
Finite Element Design Sensitivity Analysis for
Nonlinear Potential Problems

Raino Mäkinen
University of Jyväskylä

Finland

http://users.jyu.fi/ ̃rainom/

Abstract

Design sensitivity analysis is performed for the finite element system arising from
the discretization of nonlinear potential problems using isoparametric Lagrangian el-
ements. The calculated sensitivity formulae are given in a simple matrix form. Ap-
plications to design of electromagnets and airfoils are given.
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1 Introduction

Shape optimization problems are optimal control problems where the control is some ge-
ometrical parameter􏷣,􏷤,􏷦. Traditionally optimal shape design is associated with structural
optimization. However, any shape optimization problem which is governed by an ellip-
tic partial differential equation can be solved numerically using the same techniques. In
this work we consider the case where the state problem is approximated by the finite ele-
ment method. Although the continuous setting of the problem may be a distributed control
problem, the numerical optimization problem always has a finite number of parameters.

By design sensitivity analysis we mean computing derivatives of the finite element solu-
tion with respect to nodal coordinates of the finite element mesh. Although the geometric
sensitivity analysis is one of the most crucial steps in numerical shape optimization, it is
still considered extremely elaborate and difficult even for linear problems. This is proba-
bly due to the bad form in which most of the sensitivity formulae are presented. In these
formulae there are usually too much explicit dependence on certain application or element
type. This implies nonstructured programs which are difficult to debug and maintain.

In what follows, we develop the geometric sensitivity analysis in matrix form for a class of
nonlinear potential equations. We assume that the continuous problem is discretized using
isoparametric Lagrangian elements. A sensitivity analysis of this type for linear elasticity
problems has already been done by Brockman􏷡,􏷢. Also Zolesio􏷧,􏷨 has performed the sensi-
tivity analysis in the linear case using the so-called speed method for domain deformations.
The speed method gives the same sensitivity formulae, although the derivation of the for-
mulae is quite different. In addition we show how to compute efficiently the sensitivity of
a functional depending on the finite element solution. The results can be applied in numer-
ical realization of optimal shape design problems, where the system is governed by these
nonlinear problems.

2 Sensitivity of the discrete solution vector of a nonlinear
potential equation

Consider the nonlinear potential problem with mixed boundary conditions

⎧⎪⎪
⎨⎪⎪⎩

−∇ ⋅ 􏿴𝜌(𝑥, |∇𝑢|􏷡)∇𝑢􏿷 = 𝑓 in Ω ⊂ ℝ𝑛, 𝑛 = 2, 3
𝑢 = 0 on Γ􏷠

𝜌(𝑥, |∇𝑢|􏷡)∇𝑢 ⋅ 𝑛 = 𝑔 on Γ􏷡.
(1)
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Here 𝜕Ω = Γ􏷠 ∪ Γ􏷡, 𝑓 ∈ 𝐿􏷡(Ω), 𝑔 ∈ 𝐿􏷡(Γ􏷡) and 𝜌 ∶ ℝ𝑛 × ℝ → ℝ is a given smooth
function. We assssume that for given data the problem (1) is an elliptic problem and has
an unique (weak) solution.
We discretize the problem (1) using Lagrangian finite elements of order 𝑘. Then the discrete
analoque of problem (1) reads as

𝑢ℎ ∈ 𝑉ℎ ∶ 􏾙
􏸵ℎ

𝜌(𝑥, |∇𝑢ℎ|
􏷡)∇𝑢ℎ ⋅ ∇𝑣ℎ 𝑑𝑥

= 􏾙
􏸵ℎ

𝑓𝑣ℎ 𝑑𝑥 +􏾙
􏸶􏷫ℎ

𝑔𝑣ℎ 𝑑𝑠 ∀𝑣ℎ ∈ 𝑉ℎ, (2)

where 𝑉ℎ = {𝜑 ∈ 𝐶􏷟(Ωℎ) ∣ 𝜑|𝑇𝑒
∈ 𝑃𝑘(𝑇𝑒), 𝜑|􏸶􏷪ℎ = 0} is the piecewise polynomial finite

element space and Ωℎ = ∪𝑇𝑒 is the finite element mesh. The matrix form of problem (2)
is the system of nonlinear equations

𝐊(𝐪) 𝐪 = 𝐟, (3)

where𝐊(𝐪) is the “stiffness” matrix and 𝐟 is the “force” vector respectively. The unknown
vector 𝐪 contains the nodal values of 𝑢ℎ.
Suppose now that the nodes of the finite element mesh depend on a real parameter 𝛼. Our
aim is to find the sensitivity of the solution vector 𝐪 with respect to 𝛼, i.e. to find 𝜕𝐪/𝜕𝛼.
In what follows we will denote ( )′ = 𝜕( )/𝜕𝛼.
If the nodes of the finite element mesh depend smoothly on 𝛼, we may use the implicit
function theorem and differentiate (3) to obtain

𝐊(𝐪)′ 𝐪 + 𝐊(𝐪) 𝐪′ = 𝐟′. (4)

The terms 𝐊(𝐪)′ 𝐪 and 𝐟 can be computed element by element using the relations

𝐊(𝐪) 𝐪 = 􏾝
𝑒

𝐏𝑒𝐊𝑒(𝐪𝑒) 𝐪𝑒 and 𝐟 = 􏾝
𝑒

𝐏𝑒𝐟𝑒. (5)

Here 𝐏𝑒 is the “local-to-global” expanding matrix, 𝐏𝑒T is the “global-to-local” gathering
matrix and 𝐪𝑒 = 𝐏𝑒T𝐪 (vector of nodal values of 𝑢ℎ associated to the 𝑒:th element).
In the case of isoparametric elements each element 𝑇𝑒 is obtained from the parent element
􏾧𝑇 ([−1, 1]𝑛, for example) by the mapping 􏾧𝑇 → 𝑇𝑒 ∶ 𝜉 ↦ 𝑥(𝜉). Let

𝐍 =
⎡
⎢
⎢
⎣

𝜑􏷠
⋮
𝜑𝑚

⎤
⎥
⎥
⎦

and 𝐋 =
⎡
⎢
⎢
⎣

𝜕𝜑􏷠/𝜕𝜉􏷠 … 𝜕𝜑𝑚/𝜕𝜉􏷠
⋮ ⋱ ⋮

𝜕𝜑􏷠/𝜕𝜉𝑛 … 𝜕𝜑𝑚/𝜕𝜉𝑛

⎤
⎥
⎥
⎦

(6)

3



be the matrices containing the values of the shape functions and their derivatives for the

parent element. Denote by 𝐉 = 􏿯
𝜕𝑥𝑗
𝜕𝜉𝑖

􏿲
𝑛

𝑖,𝑗=􏷠
the Jacobian of the mapping 𝜉 ↦ 𝑥(𝜉). Finally let

𝐗𝑒 =
⎡
⎢
⎢
⎣

𝑋􏷠
􏷠 … 𝑋􏷠

𝑛
⋮ ⋱ ⋮

𝑋𝑚
􏷠 … 𝑋𝑚

𝑛

⎤
⎥
⎥
⎦

(7)

be the matrix containing the nodal coordinates of the 𝑒:th element. ( In what follows, we
omit the superscript 𝑒 as we are now working with the 𝑒:th element). At a point 𝑥(𝜉) the
cartesian derivatives of the shape functions are now given by 𝐁 = 𝐉−􏷠𝐋 and the Jacobian
by 𝐉 = 𝐋𝐗.

Gaussian quadrature with integration points and weights (𝜉𝑘,𝑊𝑘), 𝑘 = 1, ..., 𝐾 is then used
to perform the numerical integration needed for computing the element stiffness matrix,
resulting

𝐊𝑒(𝐪𝑒) =
𝐾

􏾝
𝑘=􏷠

𝑊𝑘 𝜌(𝑥𝑘, 𝑠𝑘) 𝐁
T
𝑘𝐁𝑘|𝐉𝑘|, (8)

where 𝑠𝑘 = |∇𝑢ℎ(𝑥𝑘)|
􏷡, 𝑥𝑘 = 𝑥(𝜉𝑘), 𝐁𝑘 = 𝐁(𝜉𝑘), 𝐉𝑘 = 𝐉(𝜉𝑘) and |𝐉𝑘| = det 𝐉𝑘.

Lemma 1. The sensitivity of the “strain-displacement” matrix 𝐁𝑘 is given by

𝐁′
𝑘 = −𝐁𝑘𝐗

′𝐁𝑘. (9)

Proof: As 𝐁𝑘 = 𝐉𝑘
−􏷠𝐋𝑘, we have

(𝐉𝑘𝐁𝑘)
′ = 𝐉′𝑘𝐁𝑘 + 𝐉𝑘𝐁

′
𝑘 = 𝐋′

𝑘 = 0,

and therefore
𝐁′

𝑘 = −𝐉𝑘
−􏷠𝐉′𝑘𝐁𝑘 = −𝐉𝑘

−􏷠𝐋𝑘𝐗
′𝐁𝑘 = −𝐁𝑘𝐗

′𝐁𝑘.

The following Lemma is due to Brockman􏷡:

Lemma 2. For the sensitivity of the determinant we have

|𝐉𝑘|
′ = |𝐉𝑘|

𝑚

􏾝
𝑗=􏷠

∇𝜑𝑗(𝑥
𝑘)T(𝑋 𝑗)′. (10)
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Lemma 3. The sensitivities of 𝑠𝑘 and 𝑥𝑘 are given by

(𝑥𝑘)′ = (𝐗′)T𝐍𝑘 (11)

and
𝑠′𝑘 = 2 (𝐁𝑘𝐪𝑒)T𝐁′

𝑘𝐪𝑒 + 2 (𝐁𝑘𝐪𝑒)T𝐁𝑘(𝐪𝑒)′. (12)

Proof: The result immediately follows from the relations

𝑥𝑘 = 𝐗T𝐍𝑘 and 𝑠𝑘 = (𝐁𝑘𝐪𝑒)T(𝐁𝑘𝐪𝑒).

Lemma 4. The sensitivity of 𝜌(𝑥𝑘, 𝑠𝑘) is given by

𝜌(𝑥𝑘, 𝑠𝑘)
′ = 2 𝜕𝜌(𝑥𝑘, 𝑠𝑘)

𝜕𝑠 (𝐁𝑘𝐪𝑒)T𝐁′
𝑘𝐪𝑒

+ (∇𝑥𝜌(𝑥𝑘, 𝑠𝑘))
T(𝐗′)T𝐍𝑘 + 2 𝜕𝜌(𝑥𝑘, 𝑠𝑘)

𝜕𝑠 (𝐁𝑘𝐪𝑒)T𝐁𝑘(𝐪𝑒)′ (13)

Proof: The result follows from Lemma 3.

Theorem 1. The term 𝐊𝑒(𝐪𝑒)′ 𝐪𝑒 is given by

𝐊𝑒(𝐪𝑒)′ 𝐪𝑒 = 𝐒𝑒(𝐪𝑒) 𝐪𝑒′ + 𝐓𝑒(𝐪𝑒) 𝐪𝑒, (14)

where

𝐒𝑒(𝐪𝑒) =
𝐾

􏾝
𝑘=􏷠

𝐶𝑘 𝐁
T
𝑘𝐁𝑘𝐪𝑒𝐪𝑒T𝐁T

𝑘𝐁𝑘 (15)

𝐓𝑒(𝐪𝑒) =
𝐾

􏾝
𝑘=􏷠

􏿵𝐶𝑘 𝐁
T
𝑘𝐁𝑘𝐪𝑒𝐪𝑒T𝐁T

𝑘𝐁
′
𝑘 + 𝐷𝑘 (𝐁

′
𝑘)

T𝐁𝑘

+𝐷𝑘 𝐁
T
𝑘𝐁

′
𝑘 + 𝐸𝑘 𝐁

T
𝑘𝐁𝑘 + 𝐹𝑘 𝐁

T
𝑘𝐁𝑘􏿸 (16)

and
𝐶𝑘 = 2𝑊𝑘|𝐉𝑘|𝜕𝜌(𝑥𝑘, 𝑠𝑘)/𝜕𝑠, 𝐷𝑘 = 𝑊𝑘|𝐉𝑘|𝜌(𝑥𝑘, 𝑠𝑘)

𝐸𝑘 = 𝑊𝑘|𝐉𝑘|(∇𝑥𝜌(𝑥𝑘, 𝑠𝑘))
T(𝐗′)T𝐍𝑘, 𝐹𝑘 = 𝑊𝑘|𝐉𝑘|

′𝜌(𝑥𝑘, 𝑠𝑘).
(17)
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Proof: The result follows from Lemma 4 and the facts that (𝐁𝑘𝐪𝑒)T𝐁𝑘𝐪𝑒′ and (𝐁T
𝑘𝐪𝑒)

T
𝐁′

𝑘𝐪𝑒

are scalars.

In the absence of surface terms (i.e. 𝑔 ≡ 0) the element force vector is given by

𝐟𝑒 = 􏾝
𝑘

𝑊𝑘𝑓(𝑥𝑘)𝐍𝑘|𝐉𝑘|. (18)

Differentiating (18) we get

Theorem 2. The sensitivity of 𝐟𝑒 is given by

(𝐟𝑒)′ = 􏾝
𝑘

𝑊𝑘 􏿵∇𝑥𝑓(𝑥𝑘)
T(𝑥𝑘)′𝐍𝑘|𝐉𝑘| + 𝑓(𝑥𝑘)𝐍𝑘|𝐉𝑘|

′􏿸 . (19)

Performing the assembly process, we get the following expression for the sensitivity of the
solution vector:

Theorem 3. The sensitivity of 𝐪 is given as the solution of the linear system of equations

􏿵𝐊(𝐪) + 𝐒(𝐪)􏿸 𝐪′ = 𝐟′ − 𝐓(𝐪) 𝐪. (20)

Remark 1. In the equations (9)–(19) the only matrix depending on a specific application
(mesh topology, design parametrization, etc.) is 𝐗′. All other matrices are available from
the assembly of the system (3).

Remark 2. In practise the nonlinear system (3) is solved only approximately. Therefore
the equation (20) also holds approximately only. To get accurate numerical values for the
sensitivities it is recommended to solve system (3) as accurately as possible.

3 On the adjoint state technique for the sensitivity of a
functional

Let 𝛼 = (𝛼􏷠, ..., 𝛼𝑀) ∈ ℝ𝑀 be a parameter vector and let 𝐹 ∶ ℝ𝑀 × ℝ𝑁 → ℝ ∶ (𝛼, 𝐪) ↦
𝐹(𝛼, 𝐪) be a functional. The sensitivity of 𝐹 with respect to 𝛼𝑠, 𝑠 = 1, ...,𝑀 is given by

𝑑𝐹
𝑑𝛼𝑠

= 𝜕𝐹
𝜕𝛼𝑠

+ (∇𝑞𝐹)
T 𝜕𝐪
𝜕𝛼𝑠

. (21)
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The form of equation (21) is not suitable when the gradient of 𝐹 with respect to 𝛼 is needed
as it requires𝑀 solutions of the linear system (20). Employing the standard adjoint equa-
tion technique of optimal control theory to eliminate 𝜕𝐪

𝜕𝛼𝑠
we obtain

𝑑𝐹
𝑑𝛼𝑠

= 𝜕𝐹
𝜕𝛼𝑠

+ 𝐩T( 𝜕𝐟𝜕𝛼𝑠
− 𝐓(𝐪) 𝐪), (22)

where 𝐩 is the solution of the adjoint equation

􏿵𝐊(𝐪) + 𝐒(𝐪)􏿸𝐩 = ∇𝑞𝐹. (23)

Now the computation of ∇𝛼𝐹 requires only one solution of the linear system (23).

As an example consider the cost functional 𝐹(𝛼, 𝐪) = ∫
􏸵ℎ(𝛼)

𝑢􏷡
ℎ 𝑑𝑥. We can write it as a sum

𝐹(𝛼, 𝐪) = 􏾝
𝑒

􏾙
𝑇𝑒

𝑢􏷡
ℎ 𝑑𝑥

To compute the terms required in (22) and (23) we first use the isoparametric mapping
technique and Gaussian quadrature to obtain

􏾙
􏾧𝑇
𝑢􏷡
ℎ |𝐉

𝑒| 𝑑𝜉 ≈
𝐾

􏾝
𝑘=􏷠

𝑊𝑘(𝐍𝑘
T𝐪𝑒)􏷡|𝐉𝑘| ≡ 𝐹𝑒(𝛼, 𝐪).

Then by differentiation we obtain

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝐹𝑒

𝜕𝛼𝑠
=

𝐾

􏾝
𝑘=􏷠

𝑊𝑘(𝐍𝑘
T𝐪𝑒)􏷡

𝜕|𝐉𝑘|
𝜕𝛼𝑠

𝜕𝐹𝑒

𝜕𝑞𝑒𝑗
=

𝐾

􏾝
𝑘=􏷠

𝑊𝑘2 (𝐍𝑘
T𝐪𝑒)𝜑𝑗(𝜉

𝑘)|𝐉𝑘|, 𝑗 = 1, ..., 𝑚.

Thus all calculations needed for (22) and (23) can be done using element-by-element tech-
niques.
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4 Applications

In this section we shortly list some state equations of form (1) which have appeared in
optimal design litterature.

Axisymmetric Poisson’s equation

An important application is the axisymmetric Poisson’s equation

−∇ ⋅ 􏿵2𝜋𝑟∇𝑢(𝑟, 𝑧)􏿸 = 2𝜋𝑟 𝑓(𝑟, 𝑧). (24)

In this case 𝜌(𝑥, 𝑠) = 2𝜋 𝑥􏷠. As the problem is linear the adjoint problem (23) has the same
coefficient matrix. When direct methods are used for the solution of (3) one may solve
(23) eficiently using the existing factorization of the coefficient matrix.

Sensitivity analysis for magnetic field calculations

Electromagnetic behaviour is governed by the Maxwell’s equations for the magnetic field
􏹎𝐻 and the magnetic induction 𝐵⃗. Introducing the vector potential 𝐴, 𝐵⃗ = ∇ × 𝐴 the
Maxwell’s equations reduce into equation

−∇ × (𝜌∇ × 𝐴) = 𝑗⃗, (25)

where 𝑗⃗ is the current density and 𝜌 is the magnetic reluctivity. Let the domain under
consideration be given as Ω = Ω𝑎𝑖𝑟 ∪ Ω𝑐𝑜𝑝𝑝𝑒𝑟 ∪ Ω𝑖𝑟𝑜𝑛. In this case the function 𝜌 is of the
form

𝜌(𝑥, 𝑠) = 􏿼
const, 𝑥 ∈ Ω𝑎𝑖𝑟 ∪Ω𝑐𝑜𝑝𝑝𝑒𝑟

𝑟(𝑠), 𝑥 ∈ Ω𝑖𝑟𝑜𝑛.
(26)

Assuming that 𝐴 = (0, 0, 𝑢) and 𝑗⃗ = (0, 0, 𝑗􏷢), the problem then reduces into the nonlinear
potential problem

−∇ ⋅ (𝜌(𝑥, |∇𝑢|􏷡)∇𝑢) = 𝑗􏷢. (27)
Although the mapping 𝑥 ↦ 𝜌(𝑥, 𝑠) is not continuous, no problems arise if the finite element
boundaries coincide with the material boundaries. The results of Theorems 1–2 are now
directly applicaple.
We note that in refs. 1 and 6 the sensitivity analysis was performed for this problem in
the case of 𝑃􏷠 triangular elements. As in both cases area coordinates were employed the
sensitivity formulae presented there cannot be utilized in the case of higher order elements.
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Sensitivity analysis for subsonic compressible flow

The design of airfoils with good aerodynamical properties is an important problem for
the designers of turbomachines and aircrafts. In two dimensions compressible gas flow is
described by the compressible potential equation

∇ ⋅ 􏿴𝜌(|∇𝑢|􏷡)∇𝑢􏿷 = 0. (28)

The velocity of the flow is given by 𝑣⃗ = ∇𝑢 and the density of the gas by

𝜌(|𝑣⃗|􏷡) = 𝜌􏷟 􏿶1 −
𝛾 − 1
𝛾 + 1|𝑣⃗|

􏷡􏿹

􏷪
𝛾−􏷪

(𝜌􏷟 and 𝛾 positive constants). (29)

When the flow is subsonic then the equation (29) with suitable boundary conditions is
an elliptic boundary value problem. In the transonic case the problem is of mixed elliptic-
hyperbolic type. For the optimization problem formulation (cost function, constraints, etc.)
we refer to the book of Pironneau􏷦. Again Theorem 1 gives a direct formula for sensitivity
calculations.

5 Numerical example

Let us consider the following boundary value problem depending on a parameter 𝛼 ∈ ℝ:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−∇ ⋅ 􏿴𝜌(|∇𝑢|􏷡)∇𝑢􏿷 = 1
10, in Ω(𝛼)

𝑢 = 0, on Γ􏷠

𝜌(|∇𝑢|􏷡) ⋅ 𝑛 = 0, on Γ(𝛼) ∪ Γ􏷡 ∪ Γ􏷢.

Here 𝜌(|∇𝑢|􏷡) = (1 + |∇𝑢|􏷡)􏷠/􏷡, Ω(𝛼) = {(𝑥, 𝑦) ∈ ℝ􏷡 ∣ 0 < 𝑦 < 1, 0 < 𝑥 < 1 + 𝛼(𝑦 − 𝑦􏷡)},
Γ􏷠 = [0, 1] × {0}, Γ􏷡 = {0} × [0, 1], Γ􏷢 = [0, 1] × {1} and Γ(𝛼) = {(𝑥, 𝑦) ∈ ℝ􏷡 ∣ 0 < 𝑦 <
1, 𝑥 = 1 + 𝛼(𝑦 − 𝑦􏷡)}. The solution of this problem is approximated by the finite element
method using isoparametric four-node quadrilateral elements. The nodal coordinates of
the finite element mesh used (see Figure 1) are given by

⎧⎪⎪
⎨⎪⎪⎩

𝑥𝑖,𝑗 =
𝑖 − 1
20

􏿵1 + 𝛼(𝑦􏷡􏷠,𝑗 − 𝑦􏷡􏷡􏷠,𝑗)􏿸, 𝑖, 𝑗 = 1, ..., 21

𝑦𝑖,𝑗 =
𝑗 − 1
20 , 𝑖, 𝑗 = 1, ..., 21.
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Figure 1: Structure of the finite element mesh (with 𝛼 = 􏷠
􏷡
).

In Figure 2 a contour plot of the sensitivity of the finite element solution 𝜕𝑢ℎ(𝛼)/𝜕𝛼|𝛼=􏷟 is
shown. Computations were done in double precision using HP9000/340-computer.

The correctness of the sensitivity solution was confirmed by comparing the nodal values
of 𝜕𝑢ℎ/𝜕𝛼|𝛼=􏷟 with those obtained by finite differencing. By solving the nonlinear and
linear systems (3) and (20) as accurate as possible and searching an optimal differencing
parameter the analytic and finite difference sensitivities were found to have at least five
digits in common at each node.

6 Conclusions

The sensitivity formulae presented in this paper are both simple to program correctly and
efficient as basic linear algebra subroutine (BLAS) packages can be utilized. Our approach
is general as it applies to all isoparametric Lagrangian finite elements. General purpose
programs can be easily developed as the dependence on the specific application can be
isolated into separate modules. The same approach can clearly be applied to different state
problems (elasticity, Navier-Stokes, etc).
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Figure 2: Contour plot of the sensitivity of 𝑢ℎ(𝛼) at 𝛼 = 0.
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