly
w§|5M € C*°(SM) and we let w := w§|a+5M. We must have

wh :w§|5M

since both functions are constant along geodesics and they agree on
0+ SM. Hence w € C°(94+SM). To complete the proof we must check
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that Igw = h. To this end, we write for x € M:

Tw)e) = [ wia.0)as.()

S M
= / wg(ﬂc, v) dS,(v)
Su M

= ({5, 1w1)(z)

=I5 11o,1(p1f) ()
= Pf(x)

= h(z),

where in the penultimate line we used (8.2.1) and that z € M. O

Remark 8.2.8. It turns out that it is possible to give a proof of Theorem
8.2.1 without the need to extend the normal operator to a larger closed
manifold N. In order to do this, one requires finer mapping properties
for N. Let p denote a positive boundary defining function; it was shown
in (Monard et al., 2019, Theorem 4.4) that

N p~YV2C%(M) — O (M)
is a bijection. This can be combined with an additional mapping property

for I established in Monard et al. (2021b) for any non-trapping manifold
with strictly convex boundary, namely

I:p Y2C®(SM) = C(84SM).
These two assertions show that given h € C*°(M), the function
w = IpN " h € C(9,SM)

and satisfies I§w = h. Knowing the precise mapping properties of N
and when it can be inverted is of fundamental importance when ad-
dressing statistical questions about inversion. We refer to Monard et al.
(2019, 2021b) for more details. For the purposes of this text the proof
of Theorem 8.2.1 as presented is more than sufficient.

8.3 Stability estimates based on the normal operator

In this section we will explain how we can derive stability estimates for
the normal operator A/ using some of the tools developed, in particular
the existence of a parametrix as in Proposition 8.2.6. We will keep the
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notation and set up from the previous section, so that (M, g) is a compact
simple manifold and U; is an open neighborhood of M in the closed
manifold N whose closure U; is a compact simple manifold.

We start by noticing that a forward estimate for A follows easily from
the mapping properties of the WDO P. Indeed, let 7 : L>(N) — L*(M)
denote restriction to M and let eps : L2(M) — L?(N) denote extension
by zero. Both operators are bounded and dual to each other. From (8.1.2)
one easily obtains the following truncation formula

N =ryPey in L2(M). (8.3.1)
Exercise 8.3.1. Prove (8.3.1)

Since P : L?(N) — HY(N) and rp; : H'(N) — H'(M), this gives
immediately the mapping property

N L*(M) — HY (M)

and hence a forward estimate [N f|| g1 (ary < C|l fllL2(an)-

In order to derive the stability estimate for the normal operator there
is a small price to pay: we shall measure the L?-norm of f on M, but
we shall consider the H'-norm of the normal operator A; defined on
the slightly larger manifold U;. This is to avoid the boundary effects
as described in Remark 8.2.8 and the need to use Hormander spaces
adapted to the appropriate transmission condition (cf. Monard et al.
(2019)). We will prove:

Theorem 8.3.2 (Stefanov and Uhlmann (2004)). There is a constant
C > 0 such that for any function f € L?*(M),

CH 2y < N f ey < ClIlpzcan-

Here we regard Ny : L*(M) — HY(Uy) simply extending f by zero to
U.

Proof We have already proved the inequality on the right, so we now
focus on the stability estimate on the left. The injectivity of Iy implies
that P : H¥(N) — H*T1(N) is a homeomorphism simply by extending
the proof of Lemma 8.2.5 to Sobolev spaces, cf. Exercise 8.2.7. Thus

[ fllz2ary S NP Sl vy-
But from the definition of P in (8.2.1) we see that

Pf =@ Mf,
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where ¢ is such that ¢; = 1 on a neighborhood of M and compactly
supported in U; (with f extended by zero). It follows that

1P fllar vy S IVl e o)
and the theorem is proved. O

It was shown in Stefanov and Uhlmann (2004), Sharafutdinov et al.
(2005) that for a simple manifold s-injectivity of I,,, implies stability
estimates for the normal operator. As before, this is based on the fact
that N™ := I* I, is an elliptic pseudodifferential operator acting on
solenoidal tensor fields. We shall not prove these results here; instead
we give a brief account of them. Since [; is always s-injective for simple
manifolds we have:

Theorem 8.3.3. Let (M, g) be simple. There is a constant C > 0 such
that for any 1-form f in L?>(S*(T*M)) we have

CUNF N 251 e nryy < Nl wny < CIFE N 2 gsi e any -

A sharp stability estimate for N2, assuming that I5 is known to be
s-injective, was proved in Stefanov (2008):

Theorem 8.3.4. Let (M, g) be simple and assume that I5 is s-injective.
There is a constant C > 0 such that for any symmetric 2-tensor field f
in L?(S*(T*M)),

CU ol sz ey < INT Fllenn) < CIF NlL2sz o any)-

We refer to Assylbekov and Stefanov (2020) for recent sharp stability
estimates for I,,, using these results.

Remark 8.3.5. One can also consider the normal operator and stability
on compact non-trapping surfaces with strictly convex boundary, but
when conjugate points are present. This situation is studied in detail in
Monard et al. (2015). It turns out that Iy is a Fourier integral operator of
order —1/2, but if there is a pair of interior conjugate points then I Iy is
not a pseudodifferential operator anymore. Moreover, I has an infinite-
dimensional microlocal kernel, and some singularities of functions f in
the microlocal kernel cannot be recovered from the knowledge of Iy f.
This implies that even if Iy were injective (like it is for radial sound
speeds satisfying the Herglotz condition by Theorem 2.4.1), the recovery
of f from Iy f will be highly unstable if conjugate points are present. The
instability issue is also discussed in Koch et al. (2021).
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8.4 The normal operator with a matrix weight

Virtually everything that we have done in this chapter so far can be
upgraded to include an invertible matrix weight. Let (M, ¢g) be a compact
non-trapping manifold with strictly convex boundary and let W : SM —
GL(m,C) be a smooth invertible matrix function, called a weight.

Recall from Definition 5.4.5 that the geodesic X-ray transform with
matrix weight W is the operator Iy : C>°(SM,C™) — C*(0+SM,C™)
defined by

7(z,v)
wa(x,v):/o (WF) (oo, 0))dt,  (z,0) € D, SM.

By Remark 5.4.7, Iy is bounded L?(SM,C™) — L?(9,SM,C™). To
compute the adjoint we use the Li space: the adjoint of

Iy : L*(SM,C™) — L2,(04.5M,C™)

is the bounded operator Iy, : L2 (04 SM,C™) — L*(SM,C™) given by
(see Remark 5.4.7):

Liyh = W*h?,
We will be interested on the weighted transform Iy o acting on 0-tensors.

Definition 8.4.1. The matrix weighted X-ray transform on O-tensors
is the operator

[W70 : C’DO(]\47 (Cm) — COO(8+SM, (Cm), Iw)o = Iy o 4.
As in Lemma 4.1.4 one has

(L oh)(@) = | W'hE(x,v) dSa (v).
Se M

The normal operator
N = Ly oIw,o : L*(M,C™) — L*(M,C™)
is now an elliptic YDO.

Theorem 8.4.2 (Ny is an elliptic ¥DO). Let (M, g) be a simple mani-
fold and let W € C>(SM,GL(m,C)). Then Ny = Iy oIw o is a classical
elliptic WDO on M™* of order —1.
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Proof We follow the argument in Section 8.1. From the definitions

Now f(z) = ) MW*(m)(Iw,of)“(x, v) S, (v)
7(z,v)

[ W / W (i1 (2, 0)) f (Y. (1)) dt S (v)
Se M

—7(x,—v)

7(x,v)
- / / W* (2, 0) W1 (2, 0)) f (1.0 (£)) dt S, (0)
SeM JO

7(z,v)
+ / / W* (2, —0) Wt (2, —0)) (e (1)) dt Ao (v).
SeM JO

Following the arguments in Lemmas 8.1.7 and 8.1.10, we have

W*(z, YW (@ (2, 5 exp, (w

attoy= [ WMo E) o)

Jr/ W (2, — ) W) (2, =) f (expy (w)
D |w|n—1

:/ Aw(x,v(:c,y)7y,w(x,y))
M dg(x’y)n—l

where Aw(z,v,y,w) (with v € S; M and w € Sy M) is the matrix func-
tion

AT, (w)

dT,(w)

-

fly)dV™(y)

W*(z, ) W(y, w) + W*(z, —0)W(y, —w)
det(dexp,, |

AW(I, v, Y, U}) =
eXpll(y))

and

o eww)
9 = T ()

Here Aw € C*°(SM x SM), which shows that Aw(x,v(z,y),y, w(z,y))
is bounded in M™* x M™ and smooth away from the diagonal.

’ w(w,y) = Vydg(x7y)

Having computed the Schwartz kernel of My, we move to local coor-
dinates and choose cutoff functions ¢, € C°(M™). After multiplying
by cutoffs, the Schwartz kernel of Ny has the expression

Kow(a,y) = ¢(:E)Aw(x,v(x7y)ay,w(%y))\/wqf)(y)

(Girl(@,y) (@ —y)i(z —y)k)* T

= o — g~ Dy (x oy, 2=V )
|z —yl
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where

ﬁw(x,r,w) = (z)X

Aw(z,v(z, 2 — rw),z — rw, w(z,z — Tw))+/det g(z — rw) o )
— T —rw).

(Gjk(z, 2 — rw)wiwk)

We claim that hw is smooth in R™ x [0,00) x S"~L. To prove this,
it is enough to show that the functions o(z,r,w) = v(z,x — rw) and
w(z,r,w) = w(x,x — rw) are smooth up to r = 0.

Let U C R™ be the open subset where the local coordinates are defined
and let g also denote the Riemannian metric on U. Fix x € U; we are
interested in the behaviour of y = exp, (t0) = 7,,5(¢) for small |¢|, where
© € S,U. Note that the map (¢,9) — y is smooth. Hence, the function
m(t, 0;x) = (Vg,6(t) — x)/t with m(0,9; z) = ¢ is also smooth. We may
introduce new variables (r,w) € R x S"~! such that

r=tm(t,0;z)| and w= —M.
[m(t, 0; )]
Then x — rw = 7,,5(t). It is straightforward to check that the Jacobian
of the change of coordinates (¢,9) — (r,w) is non-zero for ¢ = 0 and
thus by the inverse function theorem and the fact that (0,9) — (0,w)
is injective (cf. Lemma 11.2.6 for a related formulation) there is § small
enough such that this change of coordinates is a diffeomorphism from
(=0,8) x S,U onto its image. Thus we have smooth inverse functions
t(r,w) and 9(r,w) for r small enough and w € S~ 1.

To complete the proof that hw is smooth observe that o(z,r,w) =
O(r,w) and

W(x,7,w) = dexp, |¢(rw)i(rw) (0(r,w))

and thus both are smooth as functions of (r,w) as desired. Now the same
argument as in the end of Section 8.1 implies that Ny € W '(M™).
Ellipticity follows from Exercise 8.4.3 below. O

Exercise 8.4.3. Show that the principal symbol of Ay in local coordi-
nates as above is given by

o N, 6) = [ e detglz)

n |25~

(W, 2/12lg)W(z, 2/|2lg) + W (2, —2/|2[g) W (2, —2/|2ly)) dz.

Using that W is invertible conclude that Ny is elliptic. What happens
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if W is not invertible? Show that if W takes values in the unitary group,
the principal symbol is cn|£|g_11d.

With this result in hand, Theorem 8.2.1 can be upgraded to:

Theorem 8.4.4. Let (M, g) be a simple manifold. Then Iy o is injective
on L2(M,C™) if and only if

Ly : C(0+SM,C™) — C*(M,C™)
18 surjective.

Proof Let f € L*(M, (C”Z) be such that Iyw,of = 0. Consider a slightly
larger simple manifold M engulfing M and extend W smoothly to it.
Extending f by zero to M we see that

IW,of =0

and thus N f = 0. By Theorem 8.4.2, N is elliptic and hence f is
smooth in the interior of M and hence on M. Assume now that Ly o 1s
surjective. Then there exists h € C5°(91.SM,C™) such that Iy h = f.
Now write

0= (IW,Of7 h) = (f?I\\,};/,Oh) = (fv f)

and thus f = 0.

Assume now that Iy o is injective. We wish to show that I{,‘MO is sur-
jective. This part of the proof proceeds exactly as the proof of Theorem
8.2.1. We construct an elliptic operator P : C*°(N,C™) — C*(N,C™)
and we show it is a bijection by showing first that it has trivial kernel.

The surjectivity of P implies the surjectivity of Iy , exactly as in the
proof of Theorem 8.2.1. O

Exercise 8.4.5. Fill in the details of the proof of Theorem 8.4.4.

Let us state explicitly the following rephrasing of Theorem 8.4.4 that
will be useful later on.

Corollary 8.4.6. Let (M,g) be a simple manifold with Iw o injective.
Given f € C(M,C™) there ezists u € C*(SM,C™) such that

Xu+ Au =0,
Lu=f

where A= —X(W*)(W*)~! and lu = [, u(z,v)dSy(v).
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Proof By Theorem 8.4.4 thereis h € C° (94 SM, C™) such that £5W*hf =
f. We let u := W*h! € C>(SM,C™). Since Xh* = 0, the function u
satisfies

Xu=X(Wh! = —Au

and the corollary follows. O
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9

Inversion formulas and range

Let (M, g) be a simple two-dimensional manifold, and let f € C*°(M).
We already know that f is determined by its geodesic X-ray transform
uniquely and stably. In this chapter we will discuss the issues of recon-
struction and range characterization, i.e. how to determine f from I f
in a constructive way and how to decide which functions in 4 SM are
of the form Iy f for some f.

In fact we will prove reconstruction formulas that allow one to ex-
actly recover f from Iyf when (M, g) has constant curvature, and lead
to approximate recovery with error terms given by Fredholm operators
when (M, g) is a general simple surface. For the unit disk in the plane,
the reconstruction formula is equivalent to the filtered backprojection
formula (Theorem 1.3.3) after a suitable transformation is applied.

9.1 Motivation

This section motivates the derivation of the reconstruction formulas and
introduces the operator W that will appear. Let (M, g) be a simple
surface and let f € C*°(M) be real valued. We would like to reconstruct
the function f in M from the knowledge of its geodesic X-ray transform
Iof on 0. SM. Recall from Lemma 4.2.2 that the X-ray transform is
characterized as Iof = uf|s , su Where uf solves the transport equation

Xuf = —fin SM, uf|375M:0.

The function «/ has the minor problem of not being smooth near 9y,SM,
but this can be rectified by considering its odd part u’ . Since f is even,
u’ is in C>°(SM) by Theorem 5.1.2, and it satisfies

Xul =—finSM, u! |osar = (Iof) -

215
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where (Ipf)— is the odd part of the zero extension of Iy f to 9SM, i.e.

(Iof)-(z,v) := { —iﬁﬁi% gz; 2 gﬁ%j (9.1.1)

Now, if we could determine the solution u! in SM from the knowl-
edge of its boundary value (Ipf)_ on OSM, then we could reconstruct f
just by using the equation f = —X u’ . Of course an arbitrary solution
of Xu = —f is not determined uniquely by its boundary values (the
solution u is only unique up to adding solutions of Xr = 0, i.e. invari-
ant functions). However, uniqueness may follow if we impose additional
conditions on u. One useful condition is that u is holomorphic in the
angular variable.

We consider the following scheme:

Produce a holomorphic odd function u* € C*(SM) so that
Xu*=—fin SM and u*|gsn is determined by Iof.

(9.1.2)

If such a function u* could be found, we could reconstruct a real f

from u*|psar as follows: since X (Im(u*)) = 0, the function Im(u*) is

determined in SM by the boundary values u*|ssps. By holomorphicity

u* is determined by Im(u*) (in principle up to a real additive constant,

but the fact that u* is odd implies that ug = 0 so this constant does not
appear). We could then recover f from the equation f = —Xu*.

Recall that u/ is a smooth odd solution of Xu = —f and that ul losnr

is determined by Iy f. The first naive attempt to implement (9.1.2) would

be to choose u* to be (twice) the holomorphic projection of u{, ie.
u* = (Id+iH)u! =20uf +uf +ul +..). (9.1.3)

It turns out that this attempt already works if (M, g) has constant cur-
vature. We formulate a related lemma.

Lemma 9.1.1 (Holomorphic projection of u’ ). Let (M, g) be a compact
non-trapping surface with strictly convex boundary. If f € C>(M), then
u* = (Id +iH)u! € C®(SM) satisfies

Xu' ' =—f—iWf
where W is the operator
W :C®(M) — C®(M), Wf=(X,ul).

Proof To see this, recall from Definition 6.1.4 the Guillemin-Kazhdan
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operators ny = %(X + X, ) that satisfy 9y : Qx — Qg11. Using the
decompositions

X =ny+n-, XL =0y —0-
together with the equation Xul = —f, we see that

Xu* =2 uf = (n_uf +npuly) + (n-wf —niu’y)
— W 0

Th operator W will be important for the reconstruction formulas. We
will prove that it has the following three properties:

(1) If (M, g) has constant curvature, then W = 0.

(2) If g is C3-close to a metric of constant curvature, then W has small
norm (Krishnan, 2010).

(3) If (M, g) is a general simple surface, then W is a smoothing operator
(Pest

ov and Uhlmann, 2004).

By (1) we see that if (M, g) has constant curvature, then W f = 0 and
Xu* = —f. Therefore the scheme (9.1.2) with the choice of u* given
in (9.1.3) allows us to reconstruct f from Iyf. In the general case W f
is an error term. We may iterate the construction once more using the
anti-holomorphic function

o= (Id — iH)u/ T = 2(u’f1riwf + u{gin +...).

Note that X (u* — u/TW/) =0, and u* — u/TWf |5 sar = u*|o_sar is
determined by Iof. Thus Iyf determines ufT""/|55), and hence also
u**|psn. Now a computation as above yields that

Xu* = —f — W2f.

It follows that the function f + W?2f can be reconstructed from Iy f.

In the following sections we will prove the properties (1)—(3) of the
operator W in detail. We will give a slightly different argument for re-
constructing f + W2f from Iyf, based on using the fibrewise Hilbert
transform H and the commutator formula [H, X]u = X ug + (X L u)o.
To conclude this section, it is instructive to see why W = 0 in the
Euclidean case.

Example 9.1.2 (W in the Euclidean case). Let (M, g) be the Euclidean
unit disk and let f € C°(M™*). Then we may write

uf (x,0) = /OO fx + tvg) dt
0
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where vg = (cosf,sinf). Since X = (vg)1 - V4, we have

XL’UJf(.T,e) = /OO(UQ)L -V f(x + tug) dt.
0

We may then compute
1 27 e’}
W) = CCoulo@) = 5o [ [ o)+ Varta + tua) dedo
o Jo

e’} 2
:—inm/ / wdﬁdt.
5 0

271 e—=0

One has W f(x) = 0 since fOZ7T O (f(x + tvg)) dd = 0.

9.2 Properties of solutions of the Jacobi equation

Let (N, g) be a closed oriented two-dimensional manifold. We have seen
in Section 3.7.2 that Jacobi fields on IV are completely described by the
smooth functions a,b: SN x R — R that satisfy the Jacobi equation in
the t-variable,

d+K('71,v(t))a =0, B—’_K(Wx,v(t))b =0,

with initial conditions a(z,v,0) = 1, a(z,v,0) = 0, and b(z,v,0) = 0,

b(z,v,0) = 1.
The functions a and b have the following properties.

Proposition 9.2.1. There exist smooth functions R, P € C*(TN) such
that

a(z,v,t) =1+ t*R(x, tv), (9.2.1)
b(z,v,t) =t +t3P(x, tv).

Moreover, we have
b(z,v,t) =t det(dexp, |tv)-

Proof We first consider a(x,v,t). The initial conditions a(z,v,0) = 1
and a(z,v,0) = 0 together with Taylor’s formula imply that

a(z,v,t) =1+ t2c(z,v,t) (9.2.3)

where ¢ € C*(SN x R). By differentiating the equation ¢ + Ka = 0
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repeatedly we obtain
k
o+ 2a(x,v,0) Z( > X7K)(z,0)0} 7 a(x,v,0)
j=

where X7 is the geodesic vector field applied j times. Using induction
and the fact that 1 = gjpv/v*, we see that 0 2a(x,v,0) is a homo-
geneous polynomial of degree k in v. Thus by (9.2.3), 9Fc(x,v,0) is a
homogeneous polynomial of degree k in v.

We use Borel summation and define

Ofc(x,v O)
cr(z,v,t) = Z = tx(t/en) (9.2.4)
k=0
where x € C°(R) satisfies 0 < x <1, x =1 for |[t| < 1/2, and x = 0 for
[t| > 1, and ef, are chosen so that ¢; € C*°(SN x R). Then ¢ = ¢; + ¢
where c; € C*°(SN x R) satisfies

oFcy(x,v,0) =0,  k>0. (9.2.5)

The formula (9.2.4) together with the fact that dFc(z,v,0) is a homo-
geneous polynomial of order k in v shows that ¢;(z,v,t) = Ri(z,tv)
where Ry € C*°(T'N). Moreover, using (9.2.5) one can directly check
that Ra(z,w) = co(x, w/|wl,|w|) is smooth in T'N with vanishing Tay-
lor series when w = 0. Thus we have

a(x,v,t) =1+ t*R(x, tv)

where R := Ry + Ry € C°(TN).

The proof for b(z,v,t) is analogous. First we observe that b(x,v,t) =
t+t3d(z,v,t) where d is smooth. By induction 8f+3b(33, v,0), and hence
also 0¥d(z,v,0), is a homogeneous polynomial of degree k in v. Thus
d(z,v,t) = P(x,tv) where P is smooth in TN. The formula b(x,v,t) =
t det(dexp,, |tv) follows from Remark 8.1.11 and Lemma 3.7.7. O

Remark 9.2.2. By differentiating the equations d + Ka = 0 and b+
Kb =0, it is easy to obtain the expansions

1 1

a=1- 5Kzs? — 6dK|I(v)t3 +O(th),
1

b=t — 5Kt3 +O(th).

We also recall from Section 3.7.2 that the Jacobi equation §j+ K (t)y =
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0 determines the differential of the geodesic flow @;: if we fix (x,v) € SM
and T ) (SM) 3§ = =& X1 + &V then

dei(§) = —y() X L(i(2,0)) + 5OV (@i(2, ), (9.2.6)
where y(t) is the unique solution to the Jacobi equation with initial
conditions y(0) = & and §(0) = & and K(t) = K(m o pi(x,v)) (cf.
Subsection 3.7.2). The differential of the geodesic flow thus determines
an SL(2,R)-cocyle ¥ over o; with infinitesimal generator

0 -1
am( Y
This means that ¥ is the solution of the matrix ODE

%\I/(x, v, t) + A(pe(x,v)¥(z,v,t) =0, V(z,v,0)=1d,

and satisfies the cocycle property
\I/(l‘, U, t+ 5) = \Ij(gpt('xa U)a S) \IJ('T7 v, t)

for all (z,v) € SN and s,t € R. We may write ¥ using the functions

a,b above as
a b
v t) = ..
(@v.8) (a b>

Clearly the cocycle ¥ can be identified with dy; acting on the kernel of
the contact 1-form of the geodesic flow (i.e. the 2-plane spanned by X |
and V).

9.3 The smoothing operator W

Let (M, g) be a non-trapping surface with strictly convex boundary. We
consider as usual (M, g) sitting inside a closed oriented surface (N, g). We
shall define an operator W : C*°(M) — C*° (M) following our discussion
at the begining of the chapter. This operator will have the property that
it extends as a smoothing operator W : L?(M) — C°*°(M) when M
is free of conjugate points, and it will play an important role in the
Fredholm inversion formulas in the next section.
Given f € C*°(M) define for any = € M

(W £)(w) = (X 1w o) = - (3(X 1w ().
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In the definition above we may replace u/ by u’ and we have seen that
the latter is smooth (cf. Theorem 5.1.2). Hence we have

Wf=(Xul)yeC=WM).
Exercise 9.3.1. Show that W f = i(n,u{ — 77+u1:1).

We now give an integral representation for W when (M, g) is a simple
surface. We will use the functions a and b introduced in the previous
section. Note that (M, g) has no conjugate points iff b(z,v,t) # 0 for
t € [—7(z,—v),7(x,v)], t # 0 and (x,v) € SM.

Proposition 9.3.2. Let (M, g) be a simple surface. The function

wtarnt) o (420

is smooth for (x,v) € SM andt € [—7(z, —v),7(x,v)], and has the form
w(z,v,t) =tQ(x, tv)

where Q) is smooth. The operator W has the expression

7(z,v)
Wh@ =g [ [ w0160, 0)ds. .

The function w = w(x,v,t) also has the formula

w= —@ / g(t, $)b(s) [a()b(t) — b(8)a(t)] A, (s) (iro(5)-) ds,

with a(t) = a(z,v,1), b(t) = b(x,v,1), g(t,s) = b(Yz,u(8), Ya,u(s5), T — ).
In particular, W = 0 if (M, g) has constant curvature.

Proof By simplicity b(z,v,t) # 0 for ¢t € [—7(x, —v), 7(x,v)] and ¢ # 0.
Thus w is smooth for ¢ # 0. Using the definition of w we have that

V(a) aV(b) '

w(z,v,t) = 2 2

Proposition 9.2.1 gives that

a(z,v,t) = 14+ t*R(x, tv),
b(z,v,t) =t + t>P(x, tv),

where R and P are smooth. Since V = (0,v1) in the splitting (3.6.1),



222 Inversion formulas and range

we have in the notation of Section 3.6 and in terms of the Sasaki metric
on T'M that

V(R((E, tU)) = <VR|(x,tv)a (0’ tUJ_)> = <K(VR|(x,tv))a th_>
= (K(VR|(z,10)) L, tv).

Doing a similar computation for V(P(z,tv)), it follows that

where R and P are smooth (and R(z,0) = P(z,0) = 0). Since b =
t det(dexp, |t,), we have that V(a)/b and aV(b)/b* are of the form
tS(z, tv) for some smooth S (for the latter we also use t* = g;,tvitvF).
It follows that

w(z,v,t) =tQ(x, tv)

for some smooth Q.
To derive the integral formula for W we use its definition and write

1

21 Js.m

7(z,v)
(W f)(z) X1 [/O F(rew(®)) dt] dSy(v).  (9.3.1)

Let us assume first that f has compact support contained in the interior
of M. Then:

7(z,v) 7(z,v)
X[ faatit= [ XL (O ®)) dr

Now observe that

X1 (f(Yaw(t) = df o dm o dpy(X 1 (x,v))
and similarly

V(f(Yew(t) = df odr o dpy(V(z,v)).
But by (9.2.6)
dm o dpy(X 1 (7,v)) = = (t) T
and
dr o dps(V(x,v)) = b (t)F,

therefore for ¢t # 0

X1 (F(re(®) = df (=0 () = =3V (F (0 (D)):
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Inserting the last expression into (9.3.1) we derive

7(z,v)
W)@ —hm/SM/ ~ IV (0 (1) dE S, (0).

21 e—0

[ v /T(M)“m () dt ] dS.(v) =0
Y E b T,V T

and since V(a/b) is smooth, we finally obtain

wne =5 [ V(8 sttt aras. o

as desired.
Next, differentiating the ODEs for a(t) = a(x,v,t) and b(t) = b(z,v,t)
yields
(Va)"(t) + K (720 ()Va(t) = —dK],, @ (dr o doy(V(z,v)))a(t),
(VB)"(t) + K (V2,0 (1)) V() = —dK|,, (1) (drm o dpr(V (2, 0)))b(1).

But we saw that dr o do;(V (x,v)) = b(t)¥s.(t)*. Duhamel’s principle
gives

Va(t) = 7/0 b('ch,v(S)v;Yr,v(S)at - S)Q(S)b(5>dK|vm,u(s)('.chﬂ)(S)L) ds,

Since

Vb(t) = — /0 b(e0(5), Ama (), £ — $)B()B()AK ], 0y (Fmna(s)) ds.

Now

B a(z,v,t)\  (Va)b—a(Vb)
wiz,v,t) =V (b(m,v,t)) o b2

and the required formula for w(z, v, t) follows.

The proof above was done assuming that f € C2°(M™%) but we could
have carried out the same proof with f € C*(M), i.e. smooth and
supported all the way to the boundary. This would have produced two
additional boundary terms:

X1 (1) f(yaw(7(2,0))) and V(1)

a(z, v, 7(x,v))

mf(%,u(r(z,v)))_

However these two terms cancel out due to the following fact that is
easily checked:

a(z,v,7(x,v))V(r) + b(z,v, 7(z,v)) X (1) = 0. (9.3.2)

Hence we get the same integral formula for f € C°(M). O
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Exercise 9.3.3. Prove identity (9.3.2).

Exercise 9.3.4. Use Proposition 9.3.2 to show that if g is sufficiently
C3-close to a metric of constant curvature, then ||W||z2 < 1 (cf. Krishnan

(2010)).
Exercise 9.3.5. Let F' := b*w. Show that F satisfies the ODE (in time)
F 4 4K (2,0 () F + 24K (Y5, (0) F = =2V (K (72,0(1))-
Show that W = 0 iff K is constant.
We now prove that W is smoothing on simple surfaces.

Proposition 9.3.6. Let (M,g) be a simple surface. The operator W
extends to a smoothing operator W : L*(M) — C°°(M).

Proof We will make a change of variables that transforms the integral
expression for W into something of the form

(W )(x) = /M ke, y) f(y) dV2(y)

with k smooth. The change of variables is exactly the same we used in
the proof of Theorem 8.1.1. We set 1, (v,t) 1= y = exp, (tv) and we see
that
W) = [ k)i avie)
M
where
w(z, 7' (y
k(x,y) = (7_1())
bz, vz (y))
Using Proposition 9.3.2 we can rewrite this as
Q(z,exp; ' (y))
det(dexp, |

k(xv y) =

expll(y))

that clearly exhibits k£ as a smooth function. O

9.3.1 The adjoint W*

The adjoint of W with respect to the L2-inner product of M can be
easily computed:

Lemma 9.3.7. Given h € C°(M™) we have

W*h = (u™+") .
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Before proving the lemma we establish an auxiliary result that holds
in any dimensions.

Lemma 9.3.8. If f € L?>(SM) is even and g € L*(SM) is odd, then

Proof 1t suffices to check the claim when f and g are smooth and with
compact support in M™. We have

(.19 = |

) SMquIng2”_2 =2 / pud uf dxn2,
.

oOSM

Since Xu} = Xu? = 0 we have X(ufu?) = 0 and using Proposition
3.5.12 we obtain

/ uuiuﬂ ax?=2 = . O
OSM
Proof of Lemma 9.3.7 Given f,h € C°(M™) we compute
2w (W f, 1) L2 ary = 27 (X 1ul Yo, B) 2 ar
= (X1uf h)r2(san
=—(u/, X h)2sm)
= (uf»X(uXLh))LQ(SM)
= —(Xu! w2 oy = (T, (X 1h)) L2
= (f, ") 25

= 20(f, (64) s

where in the penultimate line we used Lemma 9.3.8. O

9.4 Fredholm inversion formulas

In this section we establish an inversion formula for Iy up to a Fred-
holm error using the smoothing operator W. This formula was proved
tov and Uhlmann (2004), and we partly follow the presentation in

2016b). We begin by proving the following result.

Theorem 9.4.1. Let (M,g) be a compact non-trapping surface with
strictly convexr boundary. Then given f € C°°(M) we have

f+W2f = —(X 1w
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where
w:=[H (Iof)-]lo_smoa

and (Ipf)— denotes the odd part of the zero extension of Inf to OSM as
in (9.1.1).

Proof The proof essentially consists in applying the Hilbert transform
H twice to the equation Xu’” = —f and using Proposition 6.2.2.
Applying H once we derive (since Hf = 0):

XHul = -Wf (9.4.1)
since (u{ )o = 0. Applying H again we obtain

XH?* + (X, Hu')o=0
!

and using that H2u! = —uf we derive
—f=Xul = (X, Hul),. (9.4.2)
Using (9.4.1) we see that
Hu! = a7 4wt

where w := [Hu!]|s_sp 0 @ € C°(0,SM). Inserting this expression
into (9.4.2) yields

—f = W2f = (X1
and the proof is completed by observing that
ul losar = (Iof) - 0
Exercise 9.4.2. Using (9.4.1) show that Io(W f) =0 if Iof = 0.

The term (X w#)y appearing in the formula in Theorem 9.4.1 can be
interpreted as the adjoint of a suitable X-ray transform.

Definition 9.4.3. Let (M, g) be a non-trapping surface with strictly
convex boundary. We set I, : C®°(M) — C*(0.SM) as

IL(f) = I(XLgof)

Exercise 9.4.4. Let (M, g) be a simple surface. Show that I,(f) =0
iff f is constant.
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By Proposition 3.5.12 we know that X7 = —X if we let X, act on
C-functions that are zero on S M. Hence the formal adjoint I* is given
by

I (w) = —£5X T* (w) = —27(X Lw)o. (9.4.3)
Next we shall re-interpret the term

w=[H (Ilof)-]lo_smoa

using suitable boundary operators. For this we need to have a prelimi-
nary discussion on objects at the boundary.

9.4.1 Boundary operators

Let (M, g) be a non-trapping manifold with strictly convex boundary.
We introduce the operators of even and odd continuation with respect
to a:

] w(z,v) if (z,v) € 0;5M,
Agwlw,v) = { tw(a(z,v)) if (z,v) € 3J_FSM.

Recall that the operator A, already appeared in Section 5.1. Clearly
Ay 2 C(045M) — C(0SM). We will examine next the boundedness
properties of A.

Lemma 9.4.5. Ay : L7 (01SM) — L}, (9SM) are bounded.

Proof We compute

|w|2‘ud22n72+/a SM‘a*w‘Q(_‘udZ2n72)

:/ |w|2ud22n_2—|—/ |w|2a*(ud22n_2).
04 SM oy SM

In the second term we used that o reverses orientation. By Proposition
3.6.8 we know that

2
45wl osn, = /3 B
+

ot (ﬂ d22n72) — Md22n72

and the lemma follows. O
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The adjoint A% : Lm(@S’M) — L2 (0, SM) satisfies

(Axw,u)p2 (osm) = /
* o4y SM

= / w(t+ 7o a)pds? 2
8y SM

wiip dX* % + / (w o a)u(—pdx?""?)
8_SM

S0
tu=(utuoa)ls,sm- (9.4.4)

The boundary operator A* can be used to give a very simple descrip-
tion of the range of I.

Proposition 9.4.6. Let (M,g) be a non-trapping surface with strictly
convex boundary. A function ¢ € C*(0+SM) belongs to the range of

I:C®(SM)— C*(8;5M)
if and only if there is w € C*°(0SM) such that ¢ = A* w.

Proof 1f ¢ € C*(0+SM) is in the the range of I, there is a smooth
f € C*(SM) such that If = q. Using Proposition 3.3.1 we know there
isu € C*(SM) such that Xu = f and integrating this equation between
boundary points we obtain w o« —u = I f. Thus if we set w = —ulggn,
then g =1f = A* w.

Conversely, if ¢ = A* w for w € C*>°(dSM), we extend w to a smooth
function on SM, still denoted by w. Now set f := —Xw and once again,
integrating between boundary points we see that If = A*w = ¢ as
desired. O

Remark 9.4.7. Note that the previous proposition holds in any dimen-
sion with the operator A* defined by (9.4.4).

9.4.2 Symmetries in data space

Let a: SM — SM denote the antipodal map on each fibre, a(z,v) :=
(z,—v). Clearly a : 9SM — OSM. Define a new involution combining
the scattering relation with a as

Qy ’=aoa=aoaq.
From the definitions we see that

Qg : O+ SM — 0+SM.
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Lemma 9.4.8. Let (M, g) be a non-trapping manifold with strictly con-
vezx boundary and let f € C>°(SM). Then

I(f)oa, =I(foa).
Proof Using that ao¢, = ¢_;0a and 7o a, = 7, we write for (z,v) €
8+SMZ
CHCED)
Ieazo)= [ fleaus,v)de
0
7(z,v)
= / foalp_toalz,v))dt
0

7(z,v)
- / f 0 a(@rom—t(@:v)dt = I(f 0a)(x,v)

as desired. O
This lemma motivates the following decomposition in data space:

C®(0+SM) =V dV_, (9.4.5)

where
Vie={feC®0+5M): foa,==xf}.
Lemma 9.4.9. Given h € C*(0+SM) we have
hfoa=(hoa)

In particular, if h € V4 (V_), then the function h* is even (odd) in SM.

Proof Using the definition of Af and o we write:
(hoaa)f = h(a(a(p_r(z,—v)(7,))))
= h(a((pr(mﬁfv) (.T, _'U>))
= h(<p—7'(ac,v)(x7 7”))
= hﬁ o a
as claimed. O

Exercise 9.4.10. Show that the decomposition (9.4.5) is orthogonal
with respect to the Li—inner product on 0 SM.

We are now ready to prove the following inversion formula up to the
Fredholm error W?2.
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Theorem 9.4.11. Let (M,g) be a compact non-trapping surface with
strictly convex boundary. Then given f € C°°(M) we have

1 * *
fH+W2f = 871LA+HAJO(f).

Proof As in Theorem 9.4.1 we let
w = Oé*H(Iof)_ ‘8+S]\/j.

Using Lemma 9.4.8 we see that

A_(Io(f)) =2(Iof)- (9.4.6)
and hence by (9.4.4) we may write

1
w=a"H(lof)-lo.su = 7 (A% — AL)HA_Lo(f).
A simple inspection using (9.4.6) reveals that

A*HA_Iy(f) € Vs

and hence by Lemma 9.4.9 and (9.4.3) this function is annihilated by I
(note that X, maps even functions to odd functions). This yields

1
Il (w) = ZIIAiHA,IO(f).
The claimed formula now follows from Theorem 9.4.1 and (9.4.3). O

Exercise 9.4.12. Let (M, g) be a non-trapping surface with strictly
convex boundary. Show that given f € C*°(M) such that flgy =0, we

have

F (W f = TALHA L)

Does the equation hold if we do not require f|pas = 07 (Hint: consider
the case of the Euclidean disk.)

Remark 9.4.13. The equations in Theorem 9.4.11 and Exercise 9.4.12
provide approximate inversion formulas for Iy and I, . The formulas be-
come exact only in constant curvature. The boundary operator A% HA_
could be interpreted as a filter that is applied to the data Iy(f), before
the backprojection operation of applying I7. In this sense the anal-
ogy with the filtered backprojection formula in Theorem 1.3.3 for the
Euclidean case is evident. Note that the formulas are valid on any non-
trapping surface with strictly convex boundary. The absence of conjugate



9.4 Fredholm inversion formulas 231

points (i.e. simplicity) is only used when claiming that W is a smoothing
operator.

The fact that the formulas become exact in constant curvature, and
in particular in the case of the unit disk in the plane, raises the question
(with stentorian voice) as to how the inversion formula given by Theorem
9.4.1 relates to the filtered backprojection formula (FBP) in Theorem
1.3.3. In the next section we shall see how to derive Theorem 1.3.3 from
Theorem 9.4.1 when f is supported in the interior of the unit disk in R?.
This will be achieved by introducing a suitable transformation between
fan-beam geometry and parallel-beam geometry. But first we give some
general remarks concerning the Hilbert transform.

9.4.3 Alternative expressions for the Hilbert transform

We let (M, g) be a non-trapping surface with strictly convex boundary.
The fibrewise Hilbert transform was introduced in Definition 6.2.1. There
is an alternative way of writing the transform in terms of the principal
value of an integral over each S, M. More precisely we may write:

I . U3 B e
Hu(z,w) = 5 P ./SwM ow) (x,v) dSy(v). (9.4.7)

Exercise 9.4.14. Prove that (9.4.7) is equivalent to Definition 6.2.1.

The next lemma provides an integral expression for the function H ul ,
where f € C°°(M). Recall that u’ [psar = (Iof)_.

Lemma 9.4.15. We have for (z,w) € SM:

Uf r,w) = i v ; e v
)= v [ (/ f(%c,v(t))dt) 45.(v)

Remark 9.4.16. If we use the special coordinates in Lemma 3.5.6 and
think of v as an angle 6 € [0,27] and w also as an angle n € [0, 27], we
may alternatively write

f B 1 2m 1 7(z,0)

Proof of Lemma 9.4.15 The following is true for any u:

1 Y u(zx,v) ;
H_u(z,w) = 9 P- ./smM (0, w1) dSz(v),
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where H_u := H(u_). This follows from (9.4.7) by observing that the
kernel of the Hilbert transform splits into odd and even (in v) as

1+ (v,wy 1 (v, w)

(w,awy)  (wywy)  (v,wy)

The proof of the lemma is completed by recalling that

7(z,v)
uf(x,v) = /0 F(yaw(t)) dt. O

9.5 Revisiting the Euclidean case

In this section we let M = D be the closure of the unit disk in RZ.
Suppose f is a smooth function supported inside the disk. We use the
notation Rf(s,w) to indicate the Radon transform of f in parallel-beam
coordinates as in Section 1.1. In other words

Rf(s,w) := /jo f(sw + twh) dt,

where (s, w) € R x St. Note that Rf(s,w) = 0 for s outside [—1,1]. We
let H® denote the standard Hilbert transform in the variable s:

(H?g)(s,w) = %p.v. /OO 9(t, w) dt.

oo S

Our first task is to introduce a suitable transformation mapping from
SM (and OSM in particular) to the parallel-beam coordinates (s, w) €
[—1,1] x S*.
Define h : SM — [-1,1] x St by
h(z,w) = ((z,wy),w,).
We also define
h = h|85M~
Since the geodesic flow is ¢ (z,v) = (z + tv,v) we see that ho ¢, = h.

In terms of (z,w) € dSM, we may express the scattering relation quite
nicely as

a(z,w) = (z — 2{z, w)w, w).

We may check directly that hoa = h (obviously it also follows from the
fact that h remains constant along geodesics).
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The next lemma is an important observation to relate the Pestov-
Uhlmann formula with the FBP formula in Theorem 1.3.3 (compare
with (Boman and Stromberg, 2004, equation (2.12))).

Lemma 9.5.1. We have
Hu! = —%h*Hst.
Proof Using Lemma 9.4.15 we may write
Hu! (z,w) ! / ! (/oof(sc—i-tv)dt) dS;(v)
~(x, = — p.V. . .
2 P s.m (v,wi) \Jo
(9.5.1)

The key change of variables is given as follows. Given y € R? we write
it as

y = +tv = rw + rpwt, (9.5.2)

taking advantage of the fact that {w,w"} is an oriented orthonormal
basis of R?. The change of variables (t,v) — (r1,72) relates the area
elements as

tdt dSz(v) = d’f‘l d?"g.
From (9.5.2) we see that
(z, wJ_> + (v, wJ_> =T2

and thus we may transform the integral in (9.5.1) to

1 oo o0
Hu! (z,w) = Py p.v./ _dr (/ f(riw + rwt) drl)
a —0o0

—o0 <x7 wl> -T2
1  Rf(—ro,wy)
= — V. —_— d
o DY /_Oo (z,wt) —ry "2
1
:—iHst(@:,wL},wl). O
Remark 9.5.2. Since hoa = h, the formula above implies that H (o f)_
is invariant under «. This is a peculiarity of constant curvature since in
general X H u = -—w fand Wf = 0in constant curvature. (Recall that

u! |osnr = (Iof)-")

9.5.1 X, and 4

Given p € C*°([—1,1] x S') we can pull it back via h to obtain h*p €
C*®(0SM). Moreover, (h*p) o a = h*p and thus by Theorem 5.1.1 this
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function gives rise to a smooth first integral on SM that we denote by
(h*p)¥. Clearly (h*p)* = h*p which is very convenient.

Lemma 9.5.3. We have
Op !
X, (hp)f=(hn=) .
1(h"p) ( 83)

Equivalently

Ip

35"

Proof The flow of X is simply ¢ (z,v) = (z + tv,,v). Thus

X1 (h*p) =h"

h*p(yi(z,v)) = p(h(z + tvi, v)) = p({z,v1) +t,v1).

Differentiating at ¢ = 0 we obtain:

X)) = S0 0)) = (052 ) (av0)

as desired. O

9.5.2 Deriving the FBP from Theorem 9.4.1
To finish off, we define w := H(Iyf)_|ssm and note that by Lemma 9.5.1
one has w = f%h*HSRf. Defining p := f%HSRf we have w = h*p, so
w! = h*p. Now Lemma 9.5.3 gives that

1 d
X wh=——h*(—-H° .
L 2 (ds Rf)

Theorem 9.4.1 in the constant curvature case (so that W = 0) together
with Remark 9.5.2 will tell us that

f=—(X1w"o.

Let g := %H *Rf. Then performing the fibrewise average and using the
definition of h we derive

fla) = 3= [ atbe.0)) dS,(0)

1

~an Jsu
1

o 47T S M

g({z,v1),01) dSe(v)

g({z,v),v) dS,(v).
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Therefore using the definition of the backprojection operator R* given
in Section 1.3 we obtain

1 * d S
f= B <dsH Rf) (9.5.3)

which is a well-known form of the FBP formula.

Exercise 9.5.4. Show that (9.5.3) is equivalent to the FBP formula
from Theorem 1.3.3. (Hint: use that |o| = (io)(sgn(o)/i) and identify
the operators associated with each factor as Fourier multiplier.)

9.5.3 Holomorphic integrating factors

Continuing with the Euclidean unit disk M, we know from Remark 9.5.2
that in the flat case Hu' is a first integral, thus w := (I + zH)uJ: has
the property that Xw = —f and moreover it is holomorphic and odd.
Similarly, @ = (IfiH)u{ is odd, anti-holomorphic and solves Xw = — f.
Such functions are called holomorphic integrating factors. Proving their
existence in the simple case will be very important and the subject of
discussion in subsequent chapters. Here we simply wish to point out that
their existence in the Euclidean case is quite straightforward.
For completeness we note:

Lemma 9.5.5. ui = %h*Rf.
Exercise 9.5.6. Prove the lemma.

Remark 9.5.7. The function g := %(I + iH?®)Rf appears prominently
in the classical literature on the attenuated Radon transform. Lemmas
9.5.1 and 9.5.5 tell us that uf —w = h*g and the holomorphicity of w
in the angular variable is extensively used, see for instance (Finch, 2003
Lemma 2.1).

9.6 Range

We will describe the range of Iy and I, following Pestov and Uhlmann
(2004). To do this we shall introduce a boundary operator that will
naturally appear in the discussion below.

Let (M, g) be a non-trapping surface with strictly convex boundary.
We define

P Ogo(a+SM) — C°°(3+SM)
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as
P = AiHA_;'_
We have:

Proposition 9.6.1. Let (M,g) be a non-trapping surface with strictly
convex boundary. Then

1 * *
P = (11§ — LI}).

Proof Let w € C°(0.SM) so that w* € C*°(SM). The proof is essen-
tially a rewriting of the commutator formula between X and the Hilbert
transform H given in Proposition 6.2.2. Indeed, apply H to Xw? = 0 to
obtain

—XHuw* = X1 ((w*)o) + (XL w).

Since It w = —27(X  w#)g (cf. (9.4.3)) and [jw = 27 (w?)o we deduce
1 * *
—XHuw = 5 (Xilgw = ITw).

Integrating this equation along a geodesic connecting boundary points
(i.e. applying the X-ray transform I) we obtain
1
(—Hw' o a+ Huw")|g, sm = o (I Igw = IpITw).
™
But the left hand side is A* H(w*|ssa7) = Pw and the proposition is
proved. O

It turns out that the symmetries that we have already discussed pro-
duce a further splitting of the formula above. Indeed observe that

Ll =0, Iily, =0.
These are naturally dual to
rangelyp C V4; rangel, C V_

thanks to Exercise 9.4.10. Also note that A* w is in V. (resp. V_) if u
is odd (resp. even) on dSM. Hence if we split the Hilbert transform as
H = H, + H_ where Hyu = Huy (as usual, uy denote the even and
odd parts of u with respect to a), then the formula in Proposition 9.6.1
splits as P = P, + P_ where

1
Po=A"H A, =Ll (9.6.1)
™
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and

1

These formulas imply right away the following range properties for Iy
and I, . Recall that I, IT : C°(04+SM) — C>(M).

Theorem 9.6.2. Let (M, g) be a non-trapping surface with strictly con-
vex boundary. Then

(i) A function h € C*®(0+SM) is in the range of Iy : rangel] —
C>®(04+SM) iff there is w € C°(0+SM) such that h = P_w.

(ii) A function h € C*(0+SM) is in the range of I, : rangel} —
C> (0L SM) iff there is w € C(0+SM) such that h = Prw.

If in addition M is simple (i.e. there are no conjugate points), then
I and I are surjective and the items above give full characterization
of the range of Iy and I, exclusively in terms of the boundary operators
P..

Proof Ttems (i) and (ii) are direct consequences of (9.6.1) and (9.6.2).
In the simple case, surjectivity of I is proved in Theorem 8.2.1 and
surjectivity of I'7 will be proved in Theorem 12.3.1. O

Remark 9.6.3. It is natural to ask whether the range conditions in
Theorem 9.6.2 are related to the Helgason-Ludwig range conditions as
described in Chapter 1, when one is considering compactly supported
functions in the unit disk in R%. In (Monard, 2016a, Theorem 3) it is
proved that these range conditions are equivalent once the transforma-
tion between fan-beam geometry and parallel-beam geometry is imple-
mented.

9.7 Numerical implementation

The Fredholm inversion formulas in Theorem 9.4.11 and Exercise 9.4.12
have been implemented in Monard (2014). In what follows we focus
exclusively on the formula in Theorem 9.4.11 and for simplicity, we let
F be the filter F := E%ﬂAiHA,, so the formula becomes

fHW2f = ITFIo(f).

From Proposition 9.3.2 we easily derive the observation that W be-
comes a contraction in L? whenever the metric g is C3-close to a metric
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of constant curvature. Hence Id + W2 may be inverted by a Neumann
series to obtain

oo

f=Y (WHHILLFL(f)]
=0

It turns out that implementing this Neumann series does not require

implementing the operator W2 and this is a major advantage. Indeed

writing —W?2 = 1d — It F Iy, we may rewrite the Neumann series as

f=Y (d—TI{FI)* [T FIo(f)).
k=0
This suggests that a good approximation for the inversion of f in terms
of Ipf is given in terms of the truncated series

N
f= Y (1d = ITFIo)*(IT FIo(f)). (9.7.1)
k=0
Note that the computation of (9.7.1) only involves solving the forward
problem iteratively and the approximate inversion given by I7 F. Sev-
eral numerical experiments illustrating this inversion may be found in
Monard (2014). Here we include one as follows, kindly provided to
us by Frangois Monard. The metric g on the unit disk has the form
e?*(dx? + dz2) where

5\ = exp(—((x1 — 0.3)% 4+ 23)/20?) — exp(—((w1 + 0.3)% 4+ 23)/20?)

with ¢ = 0.25. The metric is simple and has low sound speed and high
sound speed regions; geodesics emanating from different boundary points
are depicted in Figure 9.1.

The function f to be reconstructed is given in Figure 9.2 and it is a
mix of Gaussians of various widths and weights.

Figure 9.3 shows Iy f and its filtered version F'Iyf. Figure 9.4 shows
It FIy f and the error and finally, Figure 9.5 shows (9.7.1) implemented
after five iterations and the corresponding error. For more details on the
algorithm and a thorough discussion we refer to Monard (2014).
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Figure 9.1 Geodesics of g.

Figure 9.2 The function f.
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Figure 9.3 The left figure depicts Ipf and the right one depicts Flgf.

1
0.6
05 0.5
o 0.4
0.3
© 0.2
-0.5
Q 0.1
-1 0

Figure 9.4 Reconstruction and error after no iterations.

o
O

0.5

0.4

0.3

0.2

0.1

Figure 9.5 Reconstruction and error after five iterations.
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10

Tensor tomography

This chapter solves the tensor tomography problem for simple surfaces
following Paternain et al. (2013). We shall in fact prove a stronger result
in which the absence of conjugate points is replaced by the assumption
that I is surjective. In order to do this we introduce the notion of
holomorphic integrating factors and prove their existence, which will be
important in later chapters.

10.1 Holomorphic integrating factors

Let (M,g) be a compact non-trapping surface having strictly convex

boundary, and consider the geodesic X-ray transform I,, that acts on

symmetric m-tensor fields. Recall that the solenoidal injectivity of I, is

equivalent with a uniqueness statement for the transport equation (see

Proposition 6.4.4). We will focus on proving this uniqueness statement.
Suppose that u € C*°(SM) solves

Xu=—finSM,  ulgsy =0, (10.1.1)

where f has degree m. For simplicity, assume that f € €),,. By Lemma
6.1.3, in the special coordinates (z,6) on SM we may write

f(@,0) = fz)e™.

Recall that we already know how to deal with the case where m =0
(this is the injectivity of Iy proved in Theorem 4.4.1). Let us try to reduce
to this case simply by multiplying the equation (10.1.1) by e~*"?. This
gives a new transport equation for e "™fu:

(X +a)(e” ™) = —f(z), eyl pgar = 0, (10.1.2)

241


https://doi.org/10.1017/9781009039901

242 Tensor tomography

where a := —e'™? X (e="™?). Note that a € Q_; ®Qy, since X =y +n_
and

eimeni (efime) c Q:l:l-

We have now reduced the equation (10.1.1), where the right hand side
has degree m, to a new transport equation (10.1.2) where the right hand
side has degree 0. However, the price to pay is that the new equation
has a nontrivial attenuation factor a. One could ask if there is another
reduction that would remove this factor. The next example gives such a
reduction in elementary ODE theory.

Example 10.1.1 (Integrating factor). Consider the ODE
W' (t) +a(tyu(t) = f(t),  u(0)=0.

The standard method for solving this ODE is to introduce the integrating
factor w(t) = fot a(s) ds, so that the equation is equivalent with

(e"w)'(t) = (" f)(t),  (e"u)(0) =0.

Using an integrating factor has removed the zero order term from the
equation, which can now be solved just by integration. The solution is

u(t) = e v® /0 eV f)(s) ds.

In geodesic X-ray transform problems, we are often dealing with equa-
tions like

Xu+au=—fin SM, U,‘@SMZO

where a € C*°(SM) is an attenuation factor and f € C*(SM). We
would like to use an integrating factor w € C*°(SM) satisfying Xw = a
in SM, which reduces the equation to

X(e"u) = —eVf in SM, e“ulgsy = 0.

a

This can always be done for instance by choosing w = =% (which may
not be smooth at 99SM though). However, in many applications one has
special structure, in particular f often has finite degree (e.g. f = f(x) as
in (10.1.2)). The problem with applying an arbitrary integrating factor is
that multiplication by e” may destroy this special structure. For instance
if f = f(z), then e”f could have Fourier modes of all degrees.

In this section we prove an important technical result about the ex-
istence of a certain solution of the transport equation Xw = a when

a€ Q_1®Q (ie. a represents a 1-form on M), where w is fibrewise
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holomorphic in the sense of Definition 6.1.14. This provides some con-
trol on the Fourier support of e¥ f; e.g. if f = f(x), then e f is at least
holomorphic. This result, which goes back to Salo and Uhlmann (2011)
in the case of simple surfaces with a € €y, will unlock the solution to
several geometric inverse problems in two dimensions.

Proposition 10.1.2 (Holomorphic integrating factors, part I). Let (M, g)
be a compact non-trapping surface with strictly conver boundary. As-
sume that I is surjective. Given a_; + a1 € Q_1 @ 4, there exists
w € C*®(SM) such that w is holomorphic and Xw = a_1 + a1. Sim-
ilarly there exists w € C°(SM) such that W is antiholomorphic and
Xw = a_1+ay.

Proof We do the proof for w holomorphic; the proof for w antiholo-
morphic is analogous (or can be obtained by conjugation).

First we note that one can find fy, € C°(M) satisfying 74 fo = —a;.
Indeed, by Remark 3.4.17 M is diffeomorphic to the closed unit disk D
and there are global special coordinates (z,6) in SM. By Lemma 6.1.8
one has in these coordinates

Ny fo = eanz(fo)ew, a; = &1($17$2)€i9~

Thus it is enough to find fy € C°°(D) solving the equation
d.(fo) = —e*a;  inD,

This equation can be solved for instance by extending the function on the
right hand side smoothly as a function in C2°(C), and then by applying
a Cauchy transform (inverse of 9,).

Since I§ is surjective, there exists ¢ € C°°(SM) such that X¢q = 0 and
go = fo (see Theorem 8.2.2). Recalling that X = n; + n_ and looking
at Fourier coefficients of X¢q we see that nyqr—1 +n1-qr+1 = 0 for all k.
Hence

X(q2+Q4+"~):T]_Q2:*77+QO:CL1- (1013)

Next, we solve n_gy = a_; and use surjectivity of I to find p €
C>(SM) such that Xp =0 and pg = go. Hence

Combining (10.1.3) and (10.1.4) and setting w = > ;5 P2k + Dp>1 G2k
we see that w is holomorphic and Xw = a_1 + a;. O



244 Tensor tomography

10.2 Tensor tomography

Our main result gives a positive answer to the tensor tomography prob-
lem in the case of surfaces with I surjective.

Theorem 10.2.1 (Tensor tomography). Let (M,g) be a compact non-
trapping surface with strictly convex boundary and I§ surjective. The
transform I, is s-injective for any m > 0.

We note that for the case of (M,g) simple and m = 2, solenoidal
injectivity of Iy was proved in Sharafutdinov (2007) using the solution
to the boundary rigidity problem. We begin with a simple observation
that holds in any dimension.

Lemma 10.2.2. Let (M,g) be a compact non-trapping manifold with
strictly convex boundary. If I : CP(0+SM) — C*°(M) is surjective,
then Iy : C®(M) — C*(0+SM) is injective.

Proof Suppose that f € C°°(M) satisfies Iyf = 0. If I is surjective,
there is w € C°(04+SM) such that Ifw = f. Hence we can write

117 = (f, Igw) 2y = (TIofsw) 2 o, 500) = 0
and thus f = 0. O

The next result is the master result from which tensor tomography is
derived. It asserts, in terms of the transport equation, that I|q, : €, —
C*(0+SM) is injective whenever I§ is surjective.

Theorem 10.2.3 (Injectivity of I|q, ). Let (M,g) be a compact non-
trapping surface with strictly convex boundary and I surjective. Assume
that m € Z, and let u € C*°(SM) be such that

Xu= _f € va u|3SM =0.
Then v =0 and f =0.

The proof is based on another important injectivity result, where the
fact that f has one-sided Fourier support is used to deduce that u has
one-sided Fourier support. A more precise result in this direction will be
given in Proposition 10.2.6.

Proposition 10.2.4. Let (M, g) be a compact non-trapping surface with
strictly convex boundary and Iy injective. If u € C*°(SM) is odd and
satisfies

Xu=—f i SM, ulosnm = 0,
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where f is holomorphic (resp. antiholomorphic), then u is holomorphic
(resp. antiholomorphic).

Proof We prove the case where f is holomorphic. Write ¢ := Z,:i U-

—o0
Since f is holomorphic, we have (Xu); = 0 for k¥ < —1, and using the
decomposition X = ny + n_ this gives that nyug—1 + n_ugy1 = 0 for

k < —1. Thus we obtain that

Xq=nyu_n, qlasm = 0.

Now n4yu—j only depends on x, and hence the injectivity of Iy implies
that nyu_q1 = 0. This proves that ¢ = 0 showing that u is holomorphic.
O

Proof of Theorem 10.2.3 We follow the approach described at the be-
ginning of Section 10.1. Let 7 := e~ and observe that r~'Xr €
Q_1 & Qq since

s (e7) € Q.

By Proposition 10.1.2, there is a holomorphic w € C*°(SM) and anti-
holomorphic @ € C*°(SM) such that Xw = Xw = —r~'Xr. Since
r~1Xr is odd, without loss of generality we may replace w and @ by
their even parts so that w and @ are even. A simple calculation shows
that

X(e“ru) = (X —r ' Xr)(ru) = —e“rf (10.2.1)

with a similar equation for @. Since rf € Qq, e”rf is holomorphic and
e®rf is anti-holomorphic.

Assume now that m is even, the proof for m odd being very similar.
Then we may assume that v is odd and thus e”ru and e?ru are odd.
By Proposition 10.2.4, since we have

X(e“ru) = —e"rf, e“rulosy =0,

we see that e“ru is holomorphic and thus ru = e~ (e“ru) is holomor-
phic. Arguing with @ we deduce that ru is also antiholomorphic. Thus
one must have ru € €y. This implies that v € ,,, and using that
Xu € Q,, we see that Xu = 0 and finally u = f = 0 as desired. O

One can explicitly compute 7! X7 in the proof above using isothermal
coordinates in which the metric is €2*(dx? + dz3):

Exercise 10.2.5. Show that
r X = mng(A) —mn_ ().
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By inspecting the proof of Proposition 10.1.2 show that the conclusion
of Theorem 10.2.3 still holds if we assume that Ij is injective and there
is a smooth ¢ such that X¢q = 0 with go = A. Hence surjectivity of I is
only needed for the function Al

We will give two corollaries of Theorem 10.2.4.

Proposition 10.2.6. Let (M, g) be a compact non-trapping surface with
strictly convex boundary and I surjective. Let u € C*°(SM) be such that

Xu=—f,  ulasm = 0.

Suppose fr, =0 for k > m+1 for some m € Z. Then uy, =0 for k > m.
Similarly, if fr = 0 for k < m — 1 for some m € Z, then ux, = 0 for
k<m.

Proof Suppose fp = 0 for k > m + 1. Let w := > °uj. Using the
equation Xu = —f and the hypothesis on f we see that

Xw=n_tp +N—tUmnt1 € Lpn-1B Q.

Applying Theorem 10.2.3 to the even and odd parts of w we deduce that
w = 0 and thus u = 0 for k£ > m. Similarly, arguing with "™ uj, we
deduce that up =0 for kK <m if fr =0 for kK <m — 1. O

The next corollary is an obvious consequence of the previous propo-
sition.

Corollary 10.2.7 (Tensor tomography, transport version). Let (M, g)
be a non-trapping surface with strictly convex boundary and I surjective.
Let u € C*(SM) be such that

XUZf, u|aSM=0.

Suppose fr, = 0 for |k| > m + 1 for some m > 0. Then u = 0 for
|k| > m (when m =0, this means uw = f =0).

By Proposition 6.4.4, the previous result also proves Theorem 10.2.1.

10.3 Range for tensors

In this section we explain how some of the ideas of the previous section
can be employed to give a description of the range for the X-ray trans-
form acting on symmetric tensors of any rank, pretty much in the spirit
of Theorem 9.6.2.
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Let (M, g) be a non-trapping surface with strictly convex boundary.
Pick a function h : SM — S!' C C such that h € ;. Such a func-
tion always exists: for instance, in global isothermal coordinates we may
simply take h = €. Our description of the range will be based on this
choice of h. Define the 1-form

A:=—h"'Xh.

Observe that since h € Qq, then h~' = h € Q_;. Also Xh = nyh4+n_h €
Qo @ Qo which implies that A € Q1 & Q_1. It follows that A is the
restriction to SM of a purely imaginary 1-form on M.

First we will describe the range of the geodesic ray transform I re-
stricted to €,,:

L, :=1Il|q, : Qm — C>*(0LSM,C).

Observe that if u solves the transport equation Xu = — f where f € Q,,
and u|o_gar = 0, then h™"u solves (X — mA)(h~™u) = —h~™f and
h™™uls_sam = 0. Also note that =™ f € Q. Thus

Ima(h™™f) = (R0, sm) I (f) (10.3.1)

where the left hand side is an attenuated X-ray transform with attenua-
tion —mA as given in Definition 5.3.3. The relation in (10.3.1) is telling
us that if we know how to describe the range of I4 acting on C*° (M),
where A is a purely imaginary 1-form, then we would know how to de-
scribe the range of I,,. It turns out that this is possible to do even in
much greater generality, namely when A is a connection (cf. Theorem
14.5.5 below). We will return to this topic in later chapters; for the time
being we content ourselves with a description of the results.
Let Q. : C(0+SM,C) — C(0SM,C) be given by

w(x,v) if (x,v) € 0+ SM

@muw(w,v) = { (e_mfoﬂm’v) A(“"(I’”))dtw) oa(z,v) if (x,v) € 0_SM

and let By, : C(0SM,C) — C(0+SM,C) be
Bmg - [g _em for(m,v) A(pe(z,v)) dt(g o a)]‘8+SM~
In other words, with I; denoting the X-ray transform on 1-tensors, we

have

w(z,v) if (z,v) € 0+ SM

Qmw(z,v) = { (e=mi M) o a(z,v) if (z,v) € I_SM
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and

Bng=lg—e goa)llo,sum-

We define
P, _ =B, H_Qp.

The following result from Paternain et al. (2015b) describes the range

of I,.

Theorem 10.3.1. Assume that (M,g) is a simple surface. A func-
tion u € C*(0+SM,C) belongs to the range of L, if and only if u =
(hm|5+5M) P, —w forw e 82 (0+SM,C), where this last space denotes
the set of all smooth w such that Q.,w is smooth.

Suppose that F' is a complex-valued symmetric tensor of order m
and denote its restriction to SM by f. Recall from Proposition 6.3.5
that there is a 1-1 correspondence between complex-valued symmetric
tensors of order m and functions in SM of the form f = ZZL_m fr
where f, € Qf and fr = 0 for all k£ odd (resp. even) if m is even (resp.
odd).

Since
m

I(f)= > Ll(f)

k=—m

we deduce directly from Theorem 10.3.1 the following.

Theorem 10.3.2. Let (M, g) be a simple surface. If m = 21 is even, a
function u € C*>°(01.SM,C) belongs to the range of the X-ray transform
acting on complex-valued symmetric m-tensors if and only if there are
wak, € S§x(0+5M,C) such that

l
w="Y_ (h**|o, 1) Pog,—war.
k=—1
Similarly, if m = 21+ 1 is odd, a function u € C*(9;SM,C) belongs
to the range of the X-ray transform acting on complex-valued symmetric

m-tensors if and only if there are wopy1 € S5, (01SM,C) such that

l

u= Z (h2k+1|6+SM) P2k+1,7w2k+1~
k=—1-1



This material has been published by Cambridge University Press & Assessment as
Geometric inverse problems, with emphasis on two dimensions. This version is free to
view and download for personal use only. Not for re-distribution, re-sale or use in
derivative works. (©) 2022 Gabriel P. Paternain, Mikko Salo, Gunther Uhlmann.

11
Boundary rigidity

In this chapter we study the boundary rigidity problem, which asks
if a compact Riemannian manifold with boundary is determined by the
knowledge of distances between boundary points. We will prove that the
answer is positive within the class of two-dimensional simple manifolds,
5). To set the stage, we first show
that from the boundary distance function one can determine the metric
at the boundary, the scattering relation, the exit time function and the
volume. We also show uniqueness in the boundary rigidity problem for
simple metrics in a fixed conformal class. Then we specialize to the two-
dimensional case and prove that the Dirichlet-to-Neumann map of the
Laplacian is determined by the scattering relation. Finally, we prove
uniqueness in the Calderén problem for a metric in two dimensions and
use this to establish that simple surfaces are boundary rigid.

as shown in Pestov and Uhlmann (20

11.1 The boundary rigidity problem

Let (M, g) be a compact manifold with strictly convex boundary. The
distance function dy : M x M — R is given by

dyla,y) = _inf £4() (1L.1.1)

where A, denotes the set of smooth curves v : [0,1] — M such that
7(0) = = and y(1) = y and £4(7) is the length of v given by

)= [ ol

By Proposition 3.7.21, since 9M is strictly convex, the infimum in (11.1.1)
is realized by a minimizing geodesic.
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Suppose that we know dg(z,y) for all (z,y) € OM x OM, i.e. we know
the boundary distance function dg|aanM- Can we reconstruct g in the
interior of M from this information? The following result shows that this
problem has a natural gauge invariance.

Lemma 11.1.1 (Gauge invariance). If ¢ : M — M is a diffeomorphism
such that ¥lop = 1d, then dy-g = dg on OM x OM.

Proof This follows since for x,y € OM one has v € A, iff poy € Ay y,
and

Cymg(7) = / ()] it = / (B dt = Ly or). O

The map ¢ : (M,¢*g) — (M, g) is an isometry, and thus the best we
can hope for is to recover g up to an isometry that acts as the identity
on the boundary. If this is possible within some class C of metrics on M,
we say that the metric is boundary rigid:

Definition 11.1.2. Let C be a class of Riemannian metrics on M.
We say that g is boundary rigid in C if given any metric h € C with
dglomxom = dinlonrxonm, there exists a diffeomorphism ¢ : M — M
such that ¢|sy = Id and h = ¢*g.

The following example shows that not every metric is boundary rigid
if C is the class of all Riemannian metrics on M.

Example 11.1.3. Suppose M contains an open set U on which g is
very large. Then all length minimizing curves will avoid U, and thus
dg will not carry any information about g|y. Thus we can alter g on U
(but keeping it large) and not affect d, on OM x OM. Here is a concrete
example: take M to be the upper hemisphere of S2, and let gy denote the
natural metric on M. Note that dg, (z,y) for any two boundary points is
realized as the length of the shortest arc on M connecting x and y. Now
take a non-negative function f supported on U and let g1 = (1 + f)go-
Then dy, = dg, on OM x OM, but go and g; are not isometric since
Vol(M, g1) > Vol(M, go).

By the previous example, we need to impose some restrictions for the
metric in order to expect boundary rigidity. The boundary rigidity prob-
lem asks whether simple metrics are boundary rigid. The main result in
this chapter, first proved in Pestov and Uhlmann (2005), gives a positive
answer in the two-dimensional case.
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Theorem 11.1.4 (Boundary rigidity). Let (M, g1) and (M, g2) be two

simple surfaces. If dg, |omxom = dg,lonxon, then go = * g1 for some
diffeomorphism v : M — M with t|gp = Id.

Remark 11.1.5. It is natural to ask if simple metrics are boundary
rigid among the class of all metrics. Suppose we have two metrics ¢;
and go with g; simple and dg, = dg4, on M x OM. If in addition we
assume that go has strictly convex boundary, then item (vi) in Theorem
3.8.2 implies that g, is also simple. The assumption that go has strictly
convex boundary is not really necessary as convexity of M can also be
read off from the boundary distance function (see (Burago and Ivanov,
2010, p. 1)). Thus for the purpose of boundary rigidity we can restrict
to working with the class of simple metrics.

The proof will combine several different notions. First (after an initial
gauge transformation) we recover the scattering relation oy from the
boundary distance function. The key fact is that, surprisingly, the scat-
tering relation o, determines the Dirichlet-to-Neumann map A, related
to the Laplace equation in M. To prove this, we use the surjectivity of
I and the idea that a4 determines the boundary values of holomorphic
invariant functions on SM, which implies that o, also determines the
boundary values of holomorphic functions in M. Here we are combining
two different notions of holomorphicity: one with respect to the angular
variable 6 (fibrewise), and another with respect to the spatial variable
x.

Since M is two-dimensional, knowing the boundary values of holo-
morphic functions in M is equivalent to knowing the DN map A4. Then
we solve the Calderén problem for A, to recover the metric g up to a
diffeomorphism and conformal factor. Finally, we use the fact that two
conformal simple metrics having the same boundary distance function
must be the same.

In mathematical notation, the strategy of the proof will be as follows:

dg, |omxont = dg,|lomxom
= g, =0y,
= Ay, = Ay,
= go = ci)* g1 for some conformal factor ¢ and diffeomorphism
= g2 =¢"q1.

We conclude this section by showing that the linearization of the
boundary rigidity problem leads naturally to the question of solenoidal
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injectivity of Is that was already addressed in Chapter 10. Assume that
we have a smooth 1-parameter family of simple metrics g5, s € (—¢, ), on
a manifold M satisfying dgy, = dg, on OM x OM for all s € (—¢,¢). Take
x # y € OM and let 4 denote the unique unit speed geodesic of metric
gs from z to y. Since d,, = dg, on OM x M, if we set T := dg, (z,y),

then 7, are all defined on [0, T]. Consider the energy functional

b
E;(v) ::/ \"y(t)|§s dt for v:[a,b] = M.

Note that F,(vs) = T. We differentiate at s = 0 to obtain

d d
0 ds|,_, ds|,_, +(7s)
_/T 99| Golt) o) dt + L] Eol)
= , Os o Yolt), Yo ds o o\7s)-

Considering 75 as a variation of 7y, and since 7y is a critical point of Ej,

we have
d
Ey(vs) =0
ds e 0(7s)
and thus writing
99
g=2 |
s s=0

we see that § is a symmetric 2-tensor such that I3(8) = 0 since the
points x,y € OM were arbitrary.

11.2 Boundary determination

As a preparation, we show that two metrics having the same boundary
distance function must agree at the boundary up to a gauge. The specific
gauge used here is the normal gauge, see Figure 11.1. Below in Theorem
11.2.9 we also prove the stronger result that the metrics agree to infinite
order at the boundary. However, we do not need this stronger result for
the proof of Theorem 11.1.4.

Proposition 11.2.1 (Determining glaons). Let M be a compact manifold
with smooth boundary. Suppose that dg, = dg, on OM x OM. Then
there exists a diffeomorphism ¢ : M — M with ¥|on = Id such that if
g2 = U*ga, then gilom = g2|lom in the sense that

g1l (v, w) = galo (v, w)
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for all x € OM and all v,w € T, M.

In the proof we will need certain basic facts about the boundary ex-
ponential map expy,, and boundary normal coordinates (z,t), see e.g.
(Katchalov et al., 2001, Section 2.1).

Proposition 11.2.2. Let (M,g) be a compact manifold with smooth
boundary embedded in a closed manifold (N, g). There is T > 0 such that
the maps

expgy : OM x (—=r,r) = N, (x,t) — exp, (tv(z)),
expgy :  OM x [0,7) = M, (z,t) — exp, (tv(z)),

are diffeomorphisms onto their images. Here exp, is the exponential
map in N and v is the inward unit normal of OM. For any (xz,t) €
OM x (—r,r) one has dg(expgyy,(x,t),0M) = |t|, and x is a closest point
to expyps(x,t) on OM.

If v = (x1,...,xn_1) are local coordinates on OM, then in the (x,t)
coordinates the metric takes the form

g = gap(z,t) dx® da® + de?
where a, B are summed from 1 ton — 1.

Proof of Proposition 11.2.1 Let (x,v) € TOM and take a curve 7 :
(—¢,e) = OM such that 7(0) = z and 7(0) = v. Since 7(s) takes values
in OM for all s € (—¢,¢) we have

dg, (x,7(5)) = dg, (2, 7(s))-
Thus (cf. Exercise 11.2.3 below):

o]y, = lim J0@ 76D oy de (@ 7(s)
s—0+ S s—0+ S

= |v]g,- (11.2.1)

From (11.2.1) we see that g; and g agree on 9M in tangential direc-
tions. We now modify g» so that the metrics also agree in the normal
direction at the boundary. Let vg, (z) denote the inward unit normal
with respect to g; and consider the boundary exponential map (with
r > 0 small enough)

exp%lM OM x [0,7) > M, (z,t) — expt(tvg, (x))

which maps a neighbourhood of M x {0} diffeomorphically onto a
neighbourhood of 0M in M by Proposition 11.2.2. Here expd! is the
exponential map in some closed extension (V, g1) of (M, g1).
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T

oM

Figure 11.1 Normal gauge 1

Now define

-1

¥ = expdy, o (expdy,) (11.2.2)

where superscripts denote which metric the exponential maps belong to,
see Figure 11.1. Then on some collar neighbourhood U of M, 1 is a
diffeomorphism and ¥|sp = Id. We extend 1) to a diffeomorphism of M

using Proposition 11.2.5 below. We claim that 1) satisfies the require-
ments of the proposition. Indeed, given x € 9M we have

g1 — A92
w(vwgl (g;)(t)) = '71-7,,92(5;)(75)'
Differentiating with respect to t and evaluating at ¢ = 0 we obtain
dip(vg, () = vg, (x).
Define g :=¢*go. If x € OM and v € T, 0M, we have
gQ(va Vg, ((E)) = 92(d1/)(v)7 dl/J(’/gl (.’E)))

= 92(0, Vg, (1))
=0.

A similar argument shows that go(vy, (), v, (z)) = 1. Hence
Golom = g1lom- O
Exercise 11.2.3. Prove the first equality in (11.2.1).

Remark 11.2.4. Note that strict convexity of the boundary was not
required in Proposition 11.2.1. We will assume strict convexity when
recovering higher order derivatives at the boundary in Theorem 11.2.9.
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A different method which does not require this assumption is given in

Stefanov and Uhlmann (2009).

To complete the proof of Proposition 11.2.1 we establish the following
general result.

Proposition 11.2.5 (Extending diffeomorphisms). Let M be a compact
connected manifold with smooth boundary, let U and U’ be neighborhoods
of OM in M, and let p : U — U’ be a diffeomorphism with play = Id.
Then there is a diffeomorphism ¢ : M — M with ¥ = ¢ near OM.

The proof will use the following uniform version of the inverse function
theorem.

Lemma 11.2.6. Let (M,g) be a compact manifold with smooth bound-
ary, and let (N, g) be a closed extension of (M,g). Let U be a neighbor-
hood of OM in N, and let f: U — N be a smooth map so that for some
¢ > 0 one has

o =14, inf [dfle@) 2 e, Ifllwaeq <7

There exist r,s > 0 only depending on ¢ and g such that f is a dif-
feomorphism from {x € N : d(z,0M) < r} onto a neighborhood of
{r e N :d(zx,0M) <s} in N.

This result follows from the standard inverse function theorem:

Lemma 11.2.7 (Inverse function theorem). Write B, = B(0,7) C R™.
If F: BR CR" = R" is a C? map with F(0) =0 and dF(0) invertible,
and if for some constants o, 5 > 0

[dF ()7 <a,  |ldF(x) - dF(0)| < Blz| for x € Br,
then for any r < min{ﬁ, R} one has that
Flg, s injective, F(B,) contains B, /(2q)-
Proof 1If x,y € B,, then the mean value theorem gives
|F(z) = F(y) — dF(0)(z —y)|
<[ dFee + (- gyt~ )z -

< (Br)aldF(0)(z - y)|.
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Choosing r < min{ﬁ, R} we see that
|F(@) - Fly) ~ dFO)(x —y)| < ldFO)—y)l (1123
In particular, F' is irgective in B,.
Suppose that y € B,./(24) and define
Ty = 21 +dF(0)  (y — F(zr_1)), xo = 0. (11.2.4)

We claim that z;, € B, for each k, showing that the sequence is well
defined. Note that |z1| = |dF(0)~'y| < r/2. Moreover, if |z;| < r for
j <k—1, by (11.2.3) one has

|dF(0)(zr — xp—1)| = [dF(0)(2p-1 — Tk—2) — (F(@p-1) — F(z-2))|
< %|dF(O)(:ck_1 — Tp_2)|

Tterating gives |[dF(0)(xy — zx_1)| < 2= *D|dF(0)(z1 — z0)| < 277/
and

k k
|z | < Z|x] —xzjq| < a22_jr/a <r.
Jj=1 j=1

Thus each x;, € B,, and (},) is a Cauchy sequence converging to some
x € B,. By (11.2.4) we have F(x) = y. O

Proof of Lemma 11.2.6 Choose R = rinj(IN)/2 where 7i,; denotes the
injectivity radius (which depends on g). Given any ¢ € OM, one can

choose normal coordinates in B(q, R) centered at ¢ and consider f IW

as a function F' on B(0,R) C R™. The constants « and § in Lemma
11.2.7 can be estimated in terms of ¢ and g. Hence there are 7o,y > 0
only depending on ¢ and g, with o < R, such that whenever r < ry one
has that

f|B(q‘T) is injective, f(B(g,r)) contains B(q,r/v). (11.2.5)

We now choose r < rq so small that (3 +2||df ||z~ (v,,))r < ro, and so
that the boundary exponential map

expdy, 1 OM x [—r,r] = U,

is a diffeomorphism such that for any ¢ € OM the closest point of
expd (g, t) to OM is q. Here we write U, = {z € N : d(z,0M) < r}.
We claim that

f U, — N is injective and U, ,, C f(U,).
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Suppose that z,y € U, and f(z) = f(y). Let g be the closest point to x
on OM. Then

d(z,q) <r
and

d(y,q) < d(g, =) + d(z, f(x)) + d(f(x), f(y)) + d(f(y),y)
<r+d(z, f(2) +d(f (), y)-

Moreover, since ¢ = f(q), one has

d(x, f(x)) < d(x,q) +d(f(q), f(2)) < A+ ||df[| L= (0,,))7-

A similar estimate holds for d(y, f(y)) if we use the closest point to y on
OM. Thus

d(y,q) <7+ 21+ [|df [ L=, )7

In particular x,y € B(q, o). By (11.2.5) f|m is injective, showing
that * = y. Thus f is injective on U,., and again by (11.2.5) we have

that f(U,) contains U, .. O
Proof of Proposition 11.2.5 We prove the proposition in four steps:

1. First, smoothly deform the identity map near M into the diffeomor-
phism ¢ near OM.

2. Interpret the deformation in Step 1 as the flow of a time-dependent
vector field Y (¢, - ) near OM.

3. Extend Y smoothly.

4. Show that the flow of Y deforms the identity map on M smoothly to
a diffeomorphism ¢ : M — M so that 1) = ¢ near OM.

This approach yields a relatively short proof since it is easy to extend
vector fields, and since the flow of a vector field automatically gives a
diffeomorphism. An alternative proof could be given following the argu-
ments in Palais (1959).

We begin with some preparations. Let g be some Riemannian metric
on M and let (IV, g) be a closed extension of (M, g). Moreover, replace ¢
by a smooth function in N that coincides with the original function near
OM in M. Then ¢ is a diffeomorphism in some neighborhood of M in
N by Lemma 11.2.6. Define U, = {z € N : d(z,0M) < r}. We choose
ro > 0 so that ¢ is a diffeomorphism near Uy, and sup,cp, d(z, p(x))
is smaller than the injectivity radius rin;(IN) of (N, g). This is possible
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since for any z € U,, if ¢ is a closest point to x on M, the fact that
©(q) = q gives

d(z, p(r)) < d(w,q) + d(p(q), p(x)) < (1 + [|dpl| Lo (v,))r

Given z € U,,, let 1,(t) be the unique N-geodesic in B(x,rinjn))
with 7,,(0) = z and 7,(1) = p(z). One has

12(t) = exp, (texp;* (p(x)))

and hence (t,z) — n,(t) is smooth when (¢,z) € [0,1] x U,,. Here the
map exp, ' is defined in B(z, riyjny) and it is a diffeomorphism there.

We first claim that

There are r, s > 0 so that for any ¢ € [0,1], the map x — 7n,(t) is a
{ diffeomorphism from U, onto some neighborhood of Uy in N.

(11.2.6)

This gives the smooth deformation from the identity map to ¢ near 9M
required in Step 1. To prove (11.2.6) define f; : U,, — N, fi(x) :=
N.(t) = He(x, o(x)) where

Hy(z,y) := exp,(texp, ' (y))-
Clearly fo =1d, fi|oamr = 1Id, and f1 = ¢. We now compute df|,. for any
x € OM. Noting that Hy(x,y) = H1_(y,x) when d(z,y) < ri,j(N) and
that p|aas = Id, one has for any x € OM

dft|x = da:Ht|(w,4p(:r)) + dyHt|(:c,<p(a:))d90‘l
= dyH17t|(r,z) + dyHt|(z,m)d§0‘z
— (1= )T + tde)s.

Here we used that dyH,|(; ) = sld since dexp,, |o = Id. Hence
(il (v),v) =1~ t+ ta

where a(x) = (dp|,(v),v) > 0 on OM since ¢ is a diffeomorphism near
OM with ¢|apr = Id. It follows that |dfi|,(v)| > ¢ > 0 uniformly over
x € OM and t € [0,1]. Now Lemma 11.2.6 implies (11.2.6).

By (11.2.6), for any (¢,y) € [0,1] x Us there is a unique z € U, with
Ng(t) = y. Write z = x(t,y), and note x is smooth in [0, 1] x Uy since
(t,z) — n.(t) is smooth. Hence we may define the ¢-dependent vector
field

Y(t7y) = ﬁx(t,y)(t)v (tvy) € [07 1] X Us.

Note that Y (¢,7,(t)) = n5(t), so that Y(¢t,y) € T,N and n,(t) is an
integral curve of Y with 7,(0) = .
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We next extend Y smoothly as a map R x N — TN with Y (t,y) €
TyN. For the sake of definiteness, we may choose Y (t,y) = 0 when
d(y,0M) > 2s. Let Fy,4;, : N — N be the flow of Y, ie. for any
t1,t2 € R one has Fy, 4, (y) = y(t2) where v is the curve

V) =Y (@), () =y

By standard ODE theory this is indeed a flow, i.e. Fy, 1, 0 Fy, 1y = Fi, 4
and Fy; = Idy. These facts imply that for any ti,t2 € R, Fy 4, is
a diffeomorphism N — N with inverse F}, 4,. Thus if we define ¢ =
Fy o|m, we have that ¢ is a diffeomorphism from M onto (M) C N
and ¥ = ¢ near OM.

It remains to show that ¢ (M) = M. We first prove that (M) C M.
Clearly ¥(OM) = OM, so let x € M™. Since M™* is connected, there
is a smooth curve v : [0,1] - M with v(0) € M, v(1) = z, and
7((0,1]) € M™t. Now if ¢(z) ¢ M, define

to == inf{t € [0,1] : Y(1(t)) ¢ M).

Since 1 = ¢ near M and ¢(U) C M, one must have ¥(y(t)) € M™
for 0 <t <ty and ¥(y(to)) € OM. This leads to v(ty) € OM which is a
contradiction. Thus (M) C M.

Finally, to show that (M) = M, we note that (M) is open in M
since 1 is a local diffeomorphism. The set (M) is also closed in M as

the continuous image of a compact set. Since M is connected, we must
have (M) = M. O

Exercise 11.2.8. Investigate the possibility of giving a shorter proof
of Proposition 11.2.5 when ¢ is the specific diffeomorphism given in
(11.2.2), by considering the maps

(t)

-1
o1 = expiyy o (expdy,)

where g(t) is a smooth family of metrics with g(0) = g; and g(1) = g».

We conclude this section with the recovery of higher order derivatives
up to gauge following Lassas et al. (2003b).

Theorem 11.2.9. Let g1,g2 be two metrics on M such that OM is
strictly convex with respect to both of them. If dg, = dg, on OM x OM,
then possibly after modifying g by a diffeomorphism which is the identity
on the boundary, g1 and go have the same C*°-jet on OM . This means
that given local coordinates (x!,...,x™) defined in a neighbourhood of a
boundary point, we have D*gi|opr = D%golon for any multi-index «.
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Proof By Proposition 11.2.1 we may assume that gilonr = 9g2]onm-
Moreover, the proof of Proposition 11.2.1 gives that near M the met-
rics g1 and go have the same normal geodesics to OM. Set f := g1 — go.
Consider a minimizing g;-geodesic v : [0,1] — M connecting boundary
points z and y in M (not necessarily with speed one). Then we observe
that

1
/O Fro G(8),4(0)) dt < 0 (11.2.7)

since

1
(Ahmwwwmm

=/wm@wmwmﬁ—/wﬁmmmwmm
0 0

< (dg, (2,))* = (dgy (2, ))?
=0.

Now fix a point p € M and consider boundary normal coordinates
(ul,...,u™"1 2) on a neighbourhood U of p in M. By Proposition 11.2.2
these are coordinates such that z > 0 on U and OM NU = {z = 0}, and

that the length element ds? of the metric g; is given by
ds? = (g1)apdu®du® + dz*, o,f€{1,...,n—1}.

The coordinate lines u = constant are geodesics of the metric g; orthog-
onal to the boundary. But we have set up the metrics g; and g, near the
boundary so that u = constant are also geodesics of the metric go. It
follows that the same coordinates are also boundary normal coordinates
for go; in particular

ds3 = (g2)apdu®du® + dz*, o, €{1,...,n—1}.

Since p was arbitrary, to prove the theorem it suffices to show that for
alz € IMNU, ke NU{0} and 1 <, 8 <n—1 we have

akf ap
0zk
where fag = (91)as — (92)ap- The case k = 0 is precisely the assertion
that giloar = g2lonmr and so this gives the base step for an inductive
proof. Suppose that (11.2.8) holds for 0 < k < [ but fails for {. This
implies the existence of xg € M NU and vy € S;,0M such that

alfa,(i
0zl

(z) =0, (11.2.8)

(xo)vgvg #0.
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Assume
8lfaﬁ
02!
By continuity, there is a neighbourhood O C SM of (xg,vo) such that
for all (x,v) € O,

(z0)vgul > 0.

8lfa5

o (z)v*v? > 0. (11.2.9)

Since the left hand side in (11.2.9) is a homogeneous polynomial of degree
2, we may assume that if

v

CcO = {(x,v) eTM: v#0, (x,|v> EO}
then (11.2.9) holds for all (x,v) € CO. Now we expand f,g in a Taylor
series; using the inductive hypothese we may write
10 fap

faﬂ(uaz) = TG (u,O)Zl +0(|Z|l)a

and hence shrinking O if necessary we may assume that for all (z,v) €
CO we actually have

fap(x)v0? > 0. (11.2.10)
Let 6 : (—e,e) — OM be a curve such that §(0) = 2 and 6(0) = v,

and let v, : [0,1] = M be the shortest geodesic of g; joining zg to §(7)
for 7 > 0 and small. Then

V- (1)
<’77'(t)7 |'7-r(t)|) - (1‘071}0)

uniformly in ¢ € [0,1] as 7 — 0. Thus for sufficiently small 7 > 0, we
have (v,(t),74-(t)) € CO for all t € [0, 1], and hence

1
/ ffy,-(t)(’.yT(t)v;yT(t))dt >0
0
thus contradicting (11.2.7). If

alfocﬂ
0z

a similar contradition is obtained if we integrate f along a g»-geodesic
so that (11.2.7) changes sign. This completes the proof. O

(z0)vg vl <0
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11.3 Determining the lens data and volume

We will now show that from the boundary distance function dg|anrxonm
of a simple manifold (M, g), we can determine the scattering relation
ag, the travel time function 74|s, sar and volume Vol(M, g). The pair
(14la, 50> ag) is also known as the lens data:

Definition 11.3.1. Let (M, g) be a compact non-trapping manifold
with strictly convex boundary. The lens data of (M,g) is the pair of
functions (74|a, sar, ag)-

Recall that oy and 7,4]|gsas are defined on the set SM, which a priori
depends on g|aar. However, if dg, |oamrxom = dgs|omrxanr, then Proposi-
tion 11.2.1 ensures that one has g1|an = g2|onr possibly after applying a
gauge transformation. Thus we may always assume that g1 |anr = g2|onr,
and then the sets 9SM and 0+ SM will be the same for both metrics.

Proposition 11.3.2 (Determining the lens data). Let g1 and g2 be two

simple metrics on M such that dg, = dg, on OM x OM and gilom =
g2lon- Then ag, = ag, and 74,0, sm = Tgslo,sM-

The volume is also determined:
Proposition 11.3.3 (Determining the volume). Let g1 and g be two

simple metrics on M such that dg, = dg, on OM xOM. Then Vol(M, g1) =
VOI(M, gz).

We begin with a simple lemma describing the gradient of the distance
function d,(z, -).

Lemma 11.3.4 (Gradient of dg(z, -)). Let (M, g) be a simple manifold.
Given x € M, let f : M — R be the function f(y) = dy(x,y). For any
y € M with y # x, let n,,, be the unique unit speed geodesic connecting
x toy and let £y, > 0 be such that ny ¢y ) =y. Then

Proof Recall from Proposition 3.8.5 that on a simple manifold, the

exponential map
expy : Dy = M
is a diffeomorphism. Recall also that for any pair of points in M there

is a unique geodesic between them, and this geodesic minimizes length.
Thus when tv € D, and |v|; = 1, one has

flexp,(tv)) = dgy(z, exp,(tv)) = t.
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If y = exp,(tv), it follows that

Ay G (1)) = % F (1)) = 5 fexp, (1)) = () = 1.

Moreover, if 8 : (—e,&) = S, M is a smooth curve with §(0) = v, then

an

= — =0.
s=0 ds

s=0

A(dex, o (65(0))) = - F(exp, (5(5)))

Any vector w L v arises as 3(0) for some f. Since dexp, |, is in-
vertible, it maps {v}t onto {4 .,(t)}* by the Gauss lemma (Propo-
sition 3.7.12). It follows that df|,(w) = 0 whenever @ L 4, ,(t). Thus
Vf(y) = '7z,v(t) = nm,y(&c,y) O

Proof of Proposition 11.3.2 Note that the assumption g1|anr = g2lom
implies that the sets 0SM and d+SM are the same both for ¢g; and g.
Recall also that by Proposition 3.8.6, on simple manifolds any two points
are connected by a unique geodesic and this geodesic is minimizing.

To prove the claim for the scattering relation, we need to show that
Qg, = ag, on 04 SM since ay, : 0_SM — 9, SM equals (agj|a+5M)_1.
Fix z,y € OM and let 7] , be the unique g;-geodesic connecting z to y.
By the definition of the scattering relation we have

o, (0,9, (0) = (4192, (6,),  7=12
Let ¢ := K;,y = Eiyy. We are required to prove that
Ty (0) =325(0), A2y () =42, (0.
Let fj(y) = dg;(z,y) and h; = fjlon. Given any w € T,0M, if
7:(—¢g,e) = OM is a smooth curve with 7(0) = w then

d
dhj(w) = —-h;(7(s))
Thus Vh;(y) is the orthogonal projection of V f;(y) to T,,0M. Now since
V f;(y) has unit length and points outward (i.e. (Vf;(y),v;(y)) <0), it
follows that Vh;(y) determines Vf;(y). But hqy = ho, hence by Lemma
11.3.4

d
= i) = dfitw).

=0

s=

Y2y () = V1Y) = Valy) = 32, (0.

To show that 41 ,(0) = 42,(0) we repeat the argument above only
starting at y and running the two geodesics backwards to x.
We have proved that oy, = a,. Let now (x,v) € 94 SM. Hence

ng (LE, U) = dgj (I’ Tr(agj (SL‘, U)))
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where 7 : 0SM — OM is the base point map. It follows that 7,4, |o, sa =
Tga |3+5M' O

Remark 11.3.5. We note that for simple metrics, the scattering rela-
tion alone determines the boundary distance function. Indeed, let g; and
g2 be two simple metrics on M with g1|anr = g2|om and oy, = ag,. Then
by Lemma 11.3.4, after fixing € M, we deduce that V f1(y) = V fa(y)
for all y € OM \ {z}, where fi(y) = dg,(z,y) for i = 1,2. Thus f; — fo
must be constant and since both vanish at z we see that the boundary
distance functions agree.

Finally, as a simple consequence of Santalé’s formula, we show the
exit time function Tg|a . sm determines the volume.

Proposition 11.3.6. Let M be a compact manifold with smooth bound-
ary, and let g1,92 be two non-trapping metrics on M such that OM
is strictly convex with respect to both of them. If gilonr = g2lom and
Ty loy, 50 = Tgslo, sa, then Vol(M, g1) = Vol(M, gz).

Proof We first claim that for any « € M,

/ dSy = on_1
Sz M

where 0,,_1 is the volume of the standard (n — 1)-sphere S™"~!. To see
this, it is enough to choose local coordinates at z and note that the map
T : w i+ g(x)"/?w is an isometry from (T, M, g(x)) to R™ with Euclidean
metric (since (w, W)y = g(z)/?w - g(z)'/2®). Hence T restricts to an
isometry from S, M to the standard sphere S™~!.

Now Santalé’s formula gives for g = g; that

1 1
Vol(M) = / dv" = / / dS, dV" = / dy*—t
M On—1JMmJs, M On—1.JsSMm

1
= / T dx 2, (11.3.1)
8, SM

On—1

Since 7y, |o, sM = Tgylo, s and gilonr = g2|onr, we have proved that
Vol(M, g1) = Vol(M, g2). O

Proof of Proposition 11.3.8 Proposition 11.2.1 shows that after apply-
ing a diffeomorphism that is the identity on the boundary, we may as-
sume ¢1|an = go|oar- Since the boundary distance function determines
the lens data by Proposition 11.3.2, the exit time function of both metrics
must agree and thus by Proposition 11.3.6 the volumes are the same. [
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11.4 Rigidity in a given conformal class

In this section we show that boundary rigidity holds for simple metrics
(1981)

in a fixed conformal class. This result was proved in Muhome
for dim M = 2 and in Bernstein and Gerver (1978); Muhome
in any dimension. We give a short proof following Croke (1991).

Theorem 11.4.1 (Boundary rigidity in a conformal class). Let g; and
go be simple metrics on M having the same boundary distance function.
If g2 is conformal to g1, i.e., g2 = c(x)?gy for a smooth positive function
con M, then c = 1.

Proof 1In view of (11.2.1), ¢ = 1 on the boundary of M. Next, using
Proposition 11.3.2, we see that the scattering relations and exit time
functions of g; and g coincide on dSM. Let us denote by 7 their common
exit time function on 0SM.

Let us show that ¢ = 1 on the whole of M. Given (z,v) € 04SM
denote by 47, : [0,7(z,v)] = M the maximal g;-geodesic starting at
(z,v). Since geodesics on a simple manifold minimize the length

%m=AH®Wt

among all curves v : [0,7] — M with the same endpoints, we have

7(z,v)
rmm:%%ms%M@:A () de (11.41)

Using Santald’s formula for the volume (see (11.3.1)) we obtain

1
Vol(M, g) = / T d¥N* 2
8, SM

On—1

1 7(z,v)
s [ AT cotawanfuaz
On—1 Jo,SM 0 '

:/ chgT;.
M

On the other hand, by Hélder’s inequality

n—t
/ cdVy < {/ c"dvg’f} {/ dvgj} (11.4.2)
M M M

n—1

= Vol(M, g2) = Vol(M, g1) =,

with equality if and only if ¢ = 1.
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It follows that

n—1

Vol(M, g3) < Vol(M, g2)# Vol(M, g1 )"+ . (11.4.3)

However, by Proposition 11.3.3, Vol(M, g1) = Vol(M, g2), which implies
that (11.4.3) holds with the equality sign. This means that (11.4.2) holds
with the equality sign. Thus, ¢ = 1. O

Exercise 11.4.2. Discuss a proof of Theorem 11.4.1 using energy rather
than length, paying particular attention to the case n = 2.

11.5 Determining the DN map

Let (M, g) be a compact manifold with smooth boundary. Recall that
the Dirichlet-to-Neumann map (DN map) A, is defined as follows. Given
f € C>*(OM), consider the unique solution of

Agu=0in M, ulop = f-
Then A, is the map
Ay : C®(OM) = C*(OM), Ayf :=du(v)|om-

The main result of this section states that the scattering relation de-
termines the DN map:

Theorem 11.5.1 (Determining the DN map). Let (M, g1) and (M, g2)
be compact non-trapping surfaces with strictly convex boundary and I
surjective, and let giloamr = g2lom- If ag, = ag,, then Ay, = Ag,.

The proof is based on studying boundary values of invariant functions
(solutions of X w = 0 in SM) and on combining two different notions
of holomorphicity. We will use both fibrewise holomorphic functions in
SM and holomorphic functions in (M, g).

In what follows we shall assume that (M, g1) and (M, g2) are compact
non-trapping surfaces with strictly convex boundary such that gi|sas =
92laa- Given a function ¢ € C*°(94.SM) we denote by <pﬁ-"i the function
uniquely determined by X @ﬁgi =0 and @ lo, sm = -

Recall that the scattering relation is a smooth map oy : 04 SM —
0_SM that extends to a diffeomorphism ay4 : 0SM — 0SM such that
o2 =id. Observe that if ag, = ag,, then C°(94SM) is the same space
for both metrics since it only depends on the scattering relation.

The next result shows that the scattering relation determines the
boundary values of invariant functions.
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Lemma 11.5.2. If oy, = a,, then

0" o = ©*o2 [asm
for any ¢ € C*>°(0LSM).
Proof This follows since

plos lo,sar = @, phos lo_sn = poay,. O

We next observe that when I is surjective, the scattering relation also
controls the boundary values of holomorphic invariant functions. Below,
holomorphic in (SM, g) means fibrewise holomorphic with respect to the
given metric.

Lemma 11.5.3. If a, = o4, and if I is surjective in (M, g2), then
for any ¢ € C*(01SM) one has

o1 holomorphic in (SM,g1) = ¢*s holomorphic in (SM, gs).

Proof Let ¢ € C°(0,SM) and assume that @1 is fibrewise holomor-
phic in (SM,g;). Note that pfs2 is smooth since ¢ € C (0L SM) for
o = ag,. Now let w contain the negative Fourier coefficients of s in
(SM, g3):

-1

We need to show that w = 0.
Since ¢*s1 is fibrewise holomorphic in (SM, g;) and since the boundary
values of fo1 and @fo2 are the same by Lemma 11.5.2, we have

-1

wlosn =Y (<Pﬁgl)k‘8SM =0
k=—o00

Note also that since X, = 0, we have
ngw = M,ga W1 + N g W—2-
Splitting w into even and odd components yields
Xga Wi = N4 g, W2, XgyW— = 14 g w-1.

Using that wi|gsy = 0 and applying Theorem 10.2.3 we deduce that
w = 0. [

Next we show that a4 also determines the boundary values of holomor-
phic functions in M. Here holomorphic means with respect to x € M.
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Lemma 11.5.4. If oy, = oy, and I§ is surjective both in (M, g) and
(Ma 92)7 then

h holomorphic in (M, g1)
— 3 h holomorphic in (M, gs) with hlayr = hloas.

Proof We use the fact, e.g. from Lemma 6.1.21, that for h € C*°(M),
h is holomorphic in (M,g) <= n-4h=0.

Now, given h holomorphic in (M, g1) use surjectivity of I} (see Theorem
8.2.2) to find a smooth w with X, w = 0 and wy = h. We may replace
w by w4, so that w is even. Now

Xg, (Z wk) =1N-,gWo = 1—,g,h =0.

k=0

If we replace w by its holomorphic projection and write ¢ := w|a, sar, We
obtain that w = ¢ is fibrewise holomorphic and (¢%1)q 4, = h. Then
by Lemma 11.5.3 also ¢fs2 is fibrewise holomorphic and X s o2 =0, so
10— .g0(¢%92)0 4, = 0. This means that h := (@#2)g,, is holomorphic in
(M, g2) and it has the same boundary values as h by Lemma 11.5.2. O

We next show that knowing the boundary values of all holomorphic
functions is equivalent to knowing the Dirichlet-to-Neumann map A,4. A
more general version of this result is given in Lemma 11.6.3.

Lemma 11.5.5. Let M be a compact simply connected oriented surface
with smooth boundary, and let g1 and go be two Riemannian metrics on
M with gilom = g2lonm- Then Ay, = Ay, if and only if

{hlops : h € C°(M) is holomorphic in (M, g1)}
= {hlonr : h € C®(M) is holomorphic in (M, g)}. (11.5.1)

Proof Let f € C*(OM) be real valued, let u be the harmonic extension
of fin (M, g), and let v be a harmonic conjugate of u in (M, g). Recall
from Lemma 3.4.12 that v exists since M is simply connected, and one
has the Cauchy-Riemann equations

dv = x4du (11.5.2)

where %, is the Hodge star operator of (M, g). The function v is unique
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up to an additive constant, and we fix this constant by requiring that
Jops vdV = 0. We write

Hy: CC(OM) — C°(OM), Hyaf =v|om.

This is the Hilbert transform on OM: if h is holomorphic in (M, g), then
Hy maps Re(h)|oar to Im(h)|aar up to a constant. If v, denotes the
rotation of the inward unit normal v by 90° clockwise, one has

Agf =du(v) = —dv(vy). (11.5.3)

The quantity Orv := dv(v,) is the tangential derivative of v along OM.
Now (11.5.3) and the normalization for the Hilbert transform give
that

Agl = A92 g (9TH91 = 8TH92
= Hg =Hg,.

The last statement is equivalent with (11.5.1), since any h which is holo-
morphic in (M, g;) with Re(h)|ans = f satisfies hlonr = f+i(Hy, f +¢)
for some real constant c. O

Proof of Theorem 11.5.1 If ay, = ay,, then by Lemma 11.5.4 the bound-
ary values of holomorphic functions in (M, g;) and (M,gs) coincide.
Then Lemma 11.5.5 gives that Ay, = Ag,. O

11.6 Calderén problem

In this section we solve the Calderén problem on two-dimensional Rie-
mannian manifolds. Together with Theorem 11.5.1, this leads to the
solution of the boundary rigidity problem on simple surfaces.

Let (M, g) be a compact 2-manifold with smooth boundary. The DN
map Ay : C®(OM) — C*(OM) maps f to du(v)|sm, where u = uy
solves the Laplace equation Aju = 0 in M with u|spr = f. An integra-
tion by parts shows that A, is also characterized by the weak formulation

/ (Agf)hdS:—/ (dug,dup)dV, — f,heC®@M). (11.6.1)
oM M

If ¢ : M — M is a diffeomorphism and if ¢ > 0 is a smooth function,
the Laplace equation in two dimensions has the invariances

Aw*g(d)*u) = 1/)*(Agu), ACgu = C71Agu.
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If additionally ¥|sp = Id and c|gar = 1, it follows easily from (11.6.1)
that

Ay-g = Ay, Acg = Ay

Thus in two dimensions the DN map A, has two natural invariances
related to diffeomorphisms and conformal scalings. The following result
due to Lassas and Uhlmann (2001) shows that the metric g is uniquely
determined by A, up to these invariances. Unlike in Theorem 11.5.1,

there are no restrictions on the topology of M or on the metric g.

Theorem 11.6.1 (Calderén problem). Let (M1, ¢1) and (Ms, g2) be two
compact surfaces with smooth boundary, and assume that there is an
orientation preserving diffeomorphism g : OMy; — OMs that satisfies
V5((92)ons) = (91)ons - If the DN maps agree in the sense that

Agl (f o 77[}0) = (Ang) © 1/)0’ f € OOO(aMQ)a

then go = cy*gy for some orientation preserving diffeomorphism i :
My — My with Ylon, = to and for some positive function ¢ € C*°(Ma)
with clon, = 1.

Of course, if one has M7 = My = M then one can take 1y = Idgp,.
Then Ay = Ay, implies that go = cyp*g; for some boundary fixing
diffeomorphism v : M — M.

Remark 11.6.2. Note that the conformal invariance of A4 only holds
in two dimensions. For dim M > 3 the anisotropic Calderén problem
consists in showing that g is uniquely determined by A4 up to a boundary
fixing diffeomorphism. This is an open problem at the time of writing
this, cf. Section 15.2.

Several proofs of Theorem 11.6.1 are available. To explain the related
methods, it is helpful to think of a constructive result where one knows
the boundary OM (and possibly the metric on OM) and an operator
A, acting on smooth functions on M. The interior M™" is unknown
(even its topology). Solving the inverse problem means reconstructing
the topology and geometry of M™ i.e. reconstructing a homeomorphic
copy of M™ and a metric that is conformal to the original metric g,
from the knowledge of the operator Ay on OM.

The available proofs proceed by identifying points = € M™* with cer-
tain quantities determined by A,. In Lassas and Uhlmann (2001), one
identifies & with the Green function G(z, -) for Ay, and in La
(2020) one identifies z with the Poisson kernel 9, G(x, - )[aar. In Belishev

ssas et al.
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(2003) points x € M are identified with maximal ideals I, or equiva-
lently multiplicative linear functionals §,, of the Banach algebra of holo-
morphic functions in M.

We will give a proof of Theorem 11.6.1 following the approach of
Belishev (2003). However, we will mostly avoid using the language of
Banach algebra theory.

Write

A(M) =AM, g) :={h € C*°(M) : h is holomorphic in (M, g)}.

The set A(M) is a complex vector space and also a ring with respect
to addition and multiplication, hence A(M) is an algebra. We already
proved in Lemma 11.5.5 that if M is simply connected and Ay, = Ag,,
then the algebras A(M, g1)|on and A(M, g2)|oar are the same. The next
lemma shows that this is true also without the simply connectedness
assumption. Here Or is the tangential derivative Or f = df (v) on OM.

Lemma 11.6.3 (A, determines A(M)|grr). Let (M,g) be a compact
surface with smooth boundary. Then

A(M)|om
— {f+ifs: f.f. € CF(OM,R) and Ayf = —Orfs, Agfs = Orf).

Proof A function h = u + v where u,v € C*®(M) are real valued
is holomorphic iff dv = *du. Now if h is holomorphic and f = u|ans,
f« =v|om, then on OM one has

Agf =du(v) = —xdv(v) = —dv(vy) = —0r fs,
Agfe = do(v) = xdu(v) = du(v,) = 0rf.

Conversely, assume that Ay f = =07 f. and Ay f, = Orf. Let v and v
be the harmonic functions in M with u|ops = f and v|aar = fi. We need
to show that dv = *xdu. First note that both dv and *du are harmonic
1-forms (they are annihilated both by d and the codifferential d,, since u
and v are harmonic). Also their tangential and normal boundary values
agree on OM:

dv(vy) =0pfe = —Agf = —du(v) = xdu(vy),
dv(v) = Agfe = Orf = du(vy) = *du(v).
Thus w := dv — xdu is a harmonic 1-form on M whose tangential and

normal boundary values vanish on M. We claim that w = 0. To see
this, note that w is locally of the form dy where ¢ is a harmonic function,
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and near a boundary point one has dr¢ = 9, = 0 on a portion of OM.
The unique continuation principle implies that ¢ is constant near any
boundary point, hence w = 0 near M. Since M is connected, iterating
this argument yields that w = 0. Consequently dv = xdu, and f +if, is
the boundary value of the holomorphic function u + iv. O

The next step is the observation that the trace algebra A(M)|gas
determines the algebra A(M).

Lemma 11.6.4 (A(M)|gar determines A(M)). Let (M, g) be a compact
surface with smooth boundary. Then the map p : A(M) — A(M)|onm,
o(f) = floam is an algebra isomorphism.

Proof The map p is bijective since any holomorphic function that van-
ishes on the boundary is identically zero. Clearly p is linear and satisfies
p(f1f2) = p(f1)p(f2), so p is an algebra isomorphism. O

We now show that the algebra structure of A(M) determines (M, g)
up to a conformal transformation. This result was originally proved in
Bers (1948) for domains in C and it has been generalized to many other
settings (see e.g. Royden (1956)).

Theorem 11.6.5 (A(M) determines M). Let (My,¢1) and (Ma,go)
be compact surfaces with smooth boundary. Then any ring homomor-
phism ® : A(My,q1) — A(Ma, g2) that preserves constants is of the
form ®(h) = ho ¢ where ¢ : My — My is a holomorphic map that is
smooth up to the boundary. If ® is bijective, then ¢ is a diffeomorphism.

The main step is to show that any ring homomorphism 7 : A(M) — C
that preserves constants (i.e. any nonzero multiplicative linear functional
mon A(M)) is a point evaluation d,, : f — f(20).

Proposition 11.6.6. Let (M, g) be a compact surface whose boundary
is smooth. Any ring homomorphism 7 : A(M,g) — C that preserves
constants is of the form m = d5, for some x¢ € M.

There is an easy proof of Proposition 11.6.6 assuming that

(M, g) has an injective holomorphic function ¢ with d¢ # 0 on M.
(11.6.2)
Recall that an injective holomorphic function is called univalent, and
such a function always satisfies d¢ # 0 in M™. This assumption holds
for instance when M is simply connected, since then one has global
isothermal coordinates (x1,x2) and it is enough to take { = x1 + ixs.
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Proof of Proposition 11.6.6 assuming (11.6.2) Replacing ¢ by (—7(¢),
we have 7(¢) = 0. Then ¢ has a zero (for if not, then ¢ is nonvanishing
and 1 = 7(1) = m(¢)m(¢™') which contradicts that 7({) = 0). Let
29 € M be such that ((zp) = 0, and note that xo must be a simple
zero since d((zg) # 0. Now if f € A(M), the function e := %(TO) is in
A(M). Thus f(z) = f(zo)+((x)e(x), and 7 (f) = 7(f (x0)) +7(¢)7(e) =
f (o). O

We will now prove Proposition 11.6.6 in the general case. The bound-
ary presents some problems, so we consider a closed extension (N, g) of
(M, g) and define

OM):={feC>®(M) : f extends to a

holomorphic function near M}.
We will need the following facts from the theory of Riemann surfaces.
Lemma 11.6.7. Let (M, g) be a compact surface with smooth boundary.

(1) O(M) separates points: given x1,x2 € M with Ty # x2, there is
f € OM) with f(z1) # f(22).

(2) O(M) is a Bézout domain: given f1,..., fr € O(M) with no common
zeros, there are eq,...,e, € O(M) so that 1 =e1f1 + ...+ e, fr.

(3) O(M) is dense in A(M) with respect to the L (M) norm.

Proof 1f U is a neighborhood of M in N, then the ring A(U) of holo-
morphic functions in U satisfies (1) and (2), see (Forster, 1981, p. 205)
(note that it is enough to prove (2) when r = 2, and the general case
will follow by induction). Then (1) and (2) are also true for O(M).

For (3), we first note that M has a closed extension N so that N\ M is
connected (it is enough to take N to be the double of M). Fix o € N\ M
and let U := N \ {zo}. Then U is a noncompact Riemann surface and
U* \ M is connected, where U* = N is the one point compactification
of U. It follows from (Bagby and Gauthier, 1992, Theorem 2.5) that
A(U)|a is dense in A(M) with respect to the L* norm, proving (3). O

Proof of Proposition 11.6.6 in the general case Let w: A(M) — C be
a ring homomorphism that preserves constants. Define

S= (] N
feKer(m)

where N(f)={x € M : f(x) =0}.
We first claim that S has at most one point. We argue by contradiction



274 Boundary rigidity

and assume that xj,zo € S with 21 # zo. By Lemma 11.6.7 O(M)
separates points, so there is f € A(M) with f(z1) # f(x2). Then fi=
f—=m(f) € A(M) is in Ker(r) but it cannot vanish at both z; and o,
showing that S cannot contain both z; and xs.

Next we show that S is nonempty. We argue again by contradiction
and suppose that S = (). Then for any x € M there is f, € Ker(w) with
fo(z) # 0. Write U, = M \ N(f,) and note that {Uy,}zen is an open
cover of M. By compactness there is a finite subcover, which implies
that there are f1,..., f, € Ker(m) with no common zeros. In particular
|fil+...+|fr] = co > 0in M. By Lemma 11.6.7, for any & > 0 there are
hl, .. .7hr S O(M) with Hf] — hj”Loo(I\/[) <e. WI‘itiIlg Bj = hj — W(hj)
we have m(h;) = 0 and

\fi = hjl = |f; — by — 7 (f; — hy)| < |fj — Byl + 7(f; — hy)| < 2e.

Here we used that |7(f)] < ||f|lLe (here is a standard proof: if 7(f) = A
where |A| > || f]| e, then 1—f /X has no zeros and hence 0 # w(1—f/\) =
1—7(f)/A, which is a contradiction). Choosing e small enough we have
\ha|+...+|he| > ¢o/2>0in M, 50 hy,...,h, € O(M) have no common
zeros. Now Lemma 11.6.7 gives that

1:61il1+...+€7~]~17«

for some ey,...,e, € O(M). Since 7w is a ring homomorphism and
7(h;) = 0, this implies 1 = 7w(ehy + ... + e,h,) = 0, which is a contra-
diction.

We have proved that S = {z¢} for some zy € M. Now if f € A(M),
we have 7(f — n(f)) = 0, so f — w(f) vanishes at zo. It follows that

m(f) = f (o). O

Proof of Theorem 11.6.5 Let A; = A(Mj,g;), let y € M, and let
dy : Ay — C be the point evaluation at y. Then 7, := §, 0 ® is a
homomorphism A; — C preserving constants. Proposition 11.6.6 gives
that m, = d, for some x € M, and this = is unique since A; separates
points. Define

¢: My — My, ¢(y) =z.
Then for any f € A; one has the required formula

O(f)(y) = f(o(y),  y€ M.

Let us prove that ¢ is continuous. Consider a sequence y; — y and
suppose by contradiction that (¢(y;)) does not converge to ¢(y). We may
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consider a subsequence still denoted (y;) such that ¢(y;) = 2z # ¢(y).

Let f € Ay such that f(¢(y)) # f(2). Then ®(f)(y;) = ®(f)(y) while
f(o(y;)) = f(z), which is a contradiction since ®(f) = f o ¢. Thus ¢
must be continuous.

Let y € My and let f € O(M;) be such that it has a simple zero
at ¢(y). Then there is a neighbourhood U of ¢(y) in M; in which f is
1 —1. Set h:= ®(f) and take a neighbourhood V of y in My such that
¢(V) C U. Since h(z) = ®(f(z)) = f(¢(z)), in V we can represent ¢ as
f~! o h showing that ¢ is holomorphic in Mi" and smooth up to the
boundary.

Finally, assume that ® is bijective, which implies that ®~1 : Ay —
A; is a ring homomorphism preserving constants. The argument above
shows that ®~1(h) = ho ¢’ for h € Ay where ¢’ : M; — M is holomor-
phic and smooth up to the boundary. Applying ® gives h = ®(ho ') =
ho ¢ o¢ for any h € As. Since Ay separates points, ¢’ o ¢ is the iden-
tity map on M. Similarly ¢ o ¢’ is the identity map on M, so ¢ is
bijective. O

Finally we combine the arguments above to prove Theorem 11.6.1.
Proof of Theorem 11.6.1 Define a map
O : A(My, g1)|oas, = A(Ma, g2)lons,, Pol(fo) = foo by .

We claim that ®( is an algebra isomorphism. First we need to check that
®y indeed maps into A(Mg,g2)|a]\/[2. Let fo=f+if. € A(Mlagl)|8M1~
By Lemma 11.6.3 we have

Ag1f = _a’?"le*7 Aglf* = angf (1163)
We claim that for any h € C°°(9M;), one has
07" h = 072 (o w5 t) o Yo

Indeed, let T} be the positively oriented unit tangent vector to OM;. By
the assumption on 1y one has (¢0)«(T1]z) = (T2)]y(x), and thus

9P h(x) = dhlo(Th) = ¥5d(g ) hle(Th) = d(h o g ) |pg(a) (o) Th)
= 092 (h o vy ) (o ().
Using (11.6.3) and the fact that Ay, f = (A, (f oty t)) o v, we get
Mg (fodgh) = (Mg f) oyt = =02 f) oyt = =02 (fro g )
and similarly Ay, (f. o1y ') = 99M2(f o4hy!). Now Lemma 11.6.3 shows
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that ®y maps into A(Ma, g2)|oas,. Clearly @ is injective, linear and
multiplicative. It is also surjective, since for any hg € A(Ma, g2)|ans, one
has hg oty € A(Mji, g1)|an, by changing the roles of M; and My above.
Thus @ is an algebra isomorphism.

Let p; : A(Mj,g;) — A(Mj,g5)lan;, pj(f) = flam, be the algebra
isomorphism from Lemma 11.6.4, and define

D : A(Ml,gl) — A(Mg,gg), b= p;l ¢} (I)Q o pP1.

Then @ is an algebra isomorphism. Theorem 11.6.5 implies that there
is a holomorphic diffeomorphism ¢ : My — M; so that ®(f) = f o ¢.
Write 1 := ¢~'. Then 1 is an orientation preserving diffeomorphism
M; — M, that is conformal, i.e. go = cy*g; for some positive ¢ €
C®(Ms). For any f € A(Mi,g1) and y € OMs one has f(¢(y)) =
O(£)(y) = ®olp1())(y) = F(¥5" (y)). This shows that 6loas, = 5, 50
Ylon, = vo. O

11.7 Boundary rigidity for simple surfaces

We are now ready to combine all the above results and prove the main
result of this chapter.

Proof of Theorem 11.1.4 Let (M, g1) and (M, g2) be simple surfaces
with dg, |armrxom = dg,|omxonr. We first use Proposition 11.2.1 to con-
clude that gi|lopr = g2|onr, possibly after applying a boundary fixing
diffeomorphism to go. Then Proposition 11.3.2 yields that we may de-
termine the lens data, i.e.

Qg, = Qyg,, Tgy o4 SM = Tgylo, s

Since I is surjective on simple manifolds by Theorem 8.2.1, it follows
from Theorem 11.5.1 that

Agy = Ag,.
Solving the Calderén problem using Theorem 11.6.1, we obtain that
g2 = g1

for some diffeomorphism ¢ : M — M fixing the boundary and some pos-
itive ¢ € COO(M) with C|8M = 1. Finally, since dg1 |8M><8M = dg2|6M><6M
we also have dy« g, |onmxom = deyr g, |lonmxon.- We may thus use Theorem
11.4.1 to conclude that ¢ = 1. Hence g3 = 9% g . O



11.7 Boundary rigidity for simple surfaces 277

We conclude this chapter with a few additional references to the
boundary rigidity problem and related questions. If the metric is confor-
mally Euclidean, the boundary rigidity problem is also known as the in-
verse kinematic problem and it has a long history going back to Herglotz
(1907) as discussed in Chapter 2. There are several results in the con-
formal case based on the method due to Muhometov (1977); see the
references in Sharafutdinov (1994).

The problem for more general metrics was posed in Michel (1981/82).
Boundary rigidity for simple two-dimensional manifolds was proved in
Pestov and Uhlmann (2005), following earlier results of Croke (1990);
Otal (1990) in negative curvature. In dimensions > 3 boundary rigidity
is known for generic simple manifolds (Stefanov and Uhlmann, 2005),
metrics close to Euclidean or hyperbolic metric (Burago and Ivanov,
2010, 2013), and manifolds foliated by strictly convex hypersurfaces
(Stefanov et al., 2016, 2021).

There are related questions of scattering rigidity (determine g up to
gauge from «g) and lens rigidity (determine g up to gauge from o, and
Tg). In two dimensions a simple metric is scattering rigid among the set
of all metrics; this is proved in Wen (2015) using Theorem 11.1.4. We
refer to the survey articles (Croke, 2004; Ivanov, 2010; Stefanov et al.,
2019) for further information on boundary rigidity and related results.
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12

The attenuated geodesic X-ray transform

In Definition 5.3.3 we introduced a very general attenuated X-ray trans-
form I4 in the context of an arbitrary non-trapping manifold (M, g)
with strictly convex boundary, where A € C*(SM,C™*™) was a ma-
trix attenuation. In this chapter we shall focus on the scalar case m =1
and in this case the attenuation will be denoted by a. We shall see that
under the assumption that a € Q_; & Qo B 2 and that (M, g) is a sim-
ple surface, the attenuated X-ray transform I, is injective on C*°(M).
Along the way we will revisit the existence of holomorphic integrating
factors, but first we give a brief summary of the classical situation of the
Euclidean plane.

12.1 The attenuated X-ray transform in the plane

We start with a smooth function a € C°°(R?) with compact support
contained inside the unit disk D. For (z,v) € SR? we set

Da(z,v) := /OOO a(z + tv) dt.

In the classical literature the function Da is called the divergent beam
X-ray transform of a at x in the direction of v. Note that if M denotes
the closed unit disk, then Dalgsy = u®, where as ever u® denotes the
unique solution to the transport problem Xu = —a with ulg_gy = 0.
Note also that

Da(x 4 tv,v) = Da(z,v) — /Ot a(x + rv) dr. (12.1.1)

The classical attenuated X-ray transform of a compactly supported
function f in R? is defined using p := exp(—Da) as weight. It is most
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frequently expressed in parallel-beam geometry, using the coordinates
(s,w) €R x S as

R.f(s,w) = / exp(—Da(sw + twr,wb)) f(sw + twh) dt.  (12.1.2)
Note that for a = 0 this reduces to the Radon transform in Section 1.1.
Using (12.1.1) we may rewrite this as

R f(s,w) = exp(—Da(sw,w))x

oo t
/ exp [/ a(sw + rw) dr} f(sw+twh)dt. (12.1.3)
—00 0

Suppose now that f is supported in the closed unit disk M. We may
think of f as a function in M, and consider the (Euclidean) attenuated
X-ray transform in M as in Section 5.3 given by

7(z,v) t
I, f(z,v) = /0 exp {/o a(z + rv) dr] flz+tv)dt, (z,v) € I SM.

We wish to express R,f in terms of I, f. If we now introduce a map
h:SM — [-1,1] x St by

h(z,v) = ((z,v1),v1)

as we did in Section 9.5, then we see that h* R, f is a first integral of the
geodesic flow on SM. A short computation shows that its restriction to
0+ SM gives via (12.1.2) (or via (12.1.3))

h*Raflo, su = e WL (f). (12.1.4)

It follows that R, is injective iff I, is injective. Moreover, as we saw
in Section 5.3 there is a connection to the transport equation: one has
I.f = ulp, s where u is the solution of

Xu+au=—f in SM, ulop_sym =0. (12.1.5)

The literature on R, is extensive, so we limit ourselves to giving some
of the highlights and discussing them from the perspective of the present
monograph. One reason for the interest in R, is that it naturally arises
in single photon emission computed tomography (SPECT). This is an
imaging method in nuclear medicine, where typically a radioactive tracer
material is injected into the bloodstream of the patient and one measures
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the gamma radiation produced by the material. The function f repre-
sents the spatial density of emitters (emitting gamma photons isotrop-
ically) and a is a linear attenuation coefficient. The function R, f mea-
sures the intensity of gamma photons at the detector in the direction of
a specific line.

In our discussion we shall assume that a is known and the objective
is to recover f from R, f. Remarkably, even in the Euclidean plane the
full resolution of the injectivity question for R, is relatively recent and
is due to Arbuzov et al. (1998). A couple of years later, Novikov (2002b)
gave an explicit inversion formula based on complexifying the transport
problem (12.1.5) and solving a scalar Riemann-Hilbert problem. Shortly
after, Boman and Stromberg (2004) produced an inversion formula that
applied to a larger class of attenuations, namely a € Q_1 & Qg & Q.
An inversion formula in fan-beam coordinates for the unit disk is pro-
vided in Kazantsev and Bukhgeim (2007). For an exposition of some
these developments we refer to Finch (2003). We remark that in dimen-
sions n > 3 the problem of recovering f from its Euclidean attenuated
X-ray transform is formally overdetermined and can be reduced to inver-
sion on small two-dimensional slices, see e.g. Markoe and Quinto (1985);
Ilmavirta (2016).

In the two-dimensional results above holomorphic integrating factors
for the attenuation a play a prominent role. As we explained in Sub-
section 9.5.3 these are easy to come by in the Euclidean case, but for
an arbitrary simple surface one needs to deploy some microlocal tools.
In Proposition 10.1.2 we have already produced holomorphic and an-
tiholomorphic integrating factors for any attenuation a € Q_; & Q4
on a simple surface. Below we shall extend this result to attenuations
a € Q_1® Ny ®Nq. This result will allow us to invert the attenuated
geodesic X-ray transform.

12.2 Injectivity results for scalar attenuations

We begin with definitions. Let (M, g) be a compact non-trapping surface
with strictly convex boundary, and let A € C*°(SM) be a general at-
tenuation. In this chapter, the attenuation A will always be scalar and
we will write A = a to emphasize this. Recall that in Section 5.3 we
introduced the attenuated X-ray transform of f € C*°(SM) as

Lf=ulo, sm
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where uf is the solution of
Xu+au=—fin SM, ulo_sm = 0.

Noting that X(e=*") = ae™*", we see that the previous equation is
equivalent with

a

X(e™'u) = —e %" f in SM, e " ulo_sn = 0.

A short computation shows that in the scalar case I, f has the explicit
formula

Lfe.o) = [ e [ / (o)) ds] Forla,v)) dt

for (z,v) € 0LSM.
We will mostly be interested in the case where f € C*°(M) (i.e. f is
a 0-tensor).

Definition 12.2.1. If a € C*°(SM), the attenuated geodesic X-ray
transform on 0-tensors is defined by

[a,O : COO(M) — C°°(8+SM), Ia,Of = Ia(gof)

As discussed in Section 12.4, there are counterexamples showing that
I, is not injective when a € C*°(SM) is arbitrary. However, injectivity
will hold in the important special case where a € C°°(M), or more
generally when a has the special form

a(z,v) = h(z) + 0,(v)

where h € C*°(M,C) is a function and 6 is a smooth complex-valued
1-form, which we identify with the function 6,(v) on SM. Since we are
working in two dimensions, we may equivalently say that we will consider
attenuations of the form

a=a_1+ag+aL € Q_1 D DN

We first consider the case ag = 0 (i.e. a is purely a 1-form). In this
setting we can prove a fairly general result.

Theorem 12.2.2. Let (M,g) be a compact non-trapping surface with
strictly convex boundary and I surjective. Let 8 be any smooth complex-
valued 1-form. Then Ig o is injective.

Proof Suppose that f € C*(M) and Ipof = 0. By Theorem 5.3.6
there is a smooth function u such that Xu + 6u = —f and u|gsyr = 0.
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Since X 4 6 maps even (odd) functions to odd (even) and f € Qg we
may assume without loss of generality that w is odd.

Using Proposition 10.1.2 we know that there exists w holomorphic
and even with Xw = 6. Thus we have

X(e"u) = e (Xw)u + Xu) = —e” f. (12.2.1)

Note that e“u is odd and consider

—1

q:= Z(ewu)k.

—00
Since e f is holomorphic, (12.2.1) gives
Xq=mn1q-1 € Q.

But ¢lgsn = 0 since ulgsa = 0, hence injectivity of Iy gives ¢ = 0 (see
Lemma 10.2.2). This means that e*u is holomorphic and thus u is holo-
morphic. Using Proposition 10.1.2 again but with w antiholomorphic,
we deduce that u is also antiholomorphic. Since we assumed u odd we
must have © = 0 and thus f = 0 as claimed. O

This result has the following important corollary on the existence of
solutions of transport equations with prescribed zeroth Fourier mode
(the case 6 = 0 was proved in Theorem 8.2.2).

Corollary 12.2.3. Let (M, g) be a simple surface and let 6 be a smooth
complez-valued 1-form. Then, given f € C®(M,C) there exists u €
C>*(SM,C) such that

UO:f.

Proof Consider any smooth function W : SM — C\ {0} such that
XW — 0W = 0. Then by Lemma 5.4.6 injectivity of Iy is equivalent
to injectivity of Iy o. Combining Theorem 12.2.2 with Corollary 8.4.6
we deduce the existence of u when 6 is replaced by —f. Since # was an

{ Xu+0u =0,

arbitrary complex 1-form, this proves the result. O

The next theorem may be seen as the dual statement at the level of
the transport equation to the injectivity of the geodesic X-ray transform
on the spaces €.

Theorem 12.2.4. Let (M, g) be a simple surface. Given f € Qy there
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exists u € C*°(SM) such that

{Xu:O,
uka.

Proof Let r:=e™*® € Q. Then 0 :=r"1X(r) € Q_; © Qy is a 1-form.
By Corollary 12.2.3, there exists a smooth u such that Xu + 6u = 0 and
uo =11 f € Qy. Now observe that

X(ru) =r(Xu+ 0u) = 0.
Since (ru)g = rug = f € Q, the theorem is proved. O

Armed with this theorem we can now prove the existence of holomor-
phic integrating factors for a € C*°(M, C).

Proposition 12.2.5 (Holomorphic integrating factors, part II). Let
(M, g) be a simple surface. Given a € Qq, there existsw € C*°(SM) such
that w is holomorphic and Xw = a. Similarly, there exists w € C*°(SM)
such that w is antiholomorphic and Xw = a.

Proof We do the proof for w holomorphic; the proof for w antiholo-
morphic is analogous.

First we note, as in the proof of Proposition 10.1.2, that the equa-
tion n_ f; = a can always be solved. Indeed this is the case since it is
equivalent to solving a d-equation on a disk: by Lemma 6.1.8

n-fi = e 2o(fe)

where f; = fe'?. Hence we just need to solve d(fe) = e
always possible e.g. by extending a as a smooth compactly supported
function outside the disk and applying the Cauchy transform.

Next, using Theorem 12.2.4 there is a smooth function u such that
Xu =0 and u; = f1. Now take w = u; + ug + us + .... Then Xw =
n—up = a and w is the desired holomorphic integrating factor. O

2Aq, which is

We now state the final version on the existence of holomorphic inte-
grating factors.

Proposition 12.2.6 (Holomorphic integrating factors, final version).
Let (M, g) be a simple surface. Given a = a_1+ap+a—_1 € Q_1 QDY
there exists w € C*®°(SM) such that w is holomorphic and Xw = a.
Similarly, there exists w € C®(SM) such that W is antiholomorphic
and X = a.
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Proof This is a direct consequence of Propositions 10.1.2 and 12.2.5.
O

We can now prove the main result of this section. For a = a¢ this was
first proved in Salo and Uhlmann (2011).

Theorem 12.2.7. Let (M, g) be a simple surface, and assume that a =
a_1+ap+a €Q_1 D0 B Q. Then I, is injective.

Proof This proof is very similar in spirit to that of Theorems 12.2.2 and
10.2.3. Suppose that f € C>° (M) satisfies I, 0f = 0. By Theorem 5.3.6
there is a smooth function u such that Xu + au = —f and u|gsy = 0.

Using Proposition 12.2.6 we know that there exists w holomorphic
with Xw = a. Thus we may write

X(e®u) = e ((Xw)u + Xu) = —e¥ f. (12.2.2)

Consider
—1

q:= Z(ewu)k.

— 00

Since e f is holomorphic, (12.2.2) gives
Xq=n4q-2+n4q-1 € Q1 & .

But glasy = 0, hence splitting into even and odd degrees, Theorem
10.2.3 gives that ¢ = 0. This means that e is holomorphic and thus v is
holomorphic. Using Proposition 12.2.6 again but with w antiholomorphic
we deduce that u is also antiholomorphic. Hence u = ug. To complete
the proof we need to show that ug also vanishes (and hence f = 0 as
well).

Going back to the transport equation Xu+au = —f we see that if we
focus on degree —1 we have n_ug + a_jug = 0 with ug|sasr = 0. Choose
some b € Qg satisfying n_b =a_;. Then

n-(e"ug) =0
and e’uq is a holomorphic function on M that vanishes on the boundary,
S0 it must be zero everywhere. O

Exercise 12.2.8. Let (M, g) be a simple surface and let a = a_1 +ap +
a1 € Q-1 ® Qy & Q. Establish the following tensor tomography result
with attenuation a: let u € C*°(SM) be such that

Xu+au = f, ulosar = 0.
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Suppose f, = 0 for |k| > m~+1 for some m > 0. Then ug, = 0 for |k| > m
(when m = 0, this means u = f = 0).

12.3 Surjectivity of I}

There is another application of Theorem 12.2.4 that was already used
for the characterization of the range of Iy in the case of simple surfaces
in Theorem 9.6.2.

Theorem 12.3.1. Let (M, g) be a simple surface. Then the operator
IF : C(94 SM) — O (M)
1S surjective.

Proof Let us recall that It h = —27(X  h#)o for h € C(9;SM) (cf.
(9.4.3)). Given f € C>°(M), consider functions wi; € Q47 solving (as
we have done in the proof of Proposition 12.2.5):

n_wy = —f/4dwi, nyrw_q = f/4mi. (12.3.1)

By Theorem 12.2.4 there are odd functions p,q € C*°(SM) such that
Xp=Xqg=0and p_; =w_1, g1 = w;. Consider the function

-1 00
w = Zpk + Z%~
—00 1

By (12.3.1) we have Xw = 0. Let h := wlo, s € C(0+SM ). We claim
that It h = f. Indeed using (12.3.1) again:

ITh=-2r(X,w)=—2mi(n_w; —nyw_1)=f/2+ f/2=f
as desired. O

12.4 Discussion on general weights

Theorem 12.2.7 prompts a natural question: is it possible to prove injec-
tivity of I, for a more general a? What would happen if we just take
an arbitrary a € C*°(SM)?

It turns out that for an arbitrary attenuation a € C*°(SM), injectivity
of I, 0 is no longer true even in the Euclidean case. Recall that by Lemma
5.4.6 the injectivity of I, ¢, where @ € C°°(SM) is a general attenuation,
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is equivalent to the injectivity of the weighted X-ray transform I, for
any smooth weight p: SM — C\ {0} satisfying Xp — ap = 0.
In Boman (1993), an example is given of p € C°°(SR?) with p > 0 and
f with compact support in R? such that I,(f) = 0. If the weight p is real
d G

analytic, injectivity is known, cf. Boman and Quinto (1987). However,

as of today there is no complete characterization of the set of weights
for which injectivity of I, holds. Novikov (2014) considers weights p that
have a finite vertical Fourier expansion, namely p € @~ N2, and shows
injectivity of I, on compactly supported functions in the plane under
additional assumptions on p.

With this in mind we can now state the following open problem for

simple surfaces.

Open problem. Let (M, g) be a simple surface and let a € @~ Q. be
an attenuation with finite vertical Fourier expansion. Is it true that I, o
is injective?
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13

Non-Abelian X-ray transforms

In this chapter we introduce the non-Abelian X-ray transform and we
study some of its basic properties. At first we discuss the theory in
a fairly general setting for matrix-valued attenuations defined in the
whole unit sphere bundle and then we discuss injectivity results when
the attenuation is given by a connection plus a matrix field (a Higgs
field) on the surface. The main result in this chapter is scattering rigidity
up to the natural gauge when the connection and the matrix field take
values in skew-Hermitian matrices. In order to show this, we establish
an injectivity result for the geodesic X-ray transform with attenuation
given by a skew-Hermitian connection and Higgs field. Using the ideas
involved in the proof we also give an alternative proof of the tensor
tomography problem. The skew-Hermitian assumption will be removed
in Chapter 14, which gives a solution of the scattering rigidity problem
when the connection and the matrix field take values in an arbitrary Lie
algebra.

13.1 Scattering data

Let (M,g) be a compact non-trapping manifold of dimension d > 2
with strictly convex boundary OM. Consider a matrix attenuation A
as in Section 5.3, namely, let A : SM — C"*™ be a smooth function.
The notation deviates slightly from previous chapters: in this chapter
we write d = dim M, and the attenuation is an n X n matrix function.
Consider (M, g) isometrically embedded in a closed manifold (N, g)
and extend A smoothly to SN. Under these assumptions, we have seen in
Section 5.3 that A on SN defines a smooth cocycle over the geodesic flow
¢t of (N, g). Recall that the cocycle takes values in the group GL(n,C)
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and is determined by the following matrix ODE along the orbits of the
geodesic flow:

d
%C(I,’U,t) + A(pi(z,0)C(z,v,t) =0, C(z,v,0) =1d.
In Lemma 5.3.2 we have seen that the function
U+(33‘, U) = [0(1‘7 v, T(l‘, ’U)}il

is smooth in SM and solves

{ XU++.AU+:0,

Uvlo oo =10, (13.1.1)

Definition 13.1.1. The scattering data of A is the map
Ca=Cpy4:0:5M — GL(n,C)
given by
Ca+=Uslo, sm-
We shall also call C4 4 the non-Abelian X-ray transform of A.
Remark 13.1.2. Note that for d = 1 we may explicitly write
Cat = exp(I(A))

where I(A) is the geodesic X-ray transform of .4. Thus having informa-
tion on C4 + is equivalent to having information on I(A). However, for
d > 2 such a formula is no longer available due to non-commutativity of
matrices and hence we use the name non-Abelian X-ray transform.

Note that C 44+ € C*(0+SM,GL(n,C)). We can also consider the
unique solution of

{ XU+ AU- =0, (13.1.2)

U_lo, s =1d
and define scattering data C 4 _ : _SM — GL(n,C) by setting
Ca— =U_[o_sm-
Both quantities are related by
Ca_=[Cys]  oa. (13.1.3)

Exercise 13.1.3. Prove (13.1.3).
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Remark 13.1.4. We can interpret the scattering data C 4, as follows.
Let (z,v) € 0+ SM and let b be a vector in C™. Suppose that b(t) solves
the ODE

b(t) + A(ps(z,v)b(t) =0,  b(0) =b.

We consider an experiment where we send a vector b from a boundary
point z in direction v and then we measure the vector b(7(x,v)) on the
boundary when b(¢) exits M. Since (X +.A4)(U_b) = 0, the measurement
is given by b(7(z,v)) = U_(a(z,v))b. Thus knowing C4 _ is equivalent
to knowing how vectors evolve under the attenuation A when they travel
through M along geodesics. This interpretation is particularly relevant
when A corresponds to a connection, since then b(t) is just the parallel
transport of b with respect to this connection (see (13.3.3)).

By (13.1.3), if the metric g (and hence «) is known then C4 4 and
C4,— are equivalent information. From now on we shall only work with
C 4.+ and we shall drop the subscript + from the notation.

We conclude this section by describing some motivation for studying
the non-Abelian X-ray transform. We will consider the special case where
the attenuation is given by

Az, v) = Az (v) + ®(2)

where A is an n X n matrix of smooth 1-forms in M, and ® is a smooth
n X n matrix function on M. We say that A is a connection and ®
is a Higgs field, and we write the scattering data as Cy ¢ := C4. See
Section 13.3 for more information on connections. Note that one has
A€ Q@ Qp @ Q_yq, which is similar to Chapter 12 where we studied
the scalar attenuated X-ray transform.

The map (A, ®) — C4 ¢ appears naturally in several contexts. For
instance, when @ = 0, C4 represents the parallel transport of the
connection A along geodesics connecting boundary points. Then the in-
jectivity question for the non-Abelian X-ray transform reduces to the
question of recovering a connection up to gauge from its parallel trans-
port along a distinguished set of curves, i.e. the geodesics of the metric g.
We may also consider the twisted or connection Laplacian d%d4, where
da = d + A. Egorov’s theorem for the connection Laplacian naturally
produces the parallel transport of A along geodesics of g as a high energy
limit, cf. (Jakobson and Strohmaier;, 2007, Proposition 3.3). This data
can also be obtained from the corresponding wave equation following

nen et al. (2020); Uhlmann (2004).
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When A = 0 and ® € C*(M,s0(3)), the non-Abelian X-ray trans-
form ® — Cj ¢ arises in Polarimetric Neutron Tomography (Desai et al.,

NI

2020; Hilger et al., 2018), a new tomographic method designed to detect
magnetic fields inside materials by probing them with neutron beams.

The case of pairs (A, ®) arises in the literature on solitons, mostly in the
context of the Bogomolny equations in 2+1 dimensions (Manakov and Zakharov,
1981; Ward, 1988). Applications to coherent quantum tomography are

given in Ilmavirta (2016). We refer to Novikov (2019) for a recent survey

on the non-Abelian X-ray transform and its applications.

13.2 Pseudo-linearization identity

Given two A, B € C*°(SM,C"*™) we would like to have a formula that
relates C 4 and Cpi with a certain attenuated X-ray transform. We first
introduce the map E(A,B) : SM — End(C"*") given by

E(A,B)U := AU — UB.
Here, End(C™*™) denotes the linear endomorphisms of C™*".

Proposition 13.2.1. Let (M, g) be a non-trapping manifold with strictly
convex boundary. Given A,B € C*(SM,C"*"), we have

CaCg' =1d + Ip(ap) (A - B), (13.2.1)

where Ip(4,5) denotes the altenuated X-ray transform with attenuation

E(A,B) as defined in Definition 5.8.3.
Proof Consider the fundamental solutions for both A and B, namely
{ XUp+ AU4 =0,
Ualo_sm =1d,

and
{ XU+ BUg =0,
Uslo_sm = 1d.

Let W :=UaUg 1 _1Id. A direct computation shows that

{ XW + AW — WB = —(A— B),
Wlo_sm = 0.

By definition of Ig(4,5) we have

Igp) (A=B)=Wls, sm-
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Since by construction Wla, sy = CACgl — Id, the proposition follows.
O

Remark 13.2.2. Note that the function U := UAUgl satisfies

{B:U*XU+U*AM
Uls_sar = Id.

The identity (13.2.1) is called a pseudo-linearization identity, since it
reduces the non-linear inverse problem of determining A (up to gauge)
from C'4 into the linear inverse problem of inverting the X-ray transform
Ig(a,B) (up to a natural kernel), where the attenuation £(A, B) depends
on A and B. Namely, C 4 = Cg iff

IE(A,B)(A - B) - 0
We can also phrase this result in terms of a transport equation problem.

Proposition 13.2.3. Let (M, g) be a non-trapping manifold with strictly
convex boundary. Given A,B € C*(SM,C"*"), we have C4 = Cp if
and only if there exists a smooth U : SM — GL(n,C) with Ulgsy = 1Id
and such that

B=U"'XU+U'AU.

Proof If such a smooth function U exists, then the function V = UUg
satisfies XV + AV = 0 and V|y_sn = Id. Therefore V = U4 and con-
sequently C 4 = Cp. Conversely, if the non-Abelian X-ray transforms
agree, the function W in the proof of Proposition 13.2.1 has zero bound-
ary value and by Theorem 5.3.6 is must be smooth. Hence U = W + Id
is smooth and by Remark 13.2.2 it satisfies the required equation. [

Exercise 13.2.4. Consider the Hermitian inner product on the set of
n x n matrices C"*™ given by (U, V) = trace(UV*) where V* denotes
the conjugate transpose of V. Show that the adjoint of E(A,B) with
respect to this inner product is

[E(A, B)]"U = E(A*, B)U.

Conclude that if both A and B are skew-Hermitian, i.e. A* = —A and
B* = —B, then E* = —F as well.
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13.3 Elementary background on connections

To make further progress in the study of the non-Abelian X-ray trans-
form on surfaces we would like to consider attenuations A of a special
type, namely those with Fourier expansion in 2_1 @ Qg ® ;. It turns
out that this is equivalent to giving a connection (corresponding to the
Fourier modes in Q_1 ®€;) and a matrix valued Higys field (correspond-
ing to the Fourier mode in €). In this section we make a brief interlude
to give some background on connections in a way that is suitable for our
setting.

Consider the trivial bundle M x C™. For us a connection A will be a
complex n X n matrix whose entries are smooth 1-forms on M. Another
way to think of A is to regard it as a smooth map A : TM — C"*"
which is linear in v € T,, M for each x € M.

Very often in physics and geometry one considers unitary or Hermi-
tian connections. This means that the range of A is restricted to skew-
Hermitian matrices. In other words, if we denote by u(n) the Lie algebra
of the unitary group U(n), we have a smooth map A : TM — u(n) which
is linear in the velocities. There is yet another equivalent way to phrase
this. The connection A induces a covariant derivative d4 on sections
s € C®°(M,C"™) by setting das = ds + As. Then A being Hermitian
or unitary is equivalent to requiring compatibility with the standard
Hermitian inner product of C" in the sense that

d(s1,s2) = (das1,s2) + (s1,das2)

for any pair of functions si, so. The set of all smooth unitary connections
is denoted by Q(M,u(n)).

Given two unitary connections A and B we shall say that A and B
are gauge equivalent if there exists a smooth map u : M — U(n) such
that

B =u"tdu + vt Au. (13.3.1)

In terms of the derivative d 4 acting on sections, gauge equivalence means
just that

da(us) = u(dps), s € C™(M,C"). (13.3.2)

The curvature of the connection is the operator Fiy = d4 od4 acting on
sections, written more precisely as

Fas=(d+ AN)(ds + As) = (dA+ AN A)s
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where we used the properties of the exterior derivative d. Thus F4 is in
fact a 2-form with values in u(n) given by

Fyp:=dA+ ANA.

This can be written elementwise: if A = (A;y)7,_; where each Aj is a
scalar 1-form, then

d

Fy= (dAjk + ZAjl A Alk)?,k:l'
=1

If A and B are gauge equivalent as in (13.3.1), then by (13.3.2) one has
Fg =dgodg = u 'dauoutdyu. This shows that the curvatures of
gauge equivalent connections satisfy

Fp=u"'Fsu.

Given a smooth curve v : [a,b] = M, the parallel transport of a vector
w € C™ along v with respect to the connection A is obtained by solving
the following linear differential equation:

{ s'(+)A(7(t),7(t))8 =0, (13.3.3)

The parallel transport operator Pa(y) : C* — C" is defined as

It is an isometry since A is unitary. We also consider the fundamental
unitary matrix solution U : [a,b] — U(n) of (13.3.3). It solves

U+ A(y(t),5(t))U = 0,
{ Ula) = 1d. (13.3.4)

Clearly P4(v)(w) = U(b)w.

A connection A naturally gives rise to a matrix attenuation of special
type, simply by setting A(z,v) := A(z,v). Note that since A is a matrix
of 1-forms, it is completely determined by its values on SM. The scat-
tering data C'4 : 0+ SM — GL(n,C) encapsulates the parallel transport
of A along geodesics running between boundary points.

In the next chapter we will be interested in connections taking val-
ues in an arbitrary Lie algebra g. We shall denote the space of such
connections as Q' (M, g).
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13.4 Structure equations including a connection

In this section we consider an oriented Riemannian surface (M, g) and
a connection A on the trivial bundle M x C™. We will regard A both
as a matrix 1-form on M, and as a function A : SM — C™*"™ with
A€ Q_1 ® Q. Recall that the metric g induces a Hodge star operator
* acting on forms. We claim that

*A=-VA.
This follows from the computation
VA(z,v) = Az, vh) = — x A(z,v)

where v is the rotation of v by 90° counterclockwise.

The main purpose of this section is to establish the following lemma
that generalizes the basic commutator formulas in Lemma 3.5.5 to the
case where X is replaced by X + A and X, by X, 4+ xA. Here we
understand that A and A act on functions by multiplication.

Lemma 13.4.1. The following equations hold:

V.X + Al =—(X1L ++4),
[V,X, ++xA] = X + A,
[X 4+ A, X, +%xA] = —KV — xF4.

Proof Let us recall the standard bracket relations from Lemma 3.5.5:

[‘/’ X] = _XJJ
V., X1 =X,
X, X.] = —KV.

Hence the first two bracket relations in the lemma follow from [V, A] =
V(A) = —x A and [V,%xA] = —V?2(A) = A. To check the third bracket it
suffices to prove that

*Fq =X, (A)— X(xA) + [*4, A]. (13.4.1)

Given a unit vector v € T, M, (v, v') is a positively oriented orthonormal
basis. Thus

*xFy(z) = Fa(v,vb) = dA(v,v) + (A A A)(v,vh)
— dA(, vb) + [A(), A,

+
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But xA(z,v) = —A(vt) and hence [xA, A](z,v) = [-A(vt), A(v)]. Thus
to complete the proof of (13.4.1) we just have to show that

X (A)(z,v) — X(xA)(z,v) = dA(v,v").

Let m : SM — M be the canonical projection. Recall that dn (X (z,v)) =
v and dn (X (z,v)) = —vt. Consider 7*A and note (using the standard
formula for d applied to 7*A):

d(m* A)(X, X 1) = X (T A(X 1)) — X1 (" A(X)) — T A([X, X1]).

By the structure equations, the term [X, X ] is purely vertical, hence it
is killed by 7*A. Next note that (7*A(X))(z,v) = A(—vt) = (xA)(v)
and 7*A(X) = A(v). This shows that

d(m*A)(X, X)) = X(xA) — X, (A).
Finally, note that

d(m*A) (X, X1) = (7"dA)(X, X 1) = dA(dn(X),dn(X 1))
= —dA(v,vh)

This concludes the proof. O

Given a connection A € Q_1; ® O we write it as A = A_1 + A; with
Ag1 € Q1. Next we consider the Guillemin-Kazhdan operators 7+ from
Definition 6.1.4 in the presence of a connection.

Definition 13.4.2. If (M, g) is a Riemann surface and A is a connection,
define

Pt =1t + Agq.

Clearly X + A = p4 + p—. These operators also satisfy nice bracket
relations.

Lemma 13.4.3. The following bracket relations hold:
. i
[ne, V] = Eps, [ps p-] = SEV +5Fy).
Moreover
U Qk — Qk+1, H— Qk — Qkfl.

If A is unitary, one has (p+)* = —pi.
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Proof We only prove the relation [u,u—] = £(KV + xFj), the rest is
left as an exercise. First we note that

(X +A)Li(X, +xA4)
Ht = .

2
Hence
)
[:LLJF?:LL—] = E[Xl + *AaX + A}
and the desired relation follows from Lemma 13.4.1. O

Exercise 13.4.4. Complete the details in the proof of Lemma 13.4.3.

Exercise 13.4.5. Show that X+ A maps even functions to odd functions
and odd functions to even functions.

Exercise 13.4.6. Let A be a connection and let ® € C(M,C"*"™).
If H denotes the Hilbert transform, show that for any smooth function
u € C*(SM,C") one has

[H, X + A+ ®Ju= (X, +*A)(ug) + (X1 +*A)(u))o-

13.5 Scattering rigidity and injectivity for
connections

In this section we would like to consider the following geometric inverse
problem: is a connection A determined by C47

We first observe that the problem has a gauge. Let A and B be two
gauge equivalent connections, so that (as functions on SM)

B=u'Xu+utAu

where v : M — GL(n,C) is a smooth map with u|gpr = Id. If U, solves
XUy + AU, = 0 with UA|8,SM = Id, then

(X +B)(u'Uas) = —u ' (Xu)u'Us +u' XUs +Bu Uy =0
and u=tUy|s_sar = Id. Tt follows that u='Us = Up and hence
Cu-1tdutu-14u = Ca.
Our main goal will be to show the following result.

Theorem 13.5.1. Let (M, g) be a simple surface and let A and B be
two unitary connections with Cy = Cpg. Then there exists a smooth
w: M — U(n) with ulgar = Id such that B = u=tdu + u='Au.
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From Proposition 13.2.3 we know that C4 = Cp means that there
exists a smooth U : SM — U(n) such that Ul|gspr = Id and

B=U"'XU+U'AU.

Notice the similarity of this equation with our goal, which is to show
that

B=utdu+u"tAu.

In fact if U only had dependence on z and not on v, then U = u,
XU(z,v) = dul;(v) and we would be done. We will accomplish this for
a simple surface.

We start by rephrasing our problem in terms of an attenuated X-ray
transform. Showing that U depends only on z is equivalent to showing
that W = U — Id depends only on z. But as we have seen, if C4y = Cp
then W satisfies the equation

XW + AW —WB = —(A— B) in SM, Wlasm = 0.

This means that the attenuated X-ray transform Ig(4, py(A — B) van-
ishes. Note that A — B € Q_1 & Q4.

Hence, making the choice to ignore the specific form of the connection
E(A, B) but noting that it is unitary by Exercise 13.2.4, the proof of
Theorem 13.5.1 reduces to showing the following important injectivity
result for the attenuated X-ray transform with a connection.

Theorem 13.5.2. Let (M, g) be a simple surface and let A be a unitary
connection. Suppose that uw € C*°(SM,C") satisfies

{ Xu+Au=feQ_1®0Q,
ulasm = 0.

Then u = ug and [ = daug = dug + Aug with uglorr = 0.

The first key ingredient in the proof of Theorem 13.5.2 is an energy
identity which generalizes the standard Pestov identity from Proposition
4.3.2 to the case when a connection is present. Recall that the curvature
F4 of the connection A is defined as Fly = dA+ AN A and «F4 is a
function xF4 : M — u(n).

Lemma 13.5.3 (Pestov identity with connection). Suppose that (M, g)
is a compact surface with boundary, and let A be a unitary connection.
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Ifu: SM — C™ is a smoo