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Abstract. These notes for a minicourse in Beijing Analysis Autumn

School 2023 give an exposition of Calderón type inverse problems for

elliptic PDE. We begin with a fundamental uniqueness result in dimen-

sions ≥ 3 based on complex geometrical optics solutions. The case of

transversally anisotropic geometries is considered next. We then move

to semilinear equations and show that nonlinearity may help in solving

inverse problems. The final part considers p-Laplace type equations and

discusses known results. Several open questions are stated along the

way.
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Preface

Electrical Impedance Tomography (EIT) is an imaging method with po-

tential applications in medical imaging and nondestructive testing. The

method is based on the following important inverse problem.

Calderón problem: Is it possible to determine the electri-

cal conductivity of a medium by making voltage and current

measurements on its boundary?

Let us discuss the mathematical model of EIT. The purpose is to deter-

mine the electrical conductivity γ(x) at each point x ∈ Ω, where Ω ⊂ Rn
represents the body which is imaged (in practice n = 3). We assume that Ω

is a bounded open subset of Rn with C∞ boundary, and that γ is a function

in

L∞
+ (Ω) = {γ ∈ L∞(Ω) : ess inf γ > 0}.
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Under the assumption of no sources or sinks of current in Ω, a voltage

potential f at the boundary ∂Ω induces a voltage potential u in Ω, which

solves the Dirichlet problem for the conductivity equation,{
div(γ∇u) = 0 in Ω,

u = f on ∂Ω.

Consider the Sobolev spaces

H1(Ω) = {u ∈ L2(Ω) : ∂ju ∈ L2(Ω), 1 ≤ j ≤ n},

H1/2(∂Ω) = {u|∂Ω : u ∈ H1(Ω)}.

Since γ ∈ L∞
+ (Ω), the conductivity equation is elliptic and there is a unique

weak solution u = uf ∈ H1(Ω) for any boundary value f ∈ H1/2(∂Ω). One

can define the Dirichlet-to-Neumann map (DN map) formally as

Λγf = γ∂νu|∂Ω.

Here ∂ν is the normal derivative, and γ∂νu is the current flowing through

the boundary. More precisely, the DN map can be defined weakly by

(Λγf, g)∂Ω =

∫
Ω
γ∇uf · ∇v̄ dx, f, g ∈ H1/2(∂Ω),

where v is any function in H1(Ω) with v|∂Ω = g. One can show that Λγ is

a bounded linear map from H1/2(∂Ω) into H−1/2(∂Ω) = (H1/2(∂Ω))∗.

The Calderón problem, also called the inverse conductivity problem, is to

determine the conductivity function γ from the knowledge of the map Λγ .

That is, if the measured current Λγf is known for all boundary voltages

f ∈ H1/2(∂Ω), one would like to determine the conductivity γ. There

are several aspects of this inverse problem which are interesting both for

mathematical theory and practical applications.

1. Uniqueness. If Λγ1 = Λγ2 , show that γ1 = γ2.

2. Reconstruction. Given the boundary measurements Λγ , find a

procedure to reconstruct the conductivity γ.

3. Stability. If Λγ1 is close to Λγ2 , show that γ1 and γ2 are close (in a

suitable sense).

4. Partial data. If Γ is a subset of ∂Ω and if Λγ1f |Γ = Λγ2f |Γ for all

boundary voltages f , show that γ1 = γ2.

The Calderón problem is a fundamental inverse problem for elliptic PDE

and it has been studied intensively since the pioneering work of Calderón

[Ca80Ca80]. In this minicourse we will focus on uniqueness results in Calderón

type problems. We will begin with the basic uniqueness result for the

Calderón problem from [SU87SU87]. We will then move to more general geome-

tries, semilinear equations and p-Laplace type equations and discuss results

from [DKSU09DKSU09, FO20FO20, LL+21aLL+21a, SZ12SZ12].
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References. Readers are expected to be familiar with weak solutions of the

Dirichlet problem, basic regularity results for linear elliptic PDE, and related

functional analysis results roughly at the level of [Ev10Ev10]. The H1/2(∂Ω)

space is discussed e.g. in [FSUFSU]. For Section 11, more detailed accounts

of the basic uniqueness result for the Calderón problem may be found in

[Sa08Sa08] or [FSUFSU]. A detailed exposition of the geometric uniqueness result

discussed in Section 22 is given in [Sa12Sa12]. For a reference to basic Riemannian

geometry we recommend [Le18Le18]. In Section 33 we consider an inverse problem

for semilinear PDE following [FO20FO20, LL+21aLL+21a]. Section 44 discusses an inverse

problem for p-Laplace type equations and the boundary determination result

from [SZ12SZ12].

1. Uniqueness in the Calderón problem

The Calderón problem is stated in terms of the conductivity equation

div(γ∇u) = 0. However, if γ ∈ C2(Ω) is positive, there is a very useful

reduction based on the Liouville transform: the substitution u = γ−1/2v

and a short computation (exercise) yield

(1.1) div(γ∇(γ−1/2v)) = γ1/2(∆− q)v, q =
∆(γ1/2)

γ1/2
.

In this way, the conductivity equation reduces to the Schrödinger equation

(−∆+ q)u = 0 in Ω.

One advantage of this reduction is that the principal part of the equation

is −∆ and the variable coefficient has moved to the zero order term. From

now on we will exclusively work with the Schrödinger equation.

Let Ω ⊂ Rn be a bounded open set, let q ∈ L∞(Ω) be real valued, and

consider the Dirichlet problem

(1.2)

{
(−∆+ q)u = 0 in Ω,

u = f on ∂Ω.

We assume throughout that 0 is not a Dirichlet eigenvalue of −∆ + q in

Ω (this is always true if q comes from a C2 conductivity). Then for any

f ∈ H1/2(∂Ω) the problem (1.21.2) has a unique solution u ∈ H1(Ω). One can

define the DN map

Λq : H
1/2(∂Ω) → H−1/2(∂Ω), Λqf = ∂νu|∂Ω,

where the normal derivative ∂νu|∂Ω is interpreted in a natural weak sense. (If

q and f are slightly more regular, then u ∈ C1(Ω) and the normal derivative

exists pointwise.)

The following result from [SU87SU87], together with a boundary determination

result, implies uniqueness for C2 conductivities in the Calderón problem.
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Theorem 1.1 (Uniqueness). Let n ≥ 3 and q1, q2 ∈ L∞(Ω). If Λq1 = Λq2,

then q1 = q2.

For less regular conductivities the reduction to the Schrödinger equation

becomes more difficult to use, and the low regularity case is not fully under-

stood.

Question 1.1 (Low regularity). Let n ≥ 3. Is it true that Λγ determines

γ ∈ L∞
+ (Ω) uniquely, or can one find counterexamples for uniqueness?

Uniqueness is known for Lipschitz conductivities if n ≥ 3 [HT13HT13, CR16CR16],

and for γ ∈ W 1,n ∩ L∞
+ when n = 3, 4 [Ha15Ha15]. For a partial data problem

there is a counterexample to uniqueness for Cα conductivities based on

a counterexample to the unique continuation principle [DKN20DKN20]. When

n = 2 the Calderón problem can be studied by using methods from complex

analysis and quasiconformal mappings, and uniqueness is known for L∞

conductivities [AP06AP06].

Another open question is related to local data, where one only measures

voltages and currents on a subset Γ of ∂Ω.

Question 1.2 (Local data). Let n ≥ 3 and let Γ be a nonempty open subset

of ∂Ω. If q1, q2 ∈ L∞(Ω) and Λq1f |Γ = Λq2f |Γ for all f ∈ H1/2(∂Ω) with

supp(f) ⊂ Γ, does it follow that q1 = q2?

This result is known when n = 2 [IUY10IUY10]. When n ≥ 3 there are only

partial results for the case where ∂Ω \Γ has a conformal symmetry, such as

being part of a hyperplane or a surface of revolution [Is07Is07, KS13KS13].

The proof of Theorem 1.11.1 has three main components:

1. An integral identity showing that q1−q2 is L2-orthogonal to products

u1u2 where (−∆+ qj)uj = 0.

2. Construction of special complex geometrical optics (CGO) solutions

uj based on a Carleman estimate and duality.

3. Inserting the CGO solutions in the integral identity and showing

that q1 − q2 has vanishing Fourier transform.

1.1. Integral identity. The first step in the proof is the following integral

identity, often called the Alessandrini identity.

Proposition 1.2 (Integral identity). Let q1, q2 ∈ L∞(Ω). For any f1, f2 ∈
H1/2(∂Ω), one has

((Λq1 − Λq2)f1, f2)∂Ω =

∫
Ω
(q1 − q2)u1ū2 dx

where uj ∈ H1(Ω) solve (−∆+ qj)uj = 0 in Ω with uj |∂Ω = fj.
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Proof. We prove the result formally, i.e. assuming that all functions are

sufficiently smooth (the proof in the general case can be done by using

suitable weak formulations). We first show that the DN map Λq is formally

self-adjoint, i.e.

(1.3) (Λqg1, g2)∂Ω = (g1,Λqg2)∂Ω.

To prove this, we let vj solve (−∆ + q)vj = 0 in Ω with vj |∂Ω = gj and

integrate by parts using Green’s formula:

(Λqg1, g2)∂Ω =

∫
∂Ω

(∂νv1)v̄2 dS(1.4)

=

∫
∂Ω

(∇v1 · ∇v̄2 + (∆v1)v̄2) dx

=

∫
∂Ω

(∇v1 · ∇v̄2 + qv1v̄2) dx.

We continue the computation:

=

∫
∂Ω

(∇v1 · ∇v̄2 + v1(∆v̄2)) dx(1.5)

=

∫
∂Ω
v1∂ν v̄2 dS

= (g1,Λqg2)∂Ω.

This proves (1.31.3).

Now, if u1 and u2 are as in the statement, the computation (1.41.4) gives

(Λq1f1, f2)L2(∂Ω) =

∫
Ω
(∇u1 · ∇ū2 + q1u1ū2) dx.

Similarly, (1.31.3) and the computation (1.51.5) give

(Λq2f1, f2)L2(∂Ω) = (f1,Λq2f2)L2(∂Ω)

=

∫
Ω
(∇u1 · ∇ū2 + q2u1ū2) dx

The result follows by subtracting these two identities. □

Thus, if Λq1 = Λq2 , it follows from Proposition 1.21.2 that∫
Ω
(q1 − q2)u1ū2 dx = 0

for any uj ∈ H1(Ω) solving (−∆ + qj)uj = 0 in Ω. The proof of Theorem

1.11.1 thus reduced to showing that

{u1u2 : uj ∈ H1(Ω) solves (−∆+ qj)uj = 0}
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is a complete set in L1(Ω) (i.e. its linear span is dense). In particular,

it would be sufficient to construct a very rich family of solutions of the

Schrödinger equation so that products of these solutions would form a com-

plete set.

1.2. Products of harmonic functions are complete. In his original

work [Ca80Ca80], Calderón showed that products of solutions of ∆u = 0 form

a complete set (thus solving a linearized version of the inverse conductivity

problem). In the proof he used special exponential solutions. This approach

has been a model for many later developments.

Proposition 1.3 (Completeness). If f ∈ L∞(Ω) and∫
Ω
fu1u2 dx = 0

for any uj ∈ H1(Ω) with ∆uj = 0 in Ω, then f = 0.

Proof. Let ρ = η + iξ ∈ Cn where η, ξ ∈ Rn, and let u = eρ·x = eη·x+iξ·x.

One has

∆u =
∑

∂2j (e
ρ·x) =

∑
∂j(ρje

ρ·x) = (
∑

ρ2j )e
ρ·x

Thus ∆u = 0 iff ρ · ρ =
∑
ρ2j = 0. Moreover, since

ρ · ρ = (η + iξ) · (η + iξ) = |η|2 − |ξ|2 + 2iη · ξ,

we have

ρ · ρ = 0 ⇐⇒ |η| = |ξ| and η ⊥ ξ.

Now fix any ξ ∈ Rn, and choose some η ∈ Rn with η ⊥ ξ and |η| = |ξ|.
Then choose

u1 = e(η+iξ)·x, u2 = e(−η+iξ)·x.

If
∫
fu1u2 dx = 0, then we have∫

Ω
fe2ix·ξ dx = 0.

This is true for any ξ ∈ Rn, which implies that the Fourier transform of

f (extended by zero to Rn) vanishes identically. By Fourier inversion, we

obtain f = 0. □

1.3. Complex geometrical optics solutions. We now move to solutions

of (−∆+ qj)uj = 0. Since these are variable coefficient equations, it is not

reasonable to expect that there would be explicit exact solutions such as eρ·x.

A key insight in [SU87SU87] was that when ρ · ρ = 0 and |ρ| is very large, it is

possible to find solutions that look approximately like eρ·x. These solutions

are called complex geometrical optics (CGO) solutions.
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Proposition 1.4 (CGO solutions). Let q ∈ L∞(Ω). There are C, τ0 > 0

such that whenever ρ ∈ Cn satisfies ρ · ρ = 0 and |ρ| ≥ τ0, the equation

(−∆+ q)u = 0 has a distributional solution

u = eRe(ρ)·x(eiIm(ρ)·x + r)

where r ∈ L2(Ω) satisfies

∥r∥L2(Ω) ≤
C

|ρ|
.

Let us show how Theorem 1.11.1 follows from Proposition 1.41.4. The idea is

that when n ≥ 3, for any ξ ∈ Rn it is possible to find two vectors ρj ∈ Cn
such that ρj · ρj = 0, |ρj | → ∞, and eρ1·xeρ2·x = e2ix·ξ.

Proof of Theorem 1.11.1. As discussed above, the assumption Λq1 = Λq2 to-

gether with the integral identity in Proposition 1.21.2 imply that

(1.6)

∫
Ω
(q1 − q2)u1u2 dx = 0

whenever uj ∈ H1(Ω) solve (−∆+ qj)uj = 0 in Ω.

Now fix a vector ξ ∈ Rn, and use the assumption n ≥ 3 to find some unit

vectors α, γ ∈ Rn such that

{α, γ, ξ} is an orthogonal set.

Next, for τ ≥ |ξ| define two complex vectors

ρ1 = τα+ i
[
ξ +

√
τ2 − |ξ|2γ

]
,

ρ2 = −τα+ i
[
ξ −

√
τ2 − |ξ|2γ

]
.

Then |Re(ρj)| = |Im(ρj)| = τ and Re(ρj) ⊥ Im(ρj), so ρj · ρj = 0.

By Proposition 1.41.4, for τ > 0 sufficiently large there exist solutions uj of

(−∆+ qj)uj = 0 of the form

uj = eRe(ρj)·x(eiIm(ρj)·x + rj),

with ∥rj∥L2(Ω) → 0 as τ → ∞. (These solutions are in principle only in

L2(Ω), but doing the construction in a slightly larger set and using elliptic

regularity in Ω yields solutions in H1(Ω).) Inserting these solutions in (1.61.6)

and using that ρ1 + ρ2 = 2iξ, we obtain

(1.7)

∫
Ω
(q1 − q2)e

2ix·ξ dx

= −
∫
Ω
(q1 − q2)(e

iIm(ρ1)·xr2 + eiIm(ρ2)·xr1 + r1r2).
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Since |eiIm(ρj)·x| = 1 and ∥rj∥L2(Ω) → 0 as τ → ∞, the right hand side of

(1.71.7) converges to zero. Taking the limit of (1.71.7) as τ → ∞ yields∫
Ω
(q1 − q2)e

2ix·ξ dx = 0.

This is true for any ξ ∈ Rn, which implies that the Fourier transform of

q1− q2 (extended by zero to Rn) vanishes identically. Fourier inversion then

ensures that q1 = q2. □

1.4. Carleman estimate. It remains to prove Proposition 1.41.4. There are

several proofs of this result. Some of these are based on Fourier analysis,

but we will give a proof using integration by parts and a duality argument.

We choose coordinates so that α = e1, and then

ρ = τ(e1 + iβ)

where |β| = 1 and β · e1 = 0. Then u has the form

(1.8) u = eτx1(a(x′) + r)

where x = (x1, x
′) and a(x′) = eiτβ·x.

Define the conjugated operator Pτ by

Pτv = e−τx1∆(eτx1v) = ((∂1 + τ)2 +∆x′)v = (∆+ τ2 + 2τ∂1)v.

Then u solves (−∆+ q)u = 0 iff r solves

(Pτ − q)r = f in Ω,

where f = −(Pτ − q)(a(x′)) = −(∆ + τ2 − q)(eiτβ·x) = qeiτβ·x. Proposition

1.41.4 is therefore a consequence of the following solvability result for Pτ .

Proposition 1.5 (Solvability for Pτ ). Let q ∈ L∞(Ω). There are C, τ0 > 0

such that whenever τ ∈ R and |τ | ≥ τ0, for any f ∈ L2(Ω) the equation

(Pτ − q)u = f in Ω

has a solution u ∈ L2(Ω) satisfying

∥u∥L2(Ω) ≤
C

|τ |
.

This solvability result will in turn be a consequence of an a priori estimate

for the adjoint operator P−τ .

Proposition 1.6 (Carleman estimate). Let q ∈ L∞(Ω). There are C, τ0 > 0

such that whenever τ ∈ R and |τ | ≥ τ0, one has the estimate

(1.9) ∥u∥L2(Ω) ≤
C

|τ |
∥(P−τ − q)u∥L2(Ω), u ∈ C∞

c (Ω).
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Remark 1.7. Writing u = eτx1v, the estimate (1.91.9) may be rewritten as

(1.10) ∥eτx1v∥L2(Ω) ≤
C

|τ |
∥eτx1(∆− q)v∥L2(Ω), v ∈ C∞

c (Ω).

This is an exponentially weighted L2 estimate involving a large parameter

τ , i.e. a Carleman estimate. Estimates of this type appear frequently in

unique continuation problems, control theory and inverse problems.

We now prove the Carleman estimate by a standard argument involving

a nonnegative commutator and the Poincaré inequality.

Proof of Proposition 1.61.6. We note that P−τ = eτx1 ◦ ∆ ◦ e−τx1 is not self-

adjoint (its formal adjoint is Pτ ). We may decompose P−τ in a self-adjoint

and skew-adjoint part as

P−τ = ∆+ τ2 − 2τ∂1 = A+ iB

where

A = ∆+ τ2, B = 2iτ∂1.

Note that A and B are formally self-adjoint in the inner product (u, v) =∫
Ω uv dx.

For any u ∈ C∞(Ω), we compute

∥P−τu∥2 = (P−τu, P−τu)

= ((A+ iB)u, (A+ iB)u)

= ∥Au∥2 + ∥Bu∥2 + i(Bu,Au)− i(Au,Bu)

= ∥Au∥2 + ∥Bu∥2 + (i[A,B]u, u).

Here [A,B] = AB − BA is the commutator of A and B. In particular, if

(i[A,B]u, u) ≥ 0 we obtain a lower bound for ∥P−τu∥. But in our case A

and B are constant coefficient operators, so

[A,B] ≡ 0.

In particular, we have

(1.11) ∥P−τu∥ ≥ ∥Bu∥ = 2|τ |∥∂1u∥.
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We next invoke the Poincaré inequality11

∥u∥L2(Ω) ≤ C∥∂1u∥L2(Ω), u ∈ C∞
c (Ω).

Combining this with (1.111.11) gives

∥u∥L2(Ω) ≤
C

|τ |
∥P−τu∥L2(Ω) ≤

C

|τ |
(∥(P−τ − q)u∥L2(Ω) + ∥qu∥L2(Ω)).

If |τ | ≥ τ0 := 2C∥q∥L∞(Ω), we can absorb the last term on the right to the

left. This proves (1.91.9). □

Given the a priori estimate (1.91.9), the solvability result follows by a duality

argument.

Proof of Proposition 1.51.5. Suppose that |τ | ≥ τ0 and let f ∈ L2(Ω). Define

X = (P−τ −q)C∞
c (Ω) considered as a subspace of L2(Ω), and define a linear

functional

ℓ : X → R, ℓ(P−τφ) =

∫
fφ dx.

This functional is well-defined, since any w ∈ X satisfies w = (P−τ − q)φ

for a unique φ ∈ C∞
c (Ω) by the Carleman estimate (1.91.9). Using (1.91.9) again

we have

|ℓ(P−τφ)| ≤ ∥f∥L2(Ω) ∥φ∥L2(Ω) ≤
C

|τ |
∥f∥L2(Ω) ∥(P−τ − q)φ∥L2(Ω).

Thus ℓ is a continuous linear functional on X. By Hahn-Banach, it extends

as a continuous linear functional ℓ̄ on L2(Ω) with ∥ℓ̄∥ ≤ C
|τ |∥f∥L2(Ω). The

Riesz representation theorem ensures that there is u ∈ L2(Ω) such that

ℓ̄(w) =

∫
Ω
uw dx, ∥u∥L2(Ω) = ∥ℓ̄∥ ≤ C

|τ |
∥f∥L2(Ω).

Now if φ ∈ C∞
c (Ω), then we have in the distributional pairing ⟨ · , · ⟩ on Ω

that

⟨(Pτ − q)u, φ⟩ = ⟨u, (P−τ − q)φ⟩ = ℓ̄((P−τ − q)φ) = ℓ((P−τ − q)φ)

=

∫
Ω
fφ dx.

Thus (Pτ − q)u = f in the sense of distributions. □

1Since supp(u) ⊂ Ω ⊂ {a < x1 < b} for some a < b, for any x ∈ Ω we have

u(x1, x
′) = u(x1, x

′)− u(a, x′) =

∫ x1

a

∂1u(t, x
′) dt

and therefore by Cauchy-Schwarz

|u(x1, x
′)| ≤

∫ b

a

|∂1u(t, x
′)| dt ≤ (b− a)1/2∥∂1u∥L2(Ω).

Squaring this and integrating over Ω gives inequality ∥u∥2L2(Ω) ≤ (b− a)|Ω|∥∂1u∥2L2(Ω).
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2. Uniqueness in transversally anisotropic geometry

In the preface we considered the conductivity equation,

div(γ∇u) = 0,

in the isotropic case where the conductivity γ is a scalar function in L∞
+ (Ω).

There are many practical situations, such as imaging muscle tissue, where

the conductivity is anisotropic and is given by a symmetric positive definite

matrix γ = (γjk(x))nj,k=1. Then the conductivity equation takes the basic

form
n∑

j,k=1

∂j(γ
jk(x)∂ku) = 0.

There are only partial results for the anisotropic Calderón problem when

n ≥ 3, and many important questions remain open.

It is convenient to think of the conductivity matrix (γjk) geometrically

in terms of a Riemannian metric. Let Ω ⊂ Rn be a bounded C∞ domain,

and let g = (gjk(x))
n
j,k=1 be a Riemannian metric on Ω. This means that

(gjk) is a symmetric positive definite matrix whose entries gjk are functions

in C∞(Ω). The pair (Ω, g) becomes a compact Riemannian manifold with

smooth boundary. There is a canonical associated elliptic operator, the

Laplace-Beltrami operator ∆g, defined by

∆gu =
n∑

j,k=1

|g|−1/2∂j(|g|1/2gjk∂ku).

Here (gjk(x)) is the inverse matrix of (gjk(x)), and |g| = det(gjk). Thus the

conductivity equation div(γ∇u) = 0 can be rewritten as ∆gu = 0 if g is

chosen so that

|g|1/2gjk = γjk.

It is easy to see (exercise) that such a choice is always possible when n ≥ 3.

Rewriting the conductivity equation in this way gives us access to powerful

geometric notions in the study of the anisotropic Calderón problem.

For the purposes of these notes we will consider an inverse problem for

a Schrödinger equation as in Section 11. Let (Ω, g) be as above and let

q ∈ C∞(Ω) be real valued. We assume throughout that 0 is not a Dirichlet

eigenvalue of the problem

(2.1)

{
(−∆g + q)u = 0 in Ω,

u = f on ∂Ω.

Then for any f ∈ C∞(∂Ω) there is a unique solution u ∈ C∞(Ω) by elliptic

regularity. We have a DN map

Λg,q : C
∞(∂Ω) → C∞(∂Ω), Λg,qf = ∂νu|∂Ω.
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Here ∂ν denotes the normal derivative with respect to g.

One of the fundamental open questions is to determine a potential q from

the knowledge of Λg,q, when the metric g is known.

Question 2.1. Let g be a Riemannian metric on Ω, and let q1, q2 ∈ C∞(Ω).

If Λg,q1 = Λg,q2, is it true that q1 = q2?

We saw in Theorem 1.11.1 that the answer is affirmative when g is the

Euclidean metric, i.e. gjk(x) = δjk. The argument was based on complex

geometrical optics (CGO) solutions that look approximately like eρ·x for

suitable ρ ∈ Cn. One challenge in the geometric case is that there is no

obvious analogue of CGO solutions. However, there is a special class of

metrics where certain CGO solutions have been constructed.

Definition. A metric g is CTA (conformally transversally anisotropic) if

there are some coordinates x = (x1, x
′) in Ω such that

g(x1, x
′) = c(x)

(
1 0

0 g0(x
′)

)
where c ∈ C∞(Ω) is positive, and g0(x

′) is a Riemannian metric in some

bounded open set Ω0 ⊂ Rn−1 with C∞ boundary such that Ω ⊂ R× Ω0. If

c ≡ 1, the metric is called TA (transversally anisotropic).

The class of CTA metrics is related to Carleman estimates. Generalizing

the linear weight φ(x) = x1 appearing in (1.101.10), [KSU07KSU07] introduced the no-

tion of a limiting Carleman weight and solved a partial data inverse problem

in the presence of such a weight. It was proved in [DKSU09DKSU09] that locally

a metric g admits a limiting Carleman weight iff g is CTA. Moreover, the

Laplace-Beltrami operator of a TA metric takes the form

∆g = ∂21 +∆g0

where ∆g0 only acts in the x′ variables. This is formally similar to the wave

operator

2 = ∂2t −∆g0 .

Even though the Laplace and wave equations have a very different charac-

ter, there are a number of analogies between inverse problems for the wave

equation and Laplace-Beltrami equation on CTA manifolds.

Specializing to CTA manifolds, also the following case of Question 2.12.1 is

open.

Question 2.2. Let g be a CTA metric on Ω, and let q1, q2 ∈ C∞(Ω). If

Λg,q1 = Λg,q2, is it true that q1 = q2?
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We will discuss a result from [DKSU09DKSU09] showing that this is true under

an extra geometric condition on the metric g0 (this condition was later

weakened in [DKLS16DKLS16]).

Theorem 2.1 (Uniqueness). Let g be a CTA metric and q1, q2 ∈ C∞(Ω).

Assume that the metric g0 on Ω0 is simple. If Λg,q1 = Λg,q2, then q1 = q2.

The simplicity condition is a restriction on the behaviour of geodesic

curves of the manifold (Ω0, g0). We will give a precise definition later. The

simplicity condition is satisfied e.g. for strictly convex domains in Rn or in

a space of nonpositive sectional curvature, and small metric perturbations

of these.

The proof of Theorem 2.12.1 follows the same pattern as the proof of Theo-

rem 1.11.1 and consists of three steps:

1. An integral identity showing that q1−q2 is L2-orthogonal to products

u1u2 where (−∆g + qj)uj = 0.

2. Construction of CGO solutions uj based on a Carleman estimate

and duality.

3. Inserting the CGO solutions in the integral identity and showing

that a certain transform of q1 − q2 vanishes.

The integral identity and Carleman estimate will be almost the same as

in the Euclidean case. However, the construction of CGO solutions will be

more geometric, and the transform used in Step 3 will be different.

2.1. Integral identity. Before stating the integral identity we will intro-

duce without proofs some facts from Riemannian geometry. The Riemann-

ian metric g induces a natural inner product

(u, v)L2(Ω) =

∫
Ω
uv̄ dVg, dVg(x) = |g(x)|1/2 dx.

There is an induced inner product on L2(∂Ω) based on a measure dSg. One

has a Riemannian normal derivative ∂νu and the integration by parts (or

Green’s) identity∫
∂Ω

(∂νu)v dSg =

∫
Ω
((∆gu)v + ⟨∇u,∇v⟩g) dVg

where ⟨∇u,∇v⟩g denotes the Riemannian inner product

⟨∇u,∇v⟩g =
n∑

j,k=1

gjk∂ju∂kv.

We will also use the Riemannian length

|∇u|g = ⟨∇u,∇u⟩1/2g .
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With these facts, the following integral identity in the Riemannian case

can be proved in exactly the same way as its Euclidean counterpart in Propo-

sition 2.22.2.

Proposition 2.2 (Integral identity). Let g be a Riemannian metric on Ω

and let q1, q2 ∈ C∞(Ω). For any f1, f2 ∈ C∞(∂Ω), one has∫
∂M

((Λg,q1 − Λg,q2)f1)f̄2 dSg =

∫
Ω
(q1 − q2)u1ū2 dVg

where uj ∈ H1(Ω) solve (−∆g + qj)uj = 0 in Ω with uj |∂Ω = fj.

2.2. Carleman estimate and solvability. Recall from (1.81.8) that in the

Euclidean case we constructed CGO solutions of the form

(2.2) u = eτx1(a(x′) + r)

where a(x′) = eiτβ·x with β being a unit vector satisfying β · e1 = 0, and

∥r∥L2(Ω) → 0 as τ → ∞. We wish to make a similar construction in the

CTA manifold case based on a Carleman estimate.

First it is convenient to make a Liouville reduction as in (1.11.1): if c is a

positive scalar function, a short computation (exercise) gives the identity

(−∆cḡ + q)(c−
n−2
4 v) = c−

n+2
4 (−∆ḡ + c(q − qc))v,

where qc = c
n−2
4 ∆cḡ(c

−n+2
4 ). With this argument, at the expense of changing

the potential q in a controlled way, we can reduce the case of a CTA metric

to a TA metric of the form

(2.3) g(x1, x
′) =

(
1 0

0 g0(x
′)

)
From now on we will assume that g is a TA metric of this form.

If g has the form (2.32.3), the Laplace-Beltrami operator is

∆g = ∂21 +∆g0

where ∆g0 only acts in the x′ variables. We consider the ansatz (2.22.2) and

note that the conjugated Laplace-Beltrami operator Pτ := e−τx1 ◦∆g ◦ eτx1
satisfies

Pτv = e−τx1(∂21 +∆g0)(e
τx1v) = ((∂1 + τ)2 +∆g0)v

= (∂21 +∆g0 + τ2 + 2τ∂1)v.(2.4)

In particular, the function u in (2.22.2) solves (−∆g + q)u = 0 iff r solves

(Pτ − q)r = f

where

(2.5) f = −(Pτ − q)(a(x′)) = (−∆g0 − τ2 + q(x))a(x′).
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Iin the Euclidean case we chose explicit functions a(x′) = eiτβ·x which

satisfy (−∆x′ −τ2)(a(x′)) = 0. These functions are called plane waves prop-

agating in direction β. In the Riemannian case, we will instead construct

functions

a(x′) = aτ (x
′)

that are approximate solutions of (−∆g0 − τ2)a = 0 in Ω0 in the sense that

∥(−∆g0 − τ2)aτ∥L2(Ω0) ≤ C,(2.6)

∥aτ∥L2(Ω0) ≤ C,(2.7)

uniformly over τ ≥ 1. Such functions are called approximate eigenfunctions

or quasimodes. (An eigenfunction is a solution of (−∆g0 − τ2)a = 0.)

Assuming that we have found a satisfying (2.62.6)–(2.72.7), the function f

in (2.52.5) satisfies ∥f∥L2(Ω) ≤ C. The following solvability result will then

produce a correction term r satisfying ∥r∥L2(Ω) ≤ C
|τ | .

Proposition 2.3 (Solvability for Pτ ). Let g be a TA metric and let q ∈
L∞(Ω). There are C, τ0 > 0 such that whenever τ ∈ R and |τ | ≥ τ0, for any

f ∈ L2(Ω) the equation

(Pτ − q)r = f in Ω

has a solution r ∈ L2(Ω) satisfying

∥r∥L2(Ω) ≤
C

|τ |
∥f∥L2(Ω).

Proof. The proof is almost identical to the Euclidean case and is based on

the Carleman estimate

(2.8) ∥u∥L2(Ω) ≤
C

|τ |
∥(P−τ − q)u∥L2(Ω), u ∈ C∞

c (Ω),

which is the Riemannian counterpart of (1.91.9). The proof in the Euclidean

case was based on the decomposition

P−τ = A+ iB

where A and B are self-adjoint. Since g is a TA metric, from (2.42.4) we see

that in our case

A = ∂21 +∆g0 + τ2, B = 2iτ∂1.

As in the proof of Proposition 1.61.6, for u ∈ C∞
c (Ω) we have

∥P−τu∥2 = ((A+ iB)u, (A+ iB)u)

= ∥Au∥2 + ∥Bu∥2 + (i[A,B]u, u).

But since ∆g0 only acts on the x′ variables, also in this case we have

[A,B] ≡ 0.
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We can then invoke a Poincaré inequality using the ∥Bu∥2 term as in the

Euclidean case to prove the Carleman estimate (2.82.8). The solvability result,

Proposition 2.32.3, follows from (2.82.8) by duality just as in Proposition 1.51.5. □

2.3. Quasimodes and geodesics. By the discussion above, in order to

construct CGO solutions of the form

u = eτx1(a(x′) + r),

it is enough to find suitable quasimodes a(x′) = aτ (x
′) ∈ C∞(Ω0) satisfying

(2.62.6)–(2.72.7). In the Euclidean case we chose explicit plane waves a(x′) =

eiτβ·x that satisfy (−∆x′ − τ2)a = 0. In the Riemannian case one can

instead construct quasimodes of geometric nature that are associated with

geodesic curves.

Proposition 2.4 (Quasimodes). Let Ω0 be a bounded C∞ domain, let g0
be a Riemannian metric, and let γ : [0, T ] → Ω0 be a maximal unit speed

geodesic curve in (Ω0, g0). There is C > 0 such that for any τ ≥ 1 there is

a = aτ ∈ C∞(Ω0) supported in a small neighborhood of γ([0, T ]), satisfying

∥(−∆g0 − τ2)aτ∥L2(Ω0) ≤ C,

∥aτ∥L2(Ω0) ≤ C,

and satisfying for any φ ∈ C∞
c (Ω0)

(2.9) lim
τ→∞

∫
Ω0

φ|aτ |2 dVg0 =

∫ T

0
φ(γ(t)) dt.

Above, a geodesic curve γ : [0, T ] → Ω0 is a smooth curve that minimizes

the length functional

Lg0(η) =

∫ T

0
|η̇(t)|g0 dt

among all (piecewise) smooth curves η : [0, T ] → Ω0 with η(0) = γ(0) and

η(T ) = γ(T ). As a minimizer of Lg0 , any geodesic curve satisfies an Euler-

Lagrange equation, called geodesic equation, which is given by (exercise)

γ̈l(t) + Γljk(γ(t))γ̇
j(t)γ̇k(t) = 0

where Γljk = 1
2g
lm
0 (∂jg0,km + ∂kg0,jm − ∂mg0,jk) are the Christoffel symbols

of the metric g0.

It follows from the geodesic equation that for any x0 ∈ Ω0 and v0 ∈ Rn,
there is a unique geodesic γx0,v0 with

γ(0) = x0, γ̇(0) = v0.

Moreover, any geodesic satisfies

|γ̇(t)|g0 ≡ const.
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By doing a constant reparametrization we may assume that all geodesics

have unit speed, i.e. that

|γ̇(t)|g0 ≡ 1.

If g0 is the Euclidean metric (i.e. g0,jk = δjk), then all Christoffel symbols

vanish and geodesics are precisely straight line segments. A geodesic curve

γ : [0, T ] → Ω0 is maximal if it cannot be extended to a larger interval.

Finally, the identity (2.92.9) means that

|a|2 dVg0 → δγ

in the sense of distributions. Here δγ denotes the delta function of the

geodesic γ.

2.4. Simple manifolds and proof of Theorem 2.12.1. We will sketch a

proof of Proposition 2.42.4 below in the special case where the Riemannian

manifold (Ω0, g0) is simple. Given x0 ∈ Ω0, we define the g0-unit sphere

Sx0 = {v ∈ Rn : |v|g0 = 1}.

The geodesics γx0,v with v ∈ Sx0 are called radial geodesics starting at x0.

Definition. The Riemannian manifold (Ω0, g0) is simple is Ω0 has strictly

convex boundary (with respect to g0-geodesics), and if for any x0 ∈ Ω0 the

radial geodesics starting at x0 parametrize Ω0 bijectively.

Simplicity in particular implies that for any x0, radial geodesics γx0,v1
and γx0,v2 for v1 ̸= v2 never intersect after t = 0. This is a restriction on

the behaviour of geodesics that is always satisfied e.g. for metrics g0 with

nonpositive curvature.

Simple manifolds have the very important property that functions are

uniquely determined by their integrals over maximal geodesics, i.e. the geo-

desic X-ray transform is injective. This result due to [Mu77Mu77] is fundamental

in geometric inverse problems (see [PSU23PSU23] for a detailed account). For the

Euclidean metric, i.e. integration over straight lines, this result was proved

by J. Radon already in 1917.

Theorem 2.5 (Geodesic X-ray transform). Let (Ω0, g0) be simple. If f ∈
C(Ω0) and if ∫

γ
f(γ(t)) dt = 0

for any maximal geodesic γ on Ω0, then f = 0.

After all these prerequisites we can give the proof of Theorem 2.12.1. The

transform used in recovering the coefficients will be a mixed Fourier/geodesic

X-ray transform.
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Proof of Theorem 2.12.1. As discussed above, we may reduce to the case where

g0 is a TA metric of the form (2.32.3). In order to remove some technicalities

in the presentation, we will also assume that

(2.10) ∂αq1(z) = ∂αq1(z)

for any z ∈ ∂Ω and any multi-index α. This can be proved by a boundary

determination result, see e.g. [DKSU09DKSU09, Section 8].

The assumption Λg,q1 = Λg,q2 together with the integral identity in Propo-

sition 2.22.2 imply that

(2.11)

∫
Ω
(q1 − q2)u1ū2 dVg = 0

for any uj ∈ H1(Ω) solving (−∆g + qj)uj = 0. Let γ : [0, T ] → Ω0 be a

maximal geodesic in (Ω0, g0). For τ > 0 sufficiently large we construct CGO

solutions

u1 = eτx1(aτ (x
′) + r1),(2.12)

u2 = e−τx1(aτ (x
′) + r2),(2.13)

where aτ (x
′) is a quasimode associated with the geodesic γ constructed

in Proposition 2.42.4 (note that aτ does not depend on the potentials qj).

The correction terms rj are obtained from Proposition 2.32.3 and they satisfy

∥rj∥L2(Ω) ≤ C
τ .

Let f be the zero extension of q1 − q2 outside Ω. By (2.102.10) we have

f ∈ C∞
c (Rn). Since Ω ⊂ R× Ω0, the identity (2.112.11) implies∫ ∞

−∞

∫
Ω0

f(x1, x
′)|aτ (x′)|2 dVg0 dx1 = O(τ−1)

as τ → ∞. We rewrite this in terms of the partial Fourier transform

f̃(λ, x′) =

∫ ∞

−∞
e−iλx1f(x1, x

′) dx1

as ∫
Ω0

f̃(0, · )|aτ |2 dVg0 = O(τ−1).

Since f̃(0, · ) ∈ C∞
c (Ω0), taking the limit as τ → ∞ and using (2.92.9) gives∫

γ
f̃(0, γ(t)) dt = 0.

This is true for any maximal geodesic γ in (Ω0, g0), so the geodesic X-ray

transform of f̃(0, · ) vanishes. We invoke Theorem 2.52.5 to conclude that

(2.14) f̃(0, x′) = 0 for all x′ ∈ Ω0.

The conclusion (2.142.14) is not quite enough to show that f = 0. However,

one can employ the trick of replacing the positive number τ by a slightly
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complex parameter τ + iµ where µ ∈ R is fixed and τ → ∞. After doing

this and taking some derivatives in µ, one can prove that

∂kλf̃(0, x
′) = 0 for all k ≥ 0 and x′ ∈ Ω0.

But now, since f( · , x′) is compactly supported, f̃( · , x′) is real-analytic by

the Paley-Wiener theorem for the Fourier transform. This implies that f̃ ≡ 0

and consequently q1 = q2. □

2.5. Quasimodes in the simple case. It remains to sketch a proof of

Proposition 2.42.4 when (Ω0, g0) is simple. A detailed proof may be found in

e.g. [Sa12Sa12]. We use a geometrical optics (or WKB) ansatz and look for a in

the form

(2.15) a(x′) = eiτψ(x
′)b(x′)

where ψ ∈ C∞(Ω0) is a real phase function and b ∈ C∞(Ω0) is an amplitude.

(In the Euclidean case we have ψ(x′) = β ·x and b(x′) = 1.) The geometrical

optics ansatz is a classical method in the construction of asymptotic solutions

depending on a large parameter τ (see e.g. [Ev10Ev10, Section 4.5.3]). If g0
is not simple, one can use a more general construction of Gaussian beam

quasimodes to prove Proposition 2.42.4 in full (see [DKLS16DKLS16]).

We wish to apply the operator ∆g0 + τ2 to the ansatz (2.152.15). To do this,

we observe that for any Riemannian metric g one has

∆gv =
∑
j,k

|g|−1/2∂j(|g|1/2gjk∂kv)

= divg(∇gv)

where the Riemannian gradient and divergence are defined by

∇gv = (
∑
k

g1k∂kv, . . . ,
∑
k

gnk∂kv),

divg(X) =
∑
j

|g|−1/2∂j(|g|1/2Xj).

We thus compute (exercise)

(∆g0 + τ2)a = divg0(∇g0(e
iτψb)) + τ2b

= divg0 [e
iτψ(∇g0b+ iτ(∇g0ψ)b)] + τ2b

= eiτψ
(
τ2[−⟨∇g0ψ,∇g0ψ⟩+ 1]b

+ iτ [2⟨∇g0ψ,∇g0b⟩+ (∆g0ψ)b]

+ ∆g0b
)
.(2.16)
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By looking at the τ2 and iτ terms, in order to have ∥(−∆g0−τ2)a∥L2(Ω0) ≤ C

for |τ | large it would be enough to find a phase function ψ ∈ C∞(Ω0) and

an amplitude b ∈ C∞(Ω0) satisfying the equations
⟨∇g0ψ,∇g0ψ⟩ = 1 (eikonal equation),

2⟨∇g0ψ,∇g0b⟩+ (∆g0ψ)b = 0 (transport equation).

The eikonal equation is an important first order nonlinear PDE. It can al-

ways be solved locally (e.g. by the method of characteristics), but C∞ global

solutions do not exist in general. However, the assumption that (Ω0, g0) is

simple will ensure that there are many global solutions. Given a solution ψ

of the eikonal equation, the transport equation is a linear first order PDE

and it is easy to find smooth solutions.

We start the construction by choosing a slightly larger bounded C∞ do-

main Ω1 with Ω0 ⊂ Ω1, and extend g0 to Ω1 so that also (Ω1, g0) is simple.

Let γ : [0, T ] → Ω0 be a maximal geodesic, extend γ to Ω1, and fix some

point p ∈ Ω1 \Ω0 on γ. We also identify the unit sphere Sp with S
n−1. The

radial geodesics starting at p are given by γp,ω(r) for r ≥ 0 and our original

geodesic γ is part of γp,ω0 . By the definition of a simple manifold, the map

(r, ω) 7→ γp,ω(r)

is bijective onto Ω1. We consider (r, ω) as Riemannian polar coordinates.

The metric g0 in these coordinates takes the form

(2.17) g0(r, ω) =

(
1 0

0 h(r, ω)

)
.

In fact, the 1 in the upper left corner comes from the fact that geodesics

are unit speed, and the 0 entries in the first row and column are due to the

Gauss lemma in Riemannian geometry. Note that since p is outside of Ω,

the coordinates (r, ω) are smooth in Ω0.

We may now choose

ψ(r, ω) = r.

One can alternatively express ψ as the distance function

ψ = distg0( · , p).

Then ψ ∈ C∞(Ω0) and by (2.172.17) one has

⟨∇g0ψ,∇g0ψ⟩ = ⟨∇g0r,∇g0r⟩ = 1.

This gives the required solution of the eikonal equation.
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We proceed to solving the transport equation. We will need to make the

amplitude b slightly τ -dependent and write

b = b0 + τ−1b1.

Since ψ solves the eikonal equation, we obtain from (2.162.16) after grouping

like powers of τ that

(∆g0 + τ2)a = eiτψ
(
iτLb0 + (iLb1 +∆g0b0) + τ−1∆g0b1

)
.

Here we denoted by L transport operator

Lw = 2⟨∇g0ψ,∇g0w⟩+ (∆g0ψ)w.

We now wish to find b0 and b1 solving

Lb0 = 0,

Lb1 = i∆g0b0.

Using (2.172.17), the transport equation for b0 becomes

2∂rb0 + hb0 = 0

where h = ∆g0r = |g0|−1/2∂r(|g0|1/2) is a smooth function in Ω0. This ODE

has the solution

b0(r, ω) = |g0|−1/4χ(ω)

where χ ∈ C∞(Sn−1).

The transport equation for b1 becomes

2∂rb1 + hb1 = f

with f = i∆g0b0. This ODE can be solved by integrating in r and it has a

smooth solution b1 satisfying

∥b1∥H2(Ω0)
≤ C∥b0∥H4(Ω0

≤ C∥χ∥H4(Ω0
.

Recall that we need a to satisfy the estimates in Proposition 2.42.4. With

the above choices, we have

∥a∥L2(Ω0) = ∥eiτψb∥L2(Ω0) ≤ C∥χ∥L2(Ω0)

and

∥(∆g0 + τ2)a∥L2(Ω0) = ∥eiτψτ−1∆g0b1∥L2(Ω0) ≤ Cτ−1∥χ∥H4(Ω0
.

Moreover, if φ ∈ C∞
c (Ω0) we have the integral∫

Ω0

φ|a|2 dVg0 =

∫
Ω0

φ|g0|−1/2|χ|2|g0|1/2 dx′ =
∫
φ(r, ω)|χ(ω)|2 dr dω.

We would like the last integral to converge to
∫ T
0 φ(r, 0) dr =

∫ T
0 φ(γ(t)) dt

as τ → ∞. It is enough to choose χ as the mollifier

χ(ω) = χτ (ω) = ε−
n−1
2 χ0(ω/ε)
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where χ0 ∈ C∞
c (Sn−1) is supported near ω0, satisfies 0 ≤ χ0 ≤ 1 and∫

χ2
0 = 1. Here ε = ε(τ) = τα for a suitable α > 0. With this choice one

has the required convergence

lim
τ→∞

∫
Ω0

φ|a|2 dVg0 =

∫ T

0
φ(γ(t)) dt.

We also have ∥χ∥L2(Ω0) ≤ C, so ∥a∥L2(Ω0) ≤ C. Finally,

∥(∆g0 + τ2)a∥L2(Ω0) ≤ Cτ−1∥χ∥H4(Ω0
≤ Cτ−1ε−4 = Cτ4α−1.

If we choose α ≤ 1/4 then we have ∥(∆g0 + τ2)a∥L2(Ω0) ≤ C uniformly over

τ ≥ 1. This concludes the proof of Proposition 2.42.4.

3. Inverse problems for semilinear PDE

In the previous sections we considered the linear equation

(−∆g + q)u = 0 in Ω.

We proved uniqueness in inverse problems when g is Euclidean or g has a

special form (it is CTA and the transversal metric g0 is simple). Now we

move to nonlinear equations. It is well known that the existence theory for

solutions of nonlinear elliptic PDE is often more involved than in the linear

case [Ev10Ev10, Part III]. However, starting with the works [FO20FO20, LL+21aLL+21a] it

was observed that inverse problems for certain nonlinear elliptic PDE may

be easier to solve than their counterparts for linear equations. The idea is

that nonlinear interactions may create new phenomena that can be helpful

in solving inverse problems. In other words, nonlinearity helps!

In this section we will consider semilinear equations of the form

−∆gu+ a(x, u) = 0.

To simplify the presentation we will only discuss a model equation with

cubic nonlinearity involving a potential q ∈ C∞(Ω). The equation is given

by

(3.1)

{
−∆gu+ qu3 = 0 in Ω,

u = f on ∂Ω.

If q ≥ 0, this equation has a maximum principle and for any f ∈ C∞(∂Ω)

there is a unique solution u ∈ C∞(Ω) [Ta96Ta96, Section 14.1]. For a general

potential q we see that at least u ≡ 0 is a solution. Moreover, if u is small

(say of size ε) then the nonlinearity qu3 is negligible (of size ε3) compared to

the linear part ∆gu. Thus for small Dirichlet data f one can use existence

theory for linear equations together with the Banach fixed point theorem to

show that there is a unique small solution u [FO20FO20, LL+21aLL+21a].
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One can then define the nonlinear DN map for small data by

ΛNL
g,q : {f ∈ C∞(∂Ω) ; ∥f∥C2,α(∂Ω) < δ} → C∞(∂Ω), f 7→ ∂νu|∂Ω.

We will prove:

Theorem 3.1. Let g be a CTA metric on Ω, and let q1, q2 ∈ C∞(Ω). If

ΛNL
g,q1 = ΛNL

g,q2 ,

then q1 = q2.

Recall that we proved a similar result for linear equations in Theorem 2.12.1,

but there we had to assume an extra condition on the transversal metric g0.

This is an example of a case where nonlinearity helps. Another example is

the local data problem, which is open for linear equations (see Question 1.21.2)

but the corresponding result for nonlinear PDE is known [KU20KU20, LL+21bLL+21b].

A standard method for dealing with inverse problems for nonlinear equa-

tions is linearization. Namely, if one knows the nonlinear DN map ΛNL
g,q (f)

for small f , then one also knows its linearization, or Fréchet derivative,

(DΛNL
g,q )0(h) = ∂εΛ

NL
g,q (εh)|ε=0, h ∈ C∞(∂Ω).

Let uε be the small solution of (3.13.1) with boundary value f = εh, i.e.

(3.2)

{
−∆guε + qu3ε = 0 in Ω,

uε = εh on ∂Ω.

Note that u0 = 0, since u = 0 is the unique small solution with boundary

value 0. Formally differentiating (3.23.2) in ε gives that

−∆g(∂εuε) + 3qu2ε∂εuε = 0.

Setting ε = 0 and using that u0 = 0, we see that

vh := ∂εuε|ε=0

solves the linear equation

(3.3)

{
−∆gvh = 0 in Ω,

vh = h on ∂Ω.

Thus the linearized solution vh is just the harmonic function in (Ω, g) with

boundary value h. This formal computation can be justified. Since

(DΛNL
g,q )0(h) = ∂εΛ

NL
g,q (εh)|ε=0 = ∂ε∂νuε|ε=0 = ∂νvh

this leads to the following:

Lemma 3.2 (Linearization of nonlinear DN map).

(DΛNL
g,q )0(h) = Λg,0h

where Λg,0 is the DN map for the Laplace equation (3.33.3) with no potential.
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This shows that from the knowledge of ΛNL
g,q , we can recover its lineariza-

tion (DΛNL
g,q )0 = Λg,0. However, this first linearization does not contain any

information about the unknown potential q. It turns out that for the non-

linearity qu3, the right thing to do is to look at the third linearization, i.e.

the third order Fréchet derivative (D3ΛNL
g,q )0.

The third linearization can be computed by considering Dirichlet data of

the form f = ε1h1+ε2h2+ε3h3 where hj ∈ C∞(∂Ω). Writing ε = (ε1, ε2, ε3),

let uε be the solution of

(3.4)

{
−∆guε + qu3ε = 0 in Ω,

uε = ε1h1 + ε2h2 + ε3h3 on ∂Ω.

We formally apply the derivative ∂ε1ε2ε3 to this equation to obtain

0 = −∆g(∂ε1ε2ε3uε) + q∂ε1ε2ε3(u
3
ε)

= −∆g(∂ε1ε2ε3uε) + q∂ε1ε2(3u
2
ε∂ε3uε)

= −∆g(∂ε1ε2ε3uε) + q∂ε1(6uε∂ε2uε∂ε3uε + 3u2ε∂ε2ε3uε)

= −∆g(∂ε1ε2ε3uε) + 6q∂ε1uε∂ε2uε∂ε3uε + . . .

where . . . consists of terms that contain a power of uε. Since u0 = 0, when

we set ε = 0 all the terms in . . . will vanish. Thus

w := ∂ε1ε2ε3uε|ε=0

will solve the equation (recall that vhj = ∂εjuε|ε=0)

(3.5)

{
−∆gw = −6qvh1vh2vh3 in Ω,

w = 0 on ∂Ω.

Now if the know the nonlinear DN map ΛNL
g,q (ε1h1 + ε2h2 + ε3h3) = ∂νuε,

then we also know ∂νw = ∂ν∂ε1ε2ε3uε|ε. Thus for any h4 ∈ C∞(∂Ω), we also

know ∫
∂Ω

(∂νw)h4 dSg =

∫
Ω
((∆gw)vh4 + ⟨∇w,∇vh4⟩g) dVg.

Integrating by parts in the last term, and using that w|∂Ω = 0 and ∆gvh4 =

0, we obtain that∫
∂Ω

(∂νw)h4 dSg = 6

∫
Ω
qvh1vh2vh3vh4 dVg.

Since ∂νw is determined by ΛNL
g,q , also the right hand side is determined by

ΛNL
g,q . (One can check that the left hand side is equal to

((D3ΛNL
g,q )0(h1, h2, h3), h4)L2(∂Ω),

where (D3ΛNL
g,q )0 is the third Fréchet derivative of ΛNL

g,q considered as a trilin-

ear form.) This formal argument can be justified and it leads to the following

identity:
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Lemma 3.3 (Integral identity in nonlinear case). If ΛNL
g,q1 = ΛNL

g,q2, then∫
Ω
(q1 − q2)v1v2v3v4 dVg = 0

for all vj ∈ C∞(Ω) satisfying ∆gvj = 0 in Ω.

This integral identity related to the nonlinear equation −∆gu + qu3 = 0

has two benefits over the identity for the linear equation −∆gu+ qu = 0:

• q1 − q2 is L2-orthogonal to products of four solutions, instead of

products of two solutions;

• the solutions vj are solutions of the Laplace equation ∆gvj = 0,

which does not contain the potential q.

Let us finally sketch how one proves Theorem 3.13.1 based on the integral

identity in Lemma 3.33.3 and the construction of special solutions in the proof of

Theorem 2.12.1. The main point is that instead of considering a fixed geodesic

γ in (Ω0, g0), one can consider two intersecting geodesics.

Suppose that γ1 and γ2 are two maximal geodesics in (Ω0, g0) that inter-

sect only at one point x′0 ∈ Ω0. As in (2.122.12)–(2.132.13), we first construct two

harmonic functions

v1 = eτx1(aτ (x
′) + r1),

v2 = e−τx1(āτ (x
′) + r2),

where aτ is a quasimode supported near γ1. Similarly, we construct harmonic

functions

v3 = eτx1(bτ (x
′) + r3),

v4 = e−τx1(b̄τ (x
′) + r4),

where bτ is a quasimode supported near γ2. The correction terms satisfy

∥rj∥L2(Ω) = O(τ−1) as τ → ∞ and they will go away in the limit. Then the

product

v1v2v3v4 = |aτ (x′)|2|bτ (x′)|2(1 +O(τ−1))

concentrates near the one-dimensional manifold R×{x′0} as τ → ∞. Using

the properties of the quasimodes aτ and bτ (after multiplying by suitable

normalizing constants), one has

0 = lim
τ→∞

∫
Ω
(q1 − q2)v1v2v3v4 dVg =

∫ ∞

−∞
(q1 − q2)(x1, x

′
0) dx1.

The point is that one has concentration at a single point x′0 in Ω0, instead

of concentration near a fixed geodesic in Ω0. It follows that the Fourier

transform of (q1 − q2)( · , x′0) vanishes at 0 for every x′0 ∈ Ω0. By the same

trick of replacing τ by a slightly complex parameter τ + iµ as in the proof
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of Theorem 2.12.1, we see that the full Fourier transform of (q1 − q2)( · , x′0)
vanishes for every x′0 ∈ Ω0. This implies that q1 = q2.

In general, given x′0 ∈ Ω0 it may not be possible to find two finite length

geodesics that only intersect at x′0. The possibility of multiple intersec-

tion points can be handled by introducing another extra parameter in the

solutions. See [LL+21aLL+21a] for details. This proves Theorem 3.13.1 in general.

4. Inverse problems for p-Laplace type equations

The Calderón problem was originally stated for the conductivity equation

div(γ∇u) = 0, where γ ∈ L∞
+ (Ω) and Ω ⊂ Rn is a bounded C∞ domain.

However, there are special materials such as nonlinear dielectrics and electro-

rheological fluids whose electrical properties are instead governed by a power

law. For such materials the conductivity equation may be replaced by the

p-conductivity equation

(4.1)

{
div(γ|∇u|p−2∇u) = 0 in Ω,

u = f on ∂Ω.

Here 1 < p <∞, and p = 2 is the standard conductivity equation. If γ ≡ 1

this reduces to the p-Laplace equation [Li06Li06].

Solutions of the p-conductivity equation are minimizers of the p-Dirichlet

energy

Ep(u) =

∫
Ω
γ|∇u|p dx.

Consider the Sobolev spaces

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω)},

W
1− 1

p
,p
(∂Ω) = {u|∂Ω : u ∈W 1,p(Ω)}.

A standard variational argument [SZ12SZ12] shows that for any f ∈W
1− 1

p
,p
(∂Ω),

the problem (4.14.1) has a unique solution u ∈W 1,p(Ω).

One can define a nonlinear DN map formally by

Λpγ : f 7→ γ|∇u|p−2∂νu|∂Ω.

Using a suitable weak definition, the DN map is well defined as a map

Λpγ :W
1− 1

p
,p
(∂Ω) → (W

1− 1
p
,p
(∂Ω))∗. We wish to study the inverse problem

of determining a conductivity γ from the knowledge of the nonlinear DN

map Λpγ .

The p-conductivity equation is quasilinear degenerate and the unknown

coefficient appears in its principal part. Consequently, linearization methods

do not appear to be so helpful as for the PDE studied in Section 33. We will

discuss the following result from [SZ12SZ12].
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Theorem 4.1 (Boundary determination). Let γ1, γ2 ∈ C(Ω). If Λpγ1 = Λpγ2,

then γ1|∂Ω = γ2|∂Ω.

If γj ∈ C1,α(Ω), it was proved in [Br16Br16] that also ∂νγ1|∂Ω = ∂νγ2|∂Ω. It

is reasonable to ask the following:

Question 4.1. Let γ1, γ2 ∈ C∞(Ω). If Λpγ1 = Λpγ2, is it true that ∂αγ1|∂Ω =

∂αγ2|∂Ω for any multi-index α?

Of course one would like to determine γ in the interior of Ω, but this

inverse problem remains open. When n = 2 one can show that if Λpγ1 = Λpγ2
and γ1 ≤ γ2, then γ1 = γ2 [GKS16GKS16]. There is also a relation between p-

Laplace type equations and quasiregular mappings in two dimensions, and

one could ask if the method of [AP06AP06] would extend to p ̸= 2.

Question 4.2. Let γ1, γ2 ∈ L∞
+ (Ω). If Λpγ1 = Λpγ2, is it true that γ1 = γ2?

In the remainder of this section we will give a proof of Theorem 4.14.1

following [SZ12SZ12]. Below we will be working with complex valued solutions

(the case of real valued solution is discussed in [SZ12SZ12]).

4.1. Exponential p-harmonic functions. Recall that in the previous sec-

tions we used CGO solutions modelled after the harmonic functions eρ·x

where ρ ∈ Cn satisfies ρ · ρ = 0. The proof of Theorem 4.14.1 is based on the

fact that also the p-Laplace equation admits such solutions [Wo07Wo07].

Lemma 4.2 (Exponential solutions). Let h(x) = eρ·x where ρ = α+ iβ with

α, β ∈ Rn. Then div(|∇h|p−2∇h) = 0 iff (p− 1)|α|2 = |β|2 and α · β = 0.

Proof. Since ∇h = ρeρ·x, we have

div(|∇h|p−2∇h) = div(|ρ|p−2e(p−2)α·xρeρ·x)

= div(|ρ|p−2ρe(p−1)α·x+iβ·x)

= |ρ|p−2ρ · ((p− 1)α+ iβ)e(p−1)α·x+iβ·x.

Here ρ · ((p − 1)α + iβ) = (p − 1)|α|2 − |β|2 + ipα · β, which proves the

result. □

4.2. Solutions concentrating at a boundary point. For simplicity, we

will consider the case where x0 is a point in ∂Ω such that ∂Ω is flat near x0.

By a translation and rotation, we may assume that x0 = 0 and Ω∩B(0, r) =

{x ∈ B(0, r) ; xn > 0} for some small r > 0.

We wish to convert the p-harmonic function eρ·x in Lemma 4.24.2 into an

exact solution of div(γ|∇u|p−2∇u) = 0 in Ω which concentrates near the

boundary point 0. To this end, define the function

(4.2) u0(x) = ηM (x)hN (x)
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where ηM (x) = η(Mx), hN (x) = h(Nx) where M and N are large positive

numbers, η ∈ C∞
c (Rn) is a nonnegative cutoff function with η = 1 for

|x| ≤ 1/2 and η = 0 for |x| ≥ 1, and

h(x) = e(iβ−en)·x

with β ∈ Rn satisfying |β|2 = p−1 and β ·en = 0. We will choose N = N(M)

so that M/N → 0 as M → ∞. The idea is that with these choices, since hN
solves the equation with γ frozen at 0 and since u0 is supported in the ball

B(0, 1/M), u0 becomes an approximate solution to the nonlinear equation

in Ω when M is large. Lemma 4.54.5 below gives a precise meaning to this

statement.

We obtain an exact solution u by solving the Dirichlet problem with

boundary values u0,{
div(γ(x)|∇u|p−2∇u) = 0 in Ω,

u = u0 on ∂Ω.

Let f = u0|∂Ω. Then we have∫
∂Ω

Λγ(f)f̄ dS =

∫
Ω
γ|∇u|p−2∇u · ∇ū0 dx.

We write this as

(4.3)

∫
∂Ω

Λγ(f)f̄ dS =

∫
Ω
γ|∇u0|p dx

+

∫
Ω
γ(|∇u|p−2∇u− |∇u0|p−2∇u0) · ∇ū0 dx.

Note that since f is an explicit function, the left hand side is determined by

the nonlinear DN map. We will recover the value of γ at 0 by taking the

limit of this identity as M → ∞. To analyze the limit, we need a simple

lemma.

Lemma 4.3. Let ζ ∈ C∞
c (B(0, 1)) and let a ≥ 0. Then as M → ∞

Mn−1N

∫
Ω
ζ(Mx)e−pNxn dx→ 1

p

∫
Rn−1

ζ(x′, 0) dx′,∫
Ω
xanζ(Mx)e−pNxn dx = O(M1−nN−1−a).

Proof. Follows from a direct computation. □
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We will also employ the following inequalities: if z, w ∈ Cn and 1 < p <∞
we have

||z|p − |w|p| ≤ p(|z|p−1 + |w|p−1)|z − w|,(4.4)

||z|p−2z − |w|p−2w| ≲ (|z|+ |w|)p−2|z − w|.(4.5)

(|z|+ |w|)p−2|z − w|2 ∼ Re
[
(|z|p−2z − |w|p−2w) · (z̄ − w̄)

]
.(4.6)

We compute the limit of the first term on the right hand side of (4.34.3).

Lemma 4.4. We have as M → ∞

Mn−1N1−p
∫
Ω
γ|∇u0|p dx→ cpγ(0)

where cp = p
p−2
2

∫
Rn−1 η(x

′, 0)p dx′. We also have∫
Ω
|∇u0|p dx = O(M1−nNp−1),∫

Ω
|ηM∇hN |p dx = O(M1−nNp−1),∫

Ω
|∇u0 − ηM∇hN |p dx = O(M1−nNp−1(M/N)p).

Proof. Since u0 = ηMhN , we compute

∇u0 =M∇η(M · )hN + ηM∇hN .

Since ∇hN = N(iβ − en)e
N(iβ−en)·x = N(iβ − en)hN , we have by Lemma

4.34.3

∥M∇η(M · )hN∥pLp(Ω) = O(M1−nN−1Mp),

∥ηM∇hN∥pLp(Ω) = O(M1−nN−1Np).

This shows the last three estimates since M/N = o(1) as M → ∞.

For the first statement, we use the inequality (4.44.4) to conclude that∣∣∣∣∫
Ω
(|∇u0|p − |N(iβ − en)ηMhN |p) dx

∣∣∣∣
≤ p

∫
Ω
|M∇η(M · )hN |(|∇u0|p−1 + |N(iβ − en)ηMhN |p−1) dx

≤ p∥M∇η(M · )hN∥Lp(Ω)(∥∇u0∥
p−1
Lp(Ω) + ∥N(iβ − en)ηMhN∥p−1

Lp(Ω))

= O(M1−nNp−1(M/N)).
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Using that |iβ − en|2 = p, we have by Lemma 4.34.3

lim
M→∞

Mn−1N1−p
∫
Ω
|∇u0|p dx = lim

M→∞
Mn−1Npp/2

∫
Ω
|ηMhN |p dx

= p
p−2
2

∫
Rn−1

η(x′, 0)p dx′.

The result follows by writing γ = γ(0)+(γ−γ(0)) and by using the continuity

of γ. □

We now move to the analysis of the second term on the right hand side

of (4.34.3). Writing u = u0 + u1, the next result shows that ∥∇u1∥Lp(Ω) is

asymptotically smaller than ∥∇u0∥Lp(Ω). This may be interpreted so that

u1 is a small correction term which corrects the approximate solution u0 into

an exact solution u. The important facts for the proof are that ∆ph = 0

and that u0 is supported near the boundary which makes it possible to use

Hardy’s inequality [Ku85Ku85]: if δ(x) = dist(x, ∂Ω) then

∥v/δ∥Lp(Ω) ≤ C∥∇v∥Lp(Ω), v ∈W 1,p
0 (Ω).

Lemma 4.5. As M → ∞∫
Ω
|∇u1|p dx = o(M1−nNp−1).

Proof. We will prove that

I =

∫
Ω
(|∇u|+ |∇u0|)p−2|∇u1|2 dx

≤ o(M1−nNp−1) + o(1)

∫
Ω
|∇u1|p dx.(4.7)

To prove (4.74.7), we start with

I ≲
∫
Ω
γ(|∇u|+ |∇u0|)p−2|∇u1|2 dx,

since γ is positive on Ω. Then we invoke the inequality (4.64.6). Since u1 =

u− u0 ∈W 1,p
0 (Ω) and since u is a solution, we obtain that

I ≲ Re

[∫
Ω
γ(|∇u|p−2∇u− |∇u0|p−2∇u0) · (∇ū−∇ū0) dx

]
= −Re

[∫
Ω
γ|∇u0|p−2∇u0 · ∇ū1 dx

]
.
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The function u0 is supported in the ball B(0, 1/M). Consequently, writing

γ = γ(0) + (γ − γ(0)), we have

I ≲

∣∣∣∣∫
Ω
|∇u0|p−2∇u0 · ∇ū1 dx

∣∣∣∣
+

∫
B(0,1/M)∩Ω

|γ − γ(0)||∇u0|p−1|∇u1| dx

=I1 + I2.

Integral I2 is bounded by ∥γ−γ(0)∥L∞(B(0,1/M)∩Ω)∥∇u0∥
p−1
Lp ∥∇u1∥Lp , which

implies by Lemma 4.44.4, the continuity of γ and Young’s inequality that

I2 ≤ o(M1−nNp−1) + o(1)

∫
Ω
|∇u1|p dx.

Then we estimate integral I1 as follows. At this point it is convenient to

replace ∇u0 with ηM∇hN by writing∫
Ω
|∇u0|p−2∇u0 · ∇ū1 dx =

∫
Ω
|ηM∇hN |p−2ηM∇hN · ∇ū1 dx

+

∫
Ω
(|∇u0|p−2∇u0 − |ηM∇hN |p−2ηM∇hN ) · ∇ū1 dx.

Integrating by parts, we obtain that

I1 ≲

∣∣∣∣∫
Ω
div(|ηM∇hN |p−2ηM∇hN )ū1 dx

∣∣∣∣
+

∣∣∣∣∫
Ω
(|∇u0|p−2∇u0 − |ηM∇hN |p−2ηM∇hN ) · ∇ū1 dx

∣∣∣∣ .
In the first term on the right, we multiply and divide by δ (the distance to

the boundary) and use the Hölder and Hardy inequalities so that∣∣∣∣∫
Ω
div(|ηM∇hN |p−2ηM∇hN )ū1 dx

∣∣∣∣
≲ ∥δ div(|ηM∇hN |p−2ηM∇hN )∥Lp′∥∇u1∥Lp .

The second term on the right can be estimated by (4.54.5), and we have∣∣∣∣∫
Ω
(|∇u0|p−2∇u0 − |ηM∇hN |p−2ηM∇hN ) · ∇ū1 dx

∣∣∣∣
≲

∫
Ω
(|∇u0|+ |ηM∇hN |)p−2|∇u0 − ηM∇hN ||∇u1| dx,

which, by the Hölder inequality, is bounded by

(∥∇u0∥Lp + ∥ηM∇hN∥Lp)p−2∥∇u0 − ηM∇hN∥Lp∥∇u1∥Lp

= O((M1−nNp−1)
p−1
p M/N)∥∇u1∥Lp ,
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when p ≥ 2, and by

∥∇u0 − ηM∇hN∥p−1
Lp ∥∇u1∥Lp

= O((M1−nNp−1)
p−1
p (M/N)p−1)∥∇u1∥Lp ,

when 1 < p < 2. In both cases, we used Lemma 4.44.4. Since M/N = o(1), we

obtain that∣∣∣∣∫
Ω
(|∇u0|p−2∇u0 − |ηM∇hN |p−2ηM∇hN ) · ∇ū1

∣∣∣∣
≲ o(M1−nNp−1) + o(1)

∫
Ω
|∇u1|p dx.

Collecting these estimates together, we have proved that

I ≲ ∥δ div(|ηM∇hN |p−2ηM∇hN )∥Lp′∥∇u1∥Lp

+ o(M1−nNp−1) + o(1)

∫
Ω
|∇u1|p dx.

We claim that as M → ∞,

(4.8) ∥δ div(|ηM∇hN |p−2ηM∇hN )∥p
′

Lp′ = o(M1−nNp−1),

from which estimate (4.74.7) follows by Young’s inequality. So, it remains to

prove (4.84.8). Since ηM and hN are explicit functions, this follows from a direct

computation. Noting that div(|∇hN |p−2∇hN ) = ∆phN = Np∆ph = 0, we

have

div(|ηM∇hN |p−2ηM∇hN ) = ∇(ηp−1
M ) · |∇hN |p−2∇hN

= (p− 1)ηp−2
M M∇η(M · )Np−1(|∇h|p−2∇h)(N · ).

Consequently, since δ(x) = xn,

∥δ div(|ηM∇hN |p−2ηM∇hN )∥p
′

Lp′

≲M
p

p−1Np

∫
B(0,1/M)∩Ω

x
p

p−1
n |∇h(Nx)|p dx

≤M
p

p−1N
p−1− p

p−1

∫ ∞

0

∫
|x′|≤1/M

x
p

p−1
n |∇h(Nx′, xn)|p dx

≲M
p

p−1N
p−1− p

p−1

∫ ∞

0

∫
|x′|≤1/M

x
p

p−1
n e−pxn dx′ dxn

= O(M
p

p−1
−n+1

N
p−1− p

p−1 ).

This is O(M1−nNp−1(M/N)
p

p−1 ) = o(M1−nNp−1) as required. This finishes

the proof of (4.84.8), and hence that of (4.74.7). Now the lemma follows easily
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from (4.74.7). When p ≥ 2, we have

I =

∫
Ω
(|∇u|+ |∇u0|)p−2|∇u1|2 dx ≥

∫
Ω
|∇u1|p dx,

which, together with (4.74.7), implies the desired estimate in the lemma. When

1 < p < 2, we have by Hölder’s inequality

∫
Ω
|∇u1|p dx ≤ I

p
2

(∫
Ω
(|∇u|+ |∇u0|)p dx

) 2−p
2

,

which implies the lemma. □

4.3. Proof of Theorem 4.14.1. We now prove the following result, which

immediately implies Theorem 4.14.1 in the case where the boundary is flat

near the point of interest.

Proposition 4.6. If Ω is as above, there exists a sequence of explicit func-

tions (vM ) ⊆ C∞
c (Rn) such that their boundary values fM = vM |∂Ω satisfy

supp(fM ) ⊆ B(0, 1/M) ∩ ∂Ω and

lim
M→∞

∫
∂Ω

Λγ(fM )f̄M dS = γ(0).

Proof. If f = u0|∂Ω where u0 is as in (4.24.2), then (4.34.3) holds true. By Lemma

4.44.4, we have

Mn−1N1−p
∫
Ω
γ|∇u0|p dx→ cpγ(0)

where cp = p
p−2
2

∫
Rn−1 η(x

′, 0)p dx′. By (4.54.5),∣∣∣∣∫
Ω
γ(|∇u|p−2∇u− |∇u0|p−2∇u0) · ∇ū0 dx

∣∣∣∣
≲

∫
Ω
(|∇u|+ |∇u0|)p−2|∇u−∇u0||∇u0| dx.

If p ≥ 2 then the Hölder inequality and Lemmas 4.44.4 and 4.54.5 imply that the

last expression is bounded by

≲ (∥∇u∥Lp + ∥∇u0∥Lp)p−2∥∇u1∥Lp∥∇u0∥Lp

= o(M1−nNp−1).
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If 1 < p < 2 we obtain the same estimate from∫
Ω
(|∇u|+ |∇u0|)p−2|∇u−∇u0||∇u0| dx

≤
∫
Ω
|∇u−∇u0|p−1|∇u0| dx

≲ ∥∇u1∥p−1
Lp ∥∇u0∥Lp

= o(M1−nNp−1).

Thus, if we define

vM =

(
Mn−1N1−p

cp

)1/2

u0

then the result follows. □
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