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Abstract

In these notes I have given a personally flavored exposé of static density-
functional theory (DFT). I have started from standard many-body physics at a
very elementary level and then gradually introduced the basic concepts of
DFT. Successively more advanced topics are added and at the end I even
discuss a few not yet published theories.

The discussion represents many of the personal views of the author and there
is no attempt at being comprehensive. I fully realize that T am often ‘unfair’ in
treating the achievements of other researchers.

Many topics of standard DFT are deliberately left out like, e.g., time-
dependence, excitations, and magnetic or relativistic effects.

These notes represent a compilation of a series of lectures given at at the
EXCITING Summer School DFT beyond the ground state at Riksgrinsen,
Sweden in June of 2003.

1. Background

Many reviews and articles on the topic of density-
functional theory (DFT) start by the proclamation that,
over the past so and so years, DFT has become, by far, the
most prominent tool for the calculation of the ground-state
properties of electronic systems. Although somewhat
vacuous the statement is definitely true. In fact, DFT
calculations of the electronic properties of real materials
have nowadays turned into an extensive industrial endea-
vor.

The idea of using the density as the basic variable for the
description of the energies of electronic systems goes back
almost to the advent of quantum mechanics and the
realization that the solution of the full equation of
Schrédinger was beyond reach in most cases. The statistical
atom of Gombas [1] and the approximations by Thomas [2]
and Fermi [3] were early attempts in this direction. Then, of
course, came the Hohenberg and Kohn [4] theorems in the
mid sixties followed by the work by Kohn and Sham [5].
They demonstrated that the electron density of a fully
interacting system could actually, in a rigorous way, be
obtained from simple one-clectron theory. At that time,
most researchers involved with the calculation of the
electronic properties of atoms, molecules, and solids where
strongly influenced by the school of J. C. Slater. Properties
were calculated from one-electron theory using a statistical
approximation but only for the effect of exchange and
correlation. The latter was obtained in 1951 by Slater [6] as
an average over the Fermi sea of the self-energy of the
homogeneous electron gas treated within the Hartree—Fock
approximation. As a matter of fact, from a numerical point
of view, that theory was not very different from modern
DFT within the local-density approximation (LDA).
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In the beginning of the seventies, Slater’s so called X«
method still dominated the scene and few people realized
the immense conceptual importance of the new DFT. A
younger scientist at IBM Research, A. Williams, was,
however, one of those propagating the idea that if there is
an, in principle, exact theory, why not try to use it.
Eventually, Williams and collaborators produced a compi-
lation of LDA results for almost the entire periodic table of
elements—a very useful piece of work which is often used
as a reference even today [7]. DFT, and then within the
LDA, slowly gathered momentum until it, in the early
eighties, by many people, was thought to be the answer to
almost all questions. The journals were full of LDA
calculations where the agreement with experiment was
almost perfect and where remaining discrepancies were
blamed on numerical flaws. Gradually came a realization
that there were severe problems with the LDA. Perhaps
mainly from solid-state physicist dealing also with more
localized systems like molecules. Not really by the
theoretical chemists who, at the time, were quite immune
to the ideas of DFT. It was realized that the LDA always
resulted in a certain overbinding depending on the degree
of localization of the constituent electrons.

Because the LDA is based on the homogeneous but
interacting electron gas, the inclusion of gradient correc-
tions was the natural way to proceed in order to go beyond
the LDA. These kind of corrections were actually worked
out already in the original paper by Hohenberg and Kohn
[4]. The next important steps were taken by Langreth,
Perdew, and Mehl [8,9] in the late seventies and early
eighties and John Perdew and collaborators have ever since
been perusing the painstaking work which has carried
those corrections to the level of sophistication where we are
today [10].

But it was not John Perdew who turned the quantum
chemists around. That achievement was signed Axel Becke
[11]. One of his ideas is that molecules show no
resemblance to the electron gas and gradient corrections
should be designed to reproduce accurate results for
prototype localized systems. With Becke’s gradient correc-
tions, and those of others, the atomization energies of a
large number of well known molecules improved to the
point where most established and commercially available
codes for molecular calculations today can be run also in
DFT mode. In fact, after the beginning of the nineties the
popularity of DFT within the community of quantum
chemists grew to the point where Walter Kohn was
awarded the Nobel Prize in Chemistry, in 1998. Professor
Kohn shared the prize with the chemist John Pople [12]
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who is the major player in the development of computer
codes for electronic structure calculations in molecules.

I am inclined to hand out a mark of “not passed” to the
Nobel Committee for physics and perhaps to the entire
physics community for allowing themselves to be beaten by
chemists in realizing the importance of DFT. After all,
DFT is more accurate and perhaps more indispensable in
solids as compared to the case of molecules.

These notes could rather easily be mistaken for a review
article on DFT—and then a comparatively inferior and
incomplete one. But they are definitely not intended as one.
Instead, my aim is to guide a beginner through the basic
principles of DFT up to a level where he or she will have
acquired a basic understanding of what is involved, which
are the major methods, the main obstacles, the predomi-
nant fields of applications, and what kind of accuracy one
can expect. It would be great if a follower of these notes
would also end up having some idea about in what
direction the field will develop in the near future. There are
many topics which will not be discussed here at all because
they are covered by other contributors to the present
meeting. Typical such topics are the the spin-dependent
generalization [13,14], the pseudizing of the theory [15-17],
excited states and the time-dependent version of the theory
(TDDFT) [18,19], current-density functional theory [20],
relativistic DFT [21,22], DFT at higher temperatures [23],
and many-component DFT [24].

Looking through the list of references you will find that
the majority of them are relatively old. This is connected, in
part, to my opinion that there has not been so much novel
theoretical development over the past ten years. Instead we
have seen an explosion in the production of results for a
very large number of different physical systems of interest
to material science, magnetic properties, bio-active mole-
cules and drugs, nano-systems and devices, etc. etc. Since
my interest has been in the development of new theory,
these advances are only mentioned here.

The list of references given here is in no way complete or
‘fair’ to many workers in the field. The list reflects my
personal preferences and to some extent also my lack of
knowledge caused by my absence from the field in later
years. I have basically referred only to work which has had
some impact on my own work within the field. For a more
comprehensive coverage of DFT and a better description
of other peoples work, I refer the interested reader to a
number of excellent review articles in the field [25-39].

2. Many-electron theory

2.1. The total energy

Most presentations of DFT follow the historical path of
the founding fathers. Unfortunately, many beginners find
this formulation rather abstract and difficult to grasp. In a
beautiful but very short paper from 1979 [40], Mel Levy
gave a much less abstract presentation of the basic
functionals of the theory. For pedagogical reasons, we
prefer the Levy approach and will later make extensive use
of this approach. But we will begin by investigating how far
we can proceed without any use of DFT. We believe that
our approach has certain pedagogical advantages in so far
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as it builds up expectations to the point where DFT
becomes the most natural next step.

The problem we like to address is that of finding the
ground-state energy of a many-electron system. As usual in
quantum mechanics, we then solve the eigenvalue problem,

HY =FEW¥

for the Hamiltonian H and look for the lowest eigenvalue.
Unfortunately, in the case of a solid or a large molecule the
Hamiltonian has a dreadful appearance,

N

N N
| 1
H= El —EV? + El w(r;) +§ ; v(r; —r)).
i= i= i#]

Here, the first term represents the kinetic energy of all the
N electrons in the system. The second term represents the
interaction with the external (to the electrons) charges and
for a molecule or a solid it would, e.g., look like

M
w(r) = — Z Z,v(r—R,)
n=1

where Z, are the different number of protons on the
different constituent M atoms and v(r) =1/r is the
ordinary Coulomb interaction. Notice that we have here
transformed ourselves to the world of atoms by putting
m=h = e*/(4ne,) = 1. In this world the unit of length is
one Bohr radius equal to 0.529 A and the unit of energy is
one Hartree or 27.21¢eV. Finally, the last term is the very
strong and important repulsion energy between all the
electrons (the factor of 1/2 makes sure that every
interaction is included only once).

For any system of practical interest the number of
electrons would range from ten to 10%>* and the number of
degrees of freedom in the Hamiltonian is prohibitively
large. Still, in the absence of the last term in the
Hamiltonian, it would actually have been feasible to find
the total energy of the system from simple one-electron
theory. This follows from the fact that, without the
electron-electron interaction terms, the Hamiltonian
would have been a sum of identical one-electron Hamilto-
nians—one for each electron. And they must all be
identical because all electrons in nature are indistinguish-
able. The eigenstates of such a Hamiltonian can be shown
to be Slater determinants consisting of one-electron
orbitals which are solutions to the mentioned one-electron
Hamiltonian and the energies of the many-body states are
just the sum of the eigenvalues of the constituent orbitals.
We are, however, not that fortunate but we might consider
the possibility of approximating the inter-electron part of
the Hamiltonian by a sum of terms corresponding to each
electron moving in some average field of all the other
electrons. This was exactly what was done in the so called
Xo approach mentioned in the introductory section and
also Hartree—Fock theory has this form. And, as we shall
see later, also DFT can be cast in this mean-field form
although the resulting equations are no approximations
but give exact answers to certain well defined questions.

For the time being, we notice that the total ground-state
energy can be obtained as the expectation value of the
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Hamiltonian with respect to some exact or approximate
wave-function W according to

— (U|H|W).

But in the process of evaluating this expression we will find
that most degrees of freedom integrate out and only some
partial knowledge of the full wave function is needed in
order to obtain the energy. Let us first consider the simplest
term in the Hamiltonian, i.e., the energy arising from the
interaction with the external potential. We have, in obvious
notation,

N
= (W) = > (Wlw(r)| W)

i=1

N
= Jd3r w(r) Z (W|5(r — )| W) = Jd3r w(r)(W|a(r)| W)
i=1

where we have defined the density operator 7(r) through
the relation

N
A(r) = Z 8(r —r).
i=1

Thus, defining the ground-state density n(r) of the system
by

n(r) = (W|a(r)| )

we have the very intuitive and very classical relation

= Jd3r w(r) n(r).

The important message displayed by this relation is that,
for this part W of the energy, only a very limited piece of
information from the full wave function is needed, in this
case, the density given by

n(r) = NJd3r2 ...d*rydos ... doy

X |W(r, 0513, 00; ... Py, UN)|2.
Here, the factor N, i.e. the total number of electrons, enters
because the symmetry of the wave function makes all terms
contribute an equal amount in the sum over electrons
above. (We have written the discrete sum of the two values
of the spin variables o; as a generalized integral.)

Turning next to second most complicated term in the
total energy, i.e. the kinetic energy 7, we obviously obtain

N
=(V|T|¥) = Z v —fv2|xp>

i=1

2

In the latter integral we have used the short-hand notation
x; for the set of variables (r;, 6;). Thus, defining what in the
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trade is known as the one-particle density matrix according
to

F(1 ()
= Jll/*(r, 0y X2, ., X)W, 0 xg, ., xy)dxs L dxy
we have

d*r.

=r

T= —% ZJ[VZF(I) (r,r )]

0,0

We see again that a rather limited information from the full
wave function is needed in order to calculate the total
kinetic energy of the system. For future reference and for
dealing also with magnetic systems, we notice that the
diagonal components of the one-particle density matrix
represent the spin densities 7,(r),

na(r) - Fz(yl,ZY(rv V)

in terms of which the density is just

Z ng(r).

Finally, we turn to the most complicated part of the energy,
e., the interaction energy U which, in terms of the full
wave function, is given by

n(r) =

1 N
Us=3 ) (Wl —rl¥)

i#]
= 1N(N 1)
)
X J|\I!(r1 o1 F, 005 .. FN, on)Pv(r — 1)dxg doxs L doxy.

Also in this case, the particular contraction of the total
wave function giving the interaction energy, has a special
name. It is called the diagonal of the two-particle density
matrix and it is given by

r&(r.r'y =N(N = 1)
X J|\Il(r, orr' o’ xs3, ..., xy)Pdxs .. dxy.

This quantity has a very physical interpretation. The
operator representing the density of electron i at the point r
in space with spin o is obviously 8(r — r;)é, 5. And there is a
similar expression giving the density of electron j at another
point ¥ with spin ¢’. We can then construct the density
corresponding to any electron at the point » with spin o
given the fact that there is another one at the point ¥ with
spin ¢’. This quantity must obviously have contributions
from all pairs of electrons and we write it

- rj)&,/,(,/..

N
T (1 1') = ) 8(r = 1)30,0,8(

7]

Physica Scripta T109



12 U. von Barth

We have here excluded the term with iz ; because no
electron can be at two different points in space at the same
time. Calculating the expectation value of this two-electron
density in the ground-state state gives,

T2 (1, 1) = (Wl o (r, )| W).

The quantity T® has a number of intuitively under-
standable properties. According to the Pauli exclusion
principle, two electrons can never be at the same place if
they have the same spin. Thus,

2
nyy)a(r, =20

which follows directly from the antisymmetry of the wave
function. This symmetry also shows that I'® is symmetric
in its arguments

Ff,%zy,(r, r’) = Fffz/?ﬂ(r’ L F).

The operator 7a(r, r') is easily seen to be a positive definite
operator so that

2 (r,r") > 0.

Let us then integrate one of the spatial variables over all
space to obtain

N
Jﬁa,a’(rv r ,)d3 '= Z (S(V - yi)(S(T,Oi(SJ/,(T/
i#]

N N

= Z 8(” - ri)(sa,a;(sa’,a/ - Z 8(" - ri)aa,ai(sa’,a,'
i,j i=1

=7s(F)Ny — fip(F)S5.0

where the operator 7, (r), of course, corresponds to the spin
density at r,

N
Ao(r) =Y 8(r — )80,
i=1

The operator N, counts the total number of electrons with
spin o,

The latter operator is just a constant (2/#) times the
z-component of the total spin. Since the Hamiltonian does
not contain any spin variables it commutes with the total
spin and, in a finite system, one can then always consider
the ground state as an eigenfunction of the total spin.
Writing (7/2)N, for the corresponding ecigenvalue and
taking an expectation value with respect to the ground
state of the above operator relation we obtain,

Jrfj?,,(r, ) &F = ny(){Ny — 85.00).

Due to the symmetry of I'® we would certainly have
obtained a similar result by instead integrating over r and
we realize that the spin densities n,(r) can be considered to
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be factors in I'®. We thus define a new quantity g, called
the pair-correlation function, according to the relation

2
Ft(f,zr’(r’ r /) = na(")na’(y /)ga,a’(rv r /).

The function I'® is an expectation value of a two-particle
density and thus more related to densities than to
probabilities. Dividing by the spin-densities the pair-
correlation function g becomes more related to probabil-
ities. In fact, if the electrons were completely independent
the two-particle density would be just the product of the
one-clectron densities and the pair-correlation function
would equal unity. Thus, the degree of correlation between
the electrons is measured by how much smaller than unity g
is. And, from the definition, it is certainly always positive
as one would expect from a probability.
Using the new definition of g and the obvious relation

Jna(r) d3r =N,

our previous integral formula for the pair density I'?
becomes

Jna’(r/){ga,a’(rz l"/) - 1} dSV/ = _50,0’

after division by n,(r). Consequently, the quantity n[g — 1]
represents a negative particle density, i.e., a lack of
electrons which integrates up to negative unity for electrons
of the the same spin and to zero for those of opposite spin.
This is the famous exchange-correlation hole surrounding
every electron in the system. Using g, the formula for the
interaction energy U becomes

1 / i nNA3,.33.,.7
U=5 ; Jng(r)n(,r(r Voo (s ¥ W —r')dPrd’r .

We see that this energy involves a sum over spin indices
and we do not need the detailed spin structure of the pair-
correlation function g in order to calculate U. It is,
therefore, convenient to define the spin averaged pair-
correlation function g by means of the relation

nOn(r g, 1) =Y 1o (Ong (g o (1, 1),

It should be remembered, however, that the full spin
structure is of interest in magnetic system and is also
important to attempts to approximate the pair-correlation
function. This is due to the fact that the correlations
between electrons of different spin is much stronger and
different in character as compared to the case of the like
spin electrons. The latter are kept apart by the Pauli
exclusion principle thus reducing their mutual Coulomb
repulsion.

The largest part of the interaction energy is the classical
electrostatic Coulomb interaction U, between the elec-
trons. In most electronic systems, this is a huge part of the
total energy, much larger than the energies associated with
exchange and correlation, and it is not very difficult to
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calculate. It is given by
— 1 o/ . N A3, 13,7
Uy =5 n)n(r "y —rydrd’r’.

It is thus customary to separate out this part of the
interaction energy. In terms of our spin averaged pair-
correlation function g the interaction energy U becomes

U= U, —i—%Jn(r)n(r Ne(r, r') — L — ¢y d*rd’r.

The last term in this expression is referred to as the
exchange-correlation part if the interaction energy often
written Uy,.. In terms of the spin averaged pair-correlation
function g the famous sum rule for the exchange-
correlation hole becomes

Jn(r’){g(r,r’) —1}d% = 1.

We see from this that whereas the classical Coulomb
energy, also sometimes called the Hartree energy, is an
interaction between N electrons and N electrons, the
exchange correlation part Uy, of the interaction energy is
the classical Coulomb interaction between each of the N
electrons with one negative unit of charge, i.e., with its
exchange-correlation hole.
Collecting all pieces of the total energy we have

E=—1TR[VTW] + an + %Jnvn’ —i—%Jnn’{g — 1}y,

where we have suppressed all integration variables and
used the symbol TR to signify the operations of making the
arguments equal and integrating over all space, in analogy
with the concept of the trace of an ordinary matrix.

2.2. The Hellman-Feynman theorem

As we shall see shortly, it is not difficult to find rather
accurate approximations to the spin averaged pair-
correlation function of many electronic systems. These
approximations will give errors in the already rather
small exchange-correlation energies of the order of 5% or
less. It has, however, proved to be difficult to find
approximations to the one-particle density matrix I'"
which are accurate enough for calculating the very large
kinetic energy of the system. Fortunately, one can use the
well known Hellman—Feynman theorem of textbook
quantum mechanics to transform the calculation of the
total kinetic energy into a calculation of the kinetic
energy of non-interacting electrons plus a small correction
to the correlation part of the interaction energy. It is
actually rather simple to demonstrate how this is done.
We imagine that we scale down the strength—now called
/—of the Coulomb interaction between the electrons. For
instance, in an atom this would have a drastic effect on
the density of the electrons which would then become
much more compact and pile up close to the nucleus.
This effect would result from the reduction in the
screening by the other electrons of the attraction of one
electron to the nucleus. We will therefore add an external
A-dependent one-body potential to the system in such a
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way that the density is not affected by the reduction in
the inter-electron Coulomb interaction. It is perfectly
legitimate to ask if this is actually possible to achieve.
This is a very difficult question and is referred to as the
w-representability problem of DFT. It is normally
assumed to be possible but it is very difficult to prove
in an exact way. But most physicists are content with the
fact that, in practice, it has always been possible to
achieve w-representability within the desired degree of
accuracy.

The energy E; of the system will, of course, change as a
result of the reduction in the Coulomb interaction. For
obtaining the derivative of E; with respect to the parameter
A, the Hellman—Feynman theorem states that it is sufficient
to differentiate the explicit A-dependence in the Hamilto-
nian. Due to the stationary property of the ground-state
energy E;, the A-dependence of the ground-state wave
function ¥, does not enter. Thus, in obvious notation,

JE; OH, oW, -
=V, |—=|¥; ) = (¥, |—|¥; v, | U,
%7 < %7 > < %7 ’>+< 101;)
— J ngg;l’) n,(r) d%—}—%Jm(r)m(r g Wwr—r')ydrd’r.

But the A-dependence of w,(r) was defined to be such that
the density remained constant and equal to the density n(r)
of the fully interacting system at all A. Therefore,
integrating again with respect to 4, we obtain

E—E, :J[w(r) — wo(r)n(r) d*r
+ %Jn(r)n(r NgGr, ¥ w(r — ) dPrdr.

Here, E, is the total energy of a system of N non-
interacting electrons moving in the external potential w,(r)
and having the same density n(r) as the fully interacting
(4 =1) system. This means that we find E, by solving the
one-electron Schrédinger equation

[=IV2 4 w,(1)} i(r) = exi(r)

to obtain

N
E, = ng =
k=1

where

M-

(00| ~192|g) + on(r)n(r) &

N
n(r) = e
k=1

The quantity g is just the normal pair-correlation function
g but averaged over all values of the interaction strength A.
Thus,

1
gr,r') = J g(r, ¥ dA.
0
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Again adding up the pieces of the total energy we find

N
E= ¢k|——V2|¢k an + %Jnvn’ + %Jnn g — 1},
k=

1

where we suppressed integration variables as we did
previously.

This is a truly remarkable results. It means that we can
always find the total energy of an interacting many-electron
system by doing one-electron theory. And we have not even
mentioned density-functional theory (DFT) at this stage.
What we have to do is to find a one-electron potential that
gives the corresponding non-interacting system of N
electrons a density which is identical to the true density
of the interacting system. And we must find the exact
average pair-correlation function g giving rise to the
comparatively small exchange-correlation energy.

As we shall see in the next section, is not very difficult
to find rather accurate approximations to the Iatter
quantity. The first task is, however, considerably more
difficult in the sense that it requires the formal machinery
of DFT. Fortunately, an accurate total energy actually
does not require a very accurate one-electron potential.
This is due to the variational property of the total energy
as a functional of the density as will be explained in
Section 3.

We will end this section by making a comment which we
find both interesting and amusing. By means of the local-
density approximation (LDA) of the following section we
have an explicit expression for the last term, i.e., the
exchange-correlation part of the total energy from the last
equation. We could, of course, then do exactly as in
Thomas—Fermi theory and minimize our, by now, explicit
expression for the total energy by varying the density. This
would certainly entail varying the one-clectron potential w,
giving rise to that density and we would find the lowest
energy when w, is chosen equal to what is nowadays
referred to as the total Kohn—Sham potential within the
LDA. Consequently, we could have started to do local-
density calculations without ever having heard about DFT.
Of course, in order to proceed toward an exact theory
allowing us, e.g., to go beyond the LDA we need DFT.
And one should certainly not underestimate the tremen-
dous conceptual impact of the theorems by Hohenberg,
Kohn, and Sham.

2.3. The local-density approximation

We end this section by a short discussion on the well know
local-density approximation (LDA). Of course, the LDA is
almost always associated with DFT—and rightfully so. We
will, however, introduce it already here in an attempt to
demonstrate how far toward accurate total energies one
can actually get without invoking DFT. The purpose of
this approach is certainly not to rob the revered fathers of
DFT of any glory. It is rather to build up understanding
and expectations to the point where DFT becomes the one
and only way to proceed.

Our task is here to approximate the average pair-
correlation function g of the inhomogeneous and interact-
ing system in order to obtain a good approximation to
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what we from now and on will refer to as the exchange-
correlation part of the total energy, E,.,

B = [ @0 ) = vt = )0 0

We begin by approximating the exact g by that of the
homogeneous but interacting electron gas which we call g,.
But this function is also a function of the density of the
homogeneous gas and one is immediately faced with the
problem of choosing some effective density 7z for the
approximation. This is actually a standard problem when
one wants to, as is often done, approximate two-point
functions in inhomogeneous systems with the correspond-
ing quantities from the homogenecous gas. The choice
which leads to the simplest algebra is 7 = n(r), which is
here the preferred choice. We notice that these approxima-
tions for g will become exact when the density approaches a
constant. We finally complete our approximation by also
replacing the argument r’ in the second density by r. Again
this approximation becomes exact when the density tends
to a constant and we can also argue that the largest
contribution to the integral is coming from regions where
the density is large. It can be shown that the function g — 1
differs little from zero when the two arguments r and r’ are
further apart than the average distance between clectrons.
Thus, the integral has large contributions only from
regions when r and r’ are close which means that it is
quite reasonable to replace the argument r’ by r in the
second density if the density does not vary appreciably over
an inter electronic distance. We have completed the LDA
and obtain (notice that, due to the complete translational
symmetry of the homogeneous gas, the function g, can
only be a function of r —r’)

EX! = %Jn(r)n(r){gh(r —r'on() = v =) d’rd’r’
= Hd3r (EnOEr's n(r) — () &’
= Jd3r n(r)e y.(n(r)).

Here, the function &..(n) is just the exchange-correlation
energy per eclectron of the homogeneous and interacting
electron gas obtained by evaluating the exact expression for
E,. above at a constant density n and then dividing by the
total number N of electrons. (Notice that N = Qn where Q
is the total volume of the gas).

We could actually have arrived at this expression in a
more direct way as follows. If the density of an
inhomogeneous system does not vary that rapidly we can
split the whole system into small boxes of volume d*r and
consider each box as containing a homogenecous electron
gas with a density equal to the local density n(r) at the
coordinate r of the box. The contribution to the energy of
each box is, of course, the exchange-correlation energy per
particle e,.(n(r)) of the gas in that box times the total
number, n(r) d*r, of electrons in the box. Summing over all
boxes gives us back the LDA above.

In order to use the LDA in practical calculations, we
must certainly supply a table of accurate exchange-
correlation energies of the homogeneous gas as a function
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of the density n. Such results are obtained from large-scale
Monte Carlo simulations [41] and parameterized for
convenient access in computer codes. Just one word of
advice. There are many parameterizations in the literature
and most of them are, for all practical purposes, next to
equivalent [26,42,43]. But avoid those which are based on
very complicated analytical expressions which use up an
undue amount of computer time.

We will give a detailed account of the successes and
failures of the LDA later on.

3. Density-functional theory

3.1. The kinetic-energy functional

As the name density-functional theory (DFT) suggests,
DFT is a many-body theory based on the idea of using only
the density as the basic variable for describing many-
electron systems. And it is a formulation in terms of
functionals of the density. As mentioned in the introduc-
tion, the rather abstract functionals of DFT were
formulated in a rather hands-on way by Mel Levy in
1979 [40]. And we will here prefer this so called constrained
search approach by Levy to the original formulation by
Hohenberg, Kohn, and Sham. We will begin by defining
the functional for the kinetic energy, 7,.

Given an arbitrary particle density n(r), we think of all
anti-symmetric many-body wave functions which yield that
density n. In mathematical language this set M of states is
written

M(n) = {|¥) | (W]a(r)| W) = n(r)}.

Here, 7n(r) is the density operator for the N electrons as
defined in Section 2.1. Although the density n(r) could be
chosen freely, it should obey certain conditions like being
everywhere non-negative and integrating up to N electrons.
It is appropriate to ask whether there is always an anti-
symmetric state yielding the density n(r) or, in other words,
if the set M(n) is not empty. The answer to this question
is actually yes. This problem is referred to as the
N-representability problem of N-electron densities and
we will not further dwell on this rather complicated issue.

The operator T corresponds to the kinetic energy of the
N electrons and we will now study its expectation values
with respect to states in the set M(n). And we search for the
smallest possible such expectation value. These expectation
values are bounded from below because the kinetic energy
is a positive definite operator. This means that the set of
such expectation values has an infimum meaning that there
is a number, say 7,, such that all the expectation values are
larger than or equal to 7, and that there is always at least
one expectation value smaller than T, 4+ &, no matter how
small ¢ > 0. We write

= infimum (W|7]W).
|W>eM(n)

To[n]

From the point of view of a physicist it is enough to know
that T,[n] is the smallest possible kinetic energy which can
be achieved among many-body states all having the density
n(r). In other words, the value 7,[n] is the minimum of all
expectation values (W|T|W) provided also (¥|a(r)|¥)
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= n(r). Consequently, in order to find Ty[n], we are faced
with a minimization under constraints, and there is one
constraint for each point in space since the expectation
value of the density operator at each point r in space has to
equal the prescribed density n(r). Such a constrained
minimization is most easily achieved through the use of
Lagrangian multipliers. And we must have one Lagrangian
parameter V(r) for each point r in space and then minimize

(W T10) + JV(r)n(r)d3r— \IJ|T|\I!)+JV(r) WA W) d

= (U|T + VW)

with respect to arbitrary variations of the wave function or
state |W) (notice, however, that it still has to obey the anti-
symmetrization postulate). Here, the ‘one-body’ quantum
mechanical operator V is defined through the relation

. N
V=> ¥r)
i=1

But this is a common problem in quantum mechanics that
we know how to solve. It is the problem of finding the
ground-state energy of the Hamiltonian

Hy=T+7V

which is a sum of one-electron Hamiltonians. Thus, we just
have to construct all eigensolutions to the one-dimensional
Schrédinger equation

{=IV2 + V() } pe(r) = expre(r)

and then we know that the ground-state wave function is
the normalized Slater determinant consisting of the N
solutions with the lowest possible one-electron eigenvalues
(N is the number of electrons in the system). The ground-
state energy is just the sum of those lowest eigenvalues and

Toln) = (WITIW) = > (]| —1V2| )

N
k=1
Then, of course, the infinite set of Lagrangian parameters
V(r), which, in this case, obviously acts as the external one-
electron potential has to be adjusted until the density given

by

N
n(r) =Y o)
k=1

becomes equal to the chosen one.

The whole procedure can now be summarized in words.
In order to find the value of the functional T,[n] of the
density n at a particular density n(r), we just solve the one-
electron Schrodinger problem in some potential V(r) which
is then adjusted until the sum of the squares of the
corresponding one-electron orbitals agrees with the chosen
density. The value of the functional for the kinetic energy is
then the total kinetic energy of this non-interacting
problem. Notice that the procedure relies on the possibility
of always being able to find a potential (Lagrangian
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parameters) which reproduces the chosen density. This is
very difficult to show in an exact way and requires very
strict conditions on the chosen densities. We will not go in
to this rather complicated issue here. This problem is
referred to as the non-interacting w-representability
problem in the density-functional literature. We will be
content by the fact that, in practice, one has always been
able to find to such a potential within some rather high
degree of accuracy. And many such calculations have been
carried out since I started the activity in 1982 (see e.g. Ref.
[32]).

The next step in our formal development of DFT is to
study how the functional 7, changes when the density n
undergoes a small change to n+ dn. The Lagrangian
multipliers must obviously change to, say V+43V, in
order to produce the new density n + én. The first-order
change in 7, becomes

N

8T, = 3{ er — JV(r)n(r) d%}
k=1

N
= Z dej — J(S Vrn@r) dr — JV(V)Sn(r) d’r.
k=1

But, when the one-electron potential ¥(r) changes, the one-
electron eigenvalues also change and from first-order
perturbation theory we know that

der = (Pk|8V k)

Hence,

N
> o = Ja V(rn(r) d*r
k=1

and we obtain

0T, = —JV(P)Sn(V) d’r,

an equation which is close to the defining equation to what
is know as the functional derivative of the functional T,
with respect to the density. There is only one slight catch.
When defining a functional derivative, one must allow for
completely arbitrary variations in the density n(r) but, here,
we are only allowed to consider density changes which
conserve the number of electrons. For such density
changes, we see that adding a constant to the potential
V(r) will produce no change in T, because

Jb‘n(r) d*r=0.

We are thus only allowed to infer

5T,
sn(r)

—V(r) + wo

with some unknown constant j.

We can carry our formal analysis one step further by
also studying second-order changes in the kinetic energy as
we change the density. As we shall see later, this will be of
importance when we do linear response theory and
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gradient expansions. If we change the potential V(r) by
the amount §V(r) the resulting density will change to
n(r) + én(r). From the above so called Euler equation we
obtain

BT, sn(r)d*r = =8V (r) + 8

Sy 1€ = =570 + b

On the other hand, as a matter of definition, the first-order
change dn(r) in the particle density resulting from a change
3V (r) in the total one-electron potential is proportional to
this 87 with a ‘constant’ of proportionality called the non-
interacting density response function x,(r, ¥) of the system,
ie.,

sn(r) = Jxo(r, V() d3r .

The non-interacting response function x, is often also
called the Lindhard [44] function and is easily obtained
from standard second-order perturbation theory as
described in most text books on quantum mechanics.
Combining the last two equations leads to the conclusion

8T, i
steontry 01

meaning that the second functional derivative of the kinetic
energy with respect to the density is the negative of the
inverse of the non-interacting static density response
function of the system. Notice that, in order to draw this
conclusion, we have assumed that

JXO(I’, I‘/) d3}’/ =0

which allows us to ignore the constant 8uo. This relation
is, however, valid in all finite systems on account of
particle conservation. (In a metallic system, y( integrates
to a finite value actually proportional to the density of
states at the Fermi level and one has to be a little more
careful in handling the constant §uy. The conclusion with
regard to the second derivative of T, remains, however,
unaltered.)

We end the present subsection with the remark that 7, is
obviously the kinetic energy of non-interacting electrons—
despite the fact we started out searching for the minimum
kinetic energy among arbitrary many-body wave-functions
of density n! The underlying reason for this somewhat
limited result is the one-body character of the operator for
the kinetic energy being a sum of terms each containing the
variables of only one of the electrons. As we shall see in the
next subsection, this will not be true about the many-body
functional F[n] defined there.

3.2. The functional Fn]

An important ingredient in defining the functional 7, for
the kinetic energy was the fact that the corresponding
operator T is positive definite and thus has a spectrum
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bounded from below. The operator T + ﬁ, where U is the
operator

N
U:%Zv(ri—r,)

i#]

corresponding to the total interaction energy between the
electrons, has the same property, i.e., it is positive definite.
(In the definition of U,v is the Coulomb interaction
v(r) = 1/r, as discussed in subsection 2.1). The operator
T+ U defines the functional Fln] of the density n in a way
completely analogous to the definition of T, above. We
define

Fln] = mﬁmum(lIlIT—}- U|\II)

|W>eM(n)

We point out that the operator T+ U contains terms
involving the coordinates of two electrons, i.e., it is a ‘two-
electron’ operator. We find F[n] by a minimization of

W T+ U+ VW)

with respect to arbitrary variations of the wave function or
state |W). Here, as above, the operator V is the one-body
operator acting as external potential but corresponding to
the Lagrangian multipliers needed to keep the density
equal to the chosen one during the minimization. As above,
this problem is identical to the quantum mechanical
problem of finding the ground-state energy of the
Hamiltonian H =T+ U+ V. And, then, just as above,
the potential V(r) (= the Lagrangian multipliers) has to be
adjusted such that the ground-state density of H becomes
equal to the chosen density n(r). And we will here assume
without proof that this is always possible to achieve. We
have thus established that the value of the functional Fln] is
just the sum of the kinetic and the interaction energies of a
system of interacting electrons in an external one-body
potential which gives the system a ground-state density
equal to the chosen density n. If the ground-state energy of
the Hamiltonian H is E, this minimal value obviously has
to be

Flnl= E — JV(r)n(r) dr.

As we did in the case of the functional 7, above, we can
also discuss how the functional F[n] changes due to small
changes dn(r) in the density n. In order to have a slightly
different density, the Lagrangian parameters have to
change from V to V+ 4V, and first-order perturbation
theory then says that the ground-state energy E of H
changes by §E where

E= Jn(r)a V(r)ydr.
Consequently, the corresponding change §F in F'is given by
8Fn] = —J V(r)sn(r) dr
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from which we, in analogy with above, conclude that

SF
on(r)

==V +pn

with some unknown constant .

For the purpose of later doing response theory and
gradient expansions we can, in analogy with the case of the
kinetic energy, also conclude that

8°F R
sn(r)dn(r’y —xC e,

where x~! is the inverse of the full static density response

function of the interacting system. (Static because there is
no time dependence in the perturbation).

3.3. The minimum of the energy functional

Having defined the functional F[n] of the density n, it
appears very natural to define the functional E[n, w],

E[n, w] = Fln] + Jn(r)w(r) d*r,

of the two independent variables n and w. At a fixed
‘potential’ w, this functional has a minimum at the ground-
state density n of that many-electron system which has w as
external potential. And the value at the minimum is the
ground-state energy of that system. In order to demon-
strate this minimal property we let | > be the ground state
of the Hamiltonian H = 7+ U + W with the ground-state
density n = (¥|n|¥). We also introduce the ground state
[¥) of the Hamiltonian H =T+ U+ W, having a
different ground-state density n;. The two potentials w
and w; must, obviously, differ by more than a constant in
order for the two densities n and n; to be different.
According to our definitions in the previous subsections
and to the variational property of the ground state |W), we
have

E[n, w] = Fln] + an = (\D|f"+ (7|\D) + an

= (W|T+ U+ W) <(9|T+ U+ W)

= Hm]+ J”lW = Elni, w]

where we, for simplicity, have suppressed the integration
variables.

For the first functional derivative of the functional
E[n, w] with respect to the density n at the ground-state
density corresponding to the external potential w we obtain
from above,

SE '\ _ OF o
(811(;'))‘1._ on(r) ) = p

This is the ‘quasi’ stationary property of the total energy as
a function of the density at a fixed external potential w.
(The quantity which is strictly stationary is, obviously,
E — uN, where N is the total number of electrons—but this
amounts to the same thing when N is kept fixed). Notice
that we are free to study arbitrary variations of the energy
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functional E[n, w] with respect to both variables n and w.
By choosing that density which renders the functional
Eln, w] stationary with respect to the density at a fixed
external potential w, the variables n and w become coupled
such that the density n becomes the ground-state density
corresponding to the external potential w. We can then
write E[n] = E[n, w[n]] and we can consider the ground-
state energy of any many-electron system as a functional of
only the density n. This latter functional has, of course, in
general, no stationary point at some density n.

3.4. Kohn—Sham theory

We are now in the position to appreciate the impact of
these functionals of DFT on our previous discussion of the
relevance of one-electron equations to the total energies of
many-electron systems. Assume that n(r) is the ground-
state density of a many-electron system subject to the
external potential w(r). And let again w,(r) be that
potential which produces the same density n(r) in a non-
interacting system. According to the discussion above, we
have the following two expressions for the total energy E of
the many-body system,

E=T,[n]+ Jn(r)w(r) d? r—{—%Jn(r)n(r’)v(r —¥)d*rd*F + Ey [n]

where the exchange-correlation energy E.. is defined in
Subsection 2.3, and

E = Fln]+ Jn(r)w(r) d*r.

Consequently,

Fln] = Ty[n] + %Jn(l”)n(r/)v(r —r) d*rd’r + Ey[n].

Notice that this equation clearly demonstrates E,, to be a
functional of the density n because all other terms are.
Furthermore, for the functional derivatives of T, and F
with respect to the density taken at the ground-state
density n(r) we have,

To )+
on(r) = W) T o
and

a
sn(r) W)

Inserting these two equations into that obtained by
functionally differentiating the functional F[n] above, we
have

Wo(r) = w(r) + Vg(r) + vie(r) + Spue.

Here, the so called Hartree potential Vg is just the
functional derivative of the classical Coulomb interaction
energy,

Vy(r) = Jv(r — @) d*r’
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and the so called exchange-correlation potential v, is the
functional derivative of the exchange-correlation energy
E.. with respect to the density,

SE.,
sn(r)’

ch(r) =

The quantity §u is some yet undetermined constant of little
relevance since the potential floor is of no consequence in
non-relativistic physics. We have thus arrived at our
desired recipe for constructing the potential w,(r) which
produces the correct ground-state density of the fully
interacting system in a completely non-interacting fashion.
From our exact expression for the exchange-correlation
energy E,. we obtain the following exact expression for the
exchange-correlation potential vy.(r),

pael) =Jn(r YEr ) — e — ) &

ot i
+ %Jn(r)n(r’) s8(r.r’) vr—r)d*rdr’.

sn(r)
The predominant way of implementing DFT is to construct
some reasonable approximation to the exchange-correla-
tion energy E,. like, e.g., the LDA and then to construct
vye(r) by functionally differentiating the approximate E..
with respect to the density. In the case of the LDA this
gives

Vie(r) = pixe(n(r))

where . .(n) is the exchange-correlation part of the
chemical potential of the homogeneous electron gas at
density n. It actually has certain computational advantages
to have the exchange-correlation energy and potential
being consistent in this way. But there are also many
drawbacks as will be discussed later. For instance, in the
case of several accurate gradient approximations, the
potential produced by functional differentiation is often
singular and can actually drive the density away from the
correct result. In such cases we have, for many years,
advocated the practice of doing separate approximations
for the potential v,. directly from the exact expression
above. This practice is strongly supported by the varia-
tional principle discussed in Section 3.3.

In modern work, however, a different exact equation,
referred to as the Sham—Schliiter equation [45], forms the
starting point for the construction of accurate exchange-
correlation potentials v..

3.5. The gradient expansion

Our previous discussion of the total energy of the many-
electron systems has led us to the point where all remaining
difficulties are deferred to finding reasonable approxima-
tions to the exchange-correlation energy E,. of the system.
And we have already introduced the LDA which goes a
long way toward this end. By construction, the LDA is
correct for the homogeneous electron gas and accurate for
densities that vary little over distances smaller than an
inverse Fermi wave vector. A natural step beyond the LDA
would, therefore, be to allow the energy functional to
depend not only on the local value of the density but also
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on its different local gradients. By adding successively
higher-order gradients, the gradient expansion is supposed
to correct the results of the LDA when the density varies
more and more rapidly. One should, however, not have to
assume that the deviations from a constant density are also
small. But the gradient expansion should, of course, be
valid also in that case and it is actually easier to determine
the different gradient corrections in this regime. Thus, we
will here apply response theory to the homogeneous
electron gas in order to see how such gradient corrections
can be obtained.

We expose the gas to a weak and slowly varying external
perturbation and expand the exchange-correlation energy
E.. in a Taylor series in the deviation én(r) from the
homogeneous density 7,

Ex(f[n] - EXC[”O] + va(’(ng)én + %JKXC 8’/1 Bn/
+ %JLX(,én sn'sn’ + .. ..

Here, we have suppressed integration variables, and

82E..
K C £ ! = - £
xelrs 1) Sn(r) én(r’)
and
8*E..
Lxc(ra V/’ V//) = =

sn(r) dn(r’) dn(r")’

Due to the full translational symmetry of the electron gas
the potential v, is a constant, K. can only depend on the
distance between r and r’, and L., must be invariant under
the operation of displacing all arguments by the same
amount. Since we are considering particle conserving
perturbations the linear term in the expansion vanishes.
Furthermore, we are interested in the corrections to the
LDA and thus expand the LDA result in a similar manner.
We obtain

Eln] = Jnoexc(no) +J (6n)?

+6J8 (nsw)(b\ )3

d(nex.) sn+ J & (nsu)
on,

Our purpose here, is to illustrate the origin of gradient
terms rather than to develop a full fledged gradient
expansion. Consequently, in what follows, we will, for
simplicity, restrict the analysis to linear response, i.e., to
terms of second order in the deviations from the homo-
geneous limit. Subtracting the LDA result from the exact
one and noting that u,. = d(ney.)/on gives the following
second-order correction to the LDA,

Evln] = B[] + %Jan{Kw W8 — )

In Fourier space this becomes

3

d’q
Ew[n]ZEﬁf’[n]JrJ L (Kelg) = KecO)long

Qr
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where we have used the exact relation K,.(0) = duy./on
which follows from the compressibility sum rule of the
electron gas [46]. If we now make the crucial assumption
that the perturbed density has appreciable Fourier
components only at small ¢, we can approximate K. by
its small-¢g Taylor series

Kxc(q) = Kw(o) + 2Bxc(nn)q2 + -

and going back to real space we obtain
Ey[n] = EEP[n] + JBX(,(n0)|Vn|2 d’r.

This gives the lowest-order gradient correction to the LDA.
Of course, in a strongly inhomogeneous system like an
atom or a molecule, we might ask ourselves what number
(n,) to use for the homogeneous density. It can be shown
that it is quite appropriate to again use the local density
n(r) rather than some average density for n,. In fact, this
procedure eliminates the necessity to include many of the
higher-order gradients from higher-order response func-
tions. But the validity of this procedure as well as of the
entire gradient expansion depends in a crucial way on
satisfying certain consistency relations between response
functions of different order. For instance, one such
requirement is the exact relation [47]

0K (q)

:L‘c' s q)-
n (4. q)

We have so far said little about how to calculate the
different so called exchange-correlation kernels like K.
and L,. on which the gradient expansion rests. But in
previous sections we have laid down the machinery for
determining these kernels. For instance, taking the second
functional derivative with respect to the density of the
relation connecting the functional F[n] to the functional
E,n] for the exchange-correlation energy and inserting
our results for those derivatives gives

_X71 = _X;1 + v+ K.

This very important relation can be used in either of two
ways.

(i) From, e.g., many-body perturbation theory we might
be able to calculate an accurate static density response
function x of the electron gas. Then, the above relation
determines K., and its small-¢ Taylor expansion in
reciprocal space and thus a whole set of gradient
coefficients according to the above analysis. Such
calculations were done as early as 1970 by Geldart
and Taylor [48] and repeated more accurately by Engel
and Vosko in 1990 [49] but including only effects of the
inter-electronic Coulomb interaction to lowest order.
Including also correlation effects to the level of the so
called random-phase approximation (RPA) the gradi-
ent coefficient B..(n) has been calculated by Ma and
Brueckner [50] in the high-density limit and later by
Geldart and Rasolt [51] at metallic densities. Rasolt
calculated the same coefficient for spin-polarized
systems in 1977 [52].
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(if) Having some accurate expression for the exchange-
correlation energy E\.[n] of the inhomogeneous system,
we can form the second derivative with respect to the
density to obtain the kernel K,. and thus the full
density response function x of the system. This way of
using the equation for the response function demon-
strates the important fact that the exact static density
response function of any electronic system can, in
principle, always be obtained from DFT.

With regard to the second-order response function L.
which gives rise to a gradient correction of the form

V() Vi s
()l

much less work has been done. A student of mine
calculated the coefficient C, including only exchange
effects [47] and, to my knowledge, nothing is known
about the effects of correlations on this coefficient. Our
coefficient was later incorporated in a Meta-GGA by
Perdew and collaborators [53]. This particular GGA was
more successful than others and it appeared to have a
better ability to distinguish between single, double, and
triple bonds in molecules (see Section 5.6).

In cases when the density varies more rapidly and does
have appreciable amplitude at larger g-vectors, one cannot
use the Taylor expansions of the response functions around
q = 0. The derivation above suggests, however, that it is
not at all necessary to use a gradient approximation. Using
the fact that

9

AE[n] = chcm(r))

J{KXC(V - V/; 1/10) - M;(,’ ' 5(!" - V/)} d3l’/ = 07

the second-order correction to ELP can readily be rear-
ranged to read ([4])

Ey[n] = EXPn] — iJKxc(r — ' np)(n(r) — n(e )P drdr.

This correction to the LDA 1is obviously valid for
arbitrarily rapid but small density variations. It represents
an infinite summation of the gradient terms. When,
however, we want to apply this correction to a strongly
inhomogeneous system like, e.g., an atom, we are forced to
decide what to use as an average density 7, in the kernel
K. In a solid we could, e.g., use the average density of the
valence electrons. In an atom it becomes more natural to
think of a local density but, since the correction involves
two points in space (r and r’), there are a number of
possible choices, e.g., n((r+r')/2) or (n(r)+n(r’))/2.
Gunnarsson et al. [54] have shown that the first choice
gives an infinite correction for an atom whereas the second
choice gives a reasonable result. These conflicting results of
two similar and seemingly sound approximations could be
viewed as a complete breakdown of gradient expansions.
The origin of the sensitivity to the choice of average density
is the use of linear response theory underlying the entire
discussion above. Thus, our conflicting results is merely a
reflection of the fact that an atom or, for that matter, a
solid is not a linear perturbation of the homogeneous
electron gas. As we shall see shortly, things are not as bad
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as they seem. Gradient expansions are not convergent in
the sense that successively more accurate results can be
obtained by adding more terms. They represent asymptotic
expansions, meaning that an approximation with a few
gradient terms added will be more accurate than the LDA
in cases with relatively slow density variations. When the
density varies more rapidly, we might be better off without
gradient terms. As we shall see, the criterion for the validity
of the LDA is not as strict as the corresponding criterion
for the gradient expansion. Over the past fifteen years,
people have tried to circumvent this problem by applying
different cut-off procedures designed to retain the advan-
tages of gradient corrections for moderate density varia-
tions without displaying the breakdown characteristic of
the straightforward gradient expansion in cases with rapid
density variations.

4. The performance of the LDA

4.1. The realm of the LDA

The extreme usefulness of the LDA has been common
knowledge for many years. We will here give a short
resume of results obtained from the LDA for different
physical properties and state some general conclusions
concerning the quality of these results.

We will, however, first remind the reader that static DF
theory, with a few exceptions, is strictly applicable only to
ground-state properties and, secondly, we will say a few
words about to what systems the theory should be applied.

As a test of the quality of new approximations to E,.,
DF theory is often applied to atoms and small molecules.
With regard to this practice we offer the following remarks:

(i) These systems are, for their physical properties, best
treated by other many-body techniques such as Many-
Body-Perturbation Theory (MBPT) or Configuration-
Interaction expansions (Cl) which offer a well defined
route to successively more accurate answers.

The interior of atoms is extremely difficult to handle
by DF techniques due to the rapid density variations
in these regions. Fortunately, the physics of these
regions have little to do with the physics of everyday
life (chemical bonding etc.).

The almost non-vanishing densities in the exterior of
atoms cause gradient corrections to diverge and
approximate xc-holes to be misplaced and deformed
but contain little energy. More importantly—such
regions do exist only in very sparse solids. Conse-
quently, atoms and small molecules represent very
severe tests on the quality of different approximations
and care must be exercised in order not to have the
conclusions obscured by irrelevant difficulties.

(i)

(iii)

The application of Cl expansions or MBPT to complicated
systems of considerable interest such as solids with many
atoms per unit cell, surfaces, atoms or molecules adsorbed
on surfaces, and large molecules, is computationally
prohibitive. This is the realm of DF theory provided it
can be made accurate enough.

© Physica Scripta 2004



4.2. Results

The following pages with tables I-X demonstrate the
successes of the Local-Density Approximation (LDA) as
applied to a variety of physical properties of solids. These
pages also indicate some of the deficiencies of the LDA.
Some of the results have been taken from the literature and
in most cases I have given the source. Other results have
been produced in the course of my own research.

4.3. Successes

The most striking feature discernible in the data shown
below, is the remarkable accuracy of the LDA as applied to
a variety of physical properties in many different systems.
We will here summarize the existing experience from
numerous applications of the LDA as follows:

e Binding energies are often better than 1eV but in some
s—d bonded systems the error can be twice or even three
times as large. There is a systematic over binding.

e Equilibrium distances are generally accurate to within
0.1 A They are systematically too short.

e Vibrational frequencies are accurate to within 10-20%.
There exist occasional cases with larger errors.

e Charge densities are better than 2%.

e Geometries are accurate.

e LDA results are nearly always much better than those of
the Hartree—Fock (HF) approximation.

e Most importantly, physical trends are generally correct.

We end this subsection by stressing that whereas the errors
in the binding energies of the LDA can be large, the
binding distances are usually very accurate. Thus, the
energy surfaces of the LDA are rather parallel to the true
ones.

Table 1. Total energies (in eV) of a few atoms.

Atom LDA exp

H 13.3 13.6
H™ 14.4 14.4
Al 6567 6592
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4.4. Deficiencies

The results shown above, however, also indicate some
cumbersome deficiencies. Most notable is the systematic
overbinding predicted by the LDA, particularly for the s-d
bonded systems. The overbinding is also, although to a
much lesser extent, reflected in a small but relatively
systematic underestimate of the bonding distances. We end
this section with a small list of systems for which the LDA
predicts the wrong ground states.

e The transition-metal oxides FeO and CoO are erro-
neously predicted to be metallic. But, MnO and NiO
come out as anti-ferromagnetic insulators in accordance
with experiment [71].

e Solid Fe is predicted to be an fcc paramagnet [72] but is a
bec ferromagnet at low temperatures.

e In many semiconductors, the LDA gives the metal-
insulator transition at much too large volumes. [73]

e The LDA predicts the wrong dissociation limits for a
large number of molecules. [29,35,37]

e The LDA predicts incorrect ground states for many
atoms. [29,32,37]

e The LDA gives unstable negative atomic ions in many
cases when these are stable. [32]

e Et cetera, et cetera..

4.5. s-p Transfer energies

Gunnarsson and Jones [74] suggest that the root of the
problem is the inability of the LDA to properly account for
so called s-to-p and s-to-d transfer energies. When a solid
or molecule is formed even from rather “round” atoms the
electronic density stretches out toward neighboring atoms
to form bonds. In one-electron calculations the stretching
is accomplished by transferring electrons from states of
lower angular momentum to states with higher angular
momentum (e.g. s-d) in the bonding process. The physical
picture is illustrated, e.g., by the case of Si. The Si atom has
four valence electrons 3s?,3p?. In forming the solid we
would, to a first approximation, promote one of the s
electrons to a p orbital and then form the tetrahedrally
arranged hybrids. Thus, the atom in the solid has the
approximate configuration 3s,3p® and bonding has
resulted in a transfer of one electron from an s- to a p-

Table 11. Ground-state properties of the molecules H,O, NHjs, and CO,, as obtained from the LDA and from experiment.
The results are taken from the work by Miiller, Jones, and Harris [55]. We assume that the numerical errors involved in
obtaining the LDA results are negligible in comparison to the deviation between theory and experiment. The equilibrium
distances in Table II are probably exceptions to our assumption because they do not conform to the general expectations of

bond distances being too short within the LDA.

H,O NH; CO,
LDA exp LDA exp LDA exp
d 1.84 1.81 1.94 1.91 2.21 2.20
0 106 105 108 107 180 180
;s 3680 3657 3335 3337 1420 1388
wp 1590 1595 820 950 730 667
7 0.732 0.730 0.564 0.583 0 0

d is the equilibrium distance in atomic units.

0 is the equilibrium bond angle in degrees.

w is the stretching frequency in cm ™.
wy is the bending frequency in cm ™.

w is the dipole moment in atomic units.
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Table III. Ionization potentials (in eV) of a few atoms.
LPM designates results from the gradient corrected scheme
by Langreth, Perdew and Mehl [8,9] and Hu and Langreth
[56]. In the cases of Mn and Fe we refer to the removal
energy of a 4s electron.

Atom exp LDA LPM
He 24.6 24.2 24.8
Li 5.4 5.6 5.6
Be 9.3 8.4 9.0
Na 5.1 5.3 5.1
Ca 6.1 6.3 6.0
Mn 7.4 7.9 7.1
Fe 7.9 8.4 7.8

Table 1V. Cohesive energies (in eV) of a few solids as
obtained from the LD A and from experiment. The Si result is
from Ref. [57]. The other results are taken from the book by
Moruzzi et al. [7] and from Refs. [58—60].

Na Mg Si Ti Zr Ni
exp 1.1 1.5 4.6 4.9 6.3 44
LDA 1.1 1.6 5.1 6.1 6.8 5.7

Table V. Lattice parameters in atomic units for a few solids
as obtained from the LDA and from experiment. With one
exception, Si, the data are taken from the book by Moruzzi
et al. [7]. The Si result is from Ref. [57].

Na Mg Si Ti Zr Ni
exp 8.0 8.5 10.3 7.8 8.2 6.7
LDA 7.7 8.4 10.2 7.6 8.2 6.6

Table VI. The binding energies (in eV) of the first-row
dimers as obtained from the LDA, from the LPM scheme
[8,9], from the GGA according to PBE [39,61,62], and
from experiment. All results (except PBE) are taken from
the work by Becke [63,64].

H, Li, B, C, N> 0O, F,
exp 4.8 1.1 3.0 6.3 9.9 5.2 1.7
LDA 49 1.0 3.9 7.3 11.6 7.6 3.4
LPM 5.0 0.6 33 6.1 10.2 6.4 2.4
PBE 4.5 0.9 — — 10.5 6.2 2.3

Table VII. Equilibrium distances in Bohr of the first-row
dimers. The LDA results are from the work by Becke [63].

H2 L12 B2 Cz Nz 02 F2
exp 1.40 5.05 3.00 2.35 2.07 2.28 2.68
LDA 1.45 5.12 3.03 2.35 2.07 2.27 2.61

orbital. This costs energy but, in the LDA, we pay too
small a price for the transfer resulting, on an absolute scale,
in too low an energy for the solid. Consequently, the LDA
overestimates the cohesive energy of Si and in this case the
actual error is 0.5eV or 11% (See Table IV). A similar
situation exists in the transition metals although the
transfer in that case is from s, p to d [7]. According to
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Gunnarsson and Jones [74] the errors in the s-p or s-d
transfer energies are due to the insensitivity of the LDA to
the nodal structure of the one-electron wave functions.
Consider e.g. the fluorine atom which has a >P ground state
constructed from the configuration 2s42s ¢2p%|2pi. An s-p
transfer is achieved by promoting one of the 2s electrons to
the empty hole in the 2p-shell resulting in a S excited state.
From HF theory, the accompanying change in the
exchange energy of the L-shell is easily found to be

2G(s. p) — 5%F>(p. p) + Y Fo(s, ) — Fo(p. p)]

in terms of the usual Slater [75] integrals. Inserting the
actual orbitals of F gives a 6.7¢V increase in the exchange
energy. This rather large value is associated with the extra
angular node of the 2p- relative to the 2s-orbital. In the
LDA the exchange energy is given by

EﬁD[nﬂ, nyl=Ax Z J[na(r)]4/3 FER

where ny and n are the spin-up and spin-down densities
and where A, is equal to —(3/4)(6/7)"/* in Hartrees. Thus,
a substantial change in the exchange energy associated with
the s-p transfer requires the square of the s- and p-orbitals
to be rather different. This is not the case in the F atom
because both orbitals belong to the same principal-
quantum number shell (the L-shell). Consequently, the
cost of the transfer is much too small in the LDA
(~0.6eV). Although the total error is considerably reduced
[32] (to ~2.6¢eV) by correlation effects and self-consistency,
it is still large enough to explain a large part of the error
(1.7eV from Table VI) in the binding energy of the F,
molecule.

Clearly, the LDA in which the exchange-correlation
energy only depends on the local density cannot account
for changes in the nodal structure of the wave functions.
One could, however, hope that xc-functionals based on
gradients would be capable of picking up such nodal
dependencies. Unfortunately, this does not seem to be the
case as can be seen in Table XI showing results for the
aforementioned s-p transfer treated by different methods.
The Generalized Gradient Approximation (GGA) by
Langreth, Perdew, Mehl and Hu (LPM) [8,9,56] in
conjunction with spherically averaged densities perform
almost as badly as the LDA.

One could guess that this disappointing result might be a
consequence of the spherical averaging, a procedure which
certainly softens the nodal structure closely connected to
the angular dependence. Therefore, it is even more
disappointing to see the results marked LPM-NS in
Table XI. They are obtained from the LPM scheme by
taking full account of the asphericities of the spin-densities.
The results are marginally better than those of the spherical
approximation and we conclude that a functional con-
structed from the density and its first spatial derivatives is
not able to respond to a change in the nodal structure of
the wave functions. Indeed, s-d transfer energies have been
calculated in transition-metal atoms by Kutzler and Painter
[76] with the same disappointing outcome. They also tested
an improved generalized-gradient approximation by Per-
dew and Wang [77,78] to be discussed in Section 5.4 and
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Table VIII. Vibrational frequencies in cm™" of the first- and
second-row dimers as obtained from the LDA and from
experiment. The results are taken from the work by Becke

[63].

Hz L12 B2 Cz N2 02 FZ
exp 4400 350 1050 1860 2360 1580 890
LDA 4190 330 1030 1880 2380 1620 1060

Table IX. Heat of formation (in eV') of a few compounds as
obtained from the LDA and from experiment. The data are
taken from the work by Williams, Kiibler, and Gelatt
[65,66].

MgAg AlZr SiZr NiAl CuZn
exp 0.19 0.44 0.81 0.61 0.12
LDA 0.24 0.44 0.73 0.74 0.14

Table X. a The saturated magnetic moment ( Bohr magne-
tons), b the hyperfine field (kiloGauss), and c¢ the spin-
susceptibility enhancement factor for a few metals. The data
are taken from the work by Janak et al. [67-70].

X.a Magnetic moment

Fe Co Ni
exp 2.22 1.56 0.61
0.59
LDA 2.15 1.56
X.b Hyperfine field
Fe Co Ni
exp 339 217 75
80
LDA 260 220
X.c Susceptibility enhancement
Li Na K
exp 2.50 1.65 1.70
LDA 2.25 1.71 1.95

Table XI. Exchange energies (—Ey, in eV) in two different
configurations of the fluorine atom as obtained from
Hartree—Fock (HF), from the LDA, and from the LPM
scheme (Ref. [9]) evaluated at spherically averaged
densities. LPM-NS designates LPM exchange energies
evaluated at the correct non-spherical densities. The numbers
illustrate the failure of all DF approximations in describing
the correct (HF) s-to-p transfer energy.

25425, 2p32p] 2542p32p] AE,
HF 272.5 264.4 8.1
LDA 246.4 244.1 22
LPM 267.4 264.6 2.8
LPM-NS 267.6 264.6 3.0

there referred to as the PWS86 scheme. Although this
scheme is somewhat better than both the LDA and the
LPM scheme, the improvement is marginal. (In this case
the LDA is actually better than the LPM scheme.)
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The s-d transfer errors in atoms is one possible
mechanism responsible for the cohesive energy errors of
extended systems. Correlations, however, strongly reduce
the effect already in atoms and screening as well as
smoother densities in the solids will reduce the effect even
further. As we saw above, two proposed generalized-
gradient approximations which are known to be superior
to the LDA with regard to binding energies of molecules
and solids (see Sections 5.3 to 5.6) fail to improve the s-d
transfer energies. From this we conclude that the s-p or s-d
transfer mechanism is probably not the most important
mechanism behind the failure of the LDA with regard to
cohesive energies.

4.6. The near-degeneracy problem

Cl and MBPT dominate the world of Quantum Chemistry
(QQO), i.e. the physics of small to large molecules. These
methods are reliable and can often provide the 1 kcal/mol
(1eV = 23 kcal/mol) accuracy of interest to the physics of
chemical reactions [12]. They are, however, enormously
time-consuming and there would be a breakthrough in QC
if DF methods could be brought to chemical accuracy. It is
therefore rather disappointing to see the LD results for the
binding energies of the first row dimers in Table VI. The
much larger binding-energy errors in these finite systems
can be understood in terms of their more rapidly varying
densities. Clearly, the explanations based on the s-p
transfer mechanism becomes more relevant but also other
effects come into play. One such effect can be referred to as
the near-degeneracy problem in the DF theory. Consider
the Hy -molecule at large internuclear separation R. The
correct wave function is close to

Y = S0 + 3 — R)) = [Hd + )

where ¢(r) is the wave function of hydrogen: ¢ = e¢™"//7.
The expectation value of the full Hamiltonian

1 1 I 1
H=—-V'——— — 4
2 T'a rb+R

with respect to this wave function is, to exponential
accuracy, equal to (¢|H|p) =— 1 Ry. Thus, in real life,
the system cares very little about whether we break the
symmetry of the molecule and put the electron on one of
the sites or we keep the symmetry and put half an electron
on each site—the corresponding energies are very much the
same. In all approximations to DF theory which are
constructed by using only the local density and its
gradients, however, the situation is quite different. In
addition to the energy terms considered above, the energy
of the effective one-electron Hamiltonian of DF theory
contains the terms

%jvfz v+ Ex[v7].
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If we have found a functional which is very accurate for the
atom and which achieves a high degree of cancellation of
the so called self-interaction, this becomes

%j«/f v+ El¢’l = U—J~0

in the hydrogen-plus-proton case. Thus, for this case, the
LDA provides a good answer. In the symmetric case, we
instead obtain

24 ‘J¢> vp? + 2% quf,wﬁ + Ex [(¢% + ¢ + 20u5) |

1
~ U+ g+ 2E[397]
i.e., a quantity with a slow variation with R. This result is
fundamentally incorrect, thus demonstrating that the
correct functional must depend on the density in a more
complicated way than just through its local value and its
gradients. If we, e.g., use the LDX approximation (Local-
Density-eXchange-only) given in Section 4.5, we obtain an
LD error of

1
AEF? =1y 4+ — — 27137~ 0.25/R—-0.3U,

4R
and, since U is ~ 8eV for hydrogen, we obtain ~2.4eV
overbinding in the LDA at large separation. Even though
the other spurious term (1/4R) partly reduces the error at
smaller R, an effect might still remain at the equilibrium
distance. (As a matter of fact, the LDA error in the binding
energy of HJ is only 0.15¢eV at equilibrium [79].) Notice,
however, that an essential ingredient of the mechanism
discussed above is the existence of an unpaired electron.
Consequently, the effect does not affect the binding energy
of the dimers but it does affect their ionization potentials
and also the binding energies of the dimer cations as
demonstrated by Merkle et al. [80].

The accurate results achieved by the LDA for the
‘billiard-ball’ systems Be, (error ~0.46¢eV) [64] and Mg,
(error ~0.12¢V) [81], and the difficulty for the LDA to
provide good answers in cases with near degeneracies is
opposite to the situation encountered with Cl methods. The
so called dynamical correlations responsible for, e.g.,
binding in Be; require a very large number of configura-
tions for their accurate description whereas the near-
degeneracy cases are often taken care of by a few
configurations. This immediately suggests a hybrid method
[82] in which a local-density correction is added to a small
Cl calculation.

The discussion above illuminates another peculiar
feature of the LDA and approximations based on density
gradients. Even though the LDA does not work well for a
system with some particular symmetry, one can often find a
“neighboring” system with nearly the same energy (e.g. a
symmetry broken solution) for which the LDA provides an
accurate answer. For example, the LDA gives a reasonable
description of the Hf molecule at large nuclear separation
if we break the symmetry and put one electron on one of
the protons. A more interesting example is furnished by the
Cr, molecule whose bond length is accurately given by the
LDA provided the molecule is assumed to be anti-
ferromagnetic, i.e., symmetry broken [83]. The binding
energy is reasonable but too large as usual. In this case, one
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of the largest and most sophisticated CI calculations is
inferior to the LDA [84].

5. Gradient approximations

As we saw in the previous paragraph, the LDA is often
quite adequate while, in other cases, a higher accuracy is
desired. An error in a binding energy of the order of 20%
or 1eV is, e.g., not acceptable in the study of chemical
reactions. In this field we would like binding-energy errors
to be of the order 0.05eV or less. The simplicity of DF
methods as compared to traditional many-body techniques
has, however, spawned considerable efforts to improve on
the LDA. It would, e.g., mean a breakthrough in quantum
chemistry if DF methods could be brought to the same
level of accuracy as large-scale configuration-interaction
(Cl) calculations for larger molecules. One could then
confidently go on to treat very large molecules as well as
extended systems which presently are beyond our compu-
tational capabilities.

Attempts to go beyond the LDA are based either on an
improved description of the exchange-correlation hole (see
Sections 2.1 and 2.3) in real space or on a description of
exchange-correlation energies in reciprocal space usually
leading to so-called generalized gradient approximations
(GGA). Some times a mixture of the two approaches have
been considered [77,78]. In recent years, the largest effort
has gone into the reciprocal-space approach which so far
has been the most successful ab initio DF method. As we
shall see later, ab initio density functionals are still far from
the 0.05-eV goal mentioned above but the results of new
semi-phenomenological functionals are not too far away.

5.1. Straightforward gradients

As discussed in Section 3.5, the natural extension of the
LDA is a straightforward gradient expansion. The starting
point is then the homogeneous electron gas and the
gradient terms and their coefficients are determined by
the small wave-vector expansions of the density response
functions of different orders pertinent to the gas. Due to
the translational as well as the rotational invariance of the
gas, one can show [47] that only rather few gradient terms
exist in each order. For instance, all terms up to and
including fourth-order gradients can be summarized as

vl
Eyln] = EXPA[ + JB(Z)( ) gtk
BY ()|
+ |8 (nry Y OF T
e (())|Vn(r)|2v2n<r) 3
T e
Vnl
+ | Detaten TG

It is not difficult to realize that the terms containing the
coefficients labeled B originate in linear response, the
C-term comes from second-order response, and that
involving D, from third-order response. The significant
feature determining the origin is the total power of those
densities subject to differentiation. The coefficient B?) has
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been calculated in an approximation involving the effects
of both exchange and correlation whereas the coefficients
B and C,, are known in the exchange-only approxima-
tion. The coefficient D, is, however, yet unknown.

It is not hard to see that this kind of gradient expansion
can never be applied to a finite system. Only the lowest-
order gradient term will give a finite result for the
exchange-correlation energy. The integrands of all the
fourth-order terms will tend to some constant in the
regions of exponentially decaying densities in the outskirts
of any finite system, thus producing an infinite result in the
subsequent integration. There will also be problems at the
nucleus particularly from the term containing V?n. Because
of the Coulomb potential from the nucleus, the density will
have a so called cusp at the nucleus. This means that the
density has a term linear in the distance to the nucleus and
that will cause a singularity of the form const/distance in
the gradient part of the energy density. Consequently, the
gradient correction will act as an additional contribution to
the nuclear charge, a result which is definitely wrong from a
physical point of view.

In a solid treated with pseudo potentials both the
‘surface’ problem and the ‘core’ problem go away and there
is hope for obtaining accurate total energies from the
gradients. Such tests have been carried out for different
model solids treated with pseudo potentials and including
only exchange energies. Of course, in the case of exchange
only, comparisons with exact results can be made which
allows for an precise assessment of the quality of a
straightforward gradient expansion. And the gradient
expansion of the correlation energy is not expected to
behave in vary a different way in this regard. These test
demonstrate the extraordinary quality of the total energies
of ‘pseudo’ solids obtainable from such expansions. This
can be seen in Table XII which displays only the smaller
exchange part of the energies of a number of metals. The
errors are of the order of 1 Milli-Rydberg or less and much
smaller than those resulting from the use of common
GGA:s to be discussed later. In Table XII, the quantities
labeled e£PX ¢9E! and £9F? refer to the contribution from
the LDA in the exchange only version and the contribu-
tions including linear and second order responses—
respectively.

The significant features of all the systems presented in
Table XII is that they are metals and there are no band
gaps. Unfortunately, the very positive impression conveyed

Table XII. Calculated exchange energies in Rydberg per
electron for different values of the effective potential V. V;;
(= V) in units of the Fermi energy, er.

GGA

Viin  Exact  eLPY eLDX 4 gGEL oLDY 4 gUEL 4 ¢GE2 (Becke)
0.023313 —0.3303 —0.3302 —0.3304 —0.3304 —0.3306
0.069938 —0.3376 —0.3354 —0.3376 —0.3377 —0.3390
0.116563 —0.3515 —0.3460 —0.3518 —0.3517 —0.3550
0.163188 —0.3704 —0.3613 —0.3720 —0.3711 —0.3770
0.186500 —0.3809 —0.3702 —0.3836 —0.3820 —0.3892
0.209813 —0.3919 —0.3796 —0.3959 —0.3931 —0.4019
0.233126 —0.4030 —0.3893 —0.4086 —0.4043 —0.4147
0.256438 —0.4140 —0.3991 —0.4215 —0.4155 —0.4275
0.279751 —0.4248 —0.4089 —0.4346 —0.4264 —0.4402
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by Table XII is drastically altered when we turn to systems
with band gaps. This is demonstrated in Table XIII
displaying similar data as in Table XII but now for systems
all having band gaps. In the first case labeled Si, we have to
the homogeneous gas added a psecudo potential which
results in a band structure very close to that of real bulk
silicon [85]. The case labeled SiX is similar to Silicon but
the pseudo potential has been scaled up resulting in a larger
band gap. In these two examples the density has non-
negligible Fourier components also on multiples of the
fundamental harmonics of the lattice potential
(V1115 Vazo, V311) and it could be argued that gradients
also from third- and higher order response theory should
have been included in the gradient expansion. This
criticism can, however, not be raised against the two
remaining cases labeled M1 and M2 in which care has been
taken to avoid larger amplitudes on any of the more
rapidly varying density components. Thus, these cases have
slowly varying densities but still possess band gaps. And in
all four cases the energy errors are an order of magnitude
larger as compared to the metallic cases and actually worse
than those of the GGA:s as exemplified by that of Becke
[11]. The conclusion is now inescapable. The straightfor-
ward gradient expansion breaks down as soon as a band
gap appears. This should, however, not come as a surprise.
The entire gradient expansion originates in response
theory, i.e., in perturbation theory which is known to
break down in the presence of band gaps [86]. The
appearance of a band gap is actually an extremely non-
local property of the system and can never be predicted
from a knowledge of the density or its gradients in one
point in space. In my opinion, even a GGA can never be
made very accurate and independent on the system to
which it is applied, unless the information about the
presence of a band gap is, somehow, fed into the
construction of the GGA. It is thus more surprising that
the GGA works so well for the systems with band gaps in
Table XIII.

5.2. The kinetic energy

In this subsection we will discuss a topic which is somewhat
outside our stated task of finding successively better
approximations to the exchange-correlation energies of
inhomogeneous electronic systems. We will, for a moment,
digress and discuss gradient approximations also to their
non-interacting kinetic energies. We have chosen to do so
because this topic is closely connected to the straightfor-
ward gradient expansion discussed in the previous subsec-
tion. Moreover, interest in this topic has increased over the
past decade due to the desire to treat successively larger
systems where it becomes difficult and expensive to solve
even the simple one-electron Schrodinger problem of
standard DFT. If we can construct accurate approxima-
tions to the kinetic energy from just the density alone we
would have a theory without the need for wave functions
and a large part of the computational effort of standard
DFT would disappear.

Such a scheme has been a goal for many researcher since
the time of Thomas and Fermi [2,3] and the gradient
expansion of the kinetic energy including gradients up to
order six has been known for years (see e.g. Ref. [30]). Tests
mainly on atoms have, however, shown that the kinetic
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Table XIII. Exchange energies in Rydberg per electron for
Si and Si-related models

GGA
Model Exact eLPX eLDA 4 (OBl oLDX 4 (CEL 4 (OE2  (Becke)
Si —0.5321 —0.5041 —0.5249 —0.5173 —0.5263
SiX —0.5539  —0.5186 —0.5545 —0.5320 —0.5468
MI —0.5340 —0.5107 —0.5250 —0.5215 —0.5291
M2 —0.5550 —0.5267 —0.5471 —0.5393 —0.5495

energies obtainable from gradient expansions do not have
the accuracy to which we have been accustomed previously
in these notes (e.g. of the LDA). Learning about the
accurate exchange energies I had obtained from straight-
forward gradient expansions in metallic system, Malcolm
Stott [87] suggested that I should try the same technique
also to the full kinetic energies. The main new idea which
would allow us to disregard the negative results previously
obtained for atoms was that we proposed to apply the
gradient expansion only to pseudo atoms and not to real
atoms. After all, most s-p bonded solids and even
transition metal compounds are nowadays treated with
pseudo potentials and plane-wave codes. Thus, we exposed
the electron gas to a periodic array of local pseudo
potentials and calculated the kinetic energy both from full
one-electron band theory and from the straightforward
known gradient expansion. In Table XIV we display the
astonishingly accurate result for our first test case
simulating an Aluminum metal as far as concerns the
average electron density and the valence band structure. In
these calculations we included up to fourth-order gradients
although the expansion is known at least up to sixth order.
Table XIV also shows the results for our pseudo Silicon
system discussed in the previous subsection. The case of
Silicon again demonstrates the breakdown of perturbation
theory as soon as band gaps occur although the error is
only 0.007 Ry/electron.

In Table XIV, the column marked f¢7r is the Thomas—
Fermi approximation which is equivalent to the LDA for
the kinetic energy. The column marked 7y + tgg is the
result obtained including gradients to fourth order from
lincar response theory and the column marked
t7r + tge1 + tger contains results including all fourth-
order gradients. Thus, the data demonstrate the relatively
lesser importance of higher-order responses for these
particular systems.

In order to obtain the results in Table XIV, we have
calculated the gradient corrections from the accurate
density obtained from the full band structure calculation.
Thus, from a computational point of view, nothing is
gained by this procedure which still requires the calculation
of all the occupied wave functions. Therefore, we went one
step further and minimized the total-energy expression
containing only the density and up to fourth-order

Table XIV. Kinetic energies in Rydberg per electron for
pseudo Si and pseudo Al.

Model Exact trr trr+tGEl trr+ice + o l(minimized)
Al 0.466  0.436  0.465 0.464 0.486
Si 0.716  0.692  0.725 0.723 0.717
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gradients. The minimization was carried out using a Car—
Parrinello code [88] for minimization through simulated
annealing. From older test on atoms it is well known (see,
e.g., Ref. [36]) that a minimization of the gradient-
expanded total energy is relatively unstable and gives
singular or bad densities which, in turn, produce inaccurate
total energies. And the problem is aggravated by including
gradients of high order. This was actually one of the
reasons why we decided not to go to sixth-order gradients.
The rather small energy contributions from higher-order
gradient terms (see Table XIV) in our test systems suggest
that the minimization procedure could include only
second-order gradients in order to make it more stable.
Then, as a last step, one could apply also the fourth-order
gradients to the minimizing density. Possibilities of this
kind could be investigated as the method becomes more
refined but, at the moment, we were quite pleased to find
that the minimization procedure, at odds with the atomic
experience, led to rather accurate energies of our pseudo
systems. The error in Aluminum, some 20 milli Ry, is still a
little too high but might be remedied by introducing
GGA:s also for the kinetic energy. In Silicon, the original
error from the gradient expansion was actually almost
canceled by the minimization procedure which we, how-
ever, consider to be a lucky fluke. Nevertheless, we think
that the results presented here offer a lot of hope for future
total-energy calculations in solids without the use of wave
functions—at least in systems which can be described by
means of pseudo potentials.

5.3. The LPM scheme

In Section 3.5 and in the previous section we have
obviously made a strong case against the use of gradients
as a tool for going beyond the LDA—except in the vary
favorable case of metals. As we shall see here, the situation
is not that bad. One of the first attempts to improve on the
LDA by means of gradients but without much theoretical
support was due to Herman et al. [89]. They added the
second-order gradient correction with a variable coefficient
B chosen to reproduce atomic exchange energies. In this
way, they were able to accurately reproduce Hartree—Fock
energies of atoms but they had to use a coefficient which
was rather far from the value predicted on the basis of
gradient expansions for the electron gas. This represents
the first so called Generalized Gradient Approximation
(GGA) and this kind of approach is used extensively even
today. The exchange-correlation (xc) energy is written as
some function of the density and its first gradient including
a large number of adjustable parameters. These are
subsequently determined by requiring the expression to
reproduce nearly exact results in a number of known cases.
Embarrassingly enough, this rather ad hoc method is still
probably the most accurate approach within DFT
although results are never consistently good. One often
encounters surprises when treating systems different in
character as compared to those of the reference group.
But there are certainly more fundamental approaches
toward improvements via GGA:s. As we discussed in
Section 2.3, xc energies can be obtained from a modeling of
the exchange-correlation (xc) hole in real space. An
obvious complementary idea is to go to reciprocal space
by means of Fourier transforms and to study xc energies
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coming from different regions of momentum space. From
the discussion in Section 3.5 we also know that there is a
close connection between momenta and gradients of the
density—at least in the linear regime. We are thus led to
believe that a decomposition of xc energies with regard to
momentum transfers could, somehow, be converted into
expressions involving gradients. This is actually a viable
idea as we will now argue.

The first attempts in this direction is due to Langreth,
Perdew, Mehl, and Hu [8,9,56] (LPM). I consider their
work as the start of the activity to construct GGA:s from
first principles. It would carry too far to present the rather
complicated theory underlying the LPM correction to the
LDA. We will here be content with presenting some of
their key ideas and some results for different physical
systems. Langreth and Perdew [8] start from the basic
equation for the exchange-correlation energy of the
inhomogeneous system (see Section 2.3). In order to find
the interaction-averaged pair-correlation function g of the
inhomogeneous system they first use the RPA and compute
the frequency dependent density-density response function
to second order in a perturbing external potential w.
Within the RPA, the required integration over the strength
of the Coulomb interaction can be carried out analytically
and from the zero-temperature version of the fluctuation-
dissipation theorem [46] they then obtain E,. for the
slightly inhomogeneous system in the form of an integral in
reciprocal (k—) space. In this way, they can study the
contributions from different wave vectors both to the LDA
(EEP) and to the xc-energy obtained by adding the lowest
order gradient correction. They find that the gradient
correction works well for large wave vectors but strongly
overestimates the contributions to the xc-energy at small k.
The crossover occurs around a g-vector approximately
equal to ¢ = |Vn(r)|/(6n(r)). In principle, their full result
for E,. could be used in actual calculations although the
computational effort would be considerable. Therefore, in
order to obtain an easily applicable scheme based on
density gradients, Langreth, and Mehl [9] suggested an
approximation to the full results by Langreth and Perdew.
They proposed to keep the full gradient correction down to
a cut-off ~¢ and to neglect the gradient correction
altogether below this cut-off. In real space this results in
the following approximation for E,, :

Ev[n] = E-P[n] + aj[n(r)r“”[w(rnz{ e — Fldr
where
F=b-|Vn()| - [n(r)] "% a= g(3n2)_4/3; b = (9m)\/f

in atomic units, i.e., Hartree.

The quantity f'is a ““fudge” factor of order 0.15-0.17 and
results are relatively insensitive to the choice of f in this
range. Notice that surface energies indeed are sensitive to
the choice of f, indicating, not a breakdown of the above
theory, but rather of the simple cut-off procedure leading
to the practical formula above.

It is important to stress one of the basic assumptions
underlying the parameterized version of the wave vector
decomposition due to LPM. It is assumed that the physical

© Physica Scripta 2004

Basic Density-Functional Theory—an Overview 27

system under study is dominated by a single length scale
approximately given by 1/¢. This is probably correct in an
atom where that length would be, e.g., the radius of an
atomic orbital. As a result, the LPM scheme yields quite
accurate total energies for atoms, the error being of the
order of a few parts in a thousand. As it turns out, the
major source of error comes from the treatment of
exchange. For this part of the energy the LPM approxima-
tion gives an error of ~3% which should be compared to
an error of the order of ~10% in the LDA. In the case of
atomic correlation energies only, the LPM errors are
~10% compared to the infamous > 100% overestimate
resulting from the LDA.

In molecules, on the other hand, there is clearly at least
one additional important length scale namely that of the
molecular bond. As a result, the performance of the LPM
scheme is not nearly as good in the case of binding energies
of molecules as illustrated in Table VI. Also, in this case,
there does not seem to be any advantage in treating
exchange exactly and only leave the correlation part of the
binding energies to the LPM scheme (see Table XVI).

As pointed out in Section 3.5, approximations based on
a theory for systems with relatively small and slow density
variations like, e.g., the LDA and different gradient
corrections to it, can perhaps not be expected to work
well for strongly inhomogeneous systems like atoms and
small molecules. Thus, tests on the ground-state properties
of solids are highly desirable. Unfortunately, such tests are
rare in the literature. The first such test was carried out by
von Barth and Car [57] in bulk silicon and they obtained a
cohesive energy of 4.89 eV compared to 5.19eV in the LDA
and 4.63 ¢V from experiment. The lattice parameter of the
LPM calculation agrees with experiment and is 0.5% larger
than that of the LDA. Within the numerical accuracy, the
bulk moduli of the LDA and the LPM calculations both
agree with experiment. Later von Barth and Pedroza [90]
tried the LPM approximation in bulk beryllium and
obtained a cohesive energy of 3.20eV compared to
3.65¢V in the LDA and 3.32¢V from experiment. More
recently Bagno et al. [91] have applied the LPM scheme to
the structural properties of several elemental solids
including transition metals in which the general tendency
of the LDA to over-bind is particularly pronounced. Their
results are similar to those reported above. The over-
binding is reduced and the lattice parameters are slightly
improved by the LPM scheme. In particular, this scheme
gives the correct ground state of iron, i.e., a ferromagnetic
bee structure whereas the LDA erroneously predicts a
paramagnetic fcc structure.

We can summarize our experience of the performance of
the LPM scheme in solids and molecules by saying that this
scheme is superior to the LDA and that errors of the latter
are typically reduced by a factor of two by the LPM
approximation. Thus, the new scheme is an improvement
but does certainly not represent a breakthrough within DF
theory.

Before ending this section on the LPM scheme, we must
mention a few technical details of relevance to the practical
application of the scheme. In most cases, especially in finite
systems, it is necessary to have a spin-polarized version of
the theory. Such a generalization has been worked out by
Hu and Langreth [56]. For self-consistent calculations the
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Table XV. The errors (in eV') in the binding energies of the first-row dimers as obtained from different density functionals
defined below. A is the average absolute error for each functional.

Li'_; Bez B2 C2 Nz 02 F'_; A
LDA —0.1 0.5 0.8 1.0 1.7 2.4 1.7 1.2
LPM -0.5 0.3 0.2 -0.2 0.3 1.2 0.7 0.5
PW86 - - 0.2 —-0.1 — 0.7 0.5 0.4
PWO1 —0.1 0.3 0.3 —0.1 0.7 1.0 0.7 0.5
B86 —0.1 0.1 —-0.5 —-0.8 0.2 0.2 0.0 0.3
B1 —0.1 0.1 -0.3 -0.7 0.3 0.3 0.2 0.3
B II —-0.3 - - - 0.4 0.8 0.5 0.5
B III —-0.3 - - - —0.1 0.2 —0.1 0.2
LDA the local-density approximation. Data from Ref. [63].
LPM the functional by Langreth, Perdew, Mehl and Hu [8,9,56]. Data from Ref. [64].
PW86 the older functional by Perdew and Wang [77,78]. Data from Ref. [103].
PWOI1 the functional by Perdew er al. [97] preceding the PBE [61]. Data from Ref. [80].

B86 an older exchange approximation by Becke [64] plus correlation from Stoll ez al. [107]. Data from Ref. [64].
B 1 the functional of “Becke: Thermo-chemistry I"” [106]. Data from Ref. [80].

B1I
B III

the functional of “‘Becke: Thermo-chemistry II”” [109]. Data from Ref. [109].
the functional of “Becke: Thermo-chemistry ITI” [111]. Data from Ref. [111].

Table XVI. The errors (in eV) in the correlation-energy contributions to the binding energies of the first-row dimers as
obtained from different correlation functionals defined below. A is the average absolute error for each functional.

Li2 BC2 B2 C2 N2 02 Fz A
LDC —0.1 -0.3 -1.9 —4.1 —-24 -29 -25 2.0
LPMC 0.1 0.1 -0.8 2.7 —1.0 —-1.2 —14 1.0
PWIIC -03 —-0.2 —-1.5 -39 —-24 -2.1 —-24 1.8
LDC the local-density approximation for correlation energies. Data from Savin ef al. in Ref. [33].

LPMC
PWIIC

potential corresponding to the parameterized LPM
scheme, i.e., the functional derivative of E,. with respect
to the density, must be derived and an explicit formula
involving second spatial derivatives of the density can be
found in Ref. [9].

The LPM theory for the slightly inhomogeneous electron
gas is based on the RPA. According to Langreth et al.,
[9,92] there is a large cancellation between local and
nonlocal contributions to the xc-energy also beyond the
RPA and, in order not to lose this advantage by using a
theory beyond the RPA for just the LDA, the RPA version
of the latter should be used in conjunction with the LPM
gradient correction.

As a byproduct of their wave vector analysis Langreth et
al. found two very useful criteria determining the validity
of the LDA and of the straightforward gradient correction.
They found that the LDA is valid when

|Vn(r)

kp(r)n(r)

whereas the gradient expansion is valid when

|Vn(r)|
kerp(r)n(r)
Here, kx(r) is the local Fermi momentum (k3. = 37%n) and

krr(r) is the inverse of the local screening length, i.e., the
Thomas—Fermi wave vector given by krrp = 2\/kp/m. In
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the correlation part of the functional by Langreth ez al. [8,9,56]. Data from Savin et al. in Ref. [33].
the predecessor [97] to the PBE [61,62] by Perdew et al. Data from Ref. [119].

real systems the last criterion is usually an order of
magnitude more severe than the first which explains why
the LDA can provide reasonable answers while the
inclusion of gradient terms will make things worse.

5.4. The Perdew—Wang scheme

In the discussion of the LPM scheme we noted that the
largest errors in that scheme originates in their treatment of
exchange. For this part of the energy Langreth er al.
essentially use a straightforward gradient correction. Being
concerned about the shortcomings of the previous treat-
ment Perdew [93,94] introduced a new idea comprising a
combination of real- and reciprocal space arguments. In
Ref. [54] as well as in the work of many investigators, the
success of the LDA is attributed to various exact properties
of its exchange-correlation (xc) hole like the sum rule or the
negativity of the exchange hole. In the wave vector analysis
of Langreth et al. we can say that we study and
approximate the xc-hole in reciprocal space and it becomes
less evident how to implement, e.g., the sum rule. A
particular approximation for the xc-energy in reciprocal
space can, however, often be transformed into an
approximation for the xc-hole in real space based on the
density and its gradients. Perdew showed, e.g., that the
second order gradient expansion for the xc-energy does not
correspond to an xc-hole that obeys the sum rule. This is
yet another way in which we can understand why the LDA
in some cases can yield an accurate result when the
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addition of the lowest order gradient term can destroy that
accuracy.

From the work by Gross and Dreizler [95] on gradient
expansions it is not difficult to obtain one for the exchange
hole. A second order expansion for the hole does not obey
either the sum rule or the negativity condition (See Section
2.1). Therefore, Perdew [93] multiplied the result by Gross
and Dreizler by an appropriate cut-off function to ensure
the satisfaction of both the sum rule and the negativity
condition. The resulting approximation for the exchange
hole looked somewhat complicated and difficult to use but
in a later paper by Perdew and Wang [77], the result was
simplified by partial integration and parametrized for easy
use in DF calculations. Their functional for the exchange
energy became

E.n] = AxJ[n(tﬂ)]4/3E,((.9)d3r,

where A, is a constant determined by the electron-gas limit
and given by

3
Ay = ——@a)V3.
47

The quantity F,(s) is a function of the dimensionless
density gradient

O]
" 2kp(r)n(r)”

The function F is originally obtained numerically in order
for the x-hole to obey the sum rule and the negativity
condition and later fitted to an analytical formula:

Fi(s) = (1 4+ as®>/m + bs* + ¢s®)"

with the constants

[<

L

a= b= 14; c:%; 05

T m=

[}

Energies are given in Hartrees. Notice that Fy(s) =1
corresponds to the LDA for exchange only. Notice also
that many systems are spin-polarized, particularly those of
finite extent and that, therefore, the spin-polarized versions
of the functionals must be used. In the case of exchange
only this is easily obtained as

Ex[nMv ni] = %{Ex[znﬂ] + Ex[an]}y

As a side issue, we finally notice that the generalized
gradient approximation by LPM of the previous subsec-
tion, and that of Becke [11,64,96] (see next subsection) as
well as, really, all GGA:s can be cast in the same form. And
the different GGA:s (excluding, of course, the Meta-
GGA:s involving also the Laplacian of the density) differ
only in their particular form of the function F.(s).

The particular parametrization of the Perdew—Wang
scheme presented above has the property that an incorrect
second-order gradient term is obtained in the slowly
varying limit (small s). In this context, “incorrect’ refers
to a deviation from the gradient coefficient given exactly by
Engel and Vosko [49]. Since the small-¢ limit of the
exchange-only kernel K.(q) (see Section 3.5) is better
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described over a larger range of g-values by a correct
second-order gradient coefficient for exchange, the func-
tion Fy(s) in the Perdew—Wang scheme above should be
modified to give this slowly varying limit. Setting
a =10/81 in the parametrization above will achieve the
desired result. In later work [97], Perdew er al. made
additional modifications of the function F,(s) and essen-
tially made it much more similar to the Becke exchange
approximation [11] (see also below). The slightly modified
functional of Ref. [97] was tried in solid Li and Na and in
atoms and small molecules [80,97]. This new GGA
performed better but not much better.

Having improved on the LPM description of non-local
contributions to exchange energies, Perdew [78] proceeded
to introduce some beyond-RPA effects into the LPM
scheme for the correlation energies. Apart from taking
away a spurious contribution of exchange origin added by
Langreth et al. in order to separate exchange and
correlation in finite systems, Perdew’s modification essen-
tially amounts to a rescaling of the LPM result in order to
retrieve the correct beyond RPA second-order gradient
coefficient calculated by Geldart and Rasolt [51]. The
explicit formula is very similar to the LPM formula of the
previous subsection, but without the 7/18:th. We refer the
reader to Ref. [78] for details. Having a beyond RPA result
for the non-local correlation energy allowed Perdew to add
the state-of-the-art version of the LDA for the correlation
energy, e.g., a parametrized version of the Monte—Carlo
results for electron-gas correlation energies by Ceperley
and Alder [41].

The Perdew—Wang (PW86) correction to the LDA
described above has been employed in several electronic
structure calculations of solids. Kong et al. [98] calculated
the ground-state properties of solid Al, Si, and C and
concluded that the PW86 functional gives a substantial
reduction of the overbinding characteristic of the LDA.
The bulk moduli are almost the same as those of the LDA
but there was a small increase in the lattice parameters
resulting in closer agreement with experiment. Notice,
however, that these quantities are very close to experiment
also in the LDA. Bagno et al. [91] tried both the PW86
functional and the LPM functional on solid K, Ca, V, Fe,
and Cu. Their conclusions were similar to those of Kong et
al. The LDA errors in the binding energies are reduced by
typically a factor of two and the lattice parameters and the
bulk moduli are also improved by the two gradient
corrected schemes. In particular these schemes predict the
correct ground state of iron, i.e., ferromagnetic beec. On the
other hand one finds that one of the well known failures of
the LDA, i.e., the prediction of metallic ground states for
the transition metal oxides FeO and CoO, are not corrected
by the PW86 functional [99]. Comparing the PW86 and the
LPM functionals, Bagno et al. found that the first had a
slight edge on the latter although they noted a tendency of
the PW86 functional to over-correct the LDA errors
especially for the more weakly bound systems. The same
tendency has been reported by Garcia et al. [100] in a study
of the cohesive properties of solid Al, Si, Ge, GaAs, Nb,
and Pd. In particular these researchers report that the
PW86 functional in many cases gives lattices which are too
soft. Similar conclusions have been reached by others
[101,102].
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As far as molecules are concerned, there is some
experience with the PW86 functional [103]. It seems clear,
however, that this functional performs slightly better than
the LPM functional also in the molecular case and that it
thus represents a substantial improvement on the LDA. As
will be discussed in the next section, this is a somewhat
spurious result most likely of unphysical origin.

As mentioned above, further improvements on the
Perdew—Wang scheme was made in Ref. [94]. There,
Perdew and collaborators incorporated the sum rule for
the correlation hole, i.e., the fact that this hole must
contain zero charge. This follows from the sum rule for the
total hole and the unit charge contained in the Fermi (or
exchange) hole. They have also modified their approxima-
tion to the exchange energy through a different choice of
the function F,(s) as discussed above. The latest Fy(s)
behaves as 14 10/81 s> at small s corresponding to the
coefficient of Engel and Vosko [49] for the straightforward
second-order gradient correction for the exchange energy
of the homogeneous electron gas. Probably inspired by the
success of one of Becke’s [11] gradient corrections for
exchange (see next section), the function Fy(s) closely
follows the Becke approximation at intermediate s. In
contrast to the latter approximation, Fy(s) is made to
vanish as const/s> at large s in order to obey certain
inequalities for exact exchange. The sum rule on the x-hole
is not enforced but is obeyed rather closely by the resulting
functional referred to as PW91 in what follows. The PW91
functional was tested by Perdew and his collaborators on
solid Li and Na. In both cases the PWO91 functional
corrects the unusually large LDA errors in the lattice
parameters of these systems (O.llA in Li and 0.17A in
Na). The PWII functional has, by now, been tried in many
systems. It is rather similar to the PW86 functional and, in
solids, it gives results of comparable accuracy or slightly
better. Also in molecules the PW91 functional is compar-
able to the PW86 functional as reported by Merkle, Savin,
and Preuss [80].

The experiences from the functionals of GGA type
which we have referred to as PW86 and PW91 have been
collected by Perdew and his collaborators in the GGA-
functional called PBE [61,62]. This functional is today a
standard ingredient in most readily available density-
functionals codes for solids and molecules. It performs
well in both finite and infinite systems without being
specialized for either application. This is in contrast to
many new functionals of Quantum Chemistry which most
often are designed for molecular applications. It differs
rather little from the PW91 but it is much easier to program
and its derivation is much simpler. A particular advantage
is that it gives a rather good representation over a range of
momenta (q) of the static linear density response function
of the electron gas as indicated by quantum Monte Carlo
calculations [104,105].

We will now attempt to summarize our experience from
the gradient corrected density functional methods. From a
theoretical point of view, many of these schemes are a
result of a careful analysis of exchange and correlation
effects in a weakly perturbed electron gas (basically linear
response theory). Through the use of sum rules and other
consistency requirements, effects of higher order responses
are brought into the approximations. The results are
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encouraging and usually much superior to the LDA. Errors
in binding energies are reduced by a factor of two to three
or even more. In the case of properties which are very well
described already by the LDA the picture is less consistent
and gradient corrections can lead to worse results although
the difference is marginal. In going from the LPM gradient
corrected functional to the PW86, the PW91, and later to
the PBE and, especially, to the Meta-GGA functionals (to
be discussed in Section 5.6) there is an increase in
theoretical sophistication. Tests on different systems and
for different physical properties indicate a minor and
inconsistent improvement going from the LPM to the
PWO1 scheme. Some additional improvement, a simpler
derivation and a smoother expression and thus a less
singular potential is obtained by going on to the PBE. A
further improvement results from the introduction of the
Meta-GGA. The gradient corrected schemes are margin-
ally more difficult to apply as compared to the LDA and in
view of aforementioned properties we recommend that the
later functionals, e.g. the PBE or the Meta-GGA, to be
used in all DF calculations.

In Section 4.5, several of the failures of the LDA was
blamed on the the inability of the LDA to account for the
s-p or the s-d transfer energies. Tests on the gradient
corrected functionals [32,76] show that they suffer from the
same deficiency but still yield much better binding energies.
This somewhat unexpected result is the basis for our
comment in Section 4.5 that the s-d transfer problem may
not even be the major source of error in the LDA.

In small molecules it is relatively easy to compute the
exact exchange energy thus leaving only the much smaller
correlation energy to be treated by DF methods. Such a
separation leads to disastrous results as can be seen in
Table XVI. The usual argument for treating exchange and
correlation together is based on the large cancellation
occurring between exchange and correlation energies due
to the much smaller extent of the xc-hole as compared to
the exchange and correlation holes taken separately. This
argument is certainly valid in extended systems but its
validity is doubtful for small systems where already the size
of the system limits the extent of both holes. The bad
results shown in Table XVI and resulting from a separate
treatment of exchange and correlation, rather indicate a
poor description of the correlation hole at intermediate
distances—a region not amenable to gradient corrections
based on electron-gas theory. At this stage, the relatively
good results obtained for the combined DF treatment of
exchange plus correlation must be considered as fortuitous.
Indeed, as we shall see in the next section, Becke [106] has
managed to produce accurate correlation energies for a
large number of molecules using an approximation based
on arguments relevant only to exchange energies.

5.5. The Becke approach

In the previous subsections we have described attempts to
design approximations beyond the LDA which are based
on a careful analysis of the effects of exchange and
correlation in inhomogeneous systems. From early on,
Becke has taken a different approach to DF theory. In
principle we seek to map out the functional E,.[n] in
systems of interest which, in Becke’s case, have been
atomic and molecular systems. Suppose that we have
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designed a functional based on, e.g., the density, its
different gradients, and different integrals thereof, con-
taining a large number of parameters. Suppose further,
that we were able to determine those parameters in such
a way that the chosen functional, within a certain
accuracy, reproduces the exact E,. for a large number
of physical systems with rather different properties with
regard to exchange and correlation. Then, we would
certainly believe that we had obtained an accurate
description of the true E,.[n], at least for densities not
deviating in a qualitative way from those already studied.
We would feel comfortable in applying the constructed
functional to unknown systems and we would have some
confidence in the results thus obtained. There are
certainly theoreticians who would be prone to scorn the
described procedure but we find such attitudes unwise.
First of all, the semi-phenomenological procedure will
enable us to treat more complicated systems with much
greater ease as compared to ab initio methods. And we
could even attack systems which presently are beyond
computational feasibility and we could concentrate on
other physical aspects like, e.g., molecular reactions.
Secondly, we would have learned something about the
functional E\.[n]. For instance, if our chosen functional
form contains only the density and its first spatial
derivatives we would know that it must be possible to
cast a sophisticated ab initio theory in a form containing
the same basic ingredients.

When we, after this philosophical digression, return to
Becke’s work we must stress that a considerable amount of
physical insight is needed in order to invent a reasonable
functional form for E..[n]. A better functional form leads
to fewer adjustable parameters and Becke’s functionals do
contain few parameters. He started with the observation
that when density gradients become large, gradient
corrections are irrelevant. Concentrating on the exchange
energy, Becke [64] designed a functional which, at small
gradients, amounts to a normal second-order gradient
correction with an adjustable coefficient and which
becomes an adjustable constant at large gradients. As a
matter of fact most of Becke’s gradient corrections for
exchange can be expressed in terms of an enhancement
factor Fy(s) times the LDA or LDX as discussed in Section
5.4 in connection with the Perdew—Wang scheme. The first
one [64] used

ps®

Fx(s) =1+ 1 +)/S2.

The parameters S and y were adjusted so that this
particular form gave an accurate fit to the exchange
energies of a large number of  atoms
(B =0.2351,y = 0.2431). To this exchange energy must
be added some approximation for the correlation energy
and in his first semi-empirical approach toward molecular
energies Becke chose one due to Stoll er al. [107] This
approximation is much superior to the LDA for correla-
tion energies of finite systems but is has the wrong slowly
varying limit. The resulting atomization energies of the first
row dimers can be studied in Table XV. The maximum
error is 0.8 eV and the average error for the seven molecules
is 0.3 eV. The corresponding figures for the LDA are 2.4eV
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and 1.2¢eV. Considering the simplicity of the approxima-
tion this represents an extraordinary achievement which
only recently has been surpassed by a rather specialized
GGA based on many adjustable parameters.

Based on ideas concerning the behavior of exchange
energies in strongly inhomogeneous systems (large gradi-
ents) Becke [96] later proposed a minor modification of the
above F, amounting to raising the denominator to the 4/5
power and changing g and y but, to our knowledge, this
functional has never been tested in molecules. This is
certainly not true about the next gradient correction for the
exchange energy by Becke [11] which reads

ps’

F(s) =1+ 1 4+ (2.25/m) Bs arcsin h(ys)

Here, y is a well defined constant equal to y = 2(672)'/? (a
conversion between Becke’s x = |Vp|- p~#? and Perdew’s
s = |Vn|/(2kpn)) and only B is an adjustable parameter
which is determined by a fit to atomic exchange energies. A
value of B = 0.2743 gives an average exchange-energy error
of only 0.11% for six noble-gas atoms—a truly remarkable
result considering the simplicity of the above ansatz. The
chosen form for F might appear peculiar but it is
constructed to give the correct inverse-distance dependence
of the exchange-energy density far outside a finite system.
In this region, the density decays as e™*" and it is not
difficult to see from the properties of the inverse sine
hyperbolic function that this leads to a contribution of the
form

1 nr)
2Jr>R r &

to Ey[n] at large R. In fact, this particular exchange-energy
functional is presently the only available functional with
this correct behavior. But we are a little doubtful about the
value of this property since the energy contributions from
the large-R regions are small due to the very small density
in these regions. Nevertheless, this “ansatz’” by Becke has
proven extremely successful. Becke [106] has tested the
functional by calculating the atomization energies of the 55
molecules of the so-called Gaussian-1 data base of Pople et
al. [12,108] For this test, Becke used the normal LDA for
the correlation energy—an approximation known to over-
estimate the correlation energy by a factor two to three.
One can only speculate why Becke refrained from adding
one of the existing gradient-type correlation corrections to
the LDA. In any case, his results were astonishingly good.
The average absolute error was only 0.16eV (3.7 kcal/mol)
and the maximum error was 0.48¢V. The corresponding
errors of the LDA are 1.6eV and 3.7¢V, i.e., an order of
magnitude larger. Since there is a large overestimate of the
correlation energies in the test, Becke’s exchange functional
must, somehow, make up for the difference. It is an
interesting task for future research to understand how this
cancellation of errors comes about. The Cl-oriented ab
initio results for the same set of molecules have average
errors of the order of 1 kcal/mol [12,108] and we clearly see
that DF methods are approaching the same quality but
with much less effort.
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In other tests on atoms and molecules, Becke found that
the tested functional had an unsatisfactory performance in
the case of electron non-conserving processes like, e.g.,
ionization. Becke [109] then decided to add to his previous
functional the, at the time, most recent gradient correction
by Perdew et al. [97] (PWI1C) for the correlation energy.
The approximation for the exchange energy remained the
same—the arcsinh-ansatz. Becke also enlarged his data
base by including many ionization potentials and several
proton affinities and redid the test, again with a very
impressive result [109]. The average absolute error and the
maximum error for the atomization energies of the
molecules of the Gaussian-1 data base was found to be
0.25e¢V and 0.8eV respectively. Thus, an “improved”
description of correlation effects results in slightly larger
binding-energy errors but there is a big gain as far as
ionization potentials are concerned. These show an average
error of only 0.15eV and a maximum error of 0.44eV. The
corresponding numbers for the LDA are 0.23eV and
0.62¢eV for 42 ionization potentials.

These results represent, on the average, close to an order
of magnitude improvement over the LDA and this is
indeed encouraging. We are closer to achieving ‘‘chemical”
accuracy but there is still some way to go. Occasional
errors of the order of 0.8 eV cannot be tolerated. The Becke
functionals are specially designed for finite systems (atoms
and molecules) and they have the wrong slowly varying
limit. What this would mean for solids or larger molecules
is hard to say. Since only the gradient terms are in error, we
would not expect the Becke functional to be any worse
than the LDA in extended systems. From a theoretical
point of view, however, we would prefer a functional with
all the correct limits built in but no such functional can
presently overshadow the one by Becke in smaller
molecules.

As mentioned several times in these notes, exchange
energies are much larger than correlation energies even in
extended systems like metals. This immediately suggests
that one should treat exchange exactly and, e.g., use a
GGA for only the correlation energy. So far, attempts in in
this direction have failed as can be seen in Table XVI. In
1993, Becke [110] suggested a hybrid method in which half
of the exchange energy is treated exactly leaving the other
half plus the correlation contribution to approximations of
the GGA-type. Theoretical support for this scheme can
again be obtained from the basic formula of Section 2.3 for
the xc-energy sometimes referred to as the “‘adiabatic
connection” formula. Using the bare LDA for the
correlation contributions Becke found that this new
scheme had an accuracy similar to his previous functionals
for the atomization energies of the Gaussian-1 data base.
In one further step Becke [111] included some of the
correlation correction of Perdew et al. (PW91C) and
decided to treat the amount of exact exchange as a fitting
parameter. His “hybrid” functional can be summarized as

Ex[n] =E2nl + a, - (Ey[n] — EX"[n])

+ac AEP® +a.- AEP"!

where a,, a,, and a. are semi empirical coefficients to be
determined by an appropriate fit to experimental data. The
symbol A signifies the gradient part of the corresponding
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approximation, B88 refers to the Becke [l1] gradient
correction for exchange (the arcsinh-ansatz), and PW91
refers to the mentioned gradient corrections for the
correlation energy by Perdew ef al. [97] The functional
E\[n] is the exact exchange-energy functional, i.e., the
Hartree-Fock exchange-energy expression, here evaluated
using the DF orbitals, and EL? is the LDA version of only
the exchange energy. The functional defined by the above
equation is, in the literature, referred to as the B3PWO9l1
functional where the “3” referes to the term ‘‘thermo-
chemistry III” appearing in the title of Ref. [111]. The
parameters a,, a,, and a. of the B3PW91 were determined
by fitting to the Gaussian-1 data base including also 42
ionization energies and 8 proton affinities and the resulting
optimum parameters were found to be a, =0.20,
a,=0.72, and a, = 0.81. These values resulted in an
average absolute error of only 0.10eV (2.4 kcal/mol) for the
atomization energies with a maximum error of 0.33eV.
These results are now about a factor of two away from the
proclaimed goal of chemical accuracy meaning errors of
the order of 1kcal/mol.

Results like those just discussed had a strong impact on
the community of quantum chemists and in the beginning
of the nineties the use of DF methods started to spread
rapidly within this community. [112,113] New gradient
corrections for the correlation energy were constructed by
Becke [114] and by Lee, Yang, and Parr (LYP) [115]. Both
these functionals have been tested on small molecules by
Miehlich et al. [112] Johnsson and coworkers [113] have
also applied the LYP correlation functional in conjunction
with the Becke gradient correction for exchange in an
extensive test on a large number of smaller molecules. The
conclusion from these tests is that the performance of the
Becke correlation functional, the LYP functional and the
previously discussed PWO91 functional for correlation
energies is rather similar.

The most widespread functional among the chemists is
probably the one called B3LYP. It is a again a so called
hybrid functional meaning that some portion of exact
exchange is mixed into the expression for the exchange-
correlation energy. It actually looks almost identical to the
Becke functional B3PW91 displayed above except for the
fact that the gradient part of the correlation energy is
replaced by the LYP expression. [115] Using the para-
maters (a,, ay, and a.) optimized by Becke also in the
B3LYP functional, Curtiss and coworkers [116-118] have
peformed extensive tests of the latter as applied to many
properties of a wide range of molecules. In molecular
applications, the B3LYP rather consistently outperforms
most other density functionals allthogh the difference to,
e.g., the B3PWOI is marginal.

The tests reveal, however, that results deteriorate with
the size of the molecules. This should, however, come as no
surprise since the the well known anomalies caused in
extended systems by an unscreened exchange is expected to
ruin the results of the hybrid functionals in solids and
compromise their performance in larger molecules. Still the
success of the hybrid functionals B3LYP and B3PWO91
indicate that some sort of non-local exchange should be
incorporated into future more accurate functionals—non-
localities above those that can be accounted for by mere
gardients.
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5.6. The Meta-GGA

As we have seen above, generalized gradient approxima-
tions (GGA:s) constructed from only the density and its
first spatial gradient are still some distance away from
chemical accuracy (1 kcal/mol). And the efforts to con-
struct GGA:s range from ab initio and parameter-free
theory to advanced fitting schemes involving a large
number of parameters. The situation is summarized by a
very nice argument due to Philipsen and Baerends [120].
They first observe that the binding energies of molecules
and solids are dominated by exchange effects and then go
on to write the exchange energy like we did in our
discussion of the Perdew—Wang scheme in Section 5.4. One
can write all GGA:s involving only the density and its first
gradient in the form

Eyln] = Jn(r)sx((noo)Fx(s(r)) &r

where e,(n) is the exchange energy per electron of the
homogeneous electron gas of density n and s(r) is the
reduced dimensionless density gradient as defined in
Section 5.4. Different GGA:s only differ in their choice
of enhancement factor F,(s) where F, = | corresponds to
the LDX, i.e., to the exchange-only version of the LDA.
Finally, their investigations show that the binding energies
originate in regions of space where the reduced density s
lies in the interval 0.5 < s < 2.5. Regions of very small
gradients—the slowly varying regime—or of large gradi-
ents—the asymptotic region outside atoms—contribute
little to the binding energies. In the important interval for
s, most GGA: have a rather smoothly increasing
enhancement factor and if there were such a thing as an
“exact F,”, it would certainly be very easy to model that
with a few parameters. On the other hand, distorting F, to
obtain exact exchange energies for a few systems would
certainly worsen the results for others. We can thus safely
conclude that the whole idea of modeling exchange
energies by the density and its first gradient is of limited
validity. Moreover, given the failure of extensive fitting
procedures in reaching chemical accuracy, we have
probably already reached the limits of this approach.

In view of the discussion in the previous paragraph, it
appears rather strange that there exist so few attempts at
incorporating also more complicated but still local
dependencies on the density like, e.g., the Laplacian of
the density or the kinetic-energy density. Suggestions in
this direction have not been lacking [47,93,121] and some
quantum chemists have included the Laplacian in their
attempts to fit chemical data to results from Meta-GGA:s
[122-124]. From a fundamental point of view, gradient
corrections to the LDA involving the Laplacian originate
in second-order response theory about which little is
known. And from a more pragmatical point of view the
fitted corrections based on the Laplacian did not lead to a
breakthrough in DFT although the results from these
attempts clearly demonstrated the advantage of including
also the Laplacian when constructing phenomenological
gradient corrections [122]. The theoretical situation
improved when the coefficient involving the Laplacian to
lowest order was calculated by Svendsen and von Barth
[47] in the Exchange-Only approximation (EXO). This
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inspired Perdew and coworkers [53] to apply their brand-
marked philosophy of designing gradient corrections by
incorporating as many known exact results as possible into
the construction. In addition to the Laplacian, the resulting
Meta-GGA had the kinetic-energy density as an extra
ingredient. But the latter was expanded in gradients up to
and including the Laplacian of the density thereby allowing
Perdew et al. to express the Laplacian in the Kinetic-energy
density. In this way, they could substitute the latter for the
former. The considerable advantage of this procedure
stems from the fact that the kinetic-energy density, as
opposed to the Laplacian, is well behaved both close to the
nuclei and in the outskirts of finite or semi infinite systems.
The result is a Meta-GGA with the correct expansion in the
slowly varying regime but without the known singularities
of the Laplacian. In the former respect, their Meta-GGA is
actually superior to their previous and widely used GGA—
the PBE [61].

Several tests of this Meta-GGA in variety of systems
ranging from localized to extended have revealed [39,53] a
substantial improvement over, e.g., the PBE [61]. The
results for the atomization energies of a number of
molecules can be seen in Table XVII.

We see from Table XVII the relatively better ability of
the Meta-GGA, as compared to the PBE, to distinguish
between molecules having double and triple bonds. The
results of the Meta-GGA are now comparable to those
obtained by Becke [110,111] in his procedure to include a
certain suitably fitted percentage of the exact exchange
energy into his functionals as discussed in Section 5.5. And
this has been achieved through the use of fundamental
theory. It should also be remembered that Becke’s
functionals are designed for finite systems in particular
and do not perform well in extended systems. The same
remark can be made about most of those functionals
containing a large number of parameters and fitted to an

Table XVII. Atomization energies (in kcal/mole) calculated
using the LDA, the PBE-GGA [61], and the Meta-GGA
[53] of Perdew and coworkers compared to experimental
data (Exp.) stripped of the energy of the zero-point motion.

Molecule LDA PBE-GGA Meta-GGA Exp.
H, 113.3 104.6 114.5 109.5
LiH 61.1 53.5 58.4 57.8
CHy4 462.6 419.8 421.1 419.3
NH; 337.3 301.7 298.8 297.4
OH 124.2 109.8 107.8 106.4
H,O 266.6 234.2 230.1 232.2
HF 162.3 142.0 138.7 140.8
Li, 23.8 19.9 22.5 24.4
LiF 156.1 138.6 128.0 138.9
Be, 12.8 9.8 4.5 3.0
C,H, 460.3 414.9 401.2 405.4
CoHy 632.7 571.5 561.5 562.6
HCN 360.8 326.1 311.8 311.9
CO 298.9 268.8 256.0 259.3
N, 266.9 243.2 229.2 228.5
NO 198.4 171.9 158.5 152.9
0, 174.9 143.7 131.4 120.5
F, 78.2 53.4 43.2 38.5
P, 143.0 121.1 117.8 117.3
Cl, 82.9 65.1 59.4 58.0
mean abs. error 31.7 7.9 3.1 -
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extensive body of chemical data, even though some of these
outperform the present Meta-GGA in molecules [122].

The performance of the Meta-GGA has also been tested
in calculations of the surface energies of metallic systems
[39,53], again with very encouraging results. Part of this
success is certainly due to the present Meta-GGA being
correct in the slowly varying limit, a property not shared by
most other GGA:s.

Still, as we also see from Table XVII, errors in
atomization energies of molecules can easily amount to
half an eV or more. This is actually a factor of ten worse
than our proclaimed goal of so called ‘chemical accuracy’.
Neither have any of the semi-empirical functionals been
able to consistently achieve this goal. In my opinion, the
hope of capturing the complexity of the full static many-
body problem in terms of only the density and a few of its
gradients, is futile. Nevertheless, I recommend the Meta-
GGA described above as the standard approximation to be
used in all DFT calculations of substances, finite as well as
infinite, about which little is known before hand.

6. Real space methods

My comments throughout the sections on the GGA:s
probably convey the message that we are at ways end as far
as these methods are concerned. And this was actually my
intention because this is my present working hypothesis.
The fitting schemes involving the density and the first-order
gradient and being constructed by means of neural
networks give average errors around 2kcal/mol but
occasional errors ten times as large in localized systems.
Including also the Laplacian in the fitting procedures might
reduce these errors further. Judging from the discussed (see
Section 5.6) experience from the Meta-GGA—maybe
down to average errors of ~1.0-1.5kcal/mol and occa-
sional errors of the order of 10kcal/mol. Adding even
higher-order gradients is likely to result in successively
smaller improvements.

Given the extreme computational advantage in using DF
methods and the need for higher accuracy, how do we
proceed? I do certainly not have the answer to this question
but there is another route which has not been followed
until the end. In Section 2.3, we discussed the LDA from
the point of view of modeling the exchange-correlation (xc)
hole in real space and we will now explore further
possibilities along this track.

6.1. Early attempts

The construction of the LDA was described formally in
Section 2.3 but we might gain some understanding by
dressing the construction in words. We might recall that
the xc energy is the total energy associated with each
electron interacting with its xc hole. We obtained the LDA
by cutting the xc hole around each electron out of a
constant density given by the value n of the density at that
electron. Moreover, the hole contained precisely one
electron and had a spherical shape and an extent given
by the ry-value (47rin = 3) at the reference electron. When
the density varies rather rapidly from point to point it
would seem more appropriate to dig the hole out of some
effective density n obtained by averaging the correct
density around the reference electron. Such a procedure
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was suggested by Gunnarsson, Jonson and Lundqvist
(GJL) [54] who also suggested that the extent of the hole be
governed by the same average density n. The resulting
expression for the xc energy then becomes

ELln] = [nw)e, ) o'
where the average density 7 is obtained from
n(r) = JW(V —¥)n @) d

with some appropriate weight function W(r) obeying the
sum rule

JW(r) d*r=1

dictated by particle conservation. Here, as before, &,.(n) is
the xc energy per electron of the homogeneous electron gas.
As in the case of the LDA, this means that the pair-
correlation function is still modeled by that of the gas. The
weighting function W(r) can certainly be chosen in many
different ways but, in analogy with the construction of
gradient expansions, GJL suggested to choose W such that
the new theory exactly reproduces the static linear density
response function of the homogencous electron gas. They
showed that this requirement actually leads to a unique
determination of the weight function W provided some
extra minor conditions of physical origin are imposed.
Consequently, the weight function W becomes a unique
property of the homogeneous gas. It is a function of the
length r of the radius vector and of the homogeneous
density » which can be tabulated once and for all. In order
to obtain the simple formula for the xc energy shown
above, the density argument in the weight function W must
again be chosen to be the resulting average density 7n(r) at
the position (r) of the reference electron.

Before discussing the numerical consequences of the new
scheme, which by GJL was referred to as the Average
Density (AD) approximation, we will also introduce the
Weighted Density (WD) approximation by the same
authors [54]. This approximation was independently
suggested by Alonso and Girifalco [125] and GJL called
it the Weighted Density (WD) approximation. This scheme
is rather similar in spirit to the AD approximation. The xc
hole is still modeled by means of the pair-correlation
function of the homogeneous gas but the density pre-factor
is the correct pre-factor n(') of the exact expression for the
xc energy. Thus the xc hole is dug out of the true density of
the inhomogeneous system and the requirement that the
hole must contain precisely one electron is, for each
reference electron at r, guaranteed by choosing an
appropriate density argument in the pair-correlation
function of the gas. The expression for the xc energy
E"P in the WD approximation becomes

EZD[n] = %Jn(r)n(r e — r'; ar)) — Uv(r — ¢y &3 dr

where the density n, for each point r in space, has to be
determined such that

Jn(r/){gh(r — i) =1} &' = —1.
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From these expressions we immediately notice their
asymmetry with respect to their spatial arguments r and
¥—in contrast to the symmetry displayed by the exact
expression for the xc energy. The asymmetry is also build
into the AD approximation and we remind the reader (see
Section 2.3) that also the LDA suffers from the same
ailment. It might not mean so much as far as the resulting
value for the energy is concerned since the value of the
integral remains the same if we replace r by ' in the density
argument of the pair-correlation functional. But it makes a
big difference when we later want to construct the resulting
xc potential by taking a functional derivative of the xc
energy with respect to the density.

Both the AD and the WD schemes certainly have more
physically correct features added to them as compared to
the LDA and we would thus expect them to outperform the
latter. The WD approximation was first tested by Alonso
and Girifalco in a calculation of the exchange energies of a
number of atoms. Much to their liking they found a large
reduction of the ~ 10% exchange-energy errors one is used
to from the LDA. Unfortunately, the WD approximation
over corrected the LDA exchange energies. When GJL
later included also the correlation effects they found that
the WD scheme destroys the nice cancellation occurring
within the LDA between the errors coming from exchange
and correlation. As a result the atomic xc energies of the
WD scheme are actually worse than those of the LDA.
Also the AD scheme gives reasonable atomic exchange
energies—better than those of the LDA but somewhat
worse than those of the WD scheme. Unfortunately, the
AD approximation gives a very bad description of the
atomic correlation energies (too small in magnitude).
Nevertheless, the total xc energies are, on the average, a
factor of two better than those of the LDA. Considering
the extra effort and superior physical reasoning involved in
the construction of the AD and WD schemes, the atomic
test results are a clear disappointment. Using a technique
called shell partitioning, GJL managed to improve
considerably on the atomic results of both the AD and
the WD approximations. But this theory is very inelegant
and very much dependent on the system under study. The
concept of shells is rather well established in atoms but
become ill-defined in pseudo solids and we do not wish to
pursue this line of work any further.

GJL also tested both the AD and the WD schemes in the
calculation of surface energies. Unfortunately, the results
were very unphysical, a fact which they blamed on the
difference between the exact xc holes and of the approx-
imate ones extending too far into the bulk regions. Both
the AD and the WD schemes give, however, a much better
description of the surface region as compared to the LDA
with its exponentially decaying xc potential. The xc
potentials of both schemes have an image-like behavior
although the coefficients are wrong. Likewise, both
schemes give a one-over-distance dependence of the xc
potentials outside any finite system—in contrast to the
exponentially decaying potential of the LDA. Like in the
case of the surface, the coefficients are, however, not
correct. In my opinion, this failure is in both cases
connected to the asymmetry of the expressions for the xc
energies in the two schemes (see the discussion above).
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In a later publication [126], Gunnarsson and Jones
abandoned the idea of trying to model the xc hole by
means of the pair-correlation function of the homogeneous
gas. Instead, they choose a very localized function of the
form

g(r,r') = go(lr —r'l; Ar))

where

go(r;n) = 1 — Am){1 — exp[—2"(n)/r°]}.

By requiring this ansatz to give the correct xc energy and
normalization of the xc hole for the homogeneous electron
gas, the two parameters 4 and A become unique functions
of the density n. As in the WD scheme, the density 7n(r) is
then determined for each position r of the reference
electron, by requiring the xc hole of the inhomogeneous
system to contain precisely one electron. The power five on
the distance dependence in the exponent is actually chosen
such that the resulting approximation gives an image-like
behavior with the correct coefficient outside a metallic
surface. We notice again that this scheme lacks the
symmetry discussed above and is thus likely to show the
same inconsistency between energy density and potential
that we noted in all the previous cases—be it the LDA or
the AD or WD approximations.

The new scheme gives atomic xc energies which are
almost an order of magnitude more accurate than those of
the LDA—with errors typically less than 1%. And with the
more rapid decay of the xc hole and the correct image
behavior outside metallic surfaces, the new scheme stands a
chance of producing reasonable surface energies. As far as
we know, however, this has never been tested. But it has
been tested on atomic ionization potentials where it
actually does worse than the LDA. Notice that ionization
potentials are differences between two ground-state ener-
gies and therefore obtainable from two DF calculations.
The fact that the new scheme does not do well for a
property mainly associated with the more slowly varying
valence electrons suggest that the model is much too
simplified and contains too little physics.

6.2. The screened exchange model

The relatively bad results, at least in comparison with the
successes of the GGA:s, obtained from the early attempts
to model exchange and correlation in real space probably
caused these methods to fall into disrepute. An additional
discouraging factor is that the real-space methods invari-
ably seem to require more computational work in order to
obtain the energy and, particularly, the potential. As we
have argued many times previously in these notes, the latter
objection is not a serious one since we can always rely on
the variational property of the energy functional to
calculate the total energy of any new functional by
applying it to the self-consistent density of a GGA or
even an LDA calculation.

We are, however, not prone to giving up easily and my
postdoc Robert van Leecuwen and I decided to have
another go at it in 1996 [127]. In the spirit of John Perdew,
we decided to try and build in as many known correct
properties as we could without making the theory
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inapplicable to real systems of interest. Here is a list of the
properties which guided or most recent construction:

e Exchange energies are a factor of four to thirty larger
than correlation energies where the former factor refers
to metallic sodium and the latter to many atoms.

e In many atoms, the term structure, i.e. the energies of
low lying excitations of definite symmetry, can be
accurately predicted on the basis of simple term-
dependent Hartree-Fock (HF) theory provided the
Slater Coulomb ( F;) and exchange (Gy) integrals are
reduced by 25% in value [75]. This means that the effects
of different symmetries are reasonably well described by
HF theory.

e In larger systems, the effect of correlations is, among
other things, to reduce the range of the xc hole. In an
extended system the pair-correlation function of HF
theory decays as an oscillating function over distance to
the third power. When correlation effects are included
the decay changes to one over distance to the fifth power.

e In Section 4.5 we discussed the shortcomings of the LDA
relative to HF theory in describing the so called s-p
transfer energies. On this basis we argued that the nodal
structure of the one-electron orbitals should be included
in the construction of an accurate functional for the xc
energy.

e In the prototype molecule H,, HF theory gives an
exchange hole the shape of which is independent of the
position of the reference electron and which puts half an
electron on each atom when they are pulled apart. In
reality, the xc hole is relatively independent of the
position of the reference electron if this is close to one of
the protons. But at larger proton separation, the xc hole
has almost all its weight on the atom where the reference
electron sits. It seems impossible to model this behavior
using any function of r — ¥ reminiscent of the electron
gas.

These considerations resulted in the following model for
the xc functional which we coined the Screened-Exchange
Model (SEM):

ESM[n) = —%J|n(r, )P A AGF)Br — ) dr &

where the quantity n(r, ¥) is the one-particle density matrix
of Kohn—-Sham orbitals,

oce
nr, ') =2 (i)
k
The correlation factor 4 - 4 - B has two ingredients:

(i) The electron-gas-like component B serves the purpose
of contracting the exact exchange hole in a manner
similar to this effect in the electron gas with an
effective density given by the geometric mean of the
densities at r and ' Thus, we choose

B(r;n) = [1 + a(n)r/ry + b(n)(r/ r‘v)z] e—cmr/rs
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with an effective density given by (as usual 47r3n = 3)

n=n=/nr)n().

Two of the density-dependent parameters a, b, and ¢
are chosen such that the model becomes exact for the
electron gas (xc energy and sum rule), and the third
can, e.g., be determined such that the theory gives the
exact total energy for the He atom.

(if) The factor A is based on a new idea and is what allows
the xc hole to move to one side of a dimer when the
reference electron goes there. It is determined by the
sum rule prescribing one unit of charge in the xc hole:

A(;‘)J|n(r, )P AW)B(r — ¥|; ii(r, ¥)) & = 2n(r).

Consequently, the correlation factor A(r) is deter-
mined by by an integral equation which has to be
solved at each point in space. Fortunately, the factor
A(r) varies slowly between one and two and few
iterations are usually needed for determining this
factor.

In comparison to previous models this one has a number of
improvements:

e It contains the exact exchange energy.

It is fully symmetric in the arguments r and »'.

It gives the correct energy densities and potentials
outside finite systems and outside metallic surfaces.

It gives a correct description of the dissociation of the
Hydrogen molecule.

e It is exact in the slowly varying limit.

Unfortunately, we have not had the time to pursue this
research much further but the model definitely appears to
hold a lot of promise. In Fig. I and Fig. 2 we compare the
correlation hole and the xc hole of the H, molecule at its
equilibrium distance (~1.4 Bohr) to the corresponding
quantities from the Screened Exchange Model. In both
cases we show a plane through the molecular axis and the
reference electron is on that axis and close to the Hydrogen
atom to the right in the figures (at ~0.7 Bohr). As seen, the
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Fig. 1. A comparison of the true correlation hole of the H, molecule at the
equilibrium distance to that (dotted) of the Screened Exchange model. The
reference electron is close to the hydrogen atom to the right (at ~0.7
Bohr).
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Fig. 2. A comparison of the true exchange-correlation hole of the H,
molecule at equilibrium distance to that (dotted) of the Screened Exchange
Model. The reference electron is on the molecular axis close to the
hydrogen atom to the right (at ~0.7 Bohr).

screened-exchange model gives a very realistic description
of the exact xc hole in the H, molecule.

One might also wonder if this model would stand a
chance at describing also the very interesting van-der-
Waal’s (vdW) effects. After all, it seems to have several
correct long-range features build into it. Our gut feeling at
the moment is that the model is too simple minded for
dealing with these extremely long-ranged effects. For such
effects we refer to recent work by Langreth, Lundqvist and
collaborators (see e¢.g. Ref. [128] and references therein).
Their theory is, however, especially designed for treating
the vdW effects and, with regard to correlations, it does not
cover the whole range of distances from the vdW region
into the interior of atoms.

7. Conclusions

We will end these lecture notes by voicing our prejudices
concerning the present remaining problems within static
DFT.

e The band-gap problem.
The nature of correlations and also of the gradient part
of the exchange energy is drastically altered by the
introduction of a band gap. This represents an extremely
non-local effect which we can never hope to capture
using, e.g., gradients. It must be explicitly fed into any
very accurate functional for the xc energy [129]. Most
likely also into the correlation factor of the Screened-
Exchange Model of Section 6.2.

o The symmetry problem.
In finite systems, a difference in the symmetry of two
states can have a strong effect on their energies while
their densities can be very similar. None of the existing
GGA:s or Meta-GGA:s have this effect built into them.
This points toward orbital-dependent functionals.

e The long-range problem.
There are two kinds of long-range problems—the van-
der-Waal’s problem and the extremely long-range
problem associated with, e.g., the build up of a static
polarization in an extended system. As in the case of
band gaps, the latter problem might be solvable by
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feeding the polarization directly into the xc functional.
There is, however, an interesting new approach in which
this problem can be dealt with through the use of local
approximations but within current density-functional
(CDFT) theory rather than within standard DFT [130].
There is so far no unified approach to the standard

correlation problem in solids and molecules and the
treatment of the van-der-Waal’s interactions. Such an
approach is more likely to be found among orbital-
dependent functionals than among the GGA:s.

e The near degeneracy problem.
This problem was discussed in Section 4.5 and is
certainly outside any approach based on gradients. It
could, perhaps be dealt with through models of the xc
hole based on several determinants. But we do, at the
moment, not know how to make this into a system
independent approach. After all, a few determinants
within one set of orbitals is an infinity of determinants in
another.

e The surface problem.
We are here referring to the problem of finding the xc
energies coming from the surfaces of solids, from low-
density regions in solids, or from the outskirts of atoms
and molecules. This is the problem to which the GGA:s
or the Meta-GGA:s are best suited and these are
probably already accurate enough provided we do not
require more of them than just that.

e The core problem.
This is a very difficult problem within DFT which
fortunately is rather irrelevant. We deal with this
problem by either relying on a cancellation of errors or
through the use of pseudo potentials. A word of caution,
however. We are soon moving into the area of non-local
xc functionals. These are non-local in the sense that, e.g.,
the xc energy density depends not only on the local value
of the density and its different gradients but rather on
some integrated property of the density. It is then not at
all clear that such a theory can be pseudized to a very
high degree of accuracy.

Thank you for your attention!
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