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Abstract. A multi-period portfolio optimization is described with Monte Carlo sampled risky asset paths under
realistic constraints on the investment policies. The proposed approach can be used with various
asset and risk models. It is flexible as it does not require dynamic programming or any transfor-
mations. As examples, the variance and semivariance risks are considered leading to mean-variance
and mean-semivariance formulations, respectively. A quasi-Newton method with an adjoint gradient
computation can solve the resulting optimization problems efficiently. Numerical examples show
efficient frontiers together with optimal asset allocations computed for mean-variance and mean-
semivariance portfolios with two and five assets.

Key words. dynamic portfolio management, mean-variance optimization, mean-semivariance optimization, con-
strained optimization, Monte Carlo simulation

AMS subject classifications. 65C05, 90C31, 90C55, 91G10, 91G60

1. Introduction. The single-period mean-variance optimization introduced by Markowitz
[23] is the classical way to select investment portfolios. Dynamic and multi-period generaliza-
tion of this approach offers a more realistic model for portfolios as they can incorporate more
constraints for investments as well as time and wealth-dependent asset allocations. These
generalizations offer robust asset allocations which are insensitive to model misspecification
as was shown by van Staden et al. [29]. Continuous dynamic asset allocation problems have
known analytical solutions with certain constraints. For example, Bielecki et al. [3] derive a
solution when bankruptcy is not allowed and when shorting selling is not allowed Li et al. [22]
give an explicit solution. When discrete re-balancing is performed and realistic constraints
are imposed on the portfolios an analytical solution is not available in general and portfolio
strategies need to be found numerically. This paper considers this case.

Brandt et al. [4] consider Monte Carlo simulation-based discrete-time portfolio allocation
problems. While their approach is fairly flexible it assumes the asset allocation to be inde-
pendent of current wealth. This is restrictive and leads to suboptimal investment strategies.
Instead, it is preferable to consider time and wealth-dependent asset allocations to maximize
the final wealth under a given level of risk aversion. These are called pre-commitment strate-
gies by Basak et al. [2] which are typically not time-consistent; see [28], for example. In
the case of the mean-variance optimization, there is an induced objective function for which
the solution is time-consistent [11], [26], [31]. Cong et al. [6] and [7] construct these pre-
commitment strategies based on Monte Carlo simulated risky asset paths. Their approach
drives a sub-optimal multi-stage strategy to an optimal one using backward recursive pro-
gramming. They perform the common transformation of the mean-variance problem with
nonlinear conditional variance to a linear-quadratic (LQ) problem by an embedding technique
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by Li et al. [21]. Another approach to construct pre-commitment strategies is to formulate
a Hamilton–Jacobi–Bellman (HJB) partial differential equation for the strategy. This is an
elegant approach that avoids sampling risky asset paths, but its numerical implementation is
fairly cumbersome and, unlike Monte Carlo-based methods, it does not scale well for multiple
risky assets. This HJB PDE approach has been considered by Wang et al. [32], Dang et al.
[8], and Forsyth et al. [12], for example.

Recently, several studies including [5],[15],[25],[24], [30], have proposed neural networks
(NNs) for financial optimization problems without relying on dynamic programming. These
studies describe the control by a NN and the loss function is given by the financial objec-
tive. The resulting NN training problem is solved using the usual stochastic gradient methods
in this context. Here we propose a similar, non dynamic programming based approach de-
scribing the control by a more traditional polynomial interpolation similar to many dynamic
programming-based financial optimization studies including [6], [7], [8], [12], [32]. We solve
the resulting optimization problems by a quasi-Newton optimization method. The proposed
approach has two benefits: polynomial interpolations have well-established approximation con-
vergence properties and the quasi-Newton methods have fast convergence leading to shorter
computation times.

This paper describes an optimization approach based on Monte Carlo simulated risky asset
paths. The optimization is performed directly to the objective function given by the desired
combination of the expected final wealth and the risk measure without any transformation.
This leads to a nonlinear optimization problem for time and wealth-dependent asset allocations
for which it is easy to impose constraints. This proposed approach is flexible and can be easily
generalized for many cases.

Quasi-Newton methods offer an efficient way to solve the resulting optimization problems.
Particularly methods based Broyden–Fletcher–Goldfarb–Shanno (BFGS) approximation [10]
of the Hessian matrix have been shown to be efficient and are very popular. These methods
require the gradient of the objective function with respect to the optimization variables, that
is, the time-wealth-dependent asset allocations. The adjoint technique gives an efficient way
to compute this gradient. With Monte Carlo simulations Giles [13] and [14] describe this
technique. Kaebe et al. [17] employ it to calibrate a market model. To our knowledge in the
scientific literature, these techniques have not been used before to construct asset allocation
strategies. Instead of applying automatic differentiation to compute the gradient, we derive
an analytical expression for the gradient, which can be used for the efficient implementation
of the method. The efficient frontier of possible portfolios is obtained by optimizing the
portfolios with varying levels of investor risk aversion. We present numerical examples for
the case of one and four risky assets.

The outline of this paper is the following: Section 2 describes the mean wealth-risk mea-
sure optimization problem. Section 3 gives the details of Monte Carlo simulation of the wealth
as well as computation of the variance and semivariance of the final wealth which are the risk
measures studied in this paper. Section 4 proposes a numerical solution method for the result-
ing optimization problem. Section 5 presents numerical examples of portfolio optimization.
Section 6 gives the conclusions.
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2. Mean wealth-risk measure portfolio optimization. Let there be I + 1 investment
assets. Let the i:th asset Si follow the stochastic differential equation

(2.1) dSi = µiSidt+ σiSidZi,

where µi is the growth rate, σi is the volatility, and Zi is the Wiener process. The correlation
between these processes is specified by the correlation matrix. When the volatility is zero the
asset is riskless.

The accumulated total wealth W : [0, T ] → R follows the stochastic differential equation

(2.2)


dW =W

[
I+1∑
i=1

pi
(
µidt+ σidZi

)]
+ πdt

W (0) = w0,

where π is a contribution rate, pi = pi(t,W ) is the proportion of the wealth invested in the
i:th asset Si

t at time t, and w0 is the initial wealth. The last asset SI+1 is assumed to be
riskless, that is, σI+1 = 0 and r := µI+1 is the riskless interest rate. Thus, the number of risky
assets is I. The proportion of the wealth invested in the riskless asset is pI+1 = 1−

∑I
i=1 p

i.
Eliminating the proportion of the riskless asset from (2.2) we obtain the equivalent SDE that
is better suited for computations:

(2.3)


dW =W

[
r dt+

I∑
i=1

pi
(
(µi − r) dt+ σidZi)

)]
+ π dt

W (0) = w0.

Let P = (p1 · · · pI)T contain the proportions pi, i = 1, . . . , I. Furthermore, let E[WP (T )]
and RM[WP (T )] denote the expected value and risk measure for the final wealth W (T ) when
following an investment strategy P . Typical risk measures are the variance Var[·] and the
semivariance Semivar[·]. The semivariance is a special case of downside risk models [9]. Under
a discrete time investment strategy, it leads to a well-posed problem [16]. The aim is to find
a strategy P ∗

λ ∈ Pad such that

(2.4) P ∗
λ = arg max

P∈Pad

(E[WP (T )]− λRM[WP (T )]) ,

where λ > 0 describes the investor’s risk aversion which grows with λ. Varying λ gives the
Pareto optimal portfolios. The set Pad defines allowed strategies. Forbidding short selling leads
the lower bound pmin for the proportions pi, i = 1, . . . , I, to be zero. Let pmax be the allowed
amount of leverage. For example, allowing a 2:1 leverage ratio corresponds to pmax = 2, while
no leverage corresponds to pmax = 1. The proportions have to satisfy pi ≤ pmax. Furthermore,
the sum of the proportions has to be at most pmax, that is,

∑I
i=1 p

i ≤ pmax.

3. Monte Carlo simulation of wealth. For the moment, let the investment policy P be
given and fixed. We approximate the solution of the stochastic differential equation (2.3)
by using the classical Euler–Maruyama scheme. Let ∆t = T/N be the time step, and let
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Z ∈ RK×I×N be an array of normally distributed pseudorandom numbers. In this paper, K
is the number of Brownian paths.

Let Wn
k denote the k:th random approximation of W (n∆t). These values at the n:th time

step are collected to the vector W n = (Wn
1 · · ·Wn

K) ∈ RK . One step of the numerical scheme
reads

(3.1) W n+1 =

[
1 + ∆tr +

I∑
i=1

P n
i (W

n)⊙
(
∆t

(
µi − r

)
+
√
∆tσiZn

i

)]
⊙W n +∆tπ,

where the vectors P n
i (W

n) contain the proportions evaluated at (tn,W
n
k ) for k = 1, . . . ,K,

i.e. P n
i (W

n) =
(
pi(tn,W

n
1 ) · · · pi(tn,Wn

K)
)
.

Moreover, the vector Zn
i ∈ RK contains the K random numbers for the i:th asset at the

time step n, and ⊙ is the elementwise vector product operator.1 This can be expressed in a
more compact form

(3.2) W n+1 = Sn(P n)⊙W n +∆tπ,

where

(3.3) Sn(P n) = 1 +∆tr +

I∑
i=1

P n
i (W

n)⊙
(
∆t

(
µi − r

)
+
√
∆tσiZn

i

)
.

The expected final wealth is given by

(3.4) E
(
WN

)
= 1

K

∑K
k=1W

N
k .

Its variance and semivariance are given by

Var
(
WN

)
= 1

K

∑K
k=1

(
WN

k − E
(
WN

))2
and

Semivar
(
WN

)
= 1

K

∑K
k=1(min{WN

k − E
(
WN

)
, 0})2,

(3.5)

respectively. Note that unlike here sometimes the semivariance is defined with the inverse of
the number of samples below the expected value instead of the inverse of the number of all
samples.

4. Fully discrete optimization problem. Until now the policy P has been a continuous
vector-valued function of time and wealth. Next, we introduce a parameterized strategy
Ph = (p1h · · · pIh), where each proportion depends only on a finite number of parameters.

Consider the M × N grid G := {0=W1<W2<...<WM=Wmax} × {0=t0<t1<...<tN−1},
where tn = n∆t and Wmax is large enough such that Wk(t) ∈ [0,Wmax] for all paths. Let
{ψm,n(t,W )} be the set of piecewise bilinear C0-continuous basis functions associated with
G, where each ψm,n has the value one at (tm,Wn) and zero elsewhere. Moreover let us use
the following notation for a set of I·M ·N parameters

P = (p1 . . .pI) ∈ RI·M ·N , pi = (pm,n) ∈ RM ·N , i = 1, ..., I.

1Here we adopt the Matlab style notation: If x,y,z∈Rn, β∈R then z = x ⊙ y + β means zi = xiyi +
β, i=1, ..., n.
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Now, we can define the following discretized proportions of the strategy Ph:

pih(p
i; t,W ) =

M∑
m=1

N−1∑
n=0

pim,nψm,n(t,W )

The parameterized and discretized optimization problem then reads

(4.1) P∗
λ = argmax

P∈U
Jλ(P),

where the discrete objective function is defined by

(4.2) Jλ(P) := Jλ
(
WN (P)

)
= E

(
WN

)
− λRM

(
WN

)
.

The set of admissible parameters in (4.1) is defined by

(4.3) U = {P ∈ RI·M ·N | Pmin ≤ P ≤ Pmax and AP ≤ b},

where the lower bound vector Pmin and the upper bound vector Pmax result from the lower
and upper bounds for the proportions pi, i = 1, . . . , I, and the linear constraint AP ≤ b
results from the limit for the leverage. The definitions of these vectors and the matrix A are
given by Pmin = pmineI·M ·N , Pmax = pmaxeI·M ·N , A = IM ·N ⊗ eTI , and b = pmaxeM ·N , where
en = (1 · · · 1)T ∈ Rn, In is the n×n identity matrix, and ⊗ is the Kronecker product operator.

To efficiently utilize gradient-type methods for the numerical solution of (4.1), it is es-
sential to have the exact gradient ∇PJλ(W

N (P)) rather than relying on its finite difference
approximation. Exact gradient computations can be performed manually or with the as-
sistance of automatic differentiation tools readily accessible in popular software libraries for
machine learning and artificial intelligence, such as TensorFlow [1]. In what follows, we derive
a concise expression for the gradient using the classical adjoint approach. Following that, we
provide a brief overview of the advantages and challenges associated with the application of
automatic differentiation tools.

The partial derivatives of the objective function with respect to the parameters defining
the discrete investment strategy can be computed using the adjoint formulation [13] holding
fixed the randomly generated Brownian path increments for every particular path calculation.
In what follows, we assume a general parametrization of pih = ph(p

i, t,W ), pi ∈ RM ·N , that
is, the calculations are not restricted to any particular parametrization. We assume that the
mapping P 7→ WN is smooth and derive formally the explicit formula for ∂Jλ

∂pj
, where pj is a

component of P.
Using the notations of Section 3 we can express the Monte Carlo simulation of the wealth

as the state problem

(4.4)

{
W 0 = w0

W n+1 = Sn(P n)⊙W n +∆t π, n = 0, ..., N − 1.

Define the Lagrangian with a set of Lagrange multipliers Y := {Y 0, ...,Y N}:

(4.5) Lλ = Jλ(W
N )−

N−1∑
n=0

(Y n+1)
T
(W n+1 − Sn(P n)⊙W n −∆t π)− (Y 0)

T
(W 0 − w0).
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As W := {W 0, ...,WN} satisfies (4.4) for all P, we may choose Y freely. We have Jλ(W
N ) =

Lλ(P,W,Y) and

(4.6)
∂Jλ

∂pj
=
∂Lλ

∂pj
=

(
∇WNJλ

)T∂WN

∂pj
−

N−1∑
n=0

(
Y n+1

)T(∂W n+1

∂pj
− ∂Sn(P n)

∂pj
⊙W n

− ∂Sn(P n)

∂W
⊙ ∂W n

∂pj
⊙W n − Sn(P n)⊙ ∂W n

∂pj

)
− (Y 0)

T∂W 0

∂pj
.

Above we have denoted

∂Sn(Pn)
∂W :=

∑I
i=1

(
∆t(µi − µi+1)pih

′
+
√
∆tσipih

′ ⊙Zn
i

)
,

∂Sn(Pn)
∂pj

:=
∑I

i=1

(
∆t(µi − µi+1)

•
pih +

√
∆tσi

•
pih ⊙Zn

i

)
with

(4.7) pih
′
:= ∂ph(p

i,tn,W
n)

∂W and
•
pih := ∂ph(p

i,tn,W
n)

∂pj
.

Rearranging terms in (4.6) gives

(4.8)
∂Lλ

∂pj
=

N−1∑
n=0

(Y n+1)
T∂Sn(P n)

∂pj
⊙W n +

(
∂WN

∂pj

)T (
Y N −∇WNJλ

)
−

N−1∑
n=0

(
∂W n

∂pj

)T(
Y n − ∂Sn(P n)

∂W
⊙W n ⊙ Y n+1 − Sn(P n)⊙ Y n+1

)
.

If we choose Y to be the solution of the adjoint model

(4.9)


Y N = ∇WNJλ(W

N )

Y n =
∂Sn(P n)

∂W
⊙W n ⊙ Y n+1 + Sn(P n)⊙ Y n+1, n = N−1, N−2, ..., 0,

then only the first term in (4.8) is nonzero and we avoid calculating ∂Wn

∂pj
. Thus, we finally

have

(4.10)
∂Jλ

∂pj
=

N−1∑
n=0

(Y n+1)
T∂Sn(P n)

∂pj
⊙W n.

Remark 4.1. In the derivation of the formulas (4.9), (4.10), the part depending on the
specific parametrization is contained in the derivatives appearing in (4.7). The continuous
piecewise linear parametrization of the investment policy, ph is not continuously differentiable
with respect to W . Thus, it may happen that (4.10) only gives a directional derivative.
However, it is well-known that standard quasi-Newton methods are relatively robust and
efficient even in the nonsmooth case. For more discussion on that topic, see [19], [20], for
example.
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Remark 4.2. When it comes to using graph-based automatic differentiation tools like Ten-
sorFlow for solving large-scale stochastic optimal control problems, researchers noted, as seen
in [18], that these tools, while optimized for training neural networks, face significant chal-
lenges due to high memory and initialization requirements. For this reason, it is preferable
to use a manually computed gradient like the one in (4.10) when the number of parameters
is large.

A ”common subexpression elimination technique” introduced in [18] selectively uses the
automatic differentiation leading to a comparable efficiency with a manually computed gra-
dient. Applying this technique to our case would involve using the automatic differentiation
to calculate derivatives ∇WJλ,

∂S
∂W , and ∂S

∂P in equations (4.9)–(4.10) instead of applying it
directly to the black box P 7→ Jλ(P).

5. Numerical portfolio optimization examples. In this section, we present two examples
dealing with one risky asset and one example dealing with four risky and correlating assets.
The computations have been performed using Matlab [27] with the gradient computations
implemented using (4.10). The final time and time step for Monte Carlo simulations is T = 20
and ∆t = 0.25, respectively, leading to N = 80 time steps. In this section, we have used
K = 1000000 paths. For the strategy p there are M = 31 grid points in the W direction
with the last grid point at Wmax = 30 and the grid is refined for small W values. In practical
computations, we employ the constant approximation p(tn, x) = p(tn,Wmax), x>Wmax to
ensure the use of a reasonably small constant Wmax.

In optimization, the quasi-Newton method with the BFGS approximation of the Hessian
matrix was used. To guarantee a robust convergence of the optimizer for all the sampled
λ values, we used 50 iterations for optimizations with one risky asset and 250 iterations
for optimizations with four risky assets. The likely reason that a larger number of required
iterations in the case of the higher-dimensional problem is not the larger number of parameters,
but the multiple correlated investment assets.

5.1. Portfolio with one risky asset and no leverage. We start by considering a pension
plan example with one risky asset, that is, I = 1 with the parameters: the interest rate
r = 0.03, the volatility of the risky asset σ1 = 0.15, the growth rate of the risky asset
µ1 = 0.0795, the contribution rate π = 0.1, and the initial wealth w0 = 1. Short selling is
forbidden leading to pmin = 0. Borrowing is not allowed leading the maximum proportion of
the wealth invested in the risky asset to be pmax = 1.

We compute the efficient frontiers using the variance and the semivariance as the risk
measure. Furthermore, we compute also the efficient frontier given by the constant proportions
p when increasing this constant from zero to one. These efficient frontiers are formed by
performing the optimization for 11 values for the risk aversion parameter λ.

The mean-variance and mean-semivariance frontier plots for all three investment strategies
are shown in Figure 1. The final wealth probability distributions for the three strategies
when E[W (T )] = 8 are depicted in Figure 2. The corresponding mean-variance and mean-
semivariance optimized controls p are depicted in Figure 3.

We studied the convergence with respect to M (the number of discretization points in the
W -direction) and with respect to K (the number of paths). The other parameters were the
same as above. Let Ji,M,K := Jλi

(P∗), where P∗ is the optimal control computed with M
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Figure 1. The mean-variance and mean-semivarience frontiers for the mean-variance optimized portfolios,
the mean-semivariance optimized portfolios and the constant proportion portfolios.
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Figure 2. The probability distributions for the final wealth when E[W (T )] = 8 for the three investment
strategies.

gridpoints in the W -direction and using K paths. Let J†
i = Ji,61,106 and J ♯

i = Ji,31,4×106 . We

consider the values J†
i , J

♯
i good approximations to the exact optimal objective function values

and we compare with it the values obtained using smaller M or K. In the latter case, we take
the average of 100 cost evaluations using a different sets of paths. The results of the tests
are depicted in Figure 4. From these tests, we can conclude that the empirical error in Jλ is
roughly ∼ 1/M2 and ∼ 1/

√
K. These results are consistent with the theoretical convergence

properties of piecewise linear interpolation and the Monte Carlo method.

5.2. Portfolio with one risky asset and leverage. We keep the parameters the same as
in Section 5.1 except now the maximum leverage is given by pmax = 1.5. This is the example
considered by Wang and Forsyth [32] and Cong and Oosterlee [6]. The mean-variance and
mean-semivariance efficient frontiers are formed by performing the optimization for 11 values
for the risk aversion parameter λ. The mean-variance and mean-semivariance frontiers are
shown in Figure 5. The mean-variance frontier agrees well with the efficient frontiers presented
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Figure 3. Mean-variance and mean-semivariance optimized proportions p for E[W ] = 8.
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Figure 4. Left: Difference err(i,M) := |Jλi,M,106 − J†
i |. Right: Difference err(i,K) := |Jλi,31,K − J♯

i |.
Due to logarithmic y-axes, values with err = 0 are not plotted.

in [32, 6].

5.3. Portfolio with four risky assets. This is a generalization of the previous examples
which adds three more risky assets. The volatilities of the four risky assets are given by
the vector σ = (0.15 0.12 0.09 0.06)T and their growth rates are given by the vector µ =
(0.0795 0.07 0.06 0.05)T . The correlation matrix between the risky assets is

C =


1 0.6 0.2 0.1
0.6 1 0.4 0.2
0.2 0.4 1 0.4
0.1 0.2 0.4 1

 .

As before the interest rate is r = 0.03, the final time is T = 20, and the initial wealth w0 = 1.
The short selling is not allowed and there is no leverage leading to pmin = 0 and pmax = 1.
The mean-variance and mean-semivariance efficient frontiers are formed by performing the
optimization for 13 values for the risk aversion parameter λ. The mean-variance and mean-
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Figure 5. The mean-variance and mean-semivariance frontiers for the mean-variance and mean-
semivarience optimized portfolios and the constant proportion portfolios when the maximum levarage is
pmax = 1.5.

semivariance frontier plots for the two optimized investment strategies are shown in Figure
6. The final wealth probability distributions for the mean-varience optimized portfolios with
E[W (T )] = 8 for two (one risky) and five (four risky) asset cases are depicted in Figure 7.
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Figure 6. The mean-variance and semi-semivariance frontiers for the mean-variance and mean-
semivariance optimized portfolios for four risky assets.

6. Conclusions. We presented a very generic Monte Carlo-based approach for portfolio
optimization. The models for the asset and the risk can be easily changed. The approach
does not require dynamic programming or any transformations. Restrictions on the investment
policies can be easily incorporated. In this paper, we used the variance and the semivariance
as the risk measure. The numerical examples considered cases with two and five assets.

7. Acknowledgements. We thank the anonymous referees whose constructive comments
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Figure 7. The probability distributions for the final wealth when E[W (T )] = 8 for one and four risky assets.
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