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CHAPTER 1

Introduction

In mathematical analysis one deals with functions which are dif-

ferentiable (such as continuously differentiable) or integrable (such as

square integrable or Lp). It is often natural to combine the smoothness

and integrability requirements, which leads one to introduce various

spaces of functions.

This course will give a brief introduction to certain function spaces

which are commonly encountered in analysis. This will include Hölder,

Lipschitz, Zygmund, Sobolev, Besov, and Triebel-Lizorkin type spaces.

We will try to highlight typical uses of these spaces, and will also give

an account of interpolation theory which is an important tool in their

study.

The first part of the course covered integer order Sobolev spaces in

domains in Rn, following Evans [4, Chapter 5]. These lecture notes

contain the second part of the course. Here the emphasis is on Sobolev

type spaces where the smoothness index may be any real number. This

second part of the course is more or less self-contained, in that we will

use the first part mainly as motivation. Also, we will give new proofs

in more general settings of certain results in the first part.

Let us describe the structure of these notes. Interpolation theory

is covered in Chapter 2. We begin by proving two classical interpola-

tion results for Lp spaces, namely the Riesz-Thorin and Marcinkiewicz

theorems. Next the basic setup of abstract interpolation is discussed.

The main part of the chapter includes a development of the real in-

terpolation method in the setting of quasinormed Abelian groups, and

interpolation results for Banach-valued Lp spaces. The interpolation

results proved here or in Chapter 3 are not the most general available

(stronger results are found in Bergh-Löfström [1] and Triebel [13]).

Rather, the point is to give an idea of what interpolation theory is

about, without spending too much time on technicalities.
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2 1. INTRODUCTION

Chapter 3 is an introduction to Sobolev, Besov, Triebel-Lizorkin,

and Zygmund spaces in Rn. These spaces are most conveniently defined

via the Fourier transform, and the first matter is to review (without

proofs) some basic facts about Fourier analysis on tempered distribu-

tions. It is then not difficult to define fractional Sobolev spaces using

the Bessel potentials. We discuss Littlewood-Paley theory to motivate

the definition of Besov and Triebel-Lizorkin spaces, which are then

defined in terms of suitable Littlewood-Paley partitions of unity.

Zygmund spaces are defined in terms of finite differences and it is

shown that these spaces coincide with the L∞-based Besov spaces, thus

giving a Fourier transform characterization of Hölder and Zygmund

spaces. In the course of Chapter 3, we establish the following basic

relations between the various spaces:

Hk,p = W k,p,

Bs
22 = F s

22 = Hs,2,

F s
p2 = Hs,p,

Bs
∞∞ = Cs

∗ .

Finally, we discuss embedding theorems for these spaces.

There are several notable omissions in these notes. To retain the

real analytic flavor of the course, we do not discuss the complex in-

terpolation method. Also, in the discussion of the real interpolation

method, we restrict ourselves to the K-functional and do not consider

other related concepts such as the J-functional. In the chapter on

Sobolev and related spaces, one of the most basic results is the Mihlin

multiplier theorem stating the Lp boundedness of certain multipliers on

the Fourier side. We use this result extensively, but do not give a proof

of it (or of the related Littlewood-Paley theorem). All the results that

we need in this context follow from the vector-valued Mihlin theorem

(Theorem 3.4.5), which is a standard consequence of the theory of sin-

gular integrals (see for instance [2]). Also, we mostly restrict ourselves

to Lp based spaces with 1 ≤ p ≤ ∞ or 1 < p <∞, and do not discuss

Hardy or BMO type spaces.

These notes are intended to be accessible to graduate or advanced

undergraduate students having some background in real and functional

analysis and multivariable calculus (the real analysis part of Rudin [8]

should be more than sufficient).
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References. We will not follow any particular reference in this

course, the main reference will be these lecture notes. Useful books on

interpolation theory and function spaces are Bergh-Löfström [1] and

Triebel [13]. Function spaces from a harmonic analysis point of view

are discussed in Grafakos [6] and Stein [11].

Notation. We will use multi-index notation: if α = (α1, . . . , αn)

is in Nn and x = (x1, . . . , xn) ∈ Rn, we write

xα := xα1
1 · · ·xαnn , Dα := Dα1

1 · · ·Dαn
n ,

where Dj := 1
i
∂
∂xj

. We will also use the Japanese bracket

〈x〉 := (1 + |x|2)1/2.

The equivalence of two (quasi)norms is written as ‖u‖1 ∼ ‖u‖2.

This means that there exists a constant C > 0 such that
1

C
‖u‖1 ≤ ‖u‖2 ≤ C‖u‖1

for all relevant functions u. If A and B are two (quasi)normed spaces

or groups, we write A ⊆ B to denote that A is contained in B in the

set-theoretic sense, and the inclusion map i : A→ B is continuous. We

also write A = B to denote that A and B are equal as sets, and they

have equivalent (quasi)norms.





CHAPTER 2

Interpolation theory

2.1. Classical results

We will begin by proving two classical interpolation theorems. The

first was proved by Riesz (1926) and Thorin (1938), and it forms the

basis for the complex interpolation method. The second is due to

Marcinkiewicz (1939) and Zygmund (1956), and it is a precursor of the

real interpolation method.

Both these results concern interpolation of Lp spaces. Their nature

is illustrated by the following special case: if T is a bounded linear

operator Lp0 → Lp0 and Lp1 → Lp1 , where p0 < p1, then T is also

bounded Lp → Lp for p0 ≤ p ≤ p1. Thus, it is enough to establish

estimates for two end point values of p, and interpolation will then

give estimates for all the intermediate values of p for free.

2.1.1. Riesz-Thorin theorem. We will prove the theorem for

the spaces Lp(Rn), although the same proof applies to Lp(X,µ) and

Lq(Y, ν) where X, Y are measure spaces and µ, ν are σ-finite positive

measures.

Theorem 1. (Riesz-Thorin interpolation theorem) Suppose T is a

complex-linear map from Lp0 +Lp1 to Lq0 +Lq1, 1 ≤ p0, p1, q0, q1 ≤ ∞,

such that

‖Tf‖Lq0 ≤M0‖f‖Lp0 , f ∈ Lp0 ,
‖Tf‖Lq1 ≤M1‖f‖Lp1 , f ∈ Lp1 .

For 0 < θ < 1, define p and q by

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

If 1 < q <∞ then T maps Lp to Lq, and

(1) ‖Tf‖Lq ≤M1−θ
0 M θ

1‖f‖Lp , f ∈ Lp.

5



6 2. INTERPOLATION THEORY

Proof. 1. If p0 = p1 = p, then (1) follows from the interpolation

inequality for Lq norms (that is, the Hölder inequality):

‖Tf‖Lq ≤ ‖Tf‖1−θ
Lq0 ‖Tf‖

θ
Lq1 ≤M1−θ

0 M θ
1‖f‖Lp .

Thus we may assume p0 6= p1, and so 1 < p <∞. Also, we may assume

that M0,M1 > 0 since otherwise one would have T ≡ 0.

2. Write 〈f, g〉 =
∫
Rn fg dx. We claim that it is enough to prove

(2) |〈T (f0F
1/p), g0G

1/q′〉| ≤M1−θ
0 M θ

1

for any measurable f0, g0 with |f0|, |g0| ≤ 1, and for any simple func-

tions F,G ≥ 0 satisfying ‖F‖L1 = ‖G‖L1 = 1.

In fact, since 1 < q <∞, (1) is equivalent with

|〈Tf, g〉| ≤M1−θ
0 M θ

1‖f‖Lp‖g‖Lq′ .

Fix f ∈ Lp, g ∈ Lq′ with f, g 6= 0, and let

f0(x) :=

{
f(x)/|f(x)| if f(x) 6= 0,

0 otherwise.

Define g0 in a similar way. If F := |f |p/‖f‖pLp and G := |g|q′/‖g‖q
′

Lq′
,

then the last estimate may be written as

|〈T (f0F
1/p), g0G

1/q′〉| ≤M1−θ
0 M θ

1 .

Now, there exist nonnegative simple functions F̃j with ‖F̃j‖Lp = 1 such

that F̃j → F 1/p in Lp. Then Fj := F̃ p
j ≥ 0 are simple functions with

‖Fj‖L1 = 1 and F
1/p
j → F 1/p in L1. Using a similar approximation for

G, we see that the theorem will follow from the claim (2).

3. To prove (2), let |f0|, |g0| ≤ 1 and let F,G be simple functions

F :=
M∑
k=1

akχAk , G :=
N∑
l=1

blχBl

where ak, bl > 0 and ‖F‖L1 = ‖G‖L1 = 1. Define

Φ(z) := 〈T (f0F
1−z
p0

+ z
p1 ), g0G

1−z
q′0

+ z
q′1 〉,

for z in the strip {z ∈ C ; 0 ≤ Re z ≤ 1}. Here we define az = ez log a

for a > 0, so that |az| = aRe z and |ait| = 1 for t ∈ R.
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We have

Φ(z) =
∑
k,l

a
1−z
p0

+ z
p1

k b
1−z
q′0

+ z
q′1

l 〈T (f0χAk), g0χBl〉.

Thus, Φ is analytic for 0 < Re z < 1 and bounded and continuous for

0 ≤ Re z ≤ 1. By Hölder’s inequality and using the assumptions on T ,

|Φ(it)| ≤ ‖T (f0F
1−it
p0

+ it
p1 )‖Lq0‖g0G

1−it
q′0

+ it
q′1 ‖

Lq
′
0
≤M0

and similarly

|Φ(1 + it)| ≤ ‖T (f0F
−it
p0

+ 1+it
p1 )‖Lq1‖g0G

−it
q′0

+ 1+it
q′1 ‖

Lq
′
1
≤M1.

The claim (2) follows from the three lines theorem below. �

Theorem 2. (Three lines theorem) Assume that Φ is analytic in

0 < Re z < 1 and bounded and continuous in 0 ≤ Re z ≤ 1. Suppose

that for t ∈ R,

|Φ(it)| ≤M0, |Φ(1 + it)| ≤M1.

Then |Φ(θ + it)| ≤M1−θ
0 M θ

1 for 0 < θ < 1 and t ∈ R.

Proof. We only consider the case whereM0,M1 > 0. The function

Ψ(z) := M
−(1−z)
0 M−z

1 Φ(z)

is analytic in 0 < Re z < 1, bounded and continuous in 0 ≤ Re z ≤ 1,

and satisfies |Ψ(it)| ≤ 1 and |Ψ(1 + it)| ≤ 1. It is enough to prove that

(3) |Ψ(θ + it)| ≤ 1

for 0 < θ < 1.

Now, if sup0≤θ≤1|Ψ(θ + it)| → 0 as t → ±∞, one obtains (3) by

noting that |Ψ| ≤ 1 on all four sides of the rectangle [0, 1]× [−R,R] for

R large, thus |Ψ| ≤ 1 inside the rectangle by the maximum principle.

If Ψ does not decay as Im z → ±∞, we consider the functions

Ψε(z) := exp(ε(z2 − 1))Ψ(z), ε > 0.

Since (s+ it)2 = s2− t2 +2ist, we have |Ψε(it)| ≤ 1 and |Ψε(1+ it)| ≤ 1

and also |Ψε(z)| → 0 as Im z → ±∞. Thus (3) holds for Ψε. Since

|Ψε(θ + it)| = eε(θ
2−t2−1)|Ψ(θ + it)|

where ε > 0 is arbitrary, we obtain the result by letting ε→ 0. �
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A standard application of the Riesz-Thorin interpolation theorem is

the Hausdorff-Young inequality for Fourier transforms. If f ∈ L1(Rn),

the Fourier transform of f is the function Ff = f̂ ∈ L∞(Rn) given by

f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

It immediately follows that

(4) ‖f̂‖L∞ ≤ ‖f‖L1 .

Now, if f ∈ L1 ∩ L2, the Plancherel (or Parseval) identity states that

f̂ ∈ L2 and

(5) ‖f̂‖L2 = (2π)n/2‖f‖L2 .

This can be used to extend the Fourier transform to any L2 function,

and the Plancherel identity remains valid.

Theorem 3. (Hausdorff-Young inequality) If 1 ≤ p ≤ 2 then the

Fourier transform maps Lp(Rn) into Lp
′
(Rn), and

‖f̂‖Lp′ ≤ (2π)n/p
′‖f‖Lp .

Proof. We saw above that the Fourier transform is a well defined

map L1 → L∞ and L2 → L2, thus it maps L1 + L2 into L2 + L∞. We

have the norm bounds (4) and (5). Let 0 < θ < 1, and define p by

1

p
=

1− θ
1

+
θ

2
.

Then θ = 2/p′ and conseqently 1/p′ = θ/2 = (1− θ)/∞+ θ/2.

Now, the Riesz-Thorin theorem implies that the Fourier transform

maps Lp to Lp
′

with the right norm bound. Since any p with 1 < p < 2

can be obtained in this way, the result follows. �

Remark. (Hausdorff-Young for Fourier series) The Fourier coeffi-

cients are given by the map L2((0, 2π))→ l2, f 7→ f̂ , where

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikx dx, k ∈ Z.

One has the norm bounds

‖f̂‖l∞ ≤ (2π)−1‖f‖L1((0,2π)),

‖f̂‖l2 = (2π)−1/2‖f‖L2((0,2π)),
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the second bound coming from Parseval’s theorem. The Riesz-Thorin

theorem applied to Lp and lp spaces gives that

‖f̂‖lp′ ≤ (2π)−1/p‖f‖Lp((0,2π))

for 1 ≤ p ≤ 2.

2.1.2. Marcinkiewicz theorem. The Riesz-Thorin theorem im-

plies that if a linear operator is known to be bounded on Lp0 and

Lp1 , then it is bounded on Lp for any p between p0 and p1. The

Marcinkiewicz theorem gives a similar conclusion, but here it is enough

to have weak type bounds at the endpoints p0 and p1 to obtain strong

bounds for intermediate p. The weak type bounds are given in terms

of the distribution function

m(|f | > λ) := m({x ∈ Rn ; |f(x)| > λ})

where m is the Lebesgue measure on Rn.

Motivation. Let f ∈ Lp(Rn). The elementary identity

ap =

∫ a

0

pλp−1 dλ, a ≥ 0,

implies

|f(x)|p =

∫ ∞
0

pλp−1χ{|f |>λ}(x) dλ.

Integrating over x, we obtain

(6)

∫
Rn

|f |p dx =

∫ ∞
0

pλp−1m(|f | > λ) dλ.

This indicates why distribution functions might be useful in studying

Lp norms. Also, if T : Lp(Rn)→ Lq(Rn) is a bounded linear operator,

then

m(|Tf | > λ) =

∫
{|Tf |>λ}

dx ≤ 1

λq

∫
{|Tf |>λ}

|Tf |q dx ≤ C‖f‖qLp
λq

.

In particular, if T is the identity operator, then

λm(|f | > λ)1/p ≤ ‖f‖Lp , f ∈ Lp.

Definition. The weak Lp space, written Lp∞(Rn) (0 < p < ∞),

consists of those measurable functions on Rn for which the expression

‖f‖Lp∞ := sup
λ>0

λm(|f | > λ)1/p

is finite. We define L∞∞ = L∞.
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We have Lp ⊆ Lp∞ ⊆ Lp−εloc if p − ε > 0 (exercise). The function

f(x) = |x|−α, α > 0, is in weak Lp iff p = n/α, since

m(|f | > λ) = m(|x| < λ−1/α) = Cnλ
−n/α

and λm(|f | > λ)1/p = Cn,pλ
1− n

αp is uniformly bounded iff αp = n. Note

that ‖ · ‖Lp∞ is not a norm if 1 ≤ p <∞.

Definition. Let T be an operator (not necessarily linear) from

Lp(Rn) to the space of measurable functions on Rn. We say that

(a) T is subadditive if for almost every x ∈ Rn,

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|,

(b) T is strong type (p, q) if it maps Lp(Rn) into Lq(Rn) and

‖Tf‖Lq ≤ C‖f‖Lp , f ∈ Lp, and

(c) T is weak type (p, q), q <∞, if

m(|Tf | > λ) ≤
(
C‖f‖Lp

λ

)q
, f ∈ Lp, λ > 0.

Further, T is weak type (p,∞) if it is strong type (p,∞).

From the remarks above it follows that any operator of strong type

(p, q) is also of weak type (p, q), and that a weak type (p, q) operator

maps Lp into weak Lq. The interpolation result is as follows. Note that

as in the Riesz-Thorin theorem, we could easily replace Rn by more

general measure spaces on the right and on the left.

Theorem 4. (Marcinkiewicz interpolation theorem) Suppose that

1 ≤ p0 < p1 ≤ ∞, and let T be a subadditive operator from Lp0 +Lp1 to

the space of measurable functions on Rn. Assume that T is weak type

(p0, p0) and (p1, p1). Then T is strong type (p, p) for p0 < p < p1.

Proof. 1. First assume p1 < ∞. The proof is based on the idea

that any f ∈ Lp, p0 < p < p1, may be decomposed as f = f0 + f1

where f0 ∈ Lp0 and f1 ∈ Lp1 , by taking

f0(x) :=

{
f(x) if |f(x)| > γ,

0 otherwise.
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Here γ > 0 is a fixed height. We have∫
|f0|p0 dx =

∫
{|f |>γ}

|f |p0 dx ≤ γp0−p
∫
{|f |>γ}

|f |p dx,∫
|f1|p1 dx =

∫
{|f |≤γ}

|f |p1 dx ≤ γp1−p
∫
{|f |≤γ}

|f |p dx.

2. Fix λ > 0. If f ∈ Lp, we make the decomposition f = f0 + f1 where

γ = λ. By subadditivity we have

{|Tf | > λ} ⊆ {|Tf0| > λ/2} ∪ {|Tf1| > λ/2}.

Using the assumptions on T , the distribution function satisfies

m(|Tf | > λ) ≤ m(|Tf0| > λ/2) +m(|Tf1| > λ/2)

≤
(

2C0‖f0‖Lp0
λ

)p0
+

(
2C1‖f1‖Lp1

λ

)p1
≤
(

2C0

λ

)p0 ∫
{|f |>λ}

|f |p0 dx+

(
2C1

λ

)p1 ∫
{|f |≤λ}

|f |p1 dx.

Note that the result in Step 1 would immediately imply that T is weak

type (p, p).

3. To obtain strong type bounds, we express the Lp norm in terms of

the distribution function as in (6):

‖Tf‖pLp =

∫ ∞
0

pλp−1m(|Tf | > λ) dλ

≤ p(2C0)p0
∫ ∞

0

∫
{|f |>λ}

λp−1−p0|f |p0 dx dλ

+ p(2C1)p1
∫ ∞

0

∫
{|f |≤λ}

λp−1−p1 |f |p1 dx dλ.

We estimate the first integral by using Fubini’s theorem:∫ ∞
0

∫
{|f |>λ}

λp−1−p0|f |p0 dx dλ =

∫
Rn

∫ |f(x)|

0

λp−1−p0 |f |p0 dx dλ

=

∫
Rn

|f(x)|p−p0
p− p0

|f(x)|p0 dx =
1

p− p0

‖f‖pLp .

Similarly, the second integral is equal to∫
Rn

∫ ∞
|f(x)|

λp−1−p1|f |p1 dx dλ =
1

p1 − p
‖f‖pLp .
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Both these computations used the assumption p0 < p < p1. The

theorem is proved in the case p1 < ∞, and the case p1 = ∞ is left as

an exercise. �

The Marcinkiewicz theorem is a basic result in real analysis with

many applications, such as establishing the Lp mapping properties of

the Hilbert transform or the Hardy-Littlewood maximal function. We

will instead give a simple result concerning the Hardy operator, defined

for f ∈ L1
loc(R+) by

Tf(x) =
1

x

∫ x

0

f(t) dt, x > 0.

Note that the proof of the Marcinkiewicz theorem works equally well

with Rn replaced by R+, which is the setting in the next result. The

Hardy operator is not strong type (1, 1), so here it is essential that

weak type bounds at the end points are sufficient.

Theorem 5. (Mapping properties for T ) The Hardy operator maps

L1(R+) to weak L1(R+), and is a bounded operator Lp(R+)→ Lp(R+)

for 1 < p ≤ ∞.

Proof. Since |Tf(x)| ≤ 1
x
‖f‖L1(R+), we have

m(|Tf | > λ) ≤ m({x ∈ R+ ;
1

x
‖f‖L1(R+) > λ}) =

‖f‖L1(R+)

λ
.

Thus T is weak type (1, 1), and clearly T is strong type (∞,∞). The

result follows from Marcinkiewicz interpolation. �

Remark. The Marcinkiewicz theorem is true also when T is a

subadditive operator of weak type (p0, q0) and (p1, q1), where p0 6= p1

and q0 6= q1. Then the conclusion is that T is strong type (p, q) if p

and q are as in the Riesz-Thorin theorem, and if one has the additional

restrictions

(7) p0 ≤ q0, p1 ≤ q1.

Although the Riesz-Thorin and Marcinkiewicz theorems look similar,

there are notable differences. In Marcinkiewicz, it is enough to have

weak type bounds at the endpoints, and the result applies to certain

nonlinear operators. In Riesz-Thorin, the restrictions (7) do not ap-

pear, and one can prove Lp bounds in the more general case where T

depends analytically on θ.
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2.2. Abstract interpolation

We will mostly interpolate Banach spaces. However, for technical

reasons it will be convenient to forget a great part of the structure in

Banach spaces, and to work with quasinormed Abelian groups.

Definition. Let A be an Abelian group that is written additively.

If c ≥ 1 is a constant, a c-quasinorm ‖ · ‖ is a real valued function on

A satisfying

(1) ‖a‖ ≥ 0 for all a ∈ A, and ‖a‖ = 0 iff a = 0,

(2) ‖−a‖ = ‖a‖ for a ∈ A, and

(3) ‖a+ b‖ ≤ c(‖a‖+ ‖b‖) for a, b ∈ A.

We call (A, ‖ · ‖) a quasinormed group.

Definition. A quasinormed vector space is a vector space which is

a quasinormed group and where the quasinorm satisfies ‖λa‖ = |λ|‖a‖
for all scalars λ.

Example. If 0 < p < ∞, let Lp(Rn) be the set of all measurable

functions on Rn for which the expression

‖f‖Lp :=

(∫
Rn

|f |p dx
)1/p

is finite. We have

‖f + g‖Lp ≤ max(1, 2
1−p
p )(‖f‖Lp + ‖g‖Lp).

Thus, if we identify functions which agree outside a set of measure zero,

Lp(Rn) will be a quasinormed vector space if 0 < p <∞.

The topology on a quasinormed group A is defined as follows: a

set U ⊆ A is open if for all a ∈ U , there is ε > 0 such that the set

{b ∈ A ; ‖b − a‖ < ε} is contained in U . The following result shows

that (A, ‖ · ‖) is in fact a metric space.

Lemma 1. (Quasinormed groups are metric spaces) Suppose that A

is a c-quasinormed group, and let ρ be defined by the identity (2c)ρ = 2.

Then there is a 1-quasinorm ‖ · ‖∗ on A such that

‖a‖∗ ≤ ‖a‖ρ ≤ 2‖a‖∗, a ∈ A.

Also, d(a, b) := ‖b− a‖∗ is a metric defining the topology on A.
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Proof. If a ∈ A, define

‖a‖∗ := inf{
N∑
j=1

‖aj‖ρ ;
N∑
j=1

aj = a,N ≥ 1}.

Given this definition, we leave the proof as an exercise. �

Since every quasinormed vector space is metrizable, it makes sense

to talk about Cauchy sequences and completeness.

Definition. A complete quasinormed vector space will be called

a quasi-Banach space.

The Lp spaces are quasi-Banach if 0 < p ≤ ∞ (and of course Banach

if 1 ≤ p ≤ ∞). Also, the weak Lp spaces are quasi-Banach, and if p > 1

one can in fact find equivalent norms which make the weak Lp spaces

Banach spaces.

We now move to basic concepts of abstract interpolation.

Definition. Let A0 and A1 be quasinormed groups. We say that

(A0, A1) is an interpolation couple if there is a quasinormed group A
such that A0 and A1 are subgroups of A and A0, A1 ⊆ A with contin-

uous inclusions.

Remark. More generally, the reference group A could be any

topological group (such as a space of distributions on Rn).

If (A0, A1) is an interpolation couple, then the sets A0 ∩ A1 and

A0 + A1 are subgroups of A , where

A0 + A1 := {a ∈ A ; a = a0 + a1 for some a0 ∈ A0, a1 ∈ A1}.

We define

‖a‖A0∩A1 := max(‖a‖A0 , ‖a‖A1),

‖a‖A0+A1 := inf
a=a0+a1,aj∈Aj

(‖a0‖A0 + ‖a1‖A1).

Lemma 2. If (A0, A1) is an interpolation couple, then A0 ∩A1 and

A0 + A1 are quasinormed groups.

Proof. Clearly ‖ · ‖A0∩A1 is nonnegative, satisfies ‖a‖A0∩A1 = 0

iff a = 0, and ‖−a‖A0∩A1 = ‖a‖A0∩A1 . The quasi-triangle inequality
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follows since

‖a+ b‖A0∩A1 ≤ max(c0(‖a‖A0 + ‖b‖A0), c1(‖a‖A1 + ‖b‖A1))

≤ max(c0, c1) max(‖a‖A0 + ‖b‖A0 , ‖a‖A1 + ‖b‖A1)

≤ max(c0, c1)(‖a‖A0∩A1 + ‖b‖A0∩A1).

For ‖ · ‖A0+A1 , nonnegativity and invariance under a 7→ −a are

clear. If ‖a‖A0+A1 = 0, then for any ε > 0 there are aj,ε ∈ Aj with

a = a0,ε + a1,ε and ‖a0,ε‖A0 + ‖a1,ε‖A1 < ε. Thus aj,ε → 0 in Aj as

ε → 0, so also a = a0,ε + a1,ε → 0 in A since Aj ⊆ A continuously.

Finally, if a, b ∈ A0 +A1 and if a = a0 +a1, b = b0 + b1 with aj, bj ∈ Aj,
we have

‖a+ b‖A0+A1 ≤ ‖a0 + b0‖A0 + ‖a1 + b1‖A1

≤ max(c0, c1)(‖a0‖+ ‖a1‖+ ‖b0‖+ ‖b1‖).

Taking the infimum over all such decompositions of a and b, we obtain

‖a+ b‖A0+A1 ≤ max(c0, c1)(‖a‖A0+A1 + ‖b‖A0+A1).

�

Now, one has the continuous inclusions

A0 ∩ A1 ⊆ Aj ⊆ A0 + A1,

and A0 ∩ A1 and A0 + A1 are the maximal and minimal groups for

which this holds. The idea of interpolation theory is to find groups Aθ
such that

A0 ∩ A1 ⊆ Aθ ⊆ A0 + A1,

and Aθ should somehow be intermediate between A0 and A1.

Also, as in the Riesz-Thorin and Marcinkiewicz theorems, we wish

to prove that boundedness of operators between endpoint spaces would

imply boundedness between intermediate spaces. We restrict our at-

tention to homomorphisms (that is, operators T : A → B such that

T (a+ b) = Ta+ Tb and T (−a) = −Ta).

Definition. Let A and B be quasinormed groups, and let T : A→
B be a homomorphism. The quasinorm of T is

‖T‖ = ‖T‖A→B := sup
a∈A,a 6=0

‖Ta‖B
‖a‖A

.

We say that T is bounded iff ‖T‖ <∞.
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We are now ready to give the definition of an interpolation functor,

which incorporates the idea of intermediate groups and boundedness

of operators between them.

Definition. An interpolation functor is a rule F such that

(1) F assigns to every interpolation couple (A0, A1) a quasinormed

group F (A0, A1) such that

A0 ∩ A1 ⊆ F (A0, A1) ⊆ A0 + A1

with continuous inclusions, and

(2) if (A0, A1) and (B0, B1) are any two interpolation couples and

T : A0 +A1 → B0 +B1 is a homomorphism which is bounded

A0 → B0 and A1 → B1, then T is bounded F (A0, A1) →
F (B0, B1).

Definition. An interpolation functor F is of type θ if

‖T‖F (A0,A1)→F (B0,B1) ≤ Cθ‖T‖1−θ
A0→B0

‖T‖θA1→B1
.

The functor is said to be exact if one can choose Cθ = 1.

If j = 0, 1, then Fj(A0, A1) := Aj are exact interpolation functors

of type j. The main purpose below will be to introduce nontrivial exact

interpolation functors obtained from real interpolation, and to study

their properties.

2.3. Real interpolation

The real interpolation method is due to Lions and Peetre (late 1950s

and early 1960s). There are several equivalent ways of introducing

the corresponding interpolation functors. We will use here the K-

functional for this purpose.

Definition. Let (A0, A1) be an interpolation couple. We define,

for t > 0 and a ∈ A0 + A1,

K(t, a) = K(t, a;A0, A1) := inf
a=a0+a1,aj∈Aj

(‖a0‖A0 + t‖a1‖A1).

The idea is that for each fixed t > 0, K(t, · ) is a quasinorm on

A0 + A1 which is equivalent (that is, gives the same topology) to the

usual one. We will define interpolation groups as subgroups of A0 +A1

by imposing restrictions on the behaviour of K(t, a) as t → 0 and

t→∞. The values t correspond to the cut levels γ in the proof of the

Marcinkiewicz theorem.
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Definition. Let (A0, A1) be an interpolation couple. If 0 < θ < 1

and 0 < q <∞, and if a ∈ A0 + A1, we define

(1) ‖a‖(A0,A1)θ,q :=

(∫ ∞
0

[t−θK(t, a)]q
dt

t

)1/q

We denote by (A0, A1)θ,q the set of all a ∈ A0 + A1 for which the

quantity (1) is finite.

Remark. Here θ is the main interpolation parameter, and q can

be used to fine-tune the interpolation. One could also consider the case

q =∞, but we will not need to do so.

We shall prove that the rule (A0, A1) 7→ (A0, A1)θ,q is an exact

interpolation functor of type θ. The first step is a simple lemma.

Lemma 1. (Properties of the K-functional) Suppose (A0, A1) is an

interpolation couple. If a ∈ A0 +A1 is fixed, then K( · , a) is a positive,

nondecreasing, concave, and continuous function of t > 0. If Aj is

cj-quasinormed, we have

(2) K(t, a+ b) ≤ c0 [K(c1t/c0, a) +K(c1t/c0, b)] , a, b ∈ A0 + A1.

Proof. It is clear that K( · , a) is positive and nondecreasing. We

leave as an exercise to check that it is concave and continuous. If

a, b ∈ A0 + A1 and if a = a0 + a1, b = b0 + b1 with aj, bj ∈ Aj, then

K(t, a+ b) ≤ ‖a0 + b0‖A0 + t‖a1 + b1‖A1

≤ c0(‖a0‖A0 + ‖b0‖A0) + c1t(‖a1‖A1 + ‖b1‖A1)

≤ c0

(
‖a0‖A0 +

c1t

c0

‖a1‖A1 + ‖b0‖A0 +
c1t

c0

‖b1‖A1

)
.

The result follows by taking the infimum over all decompositions of a

and b. �

Next we show that the first requirement for an interpolation functor

is satisfied.

Theorem 2. (Interpolation groups) Suppose (A0, A1) is an inter-

polation couple, 0 < θ < 1, and 0 < q < ∞. Then (A0, A1)θ,q is a

quasinormed group, and

A0 ∩ A1 ⊆ (A0, A1)θ,q ⊆ A0 + A1

with bounded inclusions.
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Proof. 1. The first step is to prove that ‖ · ‖ := ‖ · ‖(A0,A1)θ,q satisfies

the conditions for a quasinorm. Clearly ‖a‖ ≥ 0 and ‖−a‖ = ‖a‖,
and if ‖a‖ = 0 then K(t, a) = 0 for a.e. t > 0, showing that a = 0

as in Lemma 2. For the quasi-triangle inequality we use (1) and the

quasi-triangle inequality on Lq := Lq(R+,
dt
t
):

‖a+ b‖ = ‖t−θK(t, a+ b)‖Lq

≤ c0 max(1, 2
1−q
q )(‖t−θK(c1t/c0, a)‖Lq + ‖t−θK(c1t/c0, b)‖Lq)

≤ c1−θ
0 cθ1 max(1, 2

1−q
q )(‖a‖+ ‖b‖).

In the last step we changed the integration variable t to c0t/c1.

2. It immediately follows that (A0, A1)θ,q is a quasinormed group: if

a, b ∈ (A0, A1)θ,q then ‖a‖, ‖b‖ < ∞, so by Step 1 also ‖a + b‖ < ∞
and a+ b ∈ (A0, A1)θ,q.

3. To show that A0 ∩ A1 ⊆ (A0, A1)θ,q with bounded inclusion, note

that for a ∈ A0 ∩A1 we have K(t, a) ≤ ‖a‖A0 and K(t, a) ≤ t‖a‖A1 , so

K(t, a) ≤ min(1, t)‖a‖A0∩A1 .

Thus, if a ∈ A0 ∩ A1, we have

‖a‖ ≤ ‖t−θ min(1, t)‖Lq(R+,dt/t)‖a‖A0∩A1 ≤ Cθ,q‖a‖A0∩A1 .

4. Finally, we prove that (A0, A1)θ,q ⊆ A0 +A1 with bounded inclusion.

This is the case t = 1 in the more general identity

K(t, a) ≤ Cθ,qt
θ‖a‖(A0,A1)θ,q , a ∈ (A0, A1)θ,q, t > 0.

To show the last identity, since K( · , a) is nondecreasing we have

t−θK(t, a) = Cθ,q

(∫ ∞
t

s−θq
ds

s

)1/q

K(t, a) ≤ Cθ,q‖a‖(A0,A1)θ,q .

The result is proved. �

It remains to show the second requirement for an interpolation func-

tor, involving boundedness of operators. The definition of (A0, A1)θ,q
is set up so that this will be easy.
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Theorem 3. (Interpolation of operators) Let (A0, A1) and (B0, B1)

be interpolation couples, and let T : A0 + A1 → B0 + B1 be a homo-

morphism which is bounded Aj → Bj with quasinorm Mj (j = 0, 1). If

0 < θ < 1 and 0 < q <∞, then T is bounded (A0, A1)θ,q → (B0, B1)θ,q
and

‖T‖(A0,A1)θ,q→(B0,B1)θ,q ≤M1−θ
0 M θ

1 .

Proof. First assume M0 > 0, and let a ∈ (A0, A1)θ,q. Then we

have Ta ∈ B0 +B1, and

K(t, Ta) ≤ inf
a=a0+a1,aj∈Aj

(‖Ta0‖B0 + t‖Ta1‖B1)

≤M0 inf
a=a0+a1,aj∈Aj

(‖a0‖A0 +
M1t

M0

‖a1‖A1)

= M0K(M1t/M0, a).

Thus

‖Ta‖(B0,B1)θ,q = ‖t−θK(t, Ta)‖Lq(R+,dt/t)

≤M0‖t−θK(M1t/M0, a)‖Lq(R+,dt/t)

≤M1−θ
0 M θ

1‖a‖(A0,A1)θ,q

by changing the variable t to M0t/M1.

If M0 = 0, we can repeat the above argument with M0 replaced by

ε > 0. The result is obtained by letting ε→ 0. �

There is a density result which will be useful when interpolating Lp

and Sobolev spaces. It is usually proved via the J-method, which is an

equivalent way of introducing the spaces (A0, A1)θ,q in real interpola-

tion. Due to lack of time, we will not give the proof here.

Theorem 4. (Density of A0 ∩ A1) If (A0, A1) is an interpolation

couple and 0 < θ < 1, 0 < q <∞, then A0∩A1 is dense in (A0, A1)θ,q.

Proof. See Bergh-Löfström [1, Section 3.11]. �

We end the section by stating some standard properties of real

interpolation, and by giving a simple example.

Theorem 5. (Elementary properties of real interpolation) Suppose

(A0, A1) is an interpolation couple and 0 < θ < 1, 0 < q <∞. Then

(1) (A0, A1)θ,q = (A1, A0)1−θ,q,

(2) (A0, A1)θ,q ⊆ (A0, A1)θ,q̃ if q ≤ q̃,
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(3) if A0 = A1 then (A0, A1)θ,q = A0 = A1,

(4) ‖a‖(A0,A1)θ,q ≤ Cθ,q‖a‖1−θ
A0
‖a‖θA1

for a ∈ A0 ∩ A1.

(5) if A0 and A1 are complete, then so is (A0, A1)θ,q.

Proof. Exercise. �

Example. Let A0 = R×{0} and A1 = R2, with the usual additive

structure and with norms ‖(u, 0)‖A0 = |u|, ‖(u, v)‖A1 = |u| + |v|. To

determine (A0, A1)θ,q, note that if a = (u, v) ∈ A1 is written as a =

a0 + a1 with aj ∈ Aj, then a0 = (s, 0) and a1 = (u− s, v). Thus

K(t, a) = inf
s∈R

(|s|+ t(|u− s|+ |v|)) = min(1, t)|u|+ t|v|

since s 7→ |s|+ t|u− s| is a continuous piecewise linear function going

to infinity as s → ±∞, which reaches its minimum at s = 0 or s = u.

Now, if v 6= 0 then

‖a‖(A0,A1)θ,q ≥
(∫ ∞

1

[t−θt|v|]q dt
t

)1/q

=∞.

Thus (A0, A1)θ,q = A0 = R× {0} for all θ and q.

2.4. Interpolation of Lp spaces

2.4.1. Interpolation of powers. When interpolating Lp spaces,

instead of the Lp norm it will be convenient to consider the quantity

‖f‖pLp which does not involve the pth root. We will next formalize this

idea.

Let (A, ‖ · ‖) be a quasinormed group. If p > 0, then by the in-

equality

(x+ y)p ≤ max(1, 2p−1)(xp + yp), x, y ≥ 0,

the quantity ‖ · ‖p is also a quasinorm defining the topology on A.

We denote by (A)p the group A equipped with quasinorm ‖ · ‖p. The

interpolation result for powers of groups is as follows.

Theorem 1. (Interpolation of powers) Let 0 < p0, p1 <∞ and let

0 < η < 1. If (A0, A1) is an interpolation couple, then

((A0)p0 , (A1)p1)η,1 = ((A0, A1)θ,p)
p

with equivalent norms, where

(1) p := (1− η)p0 + ηp1, θ :=
p1

p
η.
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Proof. 1. We will use the functional

K∞(t, a) = K∞(t, a;A0, A1) := inf
a=a0+a1,aj∈Aj

max(‖a0‖A0 , t‖a1‖A1).

This satisfies

K∞(t, a) ≤ K(t, a) ≤ 2K∞(t, a),

and thus ‖a‖(A0,A1)θ,q ∼ ‖t−θK∞(t, a)‖Lq(R+,dt/t).

2. If a ∈ A0 + A1 = (A0)p0 + (A1)p1 , then

(2) ‖a‖((A0)p0 ,(A1)p1 )η,1 ∼
∫ ∞

0

s−ηK∞(s, a; (A0)p0 , (A1)p1)
ds

s
.

We claim that

(3) K∞(s, a; (A0)p0 , (A1)p1) = (K∞(t, a;A0, A1))p0

if s is defined by

(4) s := tp1(K∞(t, a;A0, A1))p0−p1 .

To prove (3), we temporarily denote the left and right hand sides by

K∞(s) and K∞(t). Then, using (4),

K∞(s) = inf
a=a0+a1

max(‖a0‖p0A0
, s‖a1‖p1A1

)

= K∞(t)p0 inf
a=a0+a1

max

[(
‖a0‖A0

K∞(t)

)p0
,

(
t‖a1‖A1

K∞(t)

)p1]
.

Given ε > 0, we have K∞(t) ≤ max(‖a0,ε‖A0 , t‖a1,ε‖A1) ≤ (1+ε)K∞(t)

for some aj,ε ∈ Aj. Then

1 ≤ max

[
‖a0,ε‖A0

K∞(t)
,
t‖a1,ε‖A1

K∞(t)

]
≤ 1 + ε.

The claim (3) follows.

3. We wish to go back to (2) and make the change of variables (4). To

this end, we claim that{
s = s(t) in (4) is a strictly increasing bijective map R+ → R+

which is Lipschitz continuous on bounded intervals.

We start by proving the Lipschitz continuity. If 0 < t0 ≤ t1, then

K∞(t1) ≤ t1
t0
K∞(t0) and

(5) 0 ≤ K∞(t1)−K∞(t0) ≤ t1 − t0
t0

K∞(t0).
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Thus, if I := [1/R,R] ⊆ R+ with R large, then

|K∞(t1)−K∞(t0)| ≤ R

(
sup
t∈I

K∞(t)

)
|t1 − t0|, t0, t1 ∈ I.

This shows that t 7→ K∞(t) is Lipschitz continuous on bounded inter-

vals in R+, and then so is s = s(t).

Whenever the derivative exists, we have

s′(t)

s(t)
=

(
p1 + (p0 − p1)

t

K∞(t)
K ′∞(t)

)
1

t
.

By (5), again at points where the derivative exists,

0 ≤ K ′∞(t) ≤ K∞(t)

t
.

Thus, we have

(6)
min(p0, p1)

t
≤ s′(t)

s(t)
≤ max(p0, p1)

t
.

Consequently s(t) is strictly increasing, and it maps R+ onto itself.

4. By Step 3, we may change variables in (2) according to (4) (by

restricting the integral to the interval [1/R,R] and letting R → ∞).

Using (3) and the estimate (6), we obtain

‖a‖((A0)p0 ,(A1)p1 )η,1 ∼
∫ ∞

0

t−p1ηK∞(t)p
dt

t
.

The right hand side is ‖a‖p(A0,A1)θ,p
as required. �

Remark. (Exercise) Let p0, p1 > 0. If 0 < η < 1 is given, then (1)

implies that

(7)
1

p
=

1− θ
p0

+
θ

p1

, 1− θ = (1− η)
p0

p
.

Conversely, if 0 < θ < 1 is given, then (7) defines p and η so that (1)

is satisfied.

2.4.2. Interpolation of sequence spaces. We are now ready to

interpolate the sequence spaces lp. More generally, we will consider the

weighted Banach-valued sequence spaces lsp(A) where 0 < p <∞ and s

is a real number. The reason for writing p as a lower index is that later

on, s will correspond to the smoothness index in Sobolev type spaces

and p will denote the base Lp space. This notation will be consistent

with the notation for Sobolev type spaces.
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Definition. Let A be a Banach space. We denote by lsp(A) the set

of all sequences a = (ak)
∞
k=0 where ak ∈ A, for which the quasinorm

‖a‖lsp(A) :=

(
∞∑
k=0

(2ks‖ak‖A)p

)1/p

is finite.

It is easy to see that lsp(A) is a quasi-Banach space (Banach if p ≥ 1),

and that l0p(A) is just the usual lp space of A-valued sequences.

Theorem 2. (Interpolation of lsp(A) spaces) Let 0 < p0, p1 < ∞
and let s0, s1 be real numbers. Also let A0 and A1 be Banach spaces

such that (A0, A1) is an interpolation couple. If 0 < θ < 1, then

(8) (ls0p0(A0), ls1p1(A1))θ,p = lsp((A0, A1)θ,p)

where p and s are defined by

1

p
=

1− θ
p0

+
θ

p1

, s = (1− θ)s0 + θs1.

Proof. 1. To make the formulas shorter, we omit writing A0 and A1.

By Theorem 1 and the remark after it, we have

((ls0p0)
p0 , (ls1p1)

p1)η,1 = ((ls0p0 , l
s1
p1

)θ,p)
p

where 0 < η < 1 is such that p = (1 − η)p0 + ηp1. Thus, it is enough

to study the space ((ls0p0)
p0 , (ls1p1)

p1)η,1.

2. First assume that a = (ak)
∞
k=0 is a finite sequence with values in

A0 ∩ A1, such that ak = 0 for k > N . Then

‖a‖((l
s0
p0

)p0 ,(l
s1
p1

)p1 )η,1
=

∫ ∞
0

t−ηK(t, a; (ls0p0)
p0 , (ls1p1)

p1)
dt

t

=

∫ ∞
0

t−η inf
a=b+c

[
‖b‖p0

l
s0
p0

+ t‖c‖p1
l
s1
p1

] dt
t

=

∫ ∞
0

t−η inf
a=b+c

N∑
k=0

[
(2ks0‖bk‖)p0 + t(2ks1‖ck‖)p1

] dt
t
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where b ∈ ls0p0 and c ∈ lp1s1 . We may interchange the sum and infimum

and use Fubini’s theorem, and the last expression is equal to

=
N∑
k=0

∫ ∞
0

t−η inf
ak=bk+ck

[
(2ks0‖bk‖)p0 + t(2ks1‖ck‖)p1

] dt
t

=
N∑
k=0

∫ ∞
0

t−η2ks0p0K(t2k(s1p1−s0p0), ak; (A0)p0 , (A1)p1)
dt

t

=
N∑
k=0

2k[(1−η)s0p0+ηs1p1]‖ak‖((A0)p0 ,(A1)p1 )η,1 ,

where the last equality follows by changing t to 2−k(s1p1−s0p0)t in the

integral.

By Theorem 1 and the remark after it, we have

((A0)p0 , (A1)p1)η,1 = ((A0, A1)θ,p)
p,

and by (7) it also follows that

(1− η)s0p0 + ηs1p1 = (1− θ)s0p+ θs1p = sp.

Thus, using the result in Step 1, we have proved that

(9) ‖a‖(l
s0
p0

(A0),l
s1
p1

(A1))θ,p
= ‖a‖lsp((A0,A1)θ,p)

for all finite sequences a with values in A0 ∩ A1.

3. We can now prove (8). We first claim that{
the set of finite A0 ∩ A1-valued sequences is dense

in both spaces in (8).

By Theorem 4 in §2.3, A0 ∩ A1 is dense in (A0, A1)θ,p and thus the

claim is true for lsp((A0, A1)θ,p). In a similar fashion, ls0p0(A0)∩ ls1p1(A1) =

ls0p0(A0∩A1)∩ ls1p1(A0∩A1) is dense in (ls0p0 , l
s1
p1

)θ,p so the claim holds also

for the latter space.

Let now a ∈ (ls0p0 , l
s1
p1

)θ,p. This means that a ∈ ls0p0 + ls1p1 and that

‖a‖(l
s0
p0
,l
s1
p1

)θ,p
is finite. Now, there is a sequence (a(N)) of finite A0 ∩A1-

valued sequences such that a(N) → a in (ls0p0 , l
s1
p1

)θ,p. It follows from (9)

that (a(N)) is a Cauchy sequence in lsp((A0, A1)θ,p), and by completeness

there exists ã ∈ lsp((A0, A1)θ,p) with a(N) → ã in lsp((A0, A1)θ,p). It
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remains to show that a = ã, but this follows from uniqueness of limits

since

(ls0p0 , l
s1
p1

)θ,p, l
s
p((A0, A1)θ,p) ⊆ l

min(s0,s1)
max(p0,p1)(A0 + A1)

continuously. We have proved that (ls0p0 , l
s1
p1

)θ,p ⊆ lsp((A0, A1)θ,p), and

the other inclusion follows similarly. �

2.4.3. Interpolation of Lp spaces. Finally, we prove the inter-

polation result for Banach valued Lp spaces. First we need to recall

some concepts related to vector-valued integration.

Definition. Let (X,Σ, µ) be a measure space where µ is a positive

σ-finite measure, and let (A, ‖ · ‖) be a Banach space.

(1) A simple function is any function s : X → A having the form

s(x) =
∑N

j=1 ajχBj(x), where aj ∈ A and where Bj are disjoint

subsets of X with finite measure.

(2) A function f : X → A is strongly measurable if there exists a

sequence (sk) of simple functions such that sk(x) → f(x) for

µ-a.e. x as k →∞.

(3) If 0 < p < ∞, the space Lp(A) = Lp(X,Σ, µ;A) consists of

those strongly measurable functions f : X → A for which the

quasinorm

‖f‖Lp(A) :=

(∫
X

‖f(x)‖p dµ(x)

)1/p

is finite. We identify elements of Lp(X;A) which agree µ-a.e.

The last definition is valid since ‖f‖ is measurable if f is strongly

measurable. The spaces Lp(A) are quasi-Banach (Banach if p ≥ 1),

and simple functions are dense.

Theorem 3. (Interpolation of Lp spaces) Let (X,Σ, µ) be a σ-finite

measure space, let 0 < p0, p1 <∞, and let A0 and A1 be Banach spaces

so that (A0, A1) is an interpolation couple. If 0 < θ < 1, then

(Lp0(A0), Lp1(A1))θ,p = Lp((A0, A1)θ,p)

where p is defined by

1

p
=

1− θ
p0

+
θ

p1

.
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Proof. 1. The proof is analogous to the proof of Theorem 2, and we

will give a sketch. Again, we omit writing A0 and A1. Theorem 1 and

the remark after it imply that

((Lp0)p0 , (Lp1)p1)η,1 = ((Lp0 , Lp1)θ,p)
p

where 0 < η < 1 is such that p = (1− η)p0 + ηp1.

2. Let f be a simple function with values in A0 ∩ A1. By Step 1, we

have

‖f‖p(Lp0 ,Lp1 )θ,p
∼
∫ ∞

0

t−η inf
f=f0+f1,fj∈Lpj

(‖f0‖p0Lp0 + t‖f1‖p1Lp1 )
dt

t

∼
∫ ∞

0

t−η inf
f=f0+f1,fj∈Lpj

∫
X

[
‖f0(x)‖p0A0

+ t‖f1(x)‖p1A1

]
dµ(x)

dt

t
.

We wish to interchange the infimum and the integral over X. In fact,

we claim that

inf
f=f0+f1
fj∈Lpj

∫
X

[
‖f0(x)‖p0A0

+ t‖f1(x)‖p1A1

]
dµ(x)

=

∫
X

inf
f(x)=f0(x)+f1(x)

fj(x)∈Aj

[
‖f0(x)‖p0A0

+ t‖f1(x)‖p1A1

]
dµ(x).

The measurability of the integrand on the right is part of the claim.

The proof is left as an exercise. Now, Fubini’s theorem implies that

‖f‖p(Lp0 ,Lp1 )θ,p

∼
∫
X

∫ ∞
0

t−η inf
f(x)=f0(x)+f1(x)

fj(x)∈Aj

[
‖f0(x)‖p0A0

+ t‖f1(x)‖p1A1

]
dµ(x)

dt

t

∼
∫
X

∫ ∞
0

t−ηK(t, f(x); (A0)p0 , (A1)p1)
dt

t
dµ(x)

∼
∫
X

‖f(x)‖((A0)p0 ,(A1)p1 )η,1 dµ(x) ∼
∫
X

‖f(x)‖p(A0,A1)θ,p
dµ(x).

In the last step we used Theorem 1.

3. We have seen that the quasinorms on (Lp0 , Lp1)θ,p and Lp((A0, A1)θ,p)

are equivalent on simple functions with values in A0 ∩ A1. One now

argues that such functions are dense in both of the spaces involved,

and the result follows as in the proof of Theorem 2. �



CHAPTER 3

Fractional Sobolev spaces, Besov and Triebel

spaces

The purpose in this chapter is to extend the theory of integer order

Sobolev spaces W k,p to the case of fractional Sobolev spaces Hs,p, Besov

spaces Bs
pq, and Triebel-Lizorkin spaces F s

pq. Here, k is a nonnegative

integer, s is any real number, and 1 < p, q < ∞ (or in some cases

0 < p, q ≤ ∞). With these conventions, the various spaces satisfy the

relations

W k,p = Hk,p,

Hs,2 = Bs
22 = F s

22,

Hs,p = F s
p2.

Because of the first identity, we will write W s,p := Hs,p.

There are many situations where it is useful to go beyond the W k,p

spaces. We will describe a few such situations, in the setting of the

Dirichlet problem {
−∆u = f in U,

u = g on ∂U

where U is a bounded open set in Rn with C1 boundary.

(1) If f = 0 and g ∈ Lp(∂U), then there is a unique solution

u ∈

{
W 1/p,p(U) if p ≥ 2,

B
1/p
p2 (U) if 1 < p < 2.

In general u /∈ W 1,p(U).

(2) If one looks for solutions u ∈ W 1,p(U), then the natural space

for g is B
1−1/p
pp (∂U) = F

1−1/p
pp (∂U). It can be shown that the

latter space is the image of W 1,p(U) under the trace operator.

27
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(3) If f ∈ Lp(U) and g = 0, and if ∂U is C2, it can be shown that

there is a unique solution u ∈ W 2,p(U). However, if ∂U is only

C1, then u /∈ W 2,p(U) in general (for p = 2 the sharp result is

that u ∈ W 3/2,2(U)).

The above results may be found in Jerison-Kenig [5].

Besides PDE, fractional Sobolev type spaces are useful in harmonic

analysis and approximation theory, where it is often possible to prove

sharper and more general statements by choosing the right spaces.

Also, the scales of spaces Bs
pq and F s

pq include many other spaces which

are common in analysis, such as Hölder, Zygmund, Hardy, and BMO

spaces.

Below, we will exclusively consider function spaces in Rn. The

theory for function spaces in bounded domains or lower dimensional

manifolds can be developed based on the corresponding theory for Rn.

3.1. Fourier analysis

It would be possible to define fractional Sobolev spaces via real

interpolation, for instance by W θ,2(Rn) := (L2(Rn),W 1,2(Rn))θ,2 for

0 < θ < 1. We will instead begin with an intrinsic definition based

on the Fourier transform, and we will later show that the interpolation

definition coincides with the intrinsic one.

Motivation. Let f ∈ L2((0, 2π)) be a 2π-periodic function (that

is, an L2 function on the torus T 1 := R/2πZ). One has the Fourier

series

(1) f(x) =
∞∑

k=−∞

f̂(k)eikx,

with f̂(k) = 1
2π

∫ 2π

0
f(x)e−ikx dx. Also, by Parseval’s theorem

‖f̂‖l2 = (2π)−1/2‖f‖L2((0,2π)).

If D = 1
i
d
dx

, differentiating (1) formally gives

Dmf(x) =
∞∑

k=−∞

kmf̂(k)eikx.



3.1. FOURIER ANALYSIS 29

This suggests the following notion of a fractional derivative: if s ≥ 0,

then for any f ∈ L2((0, 2π)) we define

|D|sf(x) :=
∞∑

k=−∞

|k|sf̂(k)eikx,

provided that the last series converges in some sense. If f is such

that (|k|sf̂(k)) is square summable, then |D|sf is an L2 function by

Parseval’s theorem. This motivates the definition

W s,2(T 1) := {f ∈ L2((0, 2π)) ; (|k|sf̂(k)) ∈ l2}, s ≥ 0,

which is the right definition for Sobolev spaces on the torus.

A similar idea works for Sobolev spaces in Rn, but one needs to re-

place Fourier series by the Fourier transform. We have already defined

the Fourier transform in §2.1 for functions in L1(Rn), but here a more

general definition is required.

In the following, we will give a brief review of the Fourier transform

in the general setting of tempered distributions. For proofs we refer to

Rudin [9, Chapter 7]. We begin by considering a test function space

designed for the purposes of Fourier analysis.

Definition. The Schwartz space S (Rn) is the set of all infinitely

differentiable functions f : Rn → C such that the seminorms

‖f‖α,β := ‖xαDβf(x)‖L∞(Rn)

are finite for all multi-indices α, β ∈ Nn. If (fj)
∞
j=1 is a sequence in S ,

we say that fj → f in S if ‖fj − f‖α,β → 0 for all α, β.

It follows from the definition that a smooth function f is in S (Rn)

iff for all β and N there exists C > 0 such that

|Dβf(x)| ≤ C〈x〉−N , x ∈ Rn.

Based on this, Schwartz space is sometimes called the space of rapidly

decreasing test functions.

Example. Any function in C∞c (Rn) is in Schwartz space, and func-

tions like e−γ|x|
2
, γ > 0, also belong to S . The function e−γ|x| is not in

Schwartz space because it is not smooth at the origin, and also 〈x〉−N
is not in S because it doesn’t decrease sufficiently rapidly at infinity.
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There is a metric defining the topology on S , and then S is a

complete metric space. The operations f 7→ Pf and f 7→ Dβf are

continuous maps S → S , if P is any polynomial and β any multi-

index. More generally, let

OM(Rn) := {f ∈ C∞(Rn) ; for all β there exist C,N > 0

such that |Dβf(x)| ≤ C〈x〉N}.

It is easy to see that the map f 7→ af is continuous S → S if a ∈ OM .

Definition. If f ∈ S (Rn), then the Fourier transform of f is the

function Ff = f̂ : Rn → C defined by

f̂(ξ) :=

∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

The importance of Schwartz space is based on the fact that it is

invariant under the Fourier transform.

Theorem 1. (Fourier inversion formula) The Fourier transform

is an isomorphism from S (Rn) onto S (Rn). A Schwartz function f

may be recovered from its Fourier transform by the inversion formula

f(x) = F−1f̂(x) = (2π)−n
∫

Rn

eix·ξf̂(ξ) dξ, x ∈ Rn.

After introducing the Fourier transform on nicely behaving func-

tions, it is possible to define it in a very general setting by duality.

Definition. Let S ′(Rn) be the set of continuous linear functionals

S (Rn) → C. The elements of S ′ are called tempered distributions,

and their action on test functions is written as

〈T, ϕ〉 := T (ϕ), T ∈ S ′, ϕ ∈ S .

If (Tj)
∞
j=1 is a sequence in S ′ and if T ∈ S ′, we say that Tj → T in

S ′ if 〈Tj, ϕ〉 → 〈T, ϕ〉 for all ϕ ∈ S (Rn).

More precisely, S ′ is the dual space of S , and it is equipped with

the weak-* topology. The elements in S ′ are somewhat loosely also

called distributions of polynomial growth, which is justified by the fol-

lowing examples.

Examples. 1. Let u : Rn → C be a measurable function, such

that for some C,N > 0 one has

|u(x)| ≤ C〈x〉N , for a.e. x.
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Then Tu ∈ S ′(Rn), where

〈Tu, ϕ〉 :=

∫
Rn

u(x)ϕ(x) dx, ϕ ∈ S (Rn).

We will always identify a function u with the tempered distribution Tu
defined in this way.

2. In a similar way, any function u ∈ Lp(Rn) with 1 ≤ p ≤ ∞ is a

tempered distribution (with the identification u = Tu).

3. Let µ be a positive Borel measure in Rn such that∫
Rn

〈x〉−N dµ(x) <∞

for some N > 0. Then Tµ is a tempered distribution, where

〈Tµ, ϕ〉 :=

∫
Rn

ϕ(x) dµ(x), ϕ ∈ S (Rn).

In particular, the Dirac measure δx0 at x0 ∈ Rn is in S ′, and

〈δx0 , ϕ〉 = ϕ(x0), ϕ ∈ S (Rn).

4. The function eγx is not in S ′(R) if γ 6= 0, since it is not possible to

define
∫
R
eγxϕ(x) dx for all Schwartz functions ϕ. However, eγx cos(eγx)

belongs to S ′ since it is the distributional derivative (see below) of the

bounded function sin(eγx) ∈ S ′.

We now wish to extend some operations, defined earlier for Schwartz

functions, to the case of tempered distributions. This is possible via

duality. For instance, let a ∈ OM(Rn). If u, ϕ ∈ S (Rn) we have

〈au, ϕ〉 = 〈u, aϕ〉.

Since ϕ 7→ aϕ is continuous on S , we may for any T ∈ S ′ define the

product aT as the tempered distribution given by

〈aT, ϕ〉 := 〈T, aϕ〉, ϕ ∈ S .

Similarly, motivated by the corresponding property for functions in S ,

if T ∈ S ′ then the (distributional) derivative DβT is the tempered

distribution given by

〈DβT, ϕ〉 := (−1)|β|〈T,Dβϕ〉, ϕ ∈ S .



32 3. FRACTIONAL SOBOLEV SPACES

Finally, we can define the Fourier transform of any T ∈ S ′ as the

tempered distribution FT = T̂ with

〈T̂ , ϕ〉 := 〈T, ϕ̂〉, ϕ ∈ S .

We state the basic properties of these operations as a theorem.

Theorem 2. (Operations on S ′) If a ∈ OM and β is any multi-

index, then the multiplication T 7→ aT and the distributional derivative

T 7→ DβT are continuous maps S ′ → S ′. Also, the Fourier transform

T 7→ T̂ is an isomorphism from S ′ onto S ′, and one has the inversion

formula

〈T, ϕ〉 = (2π)−n〈T̂ , ϕ̂(− · )〉, ϕ ∈ S .

If T ∈ S then these operations coincide with the usual ones on S .

The preceding result shows that one may differentiate or Fourier

transform any tempered distribution (thus, also any Lp function or

measurable polynomially bounded function) any amount of times, and

the result will be a tempered distribution. We will give some examples

of this very general (and useful) phenomenon.

Examples. 1. Let u(x) := |x|, x ∈ R. Since u is continuous and

polynomially bounded, we have u ∈ S ′(R). We claim the one has the

distributional derivatives

u′ = sgn(x),

u′′ = 2δ0.

In fact, if ϕ ∈ S (R), one has

〈u′, ϕ〉 = −〈u, ϕ′〉 =

∫ 0

−∞
xϕ′(x) dx−

∫ ∞
0

xϕ′(x) dx

=

∫
R

sgn(x)ϕ(x) dx = 〈sgn(x), ϕ〉,

using integration by parts and the rapid decay of ϕ. Similarly,

〈u′′, ϕ〉 = −〈u′, ϕ′〉 =

∫ 0

−∞
ϕ′(x) dx−

∫ ∞
0

ϕ′(x) dx

= 2ϕ(0) = 〈2δ0, ϕ〉.
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2. The Fourier transform of δ0 is the constant 1, since

〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =

∫ ∞
−∞

ϕ(x) dx

= 〈1, ϕ〉.

If u ∈ L2(Rn) then u is a tempered distribution, and the Fourier

transform û is another element of S ′. The Plancherel theorem (which

is the exact analog of Parseval’s theorem for Fourier series) states that

in fact û ∈ L2, and that the Fourier transform is an isometry on L2 up

to a constant.

Theorem 3. (Plancherel theorem) The Fourier transform is an

isomorphism from L2(Rn) onto L2(Rn), and one has

‖û‖L2 = (2π)n/2‖u‖L2 .

We end this section by noting the identities

(Dαu)̂ = ξαû,

(xαu)̂ = (−Dξ)
αû,

which hold for Schwartz functions u by a direct computation, and re-

main true for tempered distributions u by duality. This shows that

the Fourier transform converts derivatives into multiplication by poly-

nomials, and vice versa. This will be our route for defining fractional

Sobolev spaces: it is easy to define fractional derivatives of u by mul-

tiplying û with fractional powers of polynomials on the Fourier side.

3.2. Fractional Sobolev spaces

We are now in a position to give the Fourier transform definition of

fractional Sobolev spaces.

Motivation. We can characterize W k,2(Rn) by using the Fourier

transform and the Plancherel theorem by

u ∈ W k,2(Rn) ⇔ Dαu ∈ L2(Rn) for all |α| ≤ k

⇔ ξαû ∈ L2(Rn) for all |α| ≤ k.

Thus, a function is in W k,2(Rn) iff its Fourier transform, multiplied by

any polynomial of degree ≤ k, is in L2(Rn). In fact, one polynomial is

sufficient: we have

u ∈ W k,2(Rn) ⇔ 〈ξ〉kû ∈ L2(Rn).
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To see this, it is enough to note that |ξα| ≤ |ξ||α| ≤ 〈ξ〉k for |α| ≤ k,

and that

〈ξ〉2k = (1 + ξ2
1 + . . .+ ξ2

n)k =
∑
|γ|≤2k

cγξ
γ.

This shows that 〈ξ〉kû ∈ L2 iff ξαû ∈ L2 for |α| ≤ k, as desired.

Here and later, it will be convenient to introduce a notation for

multipliers on the Fourier side.

Definition. Let m(ξ) ∈ OM(Rn). We define the Fourier multi-

plier operator

m(D)u := F−1{m(ξ)û(ξ)}
for any tempered distribution u ∈ S ′(Rn).

The maps u 7→ û 7→ mû 7→ F−1{mû} are continuous on S ′, so

the operator m(D) is a well defined, continuous linear operator on S ′.

Since m(ξ) = 〈ξ〉s is in OM for any s ∈ R, also the next definition is a

valid one.

Definition. Let 1 < p < ∞ and let s be a real number. The

fractional Sobolev space Hs,p(Rn) is the set of all tempered distributions

u ∈ S ′(Rn) such that

〈D〉su ∈ Lp(Rn).

The norm is given by ‖u‖Hs,p(Rn) := ‖〈D〉su‖Lp(Rn).

More explicitly, the space Hs,p(Rn) consists of those tempered dis-

tributions u in Rn, for which the tempered distribution F−1{〈ξ〉sû(ξ)}
happens to be an Lp function. The operator 〈D〉s is a Bessel potential,

and it is an isometric isomorphism from Hs,p(Rn) onto Lp(Rn). The

spaces Hs,p are also called Bessel potential spaces for this reason.

Theorem 1. (Sobolev spaces as function spaces) If s is a real num-

ber and 1 < p <∞, then Hs,p(Rn) is a Banach space and S (Rn) is a

dense subset.

Proof. If u, v ∈ Hs,p and λ, µ are scalars, then 〈D〉s(λu + µv) =

λ〈D〉su+µ〈D〉sv is an Lp function, showing that λu+µv ∈ Hs,p. Thus

Hs,p is a vector space.

To show that ‖ · ‖Hs,p is a norm, all the other properties are clear

except that fact that ‖u‖Hs,p = 0 implies u = 0. But if ‖u‖Hs,p = 0

then 〈D〉su = 0 as an Lp function, thus also as a tempered distribution.
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Taking Fourier transforms, we obtain 〈ξ〉sû = 0, which implies û = 0

upon multiplying by the function 〈ξ〉−s ∈ OM . Thus u = 0.

For completeness, let (uj) be a Cauchy sequence in Hs,p. It follows

that (〈D〉suj) is a Cauchy sequence in Lp, and there exists ũ ∈ Lp such

that

〈D〉suj → ũ in Lp.

Let u := 〈D〉−sũ. Then u ∈ Hs,p, and uj → u in Hs,p as required.

The Schwartz space is a subset of Hs,p, since F−1{〈ξ〉sf̂} belongs

to S for f ∈ S (recall that the Fourier transform and multiplication

by OM functions are continuous maps S → S ). To show density, let

u ∈ Hs,p. Then u0 := 〈D〉su is an Lp function, and since 1 < p < ∞
there exists a sequence (vj) ⊆ C∞c (Rn) with vj → u0 in Lp. Let

uj := 〈D〉−svj.

Since vj ∈ S , we have uj ∈ S . Also,

‖uj − u‖Hs,p = ‖〈D〉suj − 〈D〉su‖Lp = ‖vj − u0‖Lp → 0

as j →∞, showing that S is dense in Hs,p. �

We next wish to show that Hk,p(Rn) = W k,p(Rn) if k is a nonnega-

tive integer. The case p = 2 follows from the argument in the beginning

of this section. In general, if u ∈ Hk,p and |α| ≤ k, we have

Dαu = Dα〈D〉−k(〈D〉ku)

where 〈D〉ku ∈ Lp by definition. If one could show that Dα〈D〉−k maps

Lp to Lp if |α| ≤ k, then it would follow that Dαu ∈ Lp as required.

The following Fourier multiplier result will be used several times

below. For a proof, see [2].

Theorem 2. (Mihlin multiplier theorem) Assume that m = m(ξ)

is a bounded C∞ complex valued function in Rn, which satisfies

|Dαm(ξ)| ≤M〈ξ〉−|α|, ξ ∈ Rn,

for |α| ≤
⌊
n
2

⌋
+ 1. Then m(D) is a bounded linear operator Lp(Rn)→

Lp(Rn) for 1 < p <∞, and

‖m(D)u‖Lp ≤ CpM‖u‖Lp .

In the next proof, notice how Fourier multipliers make it possible

to manipulate derivatives in an efficient way.
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Theorem 3. (The space Hs,p for s integer) If 1 < p <∞ and if k

is a nonnegative integer, then Hk,p(Rn) = W k,p(Rn).

Proof. 1. If u ∈ Hk,p(Rn), then Dαu = m(D)(〈D〉ku) where

m(ξ) :=
ξα

〈ξ〉k
.

If |α| ≤ k then m satisfies the conditions of the Mihlin multiplier

theorem. Consequently Dαu ∈ Lp for |α| ≤ k, showing that u ∈ W k,p.

2. Let u ∈ W k,p(Rn). Then Dαu ∈ Lp for |α| ≤ k, and we need to

prove that 〈D〉ku ∈ Lp. Let χ(ξ) ∈ C∞(R) with 0 ≤ χ ≤ 1, χ = 0 for

|ξ| ≤ 1, and χ = 1 for |ξ| ≥ 2. We write

〈D〉ku = F−1{〈ξ〉kû} = F−1{m̃(ξ)(1 +
n∑
j=1

χ(ξj)|ξj|k)û}

where

m̃(ξ) :=
〈ξ〉k

1 +
∑n

j=1 χ(ξj)|ξj|k
.

This shows that

〈D〉ku = m̃(D)u+
n∑
j=1

F−1{m̃(ξ)χ(ξj)|ξj|kû}

= m̃(D)u+
n∑
j=1

m̃(D)mj(Dj)(D
k
j u)

where

mj(ξj) := χ(ξj)|ξj|kξ−kj =

{
χ(ξj), ξj ≥ 0,

(−1)kχ(ξj), ξj < 0.

3. We claim that m̃(ξ) satisfies the conditions of the Mihlin multiplier

theorem. Note that m̃ is smooth because χ = 0 near 0. Also,

〈ξ〉k ≤ (1 + nmax
j
|ξj|2)k/2 ≤ C(1 + max

j
|ξj|k) ≤ C(1 +

n∑
j=1

|ξj|k),

which shows that m̃ is bounded. The derivatives satisfy |Dαm̃(ξ)| ≤
C〈ξ〉−|α|, so the Mihlin condition holds. We obtain

‖〈D〉ku‖Lp ≤ C

(
‖u‖Lp +

n∑
j=1

‖mj(Dj)(D
k
j u)‖Lp

)
.
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4. Clearly mj(ξj) satisfies the conditions in Mihlin’s theorem for n = 1.

We have

‖mj(Dj)(D
k
j u)‖Lp(Rn) = ‖ ‖mj(Dj)(D

k
j u)‖Lp(R) ‖Lp(Rn−1)

≤ C‖ ‖Dk
j u‖Lp(R) ‖Lp(Rn−1) = C‖Dk

j u‖Lp(Rn).

Since Dk
j u ∈ Lp for all j, we obtain 〈D〉ku ∈ Lp as required. �

Definition. We will sometimes write W s,p(Rn) := Hs,p(Rn).

Note that u ∈ W k,p iff u ∈ W k−1,p and Dju ∈ W k−1,p for all j.

Mihlin’s theorem allows to prove a similar result for Hs,p.

Theorem 4. (Monotonicity of Hs,p spaces) Let 1 < p <∞ and let

s be real. Then

Hs′,p(Rn) ⊆ Hs,p(Rn) for s′ ≥ s,

and one has

u ∈ Hs,p(Rn) ⇔ u ∈ Hs−1,p(Rn), Dju ∈ Hs−1,p(Rn) (1 ≤ j ≤ n).

Proof. Exercise. �

The preceding result implies in particular that Hs,p is a subspace

of Lp if s ≥ 0, and that W k,p ⊆ Hs,p if k ≥ s. If s is negative then Hs,p

will contain distributions which are not functions.

Examples. 1. We have

δ0 ∈ Hs,2 iff s < −n/2.

Indeed, since δ̂0 = 1, one has δ0 ∈ Hs,2 iff F−1{〈ξ〉s} ∈ L2 iff 〈ξ〉s ∈ L2

by Plancherel. The last condition holds iff s < −n/2.

2. If 1 < p < ∞, a more careful analysis of F−1{〈ξ〉s} shows that

δ0 ∈ Hs,p iff s < −n/p′.

3. Consider the function u : R→ R with

u(x) :=

{
1− |x| for |x| < 1,

0 for |x| ≥ 1.

We claim that u ∈ Hs,2(R) iff s < 3/2. This can be proved by taking

the Fourier transform, or alternatively by considering distributional
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derivatives:

u′ =


1 for −1 < x < 0,

−1 for 0 < x < 1,

0 for |x| ≥ 1,

u′′ = δ−1 − 2δ0 + δ1.

By part 1 in this example, u′′ ∈ Hs,2(R) for s < −1/2. Then by

Theorem 4, u′ is in Hs,2(R) for s < 1/2, and consequently u ∈ Hs,2(R)

if s < 3/2. The ’only if’ part follows by showing that u′′ /∈ H−1/2,2(R)

(exercise).

We will continue to develop the theory of fractional Sobolev spaces

(embedding theorems, interpolation, equivalent characterizations) in

the more general setting of Triebel spaces later. Here, we will conclude

the section by determining the dual space of Hs,p (in the dual pairing

of S and S ′).

Theorem 5. (Duality of Hs,p spaces) Let 1 < p < ∞ and let s be

a real number. Then

(Hs,p(Rn))′ = H−s,p
′
(Rn).

More precisely, given a continuous linear functional T : Hs,p → C,

there is a unique u ∈ H−s,p
′

such that T (ϕ) = 〈u, ϕ〉 for ϕ ∈ S .

Conversely, if u ∈ H−s,p′, then u (acting on S ) has a unique extension

as a continuous linear functional on Hs,p.

Proof. Let T : Hs,p → C be a continuous linear functional. Then

|T (v)| ≤ C‖〈D〉sv‖Lp for all v ∈ Hs,p, and we may define a functional

T̃ : Lp → C, T̃ (w) := T (〈D〉−sw).

This satisfies |T̃ (w)| ≤ C‖w‖Lp , and the duality for Lp spaces implies

that there is a unique function u0 ∈ Lp
′

such that

T̃ (w) = 〈u0, w〉, w ∈ Lp.

We let u := 〈D〉su0. Then u ∈ H−s,p
′

and for ϕ ∈ S (expressed as

ϕ = ψ̂ for ψ ∈ S ) one has

〈u, ϕ〉 = 〈〈D〉su0, ψ̂〉 = 〈〈ξ〉sû0, ψ〉 = 〈û0, 〈ξ〉sψ〉 = 〈u0, (〈ξ〉sψ)̂ 〉
= 〈u0, 〈D〉sϕ〉
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since F{〈D〉sϕ} = 〈ξ〉sF 2{ψ} = F 2{〈ξ〉sψ}. This shows that

〈u, ϕ〉 = T̃ (〈D〉sϕ) = T (ϕ)

as required.

Conversely, if u ∈ H−s,p′ , then u = 〈D〉su0 with u0 ∈ Lp
′
. Similarly

as above, we have for ϕ ∈ S

〈u, ϕ〉 = 〈〈D〉su0, ϕ〉 = 〈u0, 〈D〉sϕ〉

and consequently

|〈u, ϕ〉| ≤ ‖u0‖Lp′‖〈D〉sϕ‖Lp = ‖u‖H−s,p′‖ϕ‖Hs,p .

Thus u has an extension (by continuity) which is a continuous linear

functional on Hs,p. �

3.3. Littlewood-Paley theory

For the discussion of Besov and Triebel spaces, it will be useful to

introduce some more properties for the Fourier transform in Lp. We

have seen many times that the L2 theory is simpler than the Lp theory,

the reason being that in the L2 case one can exploit orthogonality and

the Plancherel theorem. We will next introduce a partial substitute for

these properties in the Lp case.

Motivation. We will, as usual, use Fourier series in 1D to gain

intuition on the problem. If f is an L2 function in (0, 2π), one has the

Parseval theorem ∫ 2π

0

|f(x)|2 dx = 2π
∞∑

k=−∞

|f̂(k)|2.

We would like to express the Lp norm of f in terms of its Fourier

coefficients. For simplicity, we consider the case p = 4 and the function

f(x) =
N∑
k=0

ake
ikx.
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To study the L4 norm of f , we compute∫ 2π

0

|f(x)|4 dx =

∫ 2π

0

(
N∑
k=0

ake
ikx

)2( N∑
l=0

āle
−ilx

)2

dx

=
∑

0≤k1,k2,l1,l2≤N

ak1ak2 āl1 āl2

∫ 2π

0

ei(k1+k2−l1−l2)x dx

= 2π
∑

0≤k1,k2,l1,l2≤N
k1+k2=l1+l2

ak1ak2 āl1 āl2 .

For given k1 and k2, there are many l1 and l2 satisfying k1 +k2 = l1 + l2,

and it is hard to see any orthogonality in the above expression. How-

ever, in the special case where the Fourier series is sparse (or lacunary)

in the sense that

ak = 0 unless k = 2p for some integer p,

it follows that∫ 2π

0

|f(x)|4 dx = 2π
∑

kj=2
pj ,lj=2

qj

2p1+2p2=2q1+2q2

ak1ak2 āl1 āl2

= 2π
∑
k=2p

|ak|4 + 4π
∑

kj=2pj ,k1 6=k2

|ak1|2|ak2|2.

The last equality follows since 2p1 + 2p2 = 2q1 + 2q2 implies {p1, p2} =

{q1, q2}. Finally, we obtain

2π

(
N∑
k=0

|ak|2
)2

≤
∫ 2π

0

|f(x)|4 dx ≤ 4π

(
N∑
k=0

|ak|2
)2

,

which can be written as

‖f‖L4 ∼

(
∞∑

k=−∞

|f̂(k)|2
)1/2

.

The above example indicates that the functions ei2
jx and ei2

j+1x are

somehow orthogonal in an Lp sense (this has to do with the fact that

the first function is roughly constant on the period of the second one).

A similar property remains true for eikx and eilx if k ∈ ∆j and l ∈ ∆j+1,
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where

∆j =


{0}, j = 0,

{2j−1, 2j−1 + 1, . . . , 2j − 1}, j > 0,

−∆−j, j < 0.

We introduce the dyadic (or Littlewood-Paley) decomposition of f ,

given in terms of

Sjf :=
∑
k∈∆j

f̂(k)eikx.

We denote by Sf the vector

Sf := (Sjf)j∈Z.

The Littlewood-Paley square function is the map

x 7→ ‖Sf(x)‖l2 =

(
∞∑

j=−∞

|Sjf(x)|2
)1/2

.

The heart of Littlewood-Paley theory is the fact that the Lp norm of

a function is comparable to the Lp norm of the corresponding square

function.

Theorem 1. (Littlewood-Paley theorem for Fourier series) If f is

an Lp function in (0, 2π), and if 1 < p <∞, then Sf ∈ Lp(l2) and

‖f‖Lp ∼ ‖Sf‖Lp(l2).

Proof. See [3]. �

The theorem is saying that the Littlewood-Paley pieces Sjf of an

Lp function f are somewhat independent of each other. For instance,

one can multiply each such piece by ±1 and the resulting function will

still be in Lp. When proving Lp results in harmonic analysis it is often

enough to prove the result for a single Littlewood-Paley piece, and the

general case follows by summing over all such pieces.

The purpose in the remainder of this section is to discuss the coun-

terpart of Theorem 1 for the Fourier transform in Rn. This will involve

a smooth Littlewood-Paley decomposition of a function f in Lp(Rn).

Definition. Let η = η(ξ) be a fixed radial function in C∞c (Rn)

such that 0 ≤ η ≤ 1, η = 1 for |ξ| ≤ 1/4, and η = 0 for |ξ| ≥ 1/2. We
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define nonnegative functions ϕ, ϕj by ϕ(ξ)2 = η(ξ/2)− η(ξ), and

ϕj(ξ)
2 = ϕ(2−jξ)2 (j ≥ 1),

ϕ0(ξ)2 = 1−
∞∑
j=1

ϕj(ξ)
2.

We collect some properties of the functions ϕj.

Theorem 2. (Littlewood-Paley partition of unity) The functions

ϕj are smooth in Rn, they satisfy 0 ≤ ϕj ≤ 1, and they are supported

in frequency annuli of radius ∼ 2j:

supp(ϕj) ⊆ {2j−2 ≤ |ξ| ≤ 2j}, supp(ϕ0) ⊆ {|ξ| ≤ 1}.

Also, they form a partition of unity in the sense that

1 =
∞∑
j=0

ϕ2
j .

Proof. Since η is radial and nonnegative, it is not hard to see

that ϕ(ξ) := (η(ξ/2) − η(ξ))1/2 is C∞ and that 0 ≤ ϕ ≤ 1. Also, ϕ is

supported in {1/4 ≤ |ξ| ≤ 1}, which shows the support condition for

ϕj if j ≥ 1. We have

N∑
j=1

ϕj(ξ)
2 =

N∑
j=1

[
η(2−j−1ξ)− η(2−jξ)

]
= η(2−N−1ξ)− η(2−1ξ).

The last function is supported in {1/2 ≤ |ξ| ≤ 2N} and is equal to 1

in {1 ≤ |ξ| ≤ 2N−1}. This shows that ϕ0 is supported in the unit ball,

as required. �

Definition. If f ∈ S ′(Rn) and j ≥ 0, we define

Sjf := ϕj(D)f,

Sf := (Sjf)∞j=0.

The functions Sjf are called the dyadic (or Littlewood-Paley) pieces

of f . They are always C∞ functions in Rn, as Fourier transforms of

compactly supported distributions (see Rudin [9, Chapter 7]). The

square function in this case is the map

x 7→ ‖Sf(x)‖l2 =

(
∞∑
j=0

|Sjf(x)|2
)1/2

.
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The Littlewood-Paley theorem states that the Lp(Rn) norm of f is

comparable to the Lp(Rn) norm of the square function.

Theorem 3. (Littlewood-Paley theorem in Rn) Let 1 < p <∞. If

f ∈ Lp(Rn), then Sf ∈ Lp(l2) and

‖f‖Lp ∼ ‖Sf‖Lp(l2).

If p = 2 then ‖f‖L2 = ‖Sf‖L2(l2).

Proof. We prove the case p = 2, which is a direct consequence of

the Plancherel theorem: if f ∈ L2(Rn) then

‖f‖2
L2 = (2π)−n‖f̂‖2

L2 = (2π)−n
∞∑
j=0

∫
ψj(ξ)

2|f̂(ξ)|2 dξ

=
∞∑
j=0

∫
|Sjf(x)|2 dx =

∫
‖Sf(x)‖2

l2 dx

= ‖Sf‖2
L2(l2).

The case p 6= 2 is a nontrivial result. A standard proof, as in [2], is

based on the theory of (Hilbert-valued) singular integrals, where it is

shown that operators such as S map L1(Rn) into weak L1(l2). Then a

version of the Marcinkiewicz interpolation theorem gives that

‖Sf‖Lp(l2) ≤ C‖f‖Lp

for 1 < p < 2, and the case where 2 < p <∞ follows by duality.

For the converse inequality, we use the identity ‖f‖2
L2 = ‖Sf‖2

L2(l2),

which gives upon polarization that∫
Rn

fḡ dx =

∫
Rn

∞∑
j=0

SjfSjg dx.

Then

‖f‖Lp = sup{
∣∣∣∣∫ fḡ dx

∣∣∣∣ ; ‖g‖Lp′ = 1}

= sup{
∣∣∣∣∫ ∑SjfSjg dx

∣∣∣∣ ; ‖g‖Lp′ = 1}

≤ sup{‖Sf‖Lp(l2)‖Sg‖Lp′ (l2) ; ‖g‖Lp′ = 1}
≤ C sup{‖Sf‖Lp(l2)‖g‖Lp′ ; ‖g‖Lp′ = 1}
≤ C‖Sf‖Lp(l2).

�
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3.4. Besov and Triebel spaces

3.4.1. Definition of Besov and Triebel spaces. The discussion

of Littlewood-Paley theory in §3.3 motivates the definition of Besov and

Triebel spaces. As always, we begin by considering the L2 case.

Motivation. If f ∈ S (Rn), let Sjf = ϕj(D)f be the Littlewood-

Paley pieces of f as in §3.3. Since 〈ξ〉 ∼ 2j on supp(ϕj), the Hs,2 norm

of f can be expressed as

‖f‖2
Hs,2 = ‖F−1{〈ξ〉sf̂}‖2

L2 = (2π)−n‖〈ξ〉sf̂‖2
L2

= (2π)−n
∞∑
j=0

∫
Rn

ϕj(ξ)
2〈ξ〉2s|f̂(ξ)|2 dξ ∼

∞∑
j=0

22js‖ϕj(ξ)f̂‖2
L2

∼
∞∑
j=0

22js‖ϕj(D)f‖2
L2

∼

∥∥∥∥∥∥
(
∞∑
j=0

22js|ϕj(D)f(x)|2
)1/2

∥∥∥∥∥∥
2

L2

.

This shows that

(1) ‖f‖Hs,2 ∼ ‖(ϕj(D)f)‖ls2(L2) ∼ ‖(ϕj(D)f)‖L2(ls2),

where lsp are the weighted sequence spaces introduced in §2.4.

The Besov and Triebel spaces are obtained by replacing the expo-

nents 2 by p and q in the norms appearing in (1). For later purposes,

we will need to use more general Littlewood-Paley partitions of unity

in the definition of the spaces.

Definition. If N is a positive integer, let ΨN be the set of all

sequences (ψj)
∞
j=0 of functions which satisfy

(a) ψj ∈ C∞c (Rn) and ψj ≥ 0 for all j,

(b) ψj is supported in {2j−N ≤ |ξ| ≤ 2j+N} for j ≥ 1, and ψ0 is

supported in {|ξ| ≤ 2N},
(c) there exists c > 0 such that

∑∞
j=0 ψj(ξ) ≥ c, and

(d) for any multi-index α there exists Cα > 0 such that

|Dαψj(ξ)| ≤ Cα〈ξ〉−|α|, j = 1, 2, . . . .

We let Ψ =
⋃∞
N=1 ΨN .
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Example. It is easy to check that (ϕj)
∞
j=0 is a sequence in Ψ. We

can generate more sequences in Ψ by choosing a nonnegative smooth

function ψ supported in {2−N ≤ |ξ| ≤ 2N} with ψ > 0 for 1/
√

2 ≤
|ξ| ≤

√
2, and by letting ψj(ξ) := ψ(2−jξ) for j ≥ 1 and choosing ψ0 in

a suitable way. The normalized functions

χj(ξ) :=
ψj(ξ)∑∞

k=−∞ ψ(2−kξ)
(j ≥ 1), χ0(ξ) :=

∑0
k=−∞ ψ(2−kξ)∑∞
k=−∞ ψ(2−kξ)

,

yield a sequence (χj) ∈ Ψ with
∑∞

j=0 χj ≡ 1. Further, if (ψj) ∈ Ψ is

given, we may use the above idea to find a sequence (ψ̃j) ∈ Ψ satisfying

ψ̃j = 1 on supp(ψj) for all j ≥ 0.

We will use the constructions in the previous example several times

below. After these preparations, we are ready to give the definition of

Besov and Triebel spaces.

Definition. Suppose that (ψj)
∞
j=0 is a sequence in Ψ, let s be a

real number, and let 1 < p, q <∞.

(a) The Besov space Bs
pq(R

n) is the set of all f ∈ S ′(Rn) for which

(ψj(D)f) ∈ lsq(Lp). The norm is

‖f‖Bspq := ‖(ψj(D)f)‖lsq(Lp) =

(
∞∑
j=0

[2js‖ψj(D)f‖Lp ]q
)1/q

.

(b) The Triebel space (or Triebel-Lizorkin space) F s
pq(R

n) consists of

those f ∈ S ′(Rn) for which (ψj(D)f) ∈ Lp(lsq). The norm is

‖f‖F spq := ‖(ψj(D)f)‖Lp(lsq) =

∥∥∥∥∥∥
(
∞∑
j=0

[
2js|ψj(D)f |

]q)1/q
∥∥∥∥∥∥
Lp

.

Remarks. 1. More precisely, the Besov space Bs
pq consists of those

tempered distributions f for which each ψj(D)f is an Lp function, and

the sum
∑

[2js‖ψj(D)f‖Lp ]q converges.

2. For the Triebel spaces, we note that if f ∈ S ′ then any ψj(D)f is a

C∞ function as the inverse Fourier transform of a compactly supported

distribution. It follows that the map

x 7→

(
∞∑
j=0

[
2js|ψj(D)f(x)|

]q)1/q
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is nonnegative and measurable (as the qth root of the supremum of

continuous functions). Then f is in F s
pq iff the last function is in Lp(Rn).

3. One could also consider the case 0 < p, q ≤ 1, but we will restrict

our attention to 1 < p, q <∞ for simplicity. Later we will discuss the

Besov spaces also when p = q =∞.

We now prove that the spaces defined above do not depend on the

choice of the sequence (ψj). This will allow considerable flexibility when

proving statements about these spaces. Below, we will usually give the

details for Besov spaces and leave the Triebel case as an exercise.

Theorem 1. (Independence of partition of unity) Let (ψj), (ψ̃j) be

two sequences in Ψ. Then for all admissible s, p, q,

‖(ψj(D)f)‖lsq(Lp) ∼ ‖(ψ̃j(D)f)‖lsq(Lp),

‖(ψj(D)f)‖Lp(lsq) ∼ ‖(ψ̃j(D)f)‖Lp(lsq).

Thus, any sequence (ψj) ∈ Ψ in the definition of Bs
pq and F s

pq will result

in the same spaces with equivalent norms.

Proof. 1. Let f ∈ S ′ be such that (ψj(D)f) ∈ lsq(Lp). We wish

to show that (ψ̃j(D)f) ∈ lsq(Lp), and

‖(ψ̃j(D)f)‖lsq(Lp) ≤ C‖(ψj(D)f)‖lsq(Lp)

with C independent of f .

2. Choose N so that (ψj), (ψ̃j) ∈ ΨN . We write

ψ̃j(D)f =
∞∑
k=0

ψ̃j(D)χ(D)ψk(D)f

where

χ(ξ) :=

(
∞∑
k=0

ψk(ξ)

)−1

.

Here χ is a bounded C∞ function, and χ and ψ̃j satisfy the conditions

in Mihlin’s theorem with bounds independent of j by (a)–(d) above.

Since ψ̃j(ξ)ψk(ξ) = 0 if |j − k| ≥ 2N , we have (with ψk := 0 for k < 0)

2js‖ψ̃j(D)f‖Lp ≤ C
∑

j−2N≤k≤j+2N

2js‖ψk(D)f‖Lp

≤ C
∑

j−2N≤k≤j+2N

2ks‖ψk(D)f‖Lp .
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It follows that

‖(ψ̃j(D)f)‖qlsq(Lp) =
∞∑
j=0

[
2js‖ψ̃j(D)f‖Lp

]q
≤ C

∞∑
j=0

[ ∑
j−2N≤k≤j+2N

2ks‖ψk(D)f‖Lp
]q

≤ C
∞∑
j=0

∑
j−2N≤k≤j+2N

[
2ks‖ψk(D)f‖Lp

]q
≤ C

∞∑
j=0

[
2js‖ψj(D)f‖Lp

]q
.

This proves the result for the Besov case.

3. The Triebel case is left as an exercise. It uses the vector-valued

Mihlin multiplier theorem, which will be stated (for q = 2) below. �

3.4.2. Properties of Besov and Triebel spaces. We begin by

proving that Bs
pq and F s

pq are Banach spaces. To this end, we first state

an abstract result which describes how the function spaces sit inside

lsq(L
p) and Lp(lsq).

Definition. Let A and B be normed spaces. We say that a

bounded linear operator R : A → B is a retraction is there is another

bounded linear operator S : B → A with

RSb = b for all b ∈ B.

Then S is called a coretraction for R.

Lemma 2. If A is Banach and B is normed, and if S : B → A is a

coretraction for R : A→ B, then B is Banach and S is an isomorphism

from B onto a closed subspace of A.

Proof. If Sb = 0 then b = RSb = 0, showing that S is injective.

We claim that SR : A→ A is a projection and the range of S is equal

to the range of SR. Clearly (SR)2a = S(RS)Ra = SRa for a ∈ A and

SR(A) ⊆ S(B). Also, any Sb can be written as Sb = SR(Sb), so that

S(B) ⊆ SR(A). Then S(B) is closed as the range of a projection.

If (bj) is a Cauchy sequence in B, then (Sbj) is Cauchy in A and

there exists Sb ∈ S(B) with Sbj → Sb in A. Applying R, we see that
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bj → b in B and that B is complete. The map S : B → S(B) is an

isomorphism by the open mapping theorem. �

Theorem 3. (Bs
pq and F s

pq as function spaces) Bs
pq and F s

pq are Ba-

nach spaces, and S ⊆ Bs
pq ⊆ S ′ and S ⊆ F s

pq ⊆ S ′ with continuous

inclusions. Further, S is dense in Bs
pq and F s

pq.

Proof. 1. We first show that Bs
pq is a normed space. Let (ψj) be

a sequence in Ψ with
∑∞

j=0 ψj = 1. If f, g ∈ Bs
pq then

‖λf + µg‖Bspq = ‖λ(ψj(D)f) + µ(ψj(D)g)‖lsq(Lp)

≤ |λ|‖f‖Bspq + |µ|‖g‖Bspq ,

showing that Bs
pq is a vector space and ‖ · ‖Bspq obeys the triangle in-

equality. Also the other conditions for a norm are satisfied, for instance

if f is in Bs
pq and ‖f‖Bspq = 0, then ψj(D)f = 0 for all j which implies

that f̂ =
∑

j ψj(ξ)f̂ = 0 and f = 0.

2. To show that Bs
pq is complete, we define the maps

S : Bs
pq → lsq(L

p), f 7→ (ψj(D)f),

R : lsq(L
p)→ Bs

pq, (gj) 7→
∞∑
j=0

ψ̃j(D)gj,

where (ψ̃j) is a sequence in Ψ with ψ̃j = 1 on supp(ψj) for all j ≥ 0.

We leave as an exercise to show that the sum defining R converges

in Bs
pq, and that S and R are bounded linear operators (this uses the

argument in Theorem 1). We have that

RSf =
∑

ψ̃j(D)ψj(D)f =
∑

ψj(D)f = f,

so S is a coretraction. Since lsq(L
p) is Banach, Lemma 2 shows that

Bs
pq is a Banach space.
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3. Next we show that S ⊆ Bs
pq. If f ∈ S then

‖ψj(D)f‖Lp ≤ C‖〈x〉2nψj(D)f‖L∞

≤ C‖F−1{〈Dξ〉2n[ψj(ξ)f̂(ξ)]}‖L∞

≤ C‖〈Dξ〉2n[ψj(ξ)f̂(ξ)]‖L1

≤ C‖〈ξ〉2n〈Dξ〉2n[ψj(ξ)f̂(ξ)]‖L∞

≤ C
∑

|α|,|β|≤2n

‖〈ξ〉2nDαψj(ξ)D
β f̂(ξ)‖L∞

≤ C2−j(s+1)
∑
|β|≤2n

‖〈ξ〉2n+s+1Dβ f̂(ξ)‖L∞ .

Thus ‖(2js‖ψj(D)f‖Lp)‖lq ≤ C
∑
|β|≤2n‖〈ξ〉2n+s+1Dβ f̂(ξ)‖L∞ , showing

that S is continuously embedded in Bs
pq. The embedding Bs

pq ⊆ S ′ is

an exercise.

4. It remains to show that S is dense in Bs
pq. If f ∈ Bs

pq, we first note

that the functions

fN :=
N∑
j=0

ψj(D)f

converge to f in Bs
pq as N → ∞. This follows from the argument in

the proof of Theorem 1. Thus it is enough to approximate each fN by

Schwartz functions.

Fix ε > 0, and let R and S be as in Step 2. If fN is given, there is

some N ′ > 0 such that ψj(D)fN = 0 for j > N ′. Since each ψj(D)fN
is in Lp, we may find ϕj ∈ S such that

‖ψj(D)fN − ϕj‖Lp ≤ 2−j(s+1)ε, 0 ≤ j ≤ N ′.

Set ϕj := 0 for j > N ′, and let ϕ := R(ϕj) =
∑
ψ̃j(D)ϕj. Since the

sum is finite, we have ϕ ∈ S , and

‖fN − ϕ‖Bspq = ‖RSfN −R(ϕj)‖Bspq ≤ C‖(ψj(D)fN)− (ϕj)‖lsq(Lp)

=

(
N ′∑
j=0

[
2js‖ψj(D)fN − ϕj‖Lp

]q)1/q

≤ Cqε.

This completes the proof. �

The following result gives some simple relations between the Besov

and Triebel spaces.
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Theorem 4. (Monotonicity of Bs
pq and F s

pq) Let s be a real number

and 1 < p, q <∞.

(a) The Besov spaces satisfy

Bs2
pq ⊆ Bs1

pq if s1 ≤ s2,

Bs
pq1
⊆ Bs

pq2
if q1 ≤ q2.

These identities are true for the F -spaces as well.

(b) If p = q, one has Bs
pp = F s

pp.

(c) One has

Bs
pq ⊆ F s

pq ⊆ Bs
pp if 1 < q ≤ p <∞,

Bs
pp ⊆ F s

pq ⊆ Bs
pq if 1 < p ≤ q <∞.

Proof. 1. The first two identities follow immediately from the

inclusions ls2q ⊆ ls1q and lq1 ⊆ lq2 :

‖f‖Bs1pq =

(
∞∑
j=0

[
2js1‖ψj(D)f‖Lp

]q)1/q

≤

(
∞∑
j=0

[
2js2‖ψj(D)f‖Lp

]q)1/q

= ‖f‖Bs2pq ,

‖f‖Bspq1 =

(
∞∑
j=0

[
2js‖ψj(D)f‖Lp

]q1)1/q1

≤

(
∞∑
j=0

[
2js‖ψj(D)f‖Lp

]q2)1/q2

= ‖f‖Bspq2 ,

since if (xj) ∈ lq1 then∑
|xj|q2 ≤ (sup|xj|q1)

q2−q1
q1

∑
|xj|q1 ≤

(∑
|xj|q1

)q2/q1
.

The proof for the F -spaces is similar.

2. If f ∈ S then

‖f‖pBspp =
∑

2jsp‖ψj(D)f‖pLp =

∫ ∑
2jsp|ψj(D)f |p dx

=

∥∥∥∥(∑[
2js|ψj(D)f |

]p)1/p
∥∥∥∥p
Lp

= ‖f‖F spp .
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3. In (c), the second inclusion on the first line and first inclusion on

the second line follow from (a) and (b). To show the first inclusion, if

f ∈ Bs
pq and 1 < q ≤ p <∞ we have

‖f‖F spq =

∥∥∥∥(∑[
2js|ψj(D)f |

]q)1/q
∥∥∥∥
Lp

=
∥∥∥∑[

2js|ψj(D)f |
]q∥∥∥1/q

Lp/q

≤
(∑

2jsq‖ψj(D)f‖qLp
)1/q

= ‖f‖Bspq .

The proof of the last inclusion is analogous. �

Next we consider the relation of Besov and Triebel spaces to the

Bessel potential spaces. Note that ‖f‖F 0
p2

= ‖(ψj(D)f)‖Lp(l2), so the

Littlewood-Paley theorem implies that F 0
p2 = Lp with equivalent norms.

To prove a corresponding result for s 6= 0, we need a generalization of

Mihlin’s theorem. See [2] for a proof.

Theorem 5. (Vector-valued Mihlin multiplier theorem) Suppose

m(ξ) := (mjk(ξ))
∞
j,k=0 is a matrix of C∞ complex valued functions on

Rn, which for any multi-index α satisfies(
∞∑

j,k=0

|Dαmjk(ξ)|2
)1/2

≤ Cα〈ξ〉−|α|.

Then the operator m(D), defined for sequences F = (fj)
∞
j=0 of Schwartz

functions with fj = 0 for j large, by

(m(D)F )j :=
∞∑
k=0

mjk(D)fk, j = 0, 1, 2, . . . ,

has a bounded extension Lp(l2)→ Lp(l2) for any 1 < p <∞, and

‖m(D)F‖Lp(l2) ≤ C‖F‖Lp(l2), F ∈ Lp(l2),

where C only depends on p, n, and finitely many Cα.

The inequality ‖(ϕj(D)f)‖Lp(l2) ≤ C‖f‖Lp in the Littlewood-Paley

theorem is an immediate consequence of the last result, if one takes

mj0(ξ) := ϕj(ξ) and mjk(ξ) := 0 for k ≥ 1, and applies m(D) to

F := (f, 0, 0, . . .). The following proof uses a similar idea.
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Theorem 6. (Fractional Sobolev spaces as Triebel spaces) If s is a

real number and 1 < p <∞, then

F s
p2 = Hs,p,

F s
22 = Bs

22 = Hs,2.

Proof. 1. We show that ‖f‖F sp2 ≤ C‖f‖Hs,p for any Schwartz

function f . Let f0 := 〈D〉sf , let (ψj) be a sequence in Ψ, and define

mj0(ξ) := 2js〈ξ〉−sψj(ξ),
mjk(ξ) := 0 (k ≥ 1),

F := (f0, 0, 0, . . .).

Since |Dαmj0(ξ)| ≤ Cα〈ξ〉−|α|χsupp(ψj)(ξ) by the properties of (ψj), the

matrix m = (mjk) satisfies the conditions in the vector-valued Mihlin

theorem. Consequently

‖f‖F sp2 = ‖(2jsψj(D)f)‖Lp(l2) = ‖(mj0(D)f0)‖Lp(l2) = ‖m(D)F‖Lp(l2)

≤ C‖F‖Lp(l2) = C‖f0‖Lp = C‖f‖Hs,p .

2. Let us prove the converse inequality, ‖f‖Hs,p ≤ C‖f‖F sp2 for f ∈ S .

If (ψk) is a sequence in Ψ with
∑
ψk = 1, we have

‖f‖Hs,p = ‖〈D〉sf‖Lp = ‖
∑
k

ψk(D)〈D〉sf‖Lp .

The last sum converges in Lp by the Littlewood-Paley theorem for

instance. We choose another sequence (ψ̃k) in Ψ with ψ̃k = 1 on

supp(ψk), and define

m0k(ξ) := 2−ks〈ξ〉sψk(ξ),
mjk(ξ) := 0 (j ≥ 1),

F := (2ksψ̃k(D)f)∞k=0.

Again, m satisfies the conditions in Mihlin’s theorem. Since ψk(D) =

ψk(D)ψ̃k(D), we have

‖f‖Hs,p ≤ ‖
∑
k

m0k(D)Fk‖Lp = ‖m(D)F‖Lp(l2)

≤ C‖F‖Lp(l2) = C‖f‖F sp2 .

3. We have proved that ‖f‖F sp2 ∼ ‖f‖Hs,p for f ∈ S . The standard

density argument then shows that F s
p2 = Hs,p with equivalent norms.
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The second identity in the theorem is a consequence of the first one

and the fact that F s
pp = Bs

pp. �

Finally, we consider the interpolation of various function spaces.

The following abstract result will be used to pass from interpolation

results on Lp and lsq spaces to similar results for Besov spaces.

Lemma 7. Let (A0, A1) and (B0, B1) be two interpolation couples

of Banach spaces, and assume that R : A0 + A1 → B0 + B1 and S :

B0 + B1 → A0 + A1 are linear operators such that R is a retraction

Aj → Bj with coretraction S : Bj → Aj (j = 0, 1). If F is any

interpolation functor, then S is a coretraction F (B0, B1)→ F (A0, A1)

which is an isomorphism onto a closed subspace of F (A0, A1).

Proof. Since R is bounded Aj → Bj, the definition of interpola-

tion functor implies that R is bounded F (A0, A1)→ F (B0, B1). Simi-

larly, S is bounded F (B0, B1)→ F (A0, A1). We also have RSb = b for

b ∈ B0 and b ∈ B1, thus also for b ∈ F (B0, B1). Then R is a retraction

on F (A0, A1) with coretraction S, and the result follows from Lemma

2 above. �

The following interpolation results are not the sharpest possible (for

better results see Triebel [13]), but they give an idea of what can be

done.

Theorem 8. (Interpolation of function spaces) Let s0, s1 be real

numbers, and let 1 < p0, p1, q0, q1 < ∞. If 0 < θ < 1, let s, p, q be

defined by

s = (1− θ)s0 + θs1,
1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

(a) The Besov spaces satisfy

(Bs0
pq0
, Bs1

pq1
)θ,q = Bs

pq if p0 = p1 = p,

(Bs0
p0q0

, Bs1
p1q1

)θ,q = Bs
pq if p = q.

(b) The Triebel spaces satisfy

(F s0
p0q0

, F s1
p1q1

)θ,p = Bs
pp if s0 6= s1,

(F s
p0q0

, F s
p1q1

)θ,p = Bs
pp if s0 = s1 = s and p = q,

(F s
p0r
, F s

p1r
)θ,p = F s

pr if s0 = s1 = s and 1 < r <∞.
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(c) The fractional Sobolev spaces satisfy

(Hs0,p, Hs1,p)θ,r = Bs
pr if s0 6= s1, p0 = p1 = p, 1 < r <∞,

(Hs,p0 , Hs,p1)θ,p = Hs,p if s0 = s1 = s.

Proof. We prove (a). Consider the coretraction S given in the

proof of Theorem 3,

S : B
sj
pjqj → l

sj
qj (L

pj), f 7→ (ψk(D)f)∞k=0 (j = 0, 1).

By Lemma 7, S is an isomorphism from (Bs0
p0q0

, Bs1
p1q1

)θ,q onto a closed

subspace of (ls0q0 (Lp0), ls1q1 (Lp1))θ,q. But by Theorems 2 and 3 in §2.4, we

have with equivalent norms

(ls0q0 (Lp0), ls1q1 (Lp1))θ,q = lsq((L
p0 , Lp1)θ,q) = lsq(L

p)

if either p0 = p1 = p or p = q. In these cases, since S is an isomorphism

we have

‖f‖(B
s0
p0q0

,B
s1
p1q1

)θ,q
∼ ‖Sf‖lsq(Lp) ∼ ‖f‖Bspq .

The second and third identities in (b) follow in a similar way from

a retraction argument. However, for the first identity one needs a more

general interpolation result for the lsq spaces than the one proved in

§2.4; see Triebel [13]. For the first identity in (c) we also refer to [13],

and the second identity in (c) follows from the last identity in (b). �

3.5. Hölder and Zygmund spaces

In this section, we will see how the Hölder spaces fit into the frame-

work of Besov and Triebel spaces. First, we extend the definition of

Besov spaces to the case p = q = ∞. We use a sequence (ψj)
∞
j=0 in Ψ

such that
∑∞

j=0 ψj = 1, ψj(ξ) = ψ(2−jξ) for j ≥ 1, and ψj(−ξ) = ψj(ξ)

for j ≥ 0.

Definition. If s is a real number, the space Bs
∞∞(Rn) consists of

those f ∈ S ′(Rn) for which the sequence (2js‖ψj(D)f‖L∞) is bounded.

The norm is

‖f‖Bs∞∞ := sup
j≥0

2js‖ψj(D)f‖L∞ .

We will show that if 0 < s < 1, the space Bs
∞∞ is precisely the space

of Hölder continuous functions of exponent s. However, the equality

breaks down if s = 1. To obtain a characterization for integer s, we

will need to consider second order differences.
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Definition. The Zygmund space Cs
∗(R

n) for s > 0 is defined as

follows: if s = k + γ where k is a nonnegative integer and 0 < γ < 1,

we define Cs
∗(R

n) := Ck,γ(Rn) and

‖f‖Cs∗ := ‖f‖Ck,γ = ‖f‖Ck +
∑
|α|=k

sup
x,h

|∂αf(x+ h)− ∂αf(x)|
|h|γ

.

Further, if s = k where k is a positive integer, then Ck
∗ (R

n) is the set

of all f ∈ Ck−1(Rn) for which the following norm is finite:

‖f‖Ck∗ := ‖f‖Ck−1 +
∑
|α|=k

sup
x,h

|∂αf(x+ h)− 2∂αf(x) + ∂αf(x− h)|
|h|

.

Example. The space C1
∗ consists of those continuous and bounded

functions f for which |f(x+ h)− 2f(x) + f(x− h)| ≤ C|h| for all x, h.

Clearly one has the inclusions

C1 ⊆ C0,1 ⊆ C1
∗ .

These inclusions are strict: an example of a function in C1
∗ which is not

Lipschitz continuous is given by the lacunary Fourier series

∞∑
k=1

2−kei2
kx.

Below, it will be useful to write ψj(D)f as the convolution of f

against a function. If m ∈ C∞c (Rn) and f ∈ L1(Rn) we have

m(D)f(x) = F−1{m(ξ)f̂(ξ)} = (2π)−n
∫

Rn

eix·ξm(ξ)f̂(ξ) dξ

=

∫
Rn

[
(2π)−n

∫
Rn

ei(x−y)·ξm(ξ) dξ

]
f(y) dy

=

∫
Rn

m̌(x− y)f(y) dy.

Thus m(D)f = m̌ ∗ f , where we have written m̌ := F−1m. If m ∈
OM and f ∈ S ′, with correct interpretations (see Schwartz [10]) it

is possible to write m(D)f = m̌ ∗ f where m̌ is a rapidly decreasing

distribution.

Theorem 1. (Hölder spaces as Besov spaces) If s > 0 is not an

integer, we have

Cs
∗ = Bs

∞∞.
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Proof. 1. Let us first assume f ∈ Cγ
∗ = C0,γ with 0 < γ < 1. If

j ≥ 1 then
∫
ψ̌j(y) dy = ψj(0) = 0 and

|ψj(D)f(x)| =
∣∣∣∣∫ ψ̌j(y)f(x− y) dy

∣∣∣∣ =

∣∣∣∣∫ ψ̌j(y)[f(x− y)− f(x)] dy

∣∣∣∣
≤ ‖f‖C0,γ

∫
|y|γ|ψ̌j(y)| dy.

Here ψ̌j(y) = F−1{ψ(2−j · )} = 2jnψ̌(2jy), so

|ψj(D)f(x)| ≤ 2−jγ‖f‖C0,γ

∫
|y|γ|ψ̌(y)| dy ≤ C2−jγ‖f‖C0,γ .

Since ‖ψ0(D)f‖L∞ ≤ ‖ψ̌0‖L1‖f‖L∞ we get 2jγ‖ψj(D)f‖L∞ ≤ C‖f‖C0,γ

for all j ≥ 0, so that C0,γ ⊆ Bγ
∞∞.

2. Let now f ∈ Ck+γ
∗ = Ck,γ with k ∈ Z+ and 0 < γ < 1. We use the

Taylor expansion with remainder in integral form,

f(x−y) =
∑
|α|<k

∂αf(x)

α!
(−y)α+

∑
|α|=k

k

∫ 1

0

(1−t)k−1∂
αf(x− ty)

α!
(−y)α dt.

Since
∫

(−y)αψ̌j(y) dy = Dαψj(0) = 0 for j ≥ 1, we have

ψj(D)f(x) =

∫
ψ̌j(y)f(x− y) dy

=

∫
ψ̌j(y)

∑
|α|=k

k

∫ 1

0

(1− t)k−1∂
αf(x− ty)

α!
(−y)α dt dy

=

∫
ψ̌j(y)

∑
|α|=k

k

∫ 1

0

(1− t)k−1∂
αf(x− ty)− ∂αf(x)

α!
(−y)α dt dy.

Taking absolute values, we obtain

|ψj(D)f(x)| ≤ C

(∫
|y|k+γ|ψ̌j(y)| dy

)
‖f‖Ck,γ ≤ C2−j(k+γ)‖f‖Ck,γ .

Thus Ck,γ ⊆ Bk+γ
∞∞.

3. Assume now that f ∈ Bs
∞∞ where 0 < s < 1. We need to show that

f ∈ C0 and |f(x+ h)− f(x)| ≤ C|h|s. Since
∑
ψj = 1, we have

‖f‖L∞ ≤
∞∑
j=0

‖ψj(D)f‖L∞ ≤ Cs‖f‖Bs∞∞ .

More precisely, the sum
∑∞

j=0 ψj(D)f converges in C0, and since it also

converges in S ′ to f we must have f ∈ C0.
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Let now h ∈ Rn with |h| ≤ 1 (if |h| > 1 the claim is trivial). Choose

k so that 2−k−1 < |h| ≤ 2−k. Also, choose a sequence (χj)
∞
j=0 with

χj = 1 on supp(ψj), and χj(ξ) = χ(2−jξ) for j ≥ 1 where χ ∈ C∞c (Rn).

Let fj := ψj(D)f = χj(D)ψj(D)f . Then for j ≥ 1,

fj(x+ h)− fj(x) =

∫
[χ̌j(x+ h− y)− χ̌j(x− y)]ψj(D)f(y) dy

=

∫
[χ̌j(y + h)− χ̌j(y)]ψj(D)f(x− y) dy

=

∫
[χ̌(y + 2jh)− χ̌(y)]ψj(D)f(x− 2−jy) dy.

Using that χ̌(y + z)− χ̌(y) =
∫ 1

0
∇χ̌(y + tz) · z dt, we estimate∫

|χ̌(y + 2jh)− χ̌(y)| dy ≤
{
C2j|h|, j ≤ k,

C, j > k.

It follows that

|f(x+ h)− f(x)| ≤
k∑
j=0

|fj(x+ h)− fj(x)|+
∞∑

j=k+1

|fj(x+ h)− fj(x)|

≤ C
k∑
j=0

2j|h|‖ψj(D)f‖L∞ + C
∞∑

j=k+1

‖ψj(D)f‖L∞

≤ C|h|s‖f‖Bs∞∞

(
k∑
j=0

2j(1−s)|h|1−s + |h|−s
∞∑

j=k+1

2−js

)
≤ C|h|s‖f‖Bs∞∞ ,

since |h| ∼ 2−k.

4. Finally, assume f ∈ Bs
∞∞ where s = k + γ and k ∈ Z+, 0 < γ < 1.

We first show that f ∈ Ck. If (χj) is as in Step 3, we have for j ≥ 1

χj(D)Dαf = χ̌j ∗Dαf = Dαχ̌j ∗ f

= 2j|α|2jn(Dαχ̌)(2j · ) ∗ f.

Therefore, if |α| ≤ k then

‖Dαf‖L∞ ≤
∞∑
j=0

‖ψj(D)Dαf‖L∞ ≤
∞∑
j=0

‖χj(D)Dαψj(D)f‖L∞

≤ C
∞∑
j=0

2j|α|‖ψj(D)f‖L∞ ≤ C‖f‖Bs∞∞ .



58 3. FRACTIONAL SOBOLEV SPACES

The fact that Dαf ∈ C0,γ for |α| = k follows by repeating the argument

in Step 3 with fj := ψj(D)Dαf . �

In the next result, we consider the case of integer s.

Theorem 2. (Zygmund spaces as Besov spaces) If s > 0 is an

integer, then Cs
∗ = Bs

∞∞.

Proof. 1. We shall only prove that C1
∗ = B1

∞∞. Assume that f is

a function in C1
∗ . If j ≥ 1 we have

∫
ψ̌j(y) dy = 0 and ψ̌j(−y) = ψ̌j(y)

(because ψj(−ξ) = ψj(ξ)), so that

|ψj(D)f(x)| =
∣∣∣∣∫ ψ̌j(y)f(x− y) dy

∣∣∣∣
=

∣∣∣∣12
∫
ψ̌j(y)[f(x− y)− 2f(x) + f(x+ y)] dy

∣∣∣∣
≤ 1

2
‖f‖C1

∗

∫
|y||ψ̌j(y)| dy ≤ C2−j‖f‖C1

∗ .

Also |ψ0(D)f(x)| ≤ ‖ψ̌0‖L1‖f‖L∞ ≤ C‖f‖C1
∗ , so we have C1

∗ ⊆ B1
∞∞.

2. Let now f ∈ B1
∞∞. Then f ∈ B1−ε

∞∞ ⊆ C0 by Theorem 1. We need

to show that

|f(x+ h)− 2f(x) + f(x− h)| ≤ C|h|, x, h ∈ Rn.

It is enough to show this for |h| ≤ 1. As in the proof of Theorem

1, choose k so that 2−k−1 < |h| ≤ 2−k, and choose (χj)
∞
j=0 ∈ Ψ with

χj = 1 on supp(ψj), χj(ξ) = χ(2−jξ) for j ≥ 1. Letting fj := ψj(D)f =

χj(D)ψj(D)f , we have

fj(x+ h)− 2fj(x) + fj(x− h)

=

∫
[χ̌(y + 2jh)− 2χ̌(y) + χ̌(y − 2jh)]ψj(D)f(x− 2−jy) dy.

We use the estimate∫
|χ̌(y + 2jh)− 2χ̌(y) + χ̌(y − 2jh)| dy ≤

{
C22j|h|2, j ≤ k,

C, j > k.

The second part of this follows from the triangle inequality, and the

first part is a consequence of the Taylor expansion

h(z) = h(0) +∇h(0) · z +
∑
|α|=2

2

∫ 1

0

(1− t)∂
αh(tz)

α!
zα dt
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applied to h(z) := χ̌(y + z)− 2χ̌(y) + χ̌(y − z). We obtain

|f(x+ h)− 2f(x) + f(x− h)| ≤
k∑
j=0

|fj(x+ h)− 2fj(x) + fj(x− h)|

+
∞∑

j=k+1

|fj(x+ h)− 2fj(x) + fj(x− h)|

≤ C
k∑
j=0

22j|h|2‖ψj(D)f‖L∞ + C
∞∑

j=k+1

‖ψj(D)f‖L∞

≤ C|h|‖f‖B1
∞∞

(
k∑
j=0

2j|h|+ |h|−1

∞∑
j=k+1

2−j

)
≤ C|h|‖f‖B1

∞∞ ,

since |h| ∼ 2−k. �

Definition. We will write Cs
∗ := Bs

∞∞ for s ≤ 0.

Finally, we remark that it is possible to characterize the Besov

spaces Bs
pq in terms of difference quotients also when p, q <∞. Define

ωp(t, f) := sup
|y|<t
‖f( · + y)− f( · )‖Lp ,

ω2
p(t, f) := sup

|y|<t
‖f( · + y)− 2f( · ) + f( · − y)‖Lp .

The following result may be found, also in a more general form, in

Bergh-Löfström [1].

Theorem 3. (Finite difference characterization of Besov spaces)

Let s > 0 and 1 < p, q < ∞. If s = k + γ where k is a nonnegative

integer and 0 < γ < 1, then

‖f‖Bspq ∼ ‖f‖Lp +
n∑
j=1

(∫ ∞
0

[t−γωp(t,D
k
j f)]q

dt

t

)1/q

.

If s = k + 1 where k is a nonnegative integer, then

‖f‖Bspq ∼ ‖f‖Lp +
n∑
j=1

(∫ ∞
0

[t−1ω2
p(t,D

k
j f)]q

dt

t

)1/q

.
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3.6. Embedding theorems

We will finish the chapter with a number of embedding theorems

for the different spaces. The following Lp estimates for convolutions

will be useful for this purpose. Part (c) is called Young’s inequality.

Theorem 1. (Lp estimates for convolution) Let 1 ≤ p ≤ ∞.

(a) If f ∈ L1 and g ∈ Lp, then f ∗ g ∈ Lp and

‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp .

(b) If f ∈ Lp and g ∈ Lp′, then f ∗ g ∈ L∞ and

‖f ∗ g‖L∞ ≤ ‖f‖Lp‖g‖Lp′ .

(c) If f ∈ Lp and g ∈ Lq, where 1 ≤ q ≤ p′, then f ∗ g ∈ Lr and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq

if r is defined by 1
r

= 1
p
− 1

q′
.

Proof. (a) It is proved in [7] (or Rudin [8]) that the convolution

of two L1 functions is an L1 function, and ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . If

f ∈ L1 and g ∈ L∞, we have the trivial bound ‖f∗g‖L∞ ≤ ‖f‖L1‖g‖L∞ .

Thus, if f ∈ L1 we have a map T : L1 + L∞ → L1 + L∞, Tg = f ∗ g.

Since
T : L1 → L1, ‖T‖ ≤ ‖f‖L1 ,

T : L∞ → L∞, ‖T‖ ≤ ‖f‖L1 ,

interpolation gives that T maps Lp to Lp with ‖Tg‖Lp ≤ ‖f‖L1‖g‖Lp .

(b) This is Hölder’s inequality:

|f ∗ g(x)| =
∣∣∣∣∫ f(x− y)g(y) dy

∣∣∣∣ ≤ ‖f(x− · )‖Lp‖g‖Lp′ = ‖f‖Lp‖g‖Lp′ .

(c) If f ∈ Lp, by (a) and (b) the map T : g 7→ f ∗ g satisfies

T : L1 → Lp, ‖T‖ ≤ ‖f‖Lp ,
T : Lp

′ → L∞, ‖T‖ ≤ ‖f‖Lp .

Let 1 < q < p′, and let 0 < θ < 1 be such that 1
q

= 1−θ
1

+ θ
p′

. Then

θ = p
q′

and 1−θ
p

+ θ
∞ = 1

p
− 1

q′
= 1

r
. Thus interpolation shows that

T : Lq → Lr with ‖Tg‖Lr ≤ ‖f‖Lp‖g‖Lq , as required. �
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Theorem 2. (Embeddings for function spaces) Assume that s ≥ s1

and 1 < p, p1 <∞, and

s− n

p
= s1 −

n

p1

.

Then for any 1 < r <∞ one has

Bs
pr ⊆ Bs1

p1r
,

F s
pr ⊆ F s1

p1r
,

Hs,p ⊆ Hs1,p1 . .

Further, if t is any real number and 1 < p, r <∞, then

Bt
pr ⊆ C

t−n/p
∗ ,

F t
pr ⊆ C

t−n/p
∗ ,

H t,p ⊆ C
t−n/p
∗ .

Proof. 1. We prove the first embedding for Besov spaces. If s = s1

then p = p1 and the claim is trivial. We may assume s > s1, and then

p < p1 < ∞. Let (ψj)
∞
j=0 and (χj)

∞
j=0 be two sequences in Ψ with

χj = 1 on supp(ψj), and χj(ξ) = χ(2−jξ) for j ≥ 1. Then

‖ψj(D)f‖Lp1 = ‖χj(D)ψj(D)f‖Lp1 = ‖χ̌j ∗ ψj(D)f‖Lp1
≤ ‖χ̌j‖Lq‖ψj(D)f‖Lp

by Young’s inequality, if q is chosen so that 1
p1

= 1
p
− 1

q′
. If j ≥ 1 we

have

‖χ̌j‖Lq = ‖2jnχ̌(2j · )‖Lq = C2jn/q
′
= C2j(s−s1)

since
1

q′
=

1

p
− 1

p1

=
s− s1

n
.

If j = 0 then ‖ψ0(D)f‖Lp1 ≤ ‖χ̌0‖Lq‖ψ0(D)f‖Lp = C‖ψ0(D)f‖Lp .
Consequently, we obtain

‖f‖Bs1p1r = ‖(2js1‖ψj(D)f‖Lp1 )‖lr ≤ C‖(2js‖ψj(D)f‖Lp)‖lr = C‖f‖Bspr .

This holds for Schwartz functions f , and the first embedding follows

since Schwartz functions are dense.

2. For the second embedding for Besov spaces, we note that

2j(t−n/p)‖ψj(D)f‖L∞ ≤ 2j(t−n/p)‖χ̌j‖Lp′‖ψj(D)f‖Lp ≤ C2jt‖ψj(D)f‖Lp ,
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since ‖χ̌j‖Lp′ = C2jn/p. Consequently

‖f‖
C
t−n/p
∗

∼ sup
j≥0

2j(t−n/p)‖ψj(D)f‖L∞ ≤ C‖f‖Btpr

for any r.

3. The first embedding for Triebel spaces uses the Hardy-Littlewood-

Sobolev inequality, and we refer to Triebel [13] for the proof. The

second embedding however follows directly from the corresponding em-

bedding for Besov spaces, upon noting that by Theorem 4 in §3.4, for

any r there is some r1 such that

F t
pr ⊆ Bt

pr1
⊆ Ct−n/p

∗ .

4. The embedding results for fractional Sobolev spaces follow from the

corresponding results for Triebel spaces, using the fact that H t,p = F t
p2

by Theorem 6 in §3.4. �

Remark. Considering the spaces Bs
pq, F

s
pq, and Hs,p, the number

s − n
p

is called the differential dimension. For the Zygmund space

Cs
∗ = Bs

∞∞, the differential dimension is s. The embeddings considered

here can be memorized by noting that the differential dimension is

preserved while the smoothness index becomes smaller.
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