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Chapter 1

An Introductory Example

In this introductory chapter we will go through the steps eitiag up a mathematical
model for heat conduction. This will be derived from basiggibal principles and will
lead to the integral form of a partial differential equati®fe will look at exact solutions
for very idealised situations, in order to see the typicéldwour. For more complicated
circumstances we have to resort to numerical methods. Tidissgain be studied in a
very idealised setting.

1.1 Derivation of the PDE

To illustrate the way how to derive a partial differentialuajon describing a physical
system out of the basic laws of physics we will consider a &mpd consisting of a
normal material (Figl.1).

A

/SO'ation Area A
aat) _€> a(b,t)
= X

0 a b |

Figure 1.1: Insulated rod

The rod should be insulated against any heat loss on the Wérajéh. Only at the ends it
can gain or loose heat. We are interested in the temperagirddtion inside this rod at
a specific time. As for most dynamical systems we must knovelaet state at a given
timetg. And certainly the temperature at both ends is important, to

1.1.1 Energy Conservation
The conservation law that seems right for this problem iscthreservation of energy be-

cause the temperature is equivalent to the motion enerdgyeafniblecules that build the
rod. First we have the heat (or thermal energy) in the rodddtssity per unit length is:

A-p-c-B(xt) (1.1)
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Herep is the density of the materiad,the specific heat capacity, aAdhe cross sectional
area of the rod. They could all be functions of space and tesye, but for the sake
of simplicity we shall assume them to be constant. The fonddi(x,t) describes the
temperature at a given pointin space and time. And so thegehafrenergy of an arbitrary
piece of rod fromato bis:

b
—2/ A-p-c-B(xt)dx (1.2)
ot Ja

Next we will take a look at the energy that goes into the rodwirad it. As mentioned
before this can only happen at the two ends of the rod.

There we have the heat flow which is described by the funcfigrt). So the energy that
goes into the rod is:

R =A- (q(a,t) - Q(b,t)) =—A- (C](b,t) - q(a,t)) (1.3)

This equation can be transformed with the fundamental greaf calculus into:

A-(q(b,t) — —_A / < ) (1.4)

Finally we assume an internal source of heat. This effeatlshmodel something similar
to a microwave oven which heats something from the inside.intveduce the function
h(x,t) which describes the power density of additional heat saurce

b
Ry — / A-h(xt)dx (L.5)
a
Conservation of energy means that we must have
RiI=R+R;3 (1.6)

Inserting the equations again into the short form gives:

b
at/ AcpB(x,t)d ——A/ = qxt)dx+A/ h(x,t)dx (1.7)

Separating the parts of the equation with known functiors the parts with unknown
functions leads to:

b b b
aco [ Seeyania [ 2amtm=a [ nixtx (L8)
a Ot a aX a

Finally we obtain for any, b € [0, ]:

/ab [cp%e(x,t)Jra%q(x,t)} dx = /:h(x,t)dx (1.9)

This is the integral form of the PDE.
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1.1.2 From thelntegral Form tothe PDE

Up to this point all equations were integral equations wligiatle some restrictions on the
solution. Now the following lemma allows the transformatiof these Integrals into a
PDE under some conditions:

Lemma 1 (Fundamental lemma of calculus of variations) Let ¢ be a continuous func-
tion ¢ : [A,B] — R. If for arbitrarya,b € [A,B] withb > a

[ otax=o (1.10

then
vxe[ab], ¢(x)=0 (1.11)

Proof (by contradiction) :

Assumedxg : ¢(xg) >0

¢ continuous=- there is a neighbourhood @, ([Xo — €,%o + €]) where¢(x) > & > 0.
Then witha=xg—¢,b=xp+¢€

b b b
/q)(x)dxz/ 6dx:6/ dx—=8(b—a) — 28 > 0 (1.12)

in contradiction to EqQ.X.10.

Going back to the relations describing the heat transfdrerroéd, we have the following
equation:

/b {cpge(x t)+ gq(x t) —h(xt)|dx=0 (1.13)
a ot ’ [)4 ’ ’ - '

- /
~~

6(x)

If we assume thap(x) is continuous then the fundamental lemma of variationaudab
gives directly the differential or pointwise form of the PDE

0 0
cpae(x,t) +a—xq(x,t) = h(xt) (1.14)

With given boundary conditiong(a, t), g(b,t) and initial condition®(x, 0).

One important aspect of this assumption is that the exmressnder the integral has
to be continuous. In contrast the original integral equatan also be satisfied by a
discontinuous function which may appear in real life proide So one must keep in
mind that the partial differential equations come origindtom the integral form and

therefore the strict continuity requirements of the PDE reaymetimes be neglected. In
fact, in the sequel unless stated otherwise, write ther@iffiial form — as it is simpler —

but we will mean the integral form.
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1.1.3 Constitutive Laws

To get a solvable equation one of the two unknown functionstrioe replaced by a known
function. Often this is done with a constitutive law whicmoects two physical properties
with a function. For the heat equation theurier Law provides this kind of function.

0
Xt) = —A=—0(xt 1.15
q0xt) = A B(xt) (1.15)
WhereA is the heat conductivity. This again could be a function afperature or posi-
tion, but again for simplicity we shall assume it constanselrting this constitutive law
into the PDE gives finally the well known heat equation:

0 of[,0
cpae(x,t) ™ {)\a—xe(x,t)] =h(xt) (1.16)
sorting the constants gives:
0 A\ 02 h(x,t)
58000 = () 500 = "o —nix) (1.17)

The time derivative will be abbreviated with a superposeid do

9 .
ae(x,t) =0(x1) (1.18)

Another possible constitutive law which can be applied is ttontext is the law of con-
vective transport. While Fourier’s law describes a sloviugifve transport of energy, the
convective transport is similar to putting a cup of hot wateo a river. The energy is
transported with the speed of the water flowing in the river:

q(x,t) = cpbv (1.19)

wherev is the velocity of the transport medium.

1.1.4 Initial and Boundary Conditions

Most PDEs have an infinite number of admissible solutionsusTthe PDE alone is not
sufficient to get a unique solution. Usually some boundanddeons and initial condi-
tions are required.

For the heat equation the simplest boundary conditions aeel emperatures at both
ends:

6(0,t) = hy(t) (1.20)
6(1,t) = hy(t) (1.21)

wherel is the length of the rod anld; (t) the temperature at the first end alngt) the
temperature at the second end.

The initial conditions specify an arbitrary initial tempéure distribution inside the rod:
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B(x,0) = Bo(X) (1.22)

1.1.5 General Way of Modelling Physical Systems

Basically many PDEs in mathematical physics are derivetiénviay, shown in the ex-
ample. So if we have a quantity with densityvhich should be conserved, the change of
that quantity for an arbitrary piede, b] is:

o rb
a/a udx (1.23)
It is equal to the amount going in or out through the boundatly flow densityp:

—pl? (1.24)

and the amount generated or consumed inside the domain:

b
/ j(X)dx (1.25)
a
which finally gives us the general form of a conservation law:

0 /b b

—/ udx:—p|g+/ j(x)dx (1.26)

ot Ja a

a (b b b

:>a/a udx:—/al a—Xer/al j(x)dx (1.27)

The situation does not change if the domain is part of a mimigdsional space lik&?

or R3. Only the flux into the domain changes a little bit when goiranf 1D to higher
dimensions. If we consider a domamin R? or R3, and an arbitrary pal with a given
flux field p on the boundargV (see Fig.1.2) the amount which goes into the domain
through a point oV is exactlyp- n wheren is the normal vector in that point. Hed¥
denotes the boundary f.

Q-

p

Figure 1.2: The domai and a parV

So the conservation law becomes:
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3/ dV:—/ p-nds+/jdv (1.28)
ot Jv v \Y

This equation must also be satisfied on every small subdowhahQ. Applying the
Gauss-Theorem to the integral over the boundary in EQY gives finally for any sub-
domainV C Q:

—
/u+divp—jdV:O (1.29)
%
This is again the integral form of the PDE. If the expressiodar the integral in Eq1(29

— th function¢ — is continuous, we may again use the fundamental lemma afiloalus
of variations (suitably modified for higher dimensions)atoive at the differential form:

U+divp—j=0 (1.30)

If we introduce the characteristic function of the subdaméaivhich is defined as:

1 if xeVv
XV(X>_{ 0 otherwise (1.31)

the condition that the conservation is also satisfied onyemglndomain can be written as:

/)(V(U+divp— AV =0, Wy (1.32)
Q
The integral is now over the complete domd&n If we take linear combinations of

different xy, and with certain continuity arguments we may deduce thstead ofyy
in Eq. (1.32 we may take any functiog such that the integral

/QqJ(qudivp—j)dv —0, vy (1.33)

is still meaningful. This is the so callegeak form of the PDE.

1.2 Analytical Solutionsof PDEs

Although most Partial Differential Equations have no ctbselution on complex do-
mains, it is possible to find solutions for some basic equatan simple domains. They
are especially important to verify the accuracy and coness of numerical methods.

1.2.1 Heat equation

We will start again with the heat equation for the rod fromtecl.l It can be written —
without convection — in a simplified form as:

gt

% Paa= (1.34)
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Initial and boundary conditions are also required. Butéhasnditions are not necessary
for the first steps. The first thing on the way towards a sotusan idea how the function
which satisfies the PDE should look like. Here we assume ligagalution is the product
of two unknown function€\(x) andB(t) — a so called product-ansatz:

u(x,t) = A(X) - B(t) (1.35)

After that the partial derivatives afwith respect td andx can be computed:

2~ o= A9 -B() (1.36)
%{ =Uu =A(x)-B(t) (1.37)
Y- (9B (1.38)

(A dot means the time derivative while the prime denotes gatial derivate). Inserting
these derivatives into the original PDE gives the followiagult:
A(X)-B(t) — B?A”(x)-B(t) =0 (1.39)
or  A(x)-B(t) = B?A"(x) - B(t) (1.40)

Obviously the trivial solutiomu(x,t) = O satisfies the PDE, but we are not interested in the
trivial solution, so we can assume thak,t) = A(x)B(t) # 0 and thus multiply WithAl—B:
B(t)
B(t)

A" (X)

e (1.41)

- p

This equation can only be satisfied if both sides are cons&mit is possible to introduce
a constank?:
B(t)
B(t)

Ao
=B 40 = K (1.42)

From this we get the following equation:

B(t) = —k°B(t) (1.43)

It is easy to see that the solution of that equation is the eaptial function:

B(t) = Boe ! (1.44)
Applying the same steps to the second part of E@ld) gives:

K2

A’ (x) = —@A(x) (1.45)

with the solutions
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A(X) = cosgx, A(X) = sinEx (1.46)

Finally going back to the ansatz E4..85 we get:
A(X)B(t) = Boe ™ cosgx (1.47)
and  A(X)B(t) = Boe singx (1.48)

as solutions for the heat equation.

1.2.2 Boundary Conditions

If we want to impose the boundary conditiom®,t) = 0 andu(l,t) = 0 on the beginning
and the end of the rod, the parameteendf3 have to satisfy certain conditions depending
on the length of the rott

A(0)B(t) = Boe ¥ 'sin0=0 (1.49)
A(1)B(t) = Boe"ztsingl —0 (1.50)

Condition (.49 is always satisfied but Egl (60 leads to the following relation between
K and an arbitrary integex:

AT Brn (1.51)

B I

1.2.3 General Solution

Because the heat equation is a linear PDE the sum of two anwsatisfying the PDE is
also a solution of the PDE. This leads to the following ecurati

B(x,t) = § Bke*Kﬁtsin(ﬂx) (1.52)
& B

The type of solution is only valid for some special boundasgpditions (i.e.u(0,t) =0
andu(l,t) = 0). But by also using the cosine functions it is possible tisBaarbitrary
boundary conditions.

The function which defines the initial conditions must be afeposed into sines and
cosines by a Fourier analysis to find the parame®eifer the initial conditions.

Another solution can be obtained by integrating the sotutiom —oo to +o0:

/+OO et coskxdk = —+ efﬁzzt (1.53)
—o B™  2Bym '
This solution is called théundamental solution of the heat equation (cf. also Fig.3).
Introducing a coordinate transform gives the following mngeneral form of the funda-
mental solution:
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B(Xt) = ———e (1.54)

Here¢ is the parameter which specifies the distance the functighifted along the x-
axis. Although it might seem that the function disappeava/bl the following equation
holds:

vt > o/ B(x,t)dx =1 (1.55)

As t — 0+ the fundamental solution approaches the so cdllelda Function denoted
by &(x), which is not a function in the classical meaning. Lookinghag graph of the
function (Fig.1.3) one might guess what it looks like. At an infinitely small paf the

X-axis centred around zero the function has an infinite value

It is only defined in a weak sense. That means only the inteitais function together
with another functiorv(x) € C°(R) has a defined value:

/_ :o B()V(x) dx = v(0) (1.56)
and /_ ;OO 5(x— E)(x) dx = V(E) (1.57)

Using the following limit
lim _O:O 8(x t)V(x) dx = v(0) (1.58)

shows thaB(x,0) must be the Delta Function.

1.2.4 Solutionswith Source Termsand Initial Conditions

Using the property thdi(x, 0) is the Delta Function and the linearity of the Laplace opera-
tor allows the construction of analytical solutions whielisfy arbitrary initial conditions
or functions generating energy or heat.
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Without more explanations the following equations come out
a.) and internal sourcést, x)
A X X2

t
0t = /O h(t— 072 exp(— 4z )dr (1.59)

b.) initial conditionsB(0,x) = f(x) and no internal sources.

- - 1 +00 (X_E)Z
B(t,x) = \/ﬁ/_m f(&)exp(— e

)dE (1.60)

1.3 Non-Dimensional Form of the Heat Equation

In this section the behaviour of the PDE for different scallesuld be examined. One
example may be the diffusion of some chemical substancésinda which a large ship
looses through a leakage, another may be one drop of milkup @tcoffee. First step in
this examination is the introduction of a coordinate transfation, to make all quantities
in the equation non-dimensional

0=39(xYy,z1)0 (1.61)
with
X &L (1.62)
y = nL (1.63)
z = (L (1.64)
t = 1T (1.65)

whereL is a reference length anida reference time.
This time we will consider the heat equation together withvaztive transport:

60— p2A8+V'VO=0 (1.66)

Herev is the velocity of the convective transport. Perhaps thégjudam or stirring the
cup of coffee. Now the partial derivatives in E4.§6 must be replaced by the derivatives
with respect to the new variablésn, { andt.

0 10 0> 102
0 10 0> 192
0 190 0> 10
0 1 0
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And the velocity of the convective flow must obviously alscdaiapted to the new scales:

L
V=U=— 1.71
= (1.71)

With these equations the gradient and the Laplacian become:

d a o\’ 2 2 R
=|=,—,= =|l==+=—=+== 1.72
VE (aa,an,az) and AE <6EZ + anz + azz) ( )
and the heat equation thus:

20
1045 B

]
T390 700+ = LT Ved =0 (1.73)

Multiplying with T and dividing by§gives:

0 1

—9— A +UT V9 =0 1.74
ot Pe ¢ + ¢ ( )
WherePe= 5 B2T In this equation the reference time and length totallypiieared except
for the factor ZPe in front of the Laplacian. A$? = 2, we havePe = ‘;\pT". It is a

non-dimensional number like in many other areas (Reynolﬂsber Mach number, .).

All scales of the actual configuration go into that number. pgsical phenomena on
domains with totally different sizes and different matksriean have the same behaviour
if their Peclet number is the same.
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1.4 Finite Difference methods

One result of the last section was the PDE which describesdattransfer in a insulated
rod. Furthermore, several analytical solutions of this Rixte presented. But these
solutions satisfied very special initial and boundary cbads. If we want to solve real
problems with arbitrary boundary and initial conditiortswill almost be impossible to
find analytical solutions.

Thus this section will show one possible way to find a numéaparoximation for the

solution of the PDE. Next the properties of this approximaivill be compared with the
properties of the analytical solution. At the end some otafi'emes will be introduced
and analysed.

1.4.1 Spatial approximation of the heat equation

If we consider again the heat equation:

aalt" BAU = f, (1.75)
VX u(x,0) = dp(x) given (1.76)
Vt>0 u(0,t) = do(t), (1.77)
u(l,t) = O. (1.78)

we see two partial derivatives. One with respect to time &edather with respect to
spatial variables. Although some newer methods (Time-Spatte Elements) treat the
time derivatives in the same way as the spatial derivatinesst classical approaches
separate the time and space directions and start with a mahapproximation of the
space derivative.

Because the real solutiaix, t) of the PDE is defined on infinitely many points inside the
domain, itis impossible to handle the complete functiomde@she computer. So we must
limit our solution to a finite number of points in space. Fanglicity we assume these
points are distributed equidistant on the domain. So eauit pas a distance df to its
left and right neighbour.

The goal of the approximation is to find an expressionggr, which depends only on
some neighbour points. One way to derive this expressionTigyéor expansion ofi
around a given poimnt. The first approximation is used for the right neighbour:

ou 10%u 2. 1 o3u s, 1 o*u, , 5
u(x+h) = u(x) + &(x)hjL 26x2h 3 ax3h 2 a)(4h +0(h>), (1.79)
the second one for the left neighbour of point
ou 10%u 1% 1 0%

u(x—h) =u(x) - = (x)h+Zaxz(x)hz—gﬁ(x)h?’qtmw(x)h“—O(h‘S). (1.80)

Adding Eqg. .79 and Eq. £.80 results in:
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u(x+h) +u(x—h) = 2u(x) + 0+ @h2+o+ 3@h4+0(h6) (1.81)
B 0x2 41 ox* ' '
Dividing by h? and rearranging gives:
0°u 1 104 , 4
e ﬁ(u(xjth)—2u(x)+u(x—h))—ﬁa—x4h +0(h"). (1.82)

As we only want to use the values at the poiitsh, x, x+ h, we may shorten this to

Pu 1
52 = g Ux+h) — 2u(X) + u(x—h)) +0(h?). (1.83)
Because we have a finite number of equidistant points it isiplesto label these points
from O toN, whereh-N = |. At a typical pointx; = Xo + j - h we introduce the notation

uj = u(xj) (1.84)
ouj  du(x;)
= ax etc. (1.85)

Introducing this numbering gives for an arbitrary pott

2 :ﬁ(qu—ZUj‘f‘Uj—l)‘f‘o(h ) (1.86)
This equation provides already an error estimate. Redutiaglistance between two
points to one half of the original distance reduces the @oooughly one quarter of the
previous value.

Another way to derive this equation is to use the well knowlatren that the second
derivative of a function is the derivative of the first detiva of this function. The same
applies to the differences. Here we take the difference &atmhe first forward difference
and the first backward difference.

1 /Uji1—Uj Uy —Uuj_1 1
H < J+h J — J hJ ) = ﬁ(qu_ZUJ +Uj71) (187)

1.4.2 Method of Lines/ Semi-Discrete Approximation

By inserting the approximation for the second derivativEn (L.75 we obtain approxi-
mately:

ou; B2 .
. ﬁ(uj—l_zuj +Ujy1) = fj(t), je[l.N-1] (1.88)

The PDE has now become a system of ODEs. Introducing themnecto
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u(t) = uj:(t) (1.89)

i UN—.l(t) ]

allows us to write the system of ODESs in matrix form:

%u(t) = Au(t) +f(t) (1.90)
with
> 1 0 0 fa(t) + 25 0o(t)
p2 | -1 2 -1 fo(t)
A:—m and f(t) = : (1.91)
0 -1 2 fN—.l(U

One problem occurs at the boundarys which lie at the paigpnduy. Here we have

circumvented it by assuming the simple boundary conditiois). (1.75, where the first

(inhomogeneous one) & gives a contribution to the vectbrOther boundary conditions
will be treated later.

A A A A A

Figure 1.4: Scheme of the Method of Lines

The nameéMethod of Linescomes from the fact that we have reduced the original problem
of finding a solutioru(x,t) at an infinite number of points in the space-time domain to the
problem of finding solutionsij(t) on a finite number of lines in the space-time domain
(cf. Fig.1.4). These solutions can be obtained by solving the system &<ddalytically

or by using another numerical method to discretise thesed3kvell in time.

1.4.3 Analysisof the Spatial Discretisation

In this section a general analytical solution for the syst¢éi®DEs which came from the
spatial discretisation will be derived. For simplicity wensider the heat equation with
boundary conditions as in EdL.79, with f =0 anduy = 0.
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The spatially discrete system EQ4.90 from the method of lines then simply reads

0 =Au (1.92)
where the matriXA in Eq. (1.91) is symmetricA = AT and thus has the following proper-
ties:

e AhasN — 1 orthogonal eigenvectors which form a basi&®df 1

e Ahas real eigenvalues

For our analysis we need an analytical solution for E¢P2. We start with the following
Ansatz:

u(t)=v-et (1.93)

wherea is a number and a vector. Inserting Eql1(93 into Eq. (.92 gives:

ave® = e"Av = Av = av (1.94)

and hence anda have to be eigenvector and eigenvaluéoh order that Eq.1.93 is a
solution of Eg. 1.92. One problem with this solution is that it does not satisfy initial
conditionsu(x, 0) = (ip(X).

It is possible to overcome this problem because the eigémngeof A provide an orthog-
onal basis. Every vector of initial conditions can then bidoup from the eigenvectors:

uy(0) N-1
u(0) = : =5 By (1.95)
UNgl(O) =1

The solution vector at an arbitrary time is decomposed irséme way:
uy(t)

N—-1
u(t) = : = Z Bj(t)Vj (1.96)
=

un-—1(t)

Obviously this solution must satisfy the system of ODEs Wigwves the following rela-
tion:

N—-1, N—1 N—1 N—1
> Bithvj=A < > Bj(t)Vj> = > BiAv; = Bj(HAy; (197
=1 =1 =1 =1

This leads to the following condition for the variablgs

N-1

> (Bit) =Bj(t)Aj)v; =0 (1.98)

=

As {vj} is a basis, this is only possible if the parenthesised temstias for each.
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With this basis transformation it is possible to split thegoral system of coupled ODEs
into a set of uncoupled linear ODEs:

Bj(t) = AjBj(t), Bj(0)=p° (1.99)

with the analytical solutions:

Bj(t) = BeM! (1.100)

After this preparation we have everything together to asathe behaviour of the analyt-
ical solution of the system of ODEs which we obtained fromgpatial discretisation of
the heat equation. One very important thing about the swiatof the heat equation was
the fact that all solutions were decaying if no internal reairces were present. If our
spatial discretisation can not guarantee that these pgrepeemain in the solutions of the
ODEs it will be not very useful, because the goal of our wortoiget a method which
can be used to compute reliable predictions.

From Eq. (.100 it can be seen that the eigenvalugsof the matrixA are essential for
the solutions. I\j > 0 it is clear that the exponent will grow as time increasestand
the solution will also grow. So a decaying solution requitest allAj are smaller than
zero. To find out if this is true for our matri& we need a general eigenvalue analysis
of the matrixA. Fortunately a closed formula exists for the eigenvalues widiagonal
symmetric matrix.

Lemma 2 (Eigenvalues of atridiagonal matrix) Let A be a symmetric tridiagonal ma-
trix of size N — 1 x N — 1 with the following structure:

[a b
b a b

o -
oo

Then the eigenvalues Aj of A are:

A :a+2bcos<%[> , J=[1...N—=1]
and the eigenvectorsv;j of A are:
v
vi=| |, v‘f:sin(kjwn), K,j=[1...N—1]
v
In our case we have:
BZ

2 2
_ _h_BZ, b= (1.101)

So we obtain:
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2 2 ; 2 i
\j= _2h£2 - Zhizcos%[: 2h£2 ((cos%) — 1) (1.102)

The first part of Eq.1.1032 is just a positive constant. So whether the largest eigaava
greater than zero is determined by the last part, which cgnbmtome zero if the cosine
becomes one. Because the expres$jdh never becomes zero the cosine never reaches
1 and the eigenvalugs are always negative. This shows that the analytical salataf

the ODEs will always decay and thus reproduce qualitatithedyoriginal behaviour of the
PDE.

1.4.4 TimeDiscretisation

Although we have found an analytical solution for the systdr®@DESs coming from the
spatial discretisation this task will become more diffi@rit most often impossible if we
consider more complex domains. Therefore we need anotbenetisation which approx-
imates the time derivative and allows us to solve the ODEsarmigally (See Figl.5)

t A

OO0 O0OO0OO0OO0OO0OOo
OO OO0 O0OOoOo
At{OOOOOOOO
OO0 O0OO0OO0OO0O\Y o~
A A\ Y
h
u

j,n

Figure 1.5: Scheme of a full discretisation

Forward Differences

To approximate the time derivative we use again a Tayloesesxpansion afl around a
given timet. Let At denote the time step size, then we have:

ou

u(t+4t) = u(t) + 5 At + O(At?), (1.103)
t
or
ou|  u(t+At)—u(t)
At~ A +0O(At). (1.104)

If we insert this approximation of the time derivative inteetspatially discretised heat
equation, we obtain:

u(t+At) —u(t)
At

= Au(t) (1.105)
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The two approximation errors of sig&(At) for the time discretisation an@(h?) for the
space discretisation bring a total discretisation err@(@t) + O(h?) = O(At + h?).

Assuming that the size of the time steps stays constantasisiple to number the different
discrete time points:

th = to-+n-At (1.106)

Together with the spatial discretisation we have a solutestior at every time point:

uz (tn> Uin
Up = : = : (1.107)

uj (tn) Ujn

With these vectors the discrete heat equation can be waten

B
This method for ODEs is also known as tkaler forward method. It is now a fully
discrete linear dynamical system of difference equatioitis matrix B.

An important question is now whether the numerical soludiofithis difference equation
also decay. To find an answer another eigenvalue analysighdtmatrixB is necessary.
Again the matrix is tridiagonal which makes the eigenvalu@lgsis easy.

1-2p2% B2 0 0
ao| Pw R e 9 (1.109)
- 0 R4 1-2@2% B2 0 '
Herea=1-—2r andb=r withr = [32% and thus:
A, :1—2r+2rcos%[:1—2r (1—cos%[) (1.110)

The solution of linear difference equations is growing & @ibsolute value of one eigen-
value is greater than one. Therefore we must look if one oéipenvalues is greater than
one or less than one. During the analysis of the spatial appedion we already saw
that cosfj never becomes zero. From this fact we see that E¢1() is always less then
one. The other "dangerous" value+4. If we setj = N — 1 the cosine approaches its
maximum negative value:

An_1=1-2r <1-cos%) (1.111)

To guarantee decreasing solutions we can make the conditittite bit stronger by re-
quiring:

1
ANC1>AN=1—-4r>-1 or r< > (1.112)
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which gives the following relation fo, h andAt:

h2
At < — 1.11
t < 232 ( 3)

Satisfying this relation guarantees a stable behaviour e@taying solutions. One inter-
esting thing about this equation is the fact that the timp stee depends on the spatial
discretisation. So reducing the distance between the poirgpace requires a reduction
of the time step, but with a quadratic dependence !. If we wiaatsolution to be four
times as accurate, we have to double the number of spatiaisy@i(h?)), and divide the
time step by 4, both for accurac@(At)) and stability (Eq.1.113) reasons.

6 - Methods

To overcome the restrictions of the forward differencesnmet other time discretisation
schemes must be used. One idea is to use not only the forwigerkdce but to take also
the backward difference.

The forward difference is defined as:

ou| _ Uny1—Un

ot At

+0(At) (1.114)

This difference leads, as we already know, touger forward method for ODES. Insert-
ing this finite difference approximation into the origingsgem of ODES results in:

Un+1—Unp
— — =A 1.11
At Un ( 5)
The backward difference is:
ou Unt+1—Un
— =—- 1 0O(M 1.116

t:tn-rl

This leads to thé&uler backward method for ODEs. We insert this approximation into
the original system of ODESs to obtain:

Un+1—Un
At

The class o®-methods is based on a linear combination of the forward and backward
difference formulas. Introducing a weighting paramétere get:

= Aln.1 (1.117)

Bbackw.+ (1 — 6)forw. ~ %—l: + O(AtP). (1.118)
t=thie

For@ = 1/2 the order of the method = 2. All other methods achieve only an order of
p=1. Inserting Eq.1.115 and Eq. £.117 into Eqg. @.11§ gives:

Un+1—Un
At

By solving foru .1 we obtain:

= 0AuUp 1+ (1—06)Auy (1.119)
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(I —8AtA)Un 1 = (I + (1—B)AtA)up (1.120)

In this equation we can observe several properties ddtmethod. Non astonishingly for

08 =0 itis exactly the same as tliiler forward method. Furthermore we can see that the
system of linear equations which must be solved to get thé sw@ution vectomuy, 1 is
non-trivial for all® > 0. Hence larger timesteps through better stability progedf the
method have to be bought at the expense of more floating ppéaratons per time step.

To see if we may use larger time steps with thenethods we need the same type of
analysis as for the finite difference method.

As both(l —B8AtA) = By and(l + (1—8)AtA) = B; are tridiagonal and symmetric, they
have the same eigenvectors and may be diagonalised sireallisly, with

Aj(B1) =1+ 2r9—2recos%[ =1+ 2r9(1—cos%[) (1.121)

and

T
Aj(B2) =1—2r(1—0)(1— cosjﬁ). (1.122)
The system in Eq.(120 can be written as
Uni1 = B *Boun = Bup (1.123)
and hencé has eigenvalues

Ai(B2) _ 1-2r(1-8)(1—cosi

Ai(B) = : 1.124
i(B) Aj(B1) 1+ 2rB(1—cosky) ( )

(and the same eigenvectorsisandB-). We require that
~1<Aj(B) <1 (1.125)

The right inequality leads to-2 2r (1 — cost") < 1 which is satisfied for al], and the left
inequality gives the requirement
jm
r(l—cosﬁ)(l—ze) <1l (1.126)
This is certainly satisfied #® > 1/2, and hence thog&methods are stable for any com-
bination of At andh; this is calledunconditionally stable. For6 < 1/2 the inequality is
1

certainly satisfied if -2- (1—-20) < 1, orr < 21-20)" For@=0thisisrelation Eq.1.112.
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1.4.5 Von Neumann Stability Analysis

Some error estimates were obtained by the Taylor seriesisiqraof the PDE in time and
space (Eq.1.118). These error estimates showed tioasistency of the numerical ap-
proximation which, means that the numerical solution isgpreximation to the solution
of the PDE.

But consistency is not enough to get correct solutions feRBE. Another requirement
is the stability of the numerical solution. The condition for stability E4..Y13 was
derived by the matrix stability analysis. Stability and smtency guarantee together that
the numerical solutiononverges to the real solution of the PDE.

In this section another method to find the stability condisidor a method will be pre-
sented. This method starts with an assumption about thgtar@hlsolutions. These solu-
tions consist of sine and cosine functions of different fieacies at each time instance:

u(x) = cogk-x) +isin(k-x) = & (1.127)

Herei is the imaginary unit ané is thewavenumber. For this analysis we also assume
that the number of discrete points is infinite. Then lookihthés function at our discrete
grid points wherex= j - hreveals:

u(j) = €ekin (1.128)

Currently this Ansatz captures only the spatial structdith® solution. From the analyt-
ical solution we know that the time evolution of the functisran exponential function.
In the discrete case this exponential function is approtechéy the gain factoiG(k)"
where:

G(k) = e (1.129)

Bringing Eq. (L.128 and Eq. {.129 together gives the following ansatz function for the
solution in one of the discrete points:

Un j = G(k)"gkin (1.130)

2
Using agair = %, the general form of the Theta-methods can be written as:

—Orung1,j—1+(14+20r)uny1j—Orunsy j+1=(1—0)runj—1+(1—-2(1—0)r)un j +(1—06)run j+1
(1.131)

Inserting the Ansatz Eq1(130 into the difference formula gives:

(1+20r)G(k)"ekin — gr (G(k)Mdki+Dh | g(k)nHidki-1h)

=(1-2(1—-0)r)G(k)"e"" + (1 B)r(G(k)"g DN 1 G(k)"gki -1
(1.132)

Dividing by G(k)"ékiM which is nonzero, simplifies the equation to:



26 CHAPTER 1. AN INTRODUCTORY EXAMPLE

(14 26r)G(k) —BrG(k) (€X' + e = (1—2(1—8)r) + (1—0)r (" + e ") (1.133)

Frome?f = cost +isiné it is easy to derive the following two formulae:

_Lge it
coi__z(é te ) (1.134)
1/ - .
ing — — (dé _ gl
snz__2i<é e ) (1.135)
Using the first of these gives:
(1+20r — 26r cogkh))G(k) =1—2(1—0)r +2(1— 6)r cogkh) (1.136)

Solving forG(k), we finally arrive at the following expression for the gaiotfa:

~ 1-2(1-6)r(1—cogkh))
Gk = 1+ 26r(1— cogkh))

(1.137)

Obviously the gain factor depends on the wave number andptit@sdiscretisation. For
stability the following condition must be satisfied:

Gk <1 (1.138)

Another important component in the stability analysis eshighest wavenumbé&mwhich
will be included in our examination. This wavenumber is mally given by the spatial
discretisation with alternating values at successive gdohts. This means the upper
limitis kmax = . Higher frequencies appear as lower frequencies. Thistéff&nown as
aliasing and follows directly from Shannon’s theorem about the digsation of signals.

The extreme values @ which are important for the stability analysis depend maani
the cosine in the quotient of EdL.(37). Demanding cakh) = 1 leads td = 0 which is
the lowest possible frequency and thus:

1-0
= — = 1
1+0
This extreme value does not cause any trouble (it is actnatessary for consistency)

because it only reaches the stability limit. Now we have tanexe the other extreme
value cogkh) = —1,kh=1t= k= f:

G(0) (1.139)

M 1-4(1-8)r
Gl = 1+ 46r

While the first limit exactly measures the amplification o tbwest frequency, the lower
limit corresponds to the amplification of the highest fremgies which can be resolved
with the given spatial discretisation. And the second licaih become less thanl and
is thus the "dangerous" limit which needs further investaga

(1.140)

1—4(1-0)r

> — — <
a2 l=(-20)r<

(1.141)

NI =
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For 6 > 3 we get arunconditionally stable method for allr > 0. If 8 < 3 a restriction on
the time step must be imposed to get a stable methedl(/2(1— 26)). Comparing this
stability result with the matrix stability analysis for tliler method§ = 0) shows that
we get the same restriction on

If G < 0 the first factorG" of the discrete solution will change its sign with every time
step. These solutions are callestillatory solutions. Because the analytical solution

does not show this behaviour it would be nice to avoid als® thwanted characteristic.

Inserting this requirement into the equation for the gaatdareveals:

1-401-or o 1
1+46r ~ = 4(1-0)

(1.142)

A last condition can be derived from the numerical schemess dalledpositivity and
should prevent the solution from becoming negative. LogkihFig.1.6 shows how the
solution at a given point depends on the neighbour points:

ntl © )
(1- 0)r (1- O)r
n Q@ @
1-2(1- O)r
-1 i j+1

Figure 1.6: Computational molecule or difference star lhertheta methods

Uni1,j = Unj+ (1= 0)r(Unj—1—2Unj+Unjs1)
= (1—2(1—8)r)unj + (1= B)r (Un j_1+ Unj+1) (1.143)
—_—

a

The important criteria for positivity is the paatin Eq. (1.143 because the rest of the
equation is always positive, if the algorithm is startedwpbsitive initial conditions. It
follows that:

1
(1—2(1—9)r)20:>r§2<1_9) (1.144)

In summary we have found the following three criteria whieln e used to find the right
parameters for the numerical solution:

e Stability : 1 < 5ty

e Positivity : r < 2(1—14)

i 1
e No oscillations r < 77755

For the three schemes which are used most the result are shdahblel.1
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| Euler fwd. | Trap.Rule/Crank Nicholsoh Euler bwd.

Stability r<1/2 r<oo r <oo
Positivity | r<1/2 r<1 r <oo
Nooscill. | r<1/4 r<1/2 r <oo

Table 1.1: Limits fod=0,6=1/26=1

1.4.6 Stability and Consistency

In the previous section we analysed the stability of the aimeéthods, which were for-
tunately consistent. Otherwise the methods could have $tabie and nevertheless been
producing wrong results. The meaningaohsistency, stability andconvergence will be
illustrated in the next chapter with some examples whiclsthe need for these criteria.

Well posedness

A very useful demand on PDEs is tivel| posedness. Following the definition of Hadamard
a PDE

L(u)=f (1.145)

is well posed if it possesses three properties:

e the solution exists
e the solution is unique

¢ the solution depends continuously on auxiliary data

To show the existence of a solution may be a difficult problbat,usually depends on
the proper formulation of the problem. It requires the ofmara is surjective, i.e. for
any f there is at least onesatisfying Eq. {.149. For the uniqueness of the solution the
operatorL must be injective, i.e. there is at most amsatisfying Eq. {.149. The last
requirement can be satisfiedlifand alsd_~* are continuous.

Although well posed problems are very nice, not all phygateanomena can be described
by a well posed PDE. A simple example is an elastic rod with fixed end and an
increasing force acting in the direction of the rod on theso#nd. For small forces the
problem is well posed. The deformation of the rod followsiyrHooke’s law. But at a
certain point, when the rod starts buckling, the problemoisgamger well posed because
the rod can buckle to an arbitrary direction. So infinitelynyp&olutions which are all
physically correct can exist.

Convergence

The most important criterium for a numerical approximaistineconvergence which de-
mands that the approximate solution gets closer to the exution as the discretisation
is made finer.

Let L(u) = f define the exact solution arig,(u,) = f;, be the discrete approximation.
Then convergence is:
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up,—u, as (h—0) (1.146)

With this definition one open question remains. How to mea#wa function approaches
another function. For this purpose the concept of normschvis known from finite
dimensional spaces, is transferred to function spaces.sfldasic norm is thé&, norm
which is defined by:

lulle, =1/ [ u02ax (1.147)

Utilising an arbitrary norm the convergence can be written a

luh—u|| =0, as (h—0) (1.148)

A weaker criterium than the convergence is toasistency, which requires that the dis-
crete system approaches the continuous orre-a$ (with fixedu) !

Lh(u) — L(u)

¢ ¢ - as (h=0) (1.149)

The last important thing is the stability of a method, whicasaexamined in the previ-
ous sections. Formally it can be written as (the inversefsmi operator is uniformly
bounded):

IL-Yi<c,  vh>0 (1.150)

Where we shall now assume that batlandLy, are linear operators. These three condi-
tions are brought together by the following theorem.

Theorem 1 Consistency andStability < Convergence

Proof:

[u—un|| = ||Ly H(Ln(u) = L(w) + Ly 2(F = )| (1.151)

With the triangle inequality we can find the following uppeund:

<Ly H(La(w) = L(u) |+ 1Ly (= )| (1.152)
<L Y1 CLn(u) = LQu) [ Ly Y- 1= )] (1.153)
= [ILy M Ln(u) = Lu) |+ (F = fa)]) (1.154)

Stability allows us to introduce another bound:

< C(J[(Ln(u) = Lu)[l+[1(F = F)]) (1.155)

From consistency we get that:

[ILn(u) = L(u)[[ =0

1o 1] -0 as (h—0) (1.156)
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and thus:

C(ll(Ln(u) = L)+ [[(f = fn)][) =0, as (h—0) (1.157)

which shows the convergence. The other direction needs deeyer results from func-
tional analysis, and will not be given here.

Richardson scheme

As we have seen in one of the previous sections, approxigdtatime derivative with
forward or backward differences gives only an accurac@(@it) in time. To overcome
this shortcoming, Richardson developed another schenmhwiais second order accuracy
in time. He simply replaced the forward difference by a défece over two time steps at
a given point:

@ o Unp1j—Un-1
ot 2t

Including this approximation into the spatial discretisatof the heat equation generates
the following scheme:

(1.158)

Unt1j—Un-1j B

AL p2(Unj—1—2Unj +Unj+1) =0 (1.159)

The stability is examined again with a von Neumann stabdrglysis. We start with the
ansatz:

Unj = G(k)"- ki (1.160)

Inserting this Ansatz into the difference scheme gives:

i(GG()nJrleikjh _ G<k>nfleikjh> + ﬁ_iG(k)n[_eikh(jJrl) +2eikhj _ eikh(jfl)] -0
(1.161)
Dividing by G(k)"ekIh = up, j:
1 p2 -
5 (G(K) —G(k)*l)+ﬁ[—e'hk+2—e*'hk] =0 (1.162)

Replacing again cgg) = (6 +eX):

G(k) — G(k) "t = 4r(cogkh) — 1) = 4r(-2 sinz(%)) = sinz(k—zh) (1.163)
Multiplying with G(k) gives the following quadratic equation:

G(k)2—1= —8rG(k) sinz(%) (1.164)

with solutions:
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G(k)12 = —4rsin2(%)i\/1+ 16rzsin4(%) (1.165)

The expression below the square root is always positiveusecaf the square and the
fourth power and larger than 1. Furthermore the first pargp{E 169 is always negative.
Thus the dangerous limitis1 and it is clear that the Richardson method will always have
a gain factor less thanrl. As a consequence the Richardson methaghesnditionally
unstable. No choice of time step or spatial discretisation can malkeniethod stable.
Therefore the only useful application of the Richardsonhmodtis as an example for an
unstable method.

DuFort-Frankel scheme

One reason for the instability of the Richardson methodadably the fact that the time
step where the spatial derivative is computed is not cougldébe time steps where the
time derivative is computed. The DuFort-Frankel schenes titd overcome this problem
by replacing the midpoint of the Richardson schamg with the average afi,_1, j and
Unt1, J. Written in the normal way the DuFort-Frankel scheme takeddllowing form:

Un+tj —Un-1j  B*
24t h?
The von Neumann stability analysis shows that this schemedsnditionally stable. But

this method has another drawback which can be analyseddngistency analysis. Using
Taylor expansions for the points used in Ef169:

(Unj—1— (Un-1,j +Uny1,j) +Unjr1) =0 (1.166)

Uni1j = u(t+At,x):un,j+‘3—‘t"m+%%m2+0(m3) (1.167)
Un-1j = U(t—AtX)=Unj— %At + %%m%omﬁ) (1.168)
Unji1 = u(t,x+h):un,j+%(h+%%h2+0(h3) (1.169)
Unj_1 = U(t,X—h):Un’j—%h—i—%%hz—'—O(hs) (1.170)

and inserting these equations into Ef166 we obtain:

2 2
QAt+O(At%)  B?(2unj + §3h?+O(h%)) . B?(2unj + $H A2+ O(At3))

m > = =0 (1.171)
Some simplifications give:
ou _,0%Uu
5 P5e tE=0 (1.172)
with
E= B o +0O(At?) +0(h) (1.173)

h2 at2
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Looking at the error reveals that we do not only have the nband unavoidable dis-
cretisation errors, but also an additional term which dagsemist in the original PDE.
If we use the DuFort-Frankel scheme without any restrictjome will get the solution
for a different PDE. This is callethconsistency. If we use the method to solve the heat
equation, we have to require tl*é}t—> 0 asAt,h — 0, which is incidentally satisfied by
the stability requirements we saw earlier, with= O(h?).

1.5 FD Methodsin More Dimensions

The numerical solution of 1D problems serves as an introolnitd the treatment of prob-
lems in higher dimensions. As soon as it comes to the solaidghor 3 dimensional
problems, the use of numerical solution methods is almesiyd unavoidable. Here we
will cover the basic ideas of finite difference methods in endimensions.

1.5.1 Basicldeas

If we consider again the instationary heat equation, b tinhe in 2 dimensions, we

obtain:
au 9%u 94U

—_— 2 —_— _— p—
5 PGt ay2) f (1.174)

Recalling that in the one dimensional case the second spatiaative was replaced by

a finite difference, this idea can be applied straightfodtarthe 2 dimensional equation.
Prior to doing this we again have to introduce a discretsedif the domain (See Fid.7)

ay

Figure 1.7: Scheme of the 2D discretisation

The coordinates can be expressed in terms of the ingliaes!:

X = j-AX (1.175)
|- Ay. (1.176)

Then the partial derivatives can be replaced by finite diffiees:

aZU'J 1
5 = Uit~ 2uj i) (1.177)
0%uj 1

= (U1 — 2uj FUj 1) (1.178)

ay?2 Ay?
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Inserting these expressions into Ef.1(74 we obtain:

oujy P B2

ot - m(ui*l,l - 2Uj,| +Uj+l,l) - A—}/2<uja|*1_2uj»| +Uj7|+1) =f (2.179)

Going one dimension up to three dimensional problems, tlsechdea stays the same.
Introducing another coordinaie

z=k-Az (1.180)

we get the following approximation for the second partiaidgive with respect ta

0%u; | k 1
7 = gz i1 20kt U est) (1.181)

The semi-discretisation of the three dimensional instetip heat equation then obviously
becomes:

ujik P2 i
5 _ m(ujfl,l,k_ ZUjJ,k-l- Uj+1,|,k> - A—y2

2

~ 22 Uidk-1— 20kt Uy pn) =

(Uj1—1k—2uj ) k+Uj14+1k)
(1.182)

1.5.2 Computational Molecules/Stencils

Another simplification is to use the same step size in botlcesplirections. This leads
then in 2D to the following expression with= Ax = Ay being the unique discretisation
parameter:

6Uj7| BZ
5 (A U U U U ) = (1.183)
or in 3d to:
ouj ik P2
S pz (B K Uik U kF ULk ULk U e U ) =

(1.184)
A very nice way to visualise these schemes is to draw the paiséd in the schemes
with their weights in the original computational domainr Bee two schemes shown here
one obtains pictures as shown in Fig8 and Fig.1.9. These are often referred to as
Computational Molecules or Sencils.

19 19
1
-4
1@ L ® 1 1@ ® 1
-6
1
le le

Figure 1.8: Stencil for 2D Laplace oper-  Figure 1.9: Stencil for 3D Laplace oper-
ator ator
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1.5.3 Boundary Treatment

As we know from 1-D problems, the solution is only completgbecified if the bound-

ary conditions are satisfied along with the differential &gpn. These boundary condi-
tions have to be discretised also for a numerical treatm&fiiien the boundaries are not
straight, this becomes a cumbersome procedure for finfiereifce methods. We will not

treat these here, and refer to specialist texts. We will sésothat this problem is much
easier with the finite element method, which will be treatedtrin the more general

context of weighted residual methods.

1.5.4 TimeDiscretisation

Similar to the one dimensional case, the resulting systeordihary differential equa-
tions normally does not possess an analytical solutionghvimakes the use of numerical
methods necessary. Using tBenethod as an example we obtain the following system of
equations:
+1
upit - B

2
N r2((1-8) (—4u | +ul g uf g Ul )+ (1.185)

B(—4ul Tt +uM ]+ Ul Ul Ul ) +
For three and higher dimensional problems the idea and mmat¢ation is straightfor-

ward. But it should be noted that the computational effoct@éases extremely fast with
higher dimensions. While in one dimension, takimg: 0.01 for a unit interval leads to

approximately 100 points, the same discretisation siza forit cube in three dimensions
leads to 1000000 points!. Hence for higher dimensional lprab often the practical

implementation becomes the real problem.



Chapter 2

Equilibrium Equation and Iterative
Solvers

The solution of the homogeneous heat equation with conbtamdary conditions ap-
proaches a stationary state.

2 uky.zt) - Fau(xy.zt) = f(xy.2) 2.1)
u(x,y,zt) — G(x,y,z) as t— oo (2.2)

This is the steady state of the instationary heat equatidrakso the solution of the equi-
librium equation.

Qay =0 = —Faixy2) = f(xy2) 2:3)

In this chapter this equilibrium equation or stationarytheguation will be introduced.
After that some methods to find a solution for this equatiolhlva introduced.

2.1 Equilibrium equation

The general form of the heat equation was:

2 ey zt) - Bauleyzt) = f(ey.z) (2.4)
Other physical phenomena like diffusion can also be modedlgh this type of equa-
tion. This equation is a member of the family jdrabolic equations. A more detailed
description of the different classes of partial differah#quations will follow in a later
chapter.

In order to have a unique solution of this equation we needesboundary and initial
conditions. After spatial discretisation we have the feilog system of ODEs:

d
SutAu=f (2.5)

If the right hand side termis independent of the time, and all boundary conditions are
also constant in time, the solution of EQ.4) will converge to a steady state as> oco.

35



36 CHAPTER 2. EQUILIBRIUM EQUATION AND ITERATIVE SOLVERS

In the steady state the solution does not change anymo%‘, sd and thus the steady
state will also satisfy the following partial differenti@tjuation:

—B?Au(x,y,2) = f(x,Y,2) (2.6)

together with the boundary conditions. Now the equationfiglbptic type. Several
other problems like the stationary state of mechanicalesystlike displacement of the
membrane of a drum or the displacement of a simple beam caedwgilded by elliptic
equations.

If we apply finite difference approximation for the spatiariative we obtain a system
of linear equations:

Au=f (2.7)
with
2 -1 0 o]
-1 2 -1 O
B e
- _1 2 =

This matrix is tridiagonal and hence very sparse (its entire mostly zeros). Tridiagonal
matrices can be factorised by direct eliminatior©ifn) operations (the so calléthomas
algorithm).

Normally, the discretisation of PDEs leads to sparse arghofery large matrices with
solution vectors of several million unknowns, because th&®n becomes more accurate
if the spatial and temporal discretisation is refined.

For not too large systems of linear equations the fastestisolif often to use a direct
solution method like Gaussian elimination. Especiallydoe dimensional problems one
can achieve a numerical complexity©tn) wheren is the number of unknowns. But for
higher dimensional problems the complexity of efficienedtrsolvers become(n?) for
typical grid problems in 3D. This makes the use of an altéraapproach for very large
systems of equations necessary.

2.2 lterative methods

While the direct solvers try to find the solution of the systeinequations in a finite and
predetermined number of steps, the iterative solution austistart with an initial guess of
the solution, and try then to get closer to the correct smfutvith each iteration. One then
usually stops the iteration when the iteration error is & same order of magnitude as
the discretisation error. All the iterative methods repldte direct solution of the original
system of equations with the direct solution of a simpleteys which has to be iterated
over and over.
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2.2.1 Timestepping, Richardson’s Method

If we look back to the instationary heat equation we can diyedentify a first iterative
method. We found out that the steady state solutioh-asco of the instationary heat
equation is a solution of Eq2(6) and thus also a solution of ECR.{). Starting with
the initial conditions the Euler forward method allows ugtone closer to the stationary
solution without solving any systems of equations.

Obviously it will not be possible to come to= oo with finite time steps, but assuming
we have chosen a stable time step size we can be sure thatitevatipn brings the ap-
proximation closer to the correct solution of the equiliioniequation. Hence an arbitrary
accuracy can be achieved after a finite number of time steps.

The Euler forward method for

u+Au=f (2.9)
was
Un+1—Un
———— +Au,=f. 2.10
A TAUN (2.10)
Rewriting it in matrix form gives:
Unt1 = (I — AtA)up + Atf (2.11)

This method is equivalent to Richardson’s method for sgaiinear system of equations
Au=Tf:
Unt1 = (I =3A)Up+3f = un +9(f — Aup) (2.12)

with a parameted which must be sufficiently small.

2.2.2 Jacobi’'sMethod

A slightly different view to Eq. 2.12) reveals that every iteration is the solution of a very
simple system of linear equations:

luppr =9f— (SA —1)up (2.13)

Jacobi’'s method may be seen as replacing the identity maithxa matrix of similar
complexity which is closer to the original system of lineguations. The diagonal matrix
D = diag(A) has the same structure as the identity matrix but is closéndmriginal
system of linear equations and is thus used for the Jacolbiadet

Dupt1 =9f — (8A—D)up (2.14)
Another view, and the one initially motivating Jacobi, oétsame method is illustrated in
Fig.2.1

Assuming the solution is known on all nodes except our ctimede j, we simply solve
the system of equations for that node:
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u is known

///\\

i1 J Yjrr -

u is unknown

Figure 2.1: Scheme of the Jacobi method

S aul) — f0) () = () (i) = ) Len_ 1
Zlajiu =fV oaul) =1 —;ajiu S Ug=—fV—— a,.un (2.15)
7]

i= i ajj ajji J

Obviously, Eq. 2.15 is equivalent to Eq.4.14) with & = 1.

2.2.3 Matrix Splitting methods

One common principle of the Eg2.(l3 and Eq. .14 was the solution of a simpler
system of equations in each iteration. This principle isagalised in the matrix splitting

methods. Instead of solving the original system of equatmme time, simpler systems
which are similar to the original system of equations argesbkeveral times to approxi-
mate the solution.

A formal derivation starts with the original system of linemuations:

Au = f (2.16)

Multiplying the system with a facta® and addingVu gives:

Mu = Mu+ w(f — Au) (2.17)
From this system of equations, which is equivalent to thginal system, the iterative
method is derived as:
Mupi1 = Mup+ @(f — Aup) (2.18)

Forw= 1 we have

MuUne1 =f+ (M —A)up =f— (A—M)uy (2.19)

So we see the matriX is split into the part®\ andA — M.

It is important to have a matri which allows a fast solution of the system of equations.
A broad class of very popular methods is based on the sglitiirA into the strictly
lower triangular parE, the strictly upper triangular pa” and the diagonal pai (See

Fig.2.2):

A=D-E—E' (2.20)
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_ET

Figure 2.2: Matrix splitting

Gauss-Seiddl

If we consider again the Jacobi method, written with thetspf matrices, we obtain
(with w=1):

Duns1 = Dup+f— (D—E—E")up=f+Eun+E"upn (2.21)

Under the assumption that our algorithm starts at the firkhownu; and goes down to
the last unknowry, we have already new values fari = 1... ] — 1 at positionj. The
Gauss-Seidel algorithm takes this into account by usingetinew values as soon as they
are available. From Eg2(15 we have

ajjup)y = 10— 3 aju), - 5 g, (2.22)
<] i>]
or in matrix form:
Duni1 = f+Eup+E up.1 (2.23)

But as often the advantage of a faster convergence has seatvdntages. For large scale
applications it is often necessary to use parallel compufdne Jacobi method allows an

almost trivial parallelisation of the algorithm. Each pessor gets some unknowns and
can compute the next iteration independently of the othergssors. After each iteration

the new results must be distributed.

In contrast the Gauss-Seidel algorithm cannot be parsgielin its original form because
the stepg + 1..N can only be started after the resultsjlare known. To overcome this
problem algorithms like the Block-Gauss-Seidel methodewd®veloped.

A typical implementation of the Gauss-Seidel method is shbelow:

fct gauss_seidel (A f,u)

for k := 1 to convergence
for j :=1to N
. - : .
D U TP T TP s IR
end
end

end.
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Successive Over-Relaxation (SOR)

Another acceleration of the solution process is achievetti®ysOR method which is the
abbreviation forSuccessive Over Relaxation. Here the assumption is that each iteration
brings the solution closer to the right solution by a smalbantAu. So for the Jacobi or
Gauss Seidel method we have something like:

Uks1 = Uk + Aug (2.24)

If Au points into the direction of the solution we can come evesaldo the solution if
we go a little bit further in that direction. Hence the SOR hoet uses:

Uk+1 = Uk + AUk (2.25)

Beside the same parallelisation problems as in the GaudsiSeaethod the optimal
choice ofw is another problem with the SOR method. For most probleneaxation
parameters likeo = 1.1 can already bring a slight improvement.

A last variation is the SSOR method which changes the doedétiter each iteration. The
first iteration goes from) = 1 and the next from) = N.

Summary

In previous sections we saw some of the basic ideas of weratlvers. The following
table gives an overview about the most popular matrix spdjttnethods:

e Richardson M =1

Jacobi M =D

Gauss-Seidede M =D—EorM=D-—ET

e SORM=2ip-EorMm=1D-ET

e SSOR onceM = 1D —E and onceM = 2D — ET

2.3 Multigrid methods

To increase the accuracy of numerical solutions of PDEs iadmease the number of
unknowns. This leads to huge systems of linear or nonlingaatons which must be
solved efficiently. Direct solvers and the simple iteratadvers shown in the previous
section reach their limits at roughly several thousandswehowns. Complexity analysis
shows this behaviour and will be introduced in short in tist $absection.

Because problems like fluid dynamics need even more unkntvaysoften use a more
sophisticated iterative solution strategy called MultdgrThe basic ideas and concepts
will be shown in the next section.



2.3. MULTIGRID METHODS 41

231 ldea

The basis of multigrid method is the clever usage of the deaainoothing property of
most iterative solvers for systems of linear equations. sitt@ring the system of linear
equations coming from the stationary heat equation we heweral values along the X-
axis. Starting with a random initial guess for the solutiectoru the residuunm =f — Au
along the X-axis looks very irregular (See F&y3). Interpreting the solution as a time
series all frequencies are included.

Residual after 10 iterations
T T T

Residual after 0 iterations 10
T T T

2000~

1000~

-1000~

-2000~

Figure 2.3: Initial Residual Figure 2.4: Residual after 10 it.

If we start iterating with the Gauss-Seidel method we carentesthat each iteration
makes the curve of the residual look more smooth. This mdaatstie higher spatial
frequencies (wavenumbers) are diminished (SeeZ#).

Residual after 150 iterations
T T T

8000

Vector norm of residual
T T T

7000
6000
5000
g -1 1 g 4000
3000
2000

1000
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0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 50 100 150 200 250 300 350 400 450 500
X iteration

Figure 2.5: Residual after 150 it. Figure 2.6: Norm of the residual

Continuing with the iteration at some time only a smoothdeal is left which decreases
very slowly (See Fig2.5). Looking at the norm of the residual vector shows also that t
error decreases very fast in the beginning and quite sloitlyeeend (See Fid.6).

From this observation the basic idea is not far away. Transfethe residual on the
fine grid to a coarser grid by an arbitramstriction operator lets it look "rougher" to the
iterative solver on the coarser grid, which performs bettea consequence.

After the smooth parts of the residual were decimated on dlaese grid, the correction
to the solution is transferred back to the finer grid withiaerpolation operator. Here
only the rough parts are left and can be smoothed away by ¢natiite solver. This
grid-transfer process is then repeated again and again.
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1st. 2nd.
Fine, h

Coarse, H
Restriction Prolongation

Figure 2.7: Twogrid algorithm

2.3.2 Algorithm

The simplest implementation of the idea is fhweogrid iteration It uses a coarse and a
fine grid. Furthermore an interpolation and a restrictiorraor are required. Probably
the simplest restriction operator is to take only every sdaaode of the grid. For inter-
polation an easy and often used method is the linear intatipalwhich takes the average
of the two neighbouring points.

Twogrid iteration

For the variables the subset indexr H denotes if the variable is defined on the fine or
coarse grid. The superset is used for the iteration number.

The current solution vector is denoted\gythe matrix is calledd and the residuum. As
the exact solution satisfiesAu = f, the errore= u — v satisfiesAe=Au—Av =f — Av =
r

With these definitions we get the following algorithm to cangthe next iteratiok + 1
of the solution vectovk:

1. Smoothe, vk — K
2. Compute residuaf = fr, — Ak
3. Transferk — rf (restriction)

4. On GridH solveAy e, = rk

5. Transfer}; — € (prolongation)
6. Vi = vk e
7. Optionally smoothv,
Graphically this algorithm can be visualised as shown in Eig. Especially for more

complicated iteration schemes this visualisation becouse$ul for understanding the
algorithm.
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Multigrid iteration

One point in the two grid algorithm is not totally satisfyinigp the fourth step the direct
solution of a smaller system of equations is required. Fgelgroblems this system of
equations may again be too large to solve directly. So the adéhe multigrid iteration
is to introduce another two grid scheme to solve this systeegoations. Applying this
recursion several times gives a complete hierarchy ofsevel

The variable names are the same as in the twogrid algorithstedd subscripts ¢fand
H an index variabld is introduced. Additionally we need a stopping criteriom fioe
recursion which is given by the number of levids.

Starting with an initial guesg; on the fine grid we call the functiody 1, v, | ev)

fet x = M1,V f,lev)

if I =1lev
Solve directly A x = f
el se .
Smooth W — WK
Conpute residual rf = fi — A W

k k . .
Transfer r® — rf, (restriction)

On grid I+1, €71 = M3(I+1, € ,rf, lev)

+1

Transfer €71 — & (prolongation)
1 1
v = ¢+ g

end

Level 1 i\\\k ‘///ﬁ\\\x
Level 2

X 7N

—— N/ \

N/ \

Figure 2.8: Multigrid algorithm

A graphical visualisation of the multigrid algorithm is sti in Fig. 2.8 Because of its
V-shape in the visualisation, a complete iteration is ofteltked a V-cycle.

Full Multigrid V-Cycle (FMV)

Another improvement to the multigrid idea is the Full MuttiyV-Cycle which starts on
the coarsest level and takes several iterations limitekdddwo coarsest grids. This gives
the iteration on finer grids good starting values. After tivatnumber of levels included
into the iteration is increased by one. This process coasmntil all levels are involved
in the V-Cycle (See Fig2.9). Empirical analysis shows that the FMV algorithm is one of
the most efficient algorithms for several problem types.
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Level n-3

Level n-2

Level n-1

Leveln

Figure 2.9: Full Multigrid V-Cycle

2.3.3 Complexity

An important issue regarding solvers for systems of linegrations is their complexity.
This is a function which describes the asymptotical runtohehe algorithm depending
on one or more variables describing the size of the problem.

Table 2.1 provides an overview about the complexity of several sal\fer systems of
linear equations coming from a typical test problem, a fidifeerence discretisation of
the Laplace equation on a regular grid. The value in the tedpeesents the exponent
k in the complexity functiorO(n¥) wheren is the number of unknowns. Because the
structure of the matrix plays an important rule in the rumtipehaviour of the solvers the
dimension of the test problems appears in the first row.

| Dimension/Method 1D 2D 3D |

Jacobi/GS 3 2 5/3
SOR 2 3/2 4/3
FMV 1 1 1
Direct 1 32 2
PCG 3/2 5/4 716

Table 2.1: Complexity of linear solvers

A first observation is that the complexity of iterative saolvelecreases with increasing
dimension, while the complexity of the direct solver in@es. As a rule of thumb direct
solvers perform well for 1 and 2 dimensional problems butadten unusable for large

problems in 3 dimensions. lIterative solvers become bettehifyjher dimensional prob-

lems and a large number of unknowns. But the performanceiative solvers depend
heavily on the matrix, whereas direct solvers depend onltherstructure of the matrix

and are therefore more robust.

Full Multigrid solvers seem to be perfectly suited for prainis in any dimension and also
achieve the optimal performance. But they are generallysable as "Blackbox" solvers.
Often the adaption to a special problem is very difficult. Sastrtime they are used in
programs which can cope only with a special kind of probléa fluid solvers.
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Weighted residual methods

In this section another method, or more precisely a genecaipt for a couple of meth-
ods, will be introduced. Although the finite difference madhs convincing by its in-
tuitive approach and its simplicity it becomes quite diffiabiit is applied to irregular
domains. Another disadvantage is the missing general framkefor theoretical analysis
which is available for the weighted residual methods and tjfiues some insight and a
deeper understanding of this class of methods.

3.1 Basictheory

As a simple example we will consider the stationary heat gougoften also called
Poisson-equation):

Au=f (3.1)

3.1.1 Weak form

The mainidea is now to multiply the partial differential edjon with aweighting function
¢ and to integrate over the whole domé&in

;s/Q—Au.q)dQ:/Qf.qndQ, Vo €V (32)

If EQ. (3.2) holds for everyp itis equivalent to Eq.3.1). For sake of simplicity we assume
thatu = 0 ondQ. Then with Gauss’ theorem the following equation can beveeli

/(Vu)T-vq)dQ:/ f.0dQ, Vo (3.3)
Q Q

3.1.2 Variational formulation
An alternative use of the Poisson equation is to describdiiacement of an elastic bar

under load. It is well recognised that elastic structuresimise their internal energy. So
mechanical systems possess a natural minimisation pl@acip

45
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_Au=f < min (%/HVuHZdQ—/ufdQ) (3.4)

.

Energyp

To minimise this functional it is necessary that its firstiaaon becomes zero.

1
p(U+V) = é/uvwv\mz— F(U+v)dQ

1
= p(u)+/(Vu'Vv— fv)dQ+§/(Vv)2dQ (35)
h =0 ?Br min. }
If uminimisesp, then
/ (Vu)T - VvdQ = / fvdQ, W (3.6)
Q Q

which is equivalent to Eq.3(3). The solution obtained by using the weighted residual
methods is thus equivalent to minimising the energy of tistesy.

3.1.3 Numerical methods

To solve the weak form (Eq3(39)) it is necessary to introduce an approximation of the
functionu. In the most general form this approximation is the sum oésshansatzfunc-
tions N; which are multiplied with coefficients;:

N
09~ Uh(0) = 5 (9 (3.7)
i

If this Approximation is put into Eq.3.3) it is not possible to satisfy the equation for
all ¢. Instead a finite subspa¥g C V must also be selected for the weighting functions.
This subspace may only have as much spanning functions apdlee of Ansatzfunctions
in order to have a solution for Eg3.Q). So the weighting functiog can be expressed
similarly as:

N

O (X) ~ dn(x) = _;Viq)i(x) (3.8)

Depending on the type of weighting functions the numericathuds have different
names.

Bubnov Galerkin methods

The characteristic of Bubnov Galerkin methods is that thegteng functions are the
same as the ansatzfunctions.
¢i =N (3.9)

It is one of the most popular weighted residual methods. r0ttte namd-inite Element
Method or FEM is used synonymous with this type of weighting funietio
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Petrov Galerkin methods

Petrov Galerkin methods are all weighted residual methdas&the weighting functions
are different from the ansatzfunctions. It is obvious thag tncludes all methods which
are not Bubnov Galerkin. Nevertheless in literature moghefmethods got different
names.

One choice for the weighting functions is the delta function

bi = 3(x—X) (3.10)

Because integrating with the delta functions gives the tioncvalue at one point this
method is callegointwise collocation. Another choice is the characteristic function of
some subdomaif®; inside the original domaif:

di = Xo (3.11)

From obvious reasons this method is calktbdomain collocation. It was indepen-
dently developed for conservation laws and is thereforenadtso called thEinite Volume
Method.

Least Squares

Although the Least Squares method can also be seen as a BGlaterkin method it has
some special properties. The idea is to apply the diffeaéoperator twice. One time
to the ansatzfunctions and once to the weighting functidhsve consider an abstract
differential operatot. the least squares formulation is:

/Q(Lu— f)(Lo)dQ =0 (3.12)

This method causes some difficulties when applied direotlyigher order partial differ-
ential equations. Hence the most common approach is to ddiheepartial differential
equation into a first order system first.

Types of ansatzfunctions

Beside the different choices for the weighting functionsréhare also several possible
ways to choose the ansatzfunctidis Some are:

e Polynomials:N; = X
e FirstN eigenfunctions of.: LN; = A - N;
e Trigonometric functionsN; = sin(ix), Nj = cog(ix)

e Piecewise polynomialdyi =x  onQ;

Not every set of functions is well suited for the solution affpal differential equations.
And functions which may be good from the analytical point @w may cause problems
in the numerical treatment. The most popular choice todayp#cewise polynomials be-
cause they have some very useful properties. For specialgmns like weather simulation
also the trigonometric functions are used. These meth@&dsadledspectral methods.
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N . N

i i+1

X X
i i+1

Figure 3.1: Linear ansatzfunctions in 1D

\ /

Q

Figure 3.2: Ansatzfunctions on the whole domain

3.2 Example: TheFinite Element method

Now the ingredients are complete to find an approximate ispidor the partial differ-
ential equation. Inserting the ansatzfunctions and thghteig functions into Eq.3.3)
gives:

o N g N N
/Qa—xi;wNi.a_nglvijdQ:/QfglvijdQ (3.13)

Evaluating these integrals for every index p@irj) € [1...N] x [1...N] transforms this
equation into a system of linear equations:

= Au=f (3.14)

3.2.1 Nodal basis

For the sparsity, which means the matAxhas only few nonzero entries, a local def-
inition of the ansatzfunctions is necessary. Piecewisgnuoohials are widely used for
this purpose. Here we will look at piecewise linear funcéiamone dimension. The one
dimensional domain is then subdivided into several smaketsQ; = [x;...X+1]. The
ansatzfunctions on this interval are then (see Bit).:

= XE X1, X]
Ni(x) = =X xe (X, Xita) (3.15)
0 else

wherel = %11 — X; is the length of the interval. The complete domain is thereced by
these functions (see Fig.2).

It can easily be seen that the ansatzfunchbis one at the poink; and zero at all other
pointsx;, j #1i. So if we find a solution vectan the value of our approximate solution



3.3. EXAMPLE: THE FINITE VOLUME METHOD 49

K1

K2

K3

K4

Figure 3.3: Assembly of the global matr

(Eq. 3.7) at the pointx; is equal to the value of the coefficiemt For the interpretation
of the solution this property is very helpful because it ngaitee reconstruction of the
approximate solution unnecessary. The poi@re often callechodes which also gives

the name for this type of ansatzfunctions.

3.2.2 Matrix assembly

Another advantage of the nodal basis was the local defintfothe ansatzfunctions.
This property allows the easy evaluation of E8.13. Because the ansatzfunctions are
only nonzero inside the local subdomain, the product of tm&agzfunctions can also be
nonzero only in the local subdomain. So the common way totgegtobal matrix in
Eq. .19 is to assemble it from the distributions of the small subdmsQ; which are
calledelements in the Finite Element method.

Consider the subdomai®; going fromx; to x+1 with lengthl; = x,1 —X. The local
system of equations is then:

( L ONINdx [0t DN g 2 Ndx )( U ):( S5 f (XN dx )

x)i(Hl G%NiaixNiJfl dx fx)i(”l a%(Ni+la%(Ni+l dx Ui fx)i(i+1 f(X)Ni ;1 dx
(3.16)
Solving the integrals we obtain:
1/ 1 -1 U \ [ St FONidx
<|i ( -1 1 )) ( Uis1 ) - < fxf”l f (X)Nj 1 dx (3.17)

Ki
Summing up these local systems of equations gives the géglstem of linear equations
(see Fig3.3.

Ku=f (3.18)

3.3 Example: TheFinite Volume method

The original idea for the finite volume methods came from thieservation laws written
in integral form. But as already mentioned in subsec8dn3it can also be interpreted as
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Figure 3.4: Position of the subdomaifsfor the FVM

subdomain collocation. If we look at the heat equation ageiget the following integral
form with subdomaing; = [x;, %1 1]:

/@ dx—/f dx Vi (3.19)
QaXZXQI - o) XQi .

Using the properties of the characteristic function thesegrals can be written as:

AL ISP L 3.20
/Xi Fl x_/xi X (3.20)

With partial integration we obtain:

Xit+1 Xi Xi
{@} —/ +l@.mxz/ " tdx (3.21)
OX | x  OX X
N————
=0
It follows directly that:
ou ou /Xi+1
—(Xi11) — =(X) = f dx 3.22
1)~ g0 = | (3.22)

This equation represents the original idea of the finite m@unethod. On the left side
it has the fluxdu/0x on both sides of the small subdoman (this subdomain is called
control volume in the Finite Volume method) and the source term on the righdrside.
So what goes into the control volume and does not go out musgbal to the amount
coming from the source terrh

Inserting locally defined piecewise linear functions whietve the same boundarys as the
subdomain$2; we get the following result (shown f@2,):

0N, ON> 0N, G\) . %2
(Ulw(XZH'UZW(XZ))—(Ula(xlﬂ'UZW(Xl)) = J fdx  (3.23)
X
~0 = [ fdx (3.24)

X1

It is clear that EQ.3.23 is not very helpful. One possible way to get around this @b
is to put the control volume boundarys not onto the nodes efatisatzfunctions but to
put them around the nodes (see Bd).

With this ansatz we get the following equations for a contmlimeQ; inside the domain
Q:
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ON _ N; ONi

(U1 (X 1) + Ui = (X 1) Uiy 10— (Xi 1)) —

ox ox 1) (3.25)
ONi_1 ON; ONiy1 X2 '

(U_1 ™ (xi)+uia(xi)+ui+1 ™ (%)) = . f dx

Looking at Fig.3.41t is easy to find the appropriate values for the derivatiessming
the nodes of the ansatzfunctions are equidistant):

(-2 0)+ (e —])+ ()
1 1 X2 (3.26)
((Ui—l'—T)+(Ui'|—)+(Ui+1'0)): s fdx
Finally we get:
}(Ui—l— Ui+ Upy1) = /Xi+l f dx (3.27)
| X

which is exactly the same system of equations as in the firfferehce method.

3.4 Higher dimensional elements

In one dimension the advantages of the Finite Element mesieedh not to be really
overwhelming. But already in two dimensions it is possibletodel complex geometries
without difficulties which cannot be handled anymore by tmitdi difference method.

The next sections will cover the basic ideas to create fingments of arbitrary spatial
dimension and arbitrary high order although naturally mivsé the dimension will be

less than four and higher order elements do not always haxsntabes.

3.4.1 Isoparametric mapping

For the simple 1D elements it was easy to find the ansatztumectn an element directly
in theglobal coordinate system. In more dimensions this task becomes quite difficult. One
solution is to define ansatzfunctions on a convenient domachto introduce a coordi-
nate transformation from this domainlacal coordinate systemto the global coordinate
system (see Fi@.5).

The two most used intervals for the local coordinate systereigher the intervdl-1...1]
or [0...1]. In higher dimensions the products of these intervals agd.ult is also clear
that these intervals define lines, quadrilaterals and cub&s2 and 3 dimensions. For
triangular elements slightly different domains are used.

In this lecture note the intervah-1... 1] will be used. For 1D elements we get the follow-
ing ansatzfunctions on the local coordinate system:

N(E) = S(1-8) (328)
1

N2(€) = 5(1+8) (3.29)
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= Global Coord. System

Coord. Trans.
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[ Local Coord. System
T o 0
1D 2D

Figure 3.5: Mapping from the Masterelement to the globaldmate system

Often this interval together with the ansatzfunctions ikecaMaster- or Urelement be-
cause it is the basis to derive all local elements.

Now a coordinate transformation from the interjall . . . 1] to an arbitrary interval; . . . X+ 1]

is required. The class aofoparametric elements uses the same ansatzfunctions for the
coordinate transformation. Other choices are the angattzbins of lower order (lower
polynomial degree) which then gigabparametric elements or ansatzfunctions of higher
order which result irsuperparametric elements. The latter two element classes can cause
trouble and thus are not used very often. For the isoparamgiments we then get the
following coordinate transformation from the Masterelem® the element with the
coordinates, X1 in the global coordinate system:

Xglob(&) = Xih1 (&) +Xi1-1h2(&) (3.30)

Going back to the weak form of the heat equation we had theviatlg equation for the
element stiffness matriK:

Xi+1 ON; 6N. o
.J—/‘ Sl St iielL2) (3.31)
Inserting the coordinate transformation we get:
1 /0N; oN; d ..
= [ (FLlt) Mol | Dol ge i e (a2

One little problem remains in Eq3(32. The partial derivatives of the ansatzfunctions
are still with respect to the global coordinate system. Whin chain rule we obtain the
following equation:

ON _ oN gop [ gob) “ON N
3~ ox Jon(8) 5 (az ) 3E = ax Yaon(®): (3.33)

Inserting this into Eq.3.32 gives finally the integral equation for one element stiféme
matrix on the master element:
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+1

Figure 3.6: Masterelement for quadrilat- Figure 3.7: Schematic view of the
erals AnsatzfunctiorN; ;

Y ((0xgon TTON (Oxgion) TN ) [dxgon(€) -
Ku—/l<< PR ) R ( 3% ) 5 ’7(15 ’dE i,je[1,2 (3.34)

Computing this integral shows that it is equivalent to theattpn obtained by integrating
in the global domain. For higher dimensions the integrabgigns on the master element
are derived exactly the same way.

3.4.2 Quadrilateral elements

In higher dimensions ansatzfunctions which have only lsopgport are again required to
get sparse matrices. The simplest idea to get ansatzfasdddhus to use the same func-
tions as in 1D in each spatial direction. Doing this we getftil®wing ansatzfunctions
on the master elemefit1...1] x [-1...1] (see Fig3.6) :

NEN) = Z1-E1-n) (3.35)
NEN) = Z(1+E(1-n) (3.36)
NEN) = (L+E)(L+n) 337)
NiEN) = (1-E)(1+n) (338)

They look similar to a pyramid around a node (see Bi@). The isoparametric coordinate
transformation then becomes:

(gﬁ)@mzmmm(§)+M@m<z)+M@m(§)+M@m<§)

(3.39)
wherexg, .. .,Yy4 are the global coordinates of the corner nodes of the qaaeirdl. Some
difficulties appear when going to higher dimensions. Ag&i@ heat equation should
illustrate the use of the coordinate transformation. In 2bhave for the element stiffness
matrix:
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oN; oN;
Kij :/Q ( aa|\)j(j ) . < & ) dQgm i,j€[1,...,4] (3.40)
elm v

ay

Inserting the coordinate transformation we get:

ONj

1 1
Kij :/—1/—1< aaﬁ )(Xglob(aamaYQlob(E,n))'

oy (3.41)

Ny
<& )(xglob@,n),yglob(i,n))\J(E,n)\dﬁdn Ljell,....4

ay

Here |J| should denote the determinant &f which is the Jacobian of the coordinate
transformation:

OXglob  OXglob

_ 0% on
J= 0Ygiob  9Ygiob (342)

0g on

Now we can again apply the chain rule to the spatial derieatof the ansatzfunctions in
the masterelement:

ON  ONOXgob , ON OYgiob
% T ox 9t oy ot (3-43)

ON ON 0Xgiob ~ ON OYgiob
- = = — 44
on ox on + ady dn (3.44)

With the Jacobiad it can be written more compact:

N N
( o ):JT ( K ) (3.45)
on oy

Bringing the Jacobian to the left side gives:

N N
JT< o ) - ( K ) (3.46)
on oy

So the derivatives with respect to the global coordinat¢éesysn Eq. 8.41) can be re-
placed by derivatives in the local coordinate system:

1 1 ONj N;
Kij=/_1/_13—T ( Ny )-J—T< I ) J|d&dn i,je(l,...,4 (3.47)

on on

Higher dimensional elements can be treated in the same wag. pOint causing some
trouble in practical implementations is the tedm' . It implies some requirements for the
coordinate transformation. First the Jacobian must alvaaygkseverywhere be invertible.
Furthermore a Jacobian with negative or zero determinantldtbe avoided.
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Figure 3.8: Masterelement for triangular elements

A common problem in that context is the wrong ordering of tbees Eq. 3.39. For
2 dimensional quadrilaterals the nodes in the global coatdi system must be ordered
counterclockwise to have a positive determinant of the ldiaco

Another cause for a negative Jacobian can be a highly dist@ement where the an-
gle at one corner is greater than 180 degrees. Sometimesathisappen together with
automatic mesh deformation.

3.4.3 Triangular elements

The other fundamental element type beside the quadrilaadhits higher dimensional
relatives is the triangular element. It was also the firstdieiement ever. Isoparametric
mapping can be used for the triangular elements as well. i$@zfunctions in the master
element (see Fid.8) are:

Ni(§,n) = & (3.48)
N2(§,n) = n (3.49)
N3(§,n) = 1-&-n (3.50)

For the isoparametric coordinate transformation we get:

( Xgob ) (£.1) = Nu(E,n) < X ) +N(E.) ( . ) FNs(EN) ( 5 ) (3.51)

Yglob Y1

The element stiffness matrix can then be derived the sameawapnown for the quadri-

lateral. From the numerical point of view the quadrilatexlEdments achieve a higher
accuracy with the same number of nodes. In mechanical sytstemiangular elements
also tend to be to stiff. Nevertheless in several areasguian elements are still used
because they have some advantages. First thing is thatthepige robust. This means
they do not fail numerically when they undergo large defdraoms. If they become de-

generated they loose accuracy but they don’t cause troideléhle quadrilaterals, which

cannot withstand inner angles greater than 180 degreeshénadvantage is the avail-
ability of powerful automatic mesh generators. Researgoiisg on in the field of mesh

generation tools for quadrilaterals or cubes, but the aatmngeneration of triangular or
tetrahedral meshes is still more powerful and robust.
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Figure 3.9: Area coordinates for triangular elements

3.4.4 Higher order elements

Consider a triangulatidrof an arbitrary domai® where the partial differential equation
should be solved. The accuracy of the approximate solutibiciwcan be computed
with the finite element method depends on the size of the elesweéhich are used in the
discretisation. To describe this size, the diameter of theallest circle that completely
covers the element is used in 2D. For 3D elements it is the etianof the smallest ball.
The diameter will be namela

Let the error between the exact solutiorand the finite element approximatiaR be
measured in the&/2Z norm:

lu=wlF= [ 11V u=un)2+ [ Ju=unP (352)
Q Q
For the Laplacian, the following estimate for the erfjor— u,||2 can be found:

[Ju—un|[7 <C-hP (3.53)

whereC is a constant ang depends on the order of the ansatzfunctions. FromE§3(

it can be seen that the error can be reduced either by innget® number of elements
and thus reducing or by increasing the order of the ansatzfunctipngn the next part
methods to get elements with high order ansatzfunctionso@ishown for triangles and
qguadrilaterals.

Triangles

Another convenient way to write the ansatzfunctions fartgles is in terms of area co-
ordinates. These are defined as the quotient of the area dfigihgles, which can be
constructed from a point inside the triangle, and the areth@ftomplete triangle (see
Fig. 3.9):

A.
L= 3.54
' A (559
whereAj denotes the area of trianghg in Fig. 3.9. With these functions the ansatzfunc-

tions in the triangle can easily be written as:

1The word triangulation is used for general element pattefrish are used to discretise a domain. It
does not always mean that the discretisation uses triangles
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Figure 3.10: Pascal’s triangle

N2(€,n) = &=L2(&,n) (3.56)
N3(§,n) = n=Ls(&n) (3.57)

To get a higher order element it is necessary to put some ne@sninto the element.
For the next step, the midpoints of the edges of the triangdeaagood choice. The
ansatzfunctions on these points must be constructed satkhey are zero on all other
nodes and one at that point. For the fourth node, which shoeildcated between node
1 and node 2, the product &f andL, satisfies this conditions. Both are zero at node
3 and at node 1 or 2 one of these functions vanishes. At nddea#dL, are 1/2 so a
correction factor of must also be added. Hence:

N4(&,n) =4-L1(&,n)-L2(&,n) (3.58)

The ansatzfunctions for node 5 and 6 can be constructedasiyniAfter that some cor-
rections must be applied to the old functioNs to N3 because they must now become
zero on the additional nodes 4 to 6. This can be done by stinigate newly created
functionsNg to Ng.

Pascal’s triangle can be used to determine the number ariibposf the nodes in ad-
vance. Itincludes all the terms which appear in the y)". In Fig. 3.10the relation can
be seen.

Lagrangebasis

It was easy to derive the quadrilateral and hexahedral elesrieom the 1D ansatzfunc-
tions by simply taking the products of these function. Tolggher order quadrilaterals
it is therefore only necessary to look at the 1D elements. H@rd elements the ansatz-
functions of arbitrary order can be computed using the Liagganterpolation formulas,
which give also the name for this basis:

_ Miz(E—§j)
Mjk(&k—&j)
Here the¢y are the interpolation points or the nodal points in the figkement lan-

guage. Thdy(§) is zero on all nodal points except for thth where it is exactly one.
For quadratic elements with nodes-at, 0, 1 in the masterelement we get :

k(&) (3.59)
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N = gy oY 260
o - SUCD
W - B Lo

N{(En) = NIE)-NI"(n) (3.63)
NG“IEn) = NP(E)-NE"(n) (3.64)
Ng“IEn) = NP(E)-NE"(n) (3.65)
Ng“(En) = NI"(E)-Ni"(n) (3.66)

: (3.67)

At last some remarks about the higher order elements. In firost element codes
quadratic elements will be the highest order elementsaail One point is that beside
being more accurate higher order elements are much moregixpe That means they
need more computational time. One reason is the higher nuaibvedes (a quadratic
hexahedron has already 27 nodes). Most elements cannoah@a®d analytically any-
more, so numerical integration formulas are used. Thesauiars must also become more
accurate and thus expensive, if the ansatzfunctions hghehorder. So at a certain order
the theoretical benefits of higher elements are eaten updnyttigher numerical costs.

Another disadvantage is that the elements become numgiiesd robust. So moving the
mid node on the edges to far away from the geometrical cemtifeecedge can cause a
failure of the isoparametric mapping and the element.

3.5 Timedependent problems

For time dependent problems the weighted residual methatbe used exactly the same
way as for stationary problems. Consider the instationaat Rquation:

U—Au= f (3.68)

together with boundary conditions and initial conditiodgplying a weighted residual
method we get:

/QUcbdQJr/Q(Vu)T-Vd)dQ:/qu)dQ Vo (3.69)

From Eq. 8.69 two methods for the time discretisation can be derived. Oriee time-
space finite element method, which will not be treated hedetlaa other is the method of
lines which separates time- and space discretisation.ibgak the approximation af:
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N
U Uy = Zlui Ni (3.70)
i=
it is clear that also:
N
U= Up = ZlUi Ni (3.71)
i=

holds. Inserting this ansatz into E®.§9 allows us to transform the instationary partial
differential equation into a system of ODEs for the coeffitsay;.

i (/QNjNidQ)Ui+(/Q(VNJ')T-VNidQ)ui =(/QNjfdQ) Vi (3.72)

. ~~ g N ~~ g N J
Mij Kij fi(t)

Writing this system in matrix form we obtain:

MU(t) +Ku(t) =f(t) = 0= -M*Ku+ M~ (3.73)

So instead of a system of linear equations for the discteiisaf a stationary problem
we get a system of ordinary differential equations. Thisaled asemidiscretisation
because it discretises only the spatial directions. OttenntatrixM is called themass
matrix. This name stems from the analysis of mechanical systenerathe matrixM is
related to the mass of a mechanical system.

In most cases another numerical method is required to findui@o which satisfies
the system of ordinary differential equations. One possiloice is the Euler forward
method:

Ult+At) = u(t)+At(—MKu(t) + M (1)) (3.74)

Although the Euler method is an explicit method for this sysit involves the solution of
system of linear equations (instead of computing the irevef81 which should never be
done in real applications). So the disadvantages of thea#xiller method stay, while
the advantage of not having to solve a system of equatiorssis To circumvent this
problem often dumped mass matrix is used instead of the correct matrix. The lumped
matrix is a diagonal matrix which is easy to invert. Its diagbelements are simply the
sum of all entries in the row of the diagonal element.

N
My =diag(m),  mc= 3 Mj; (3.75)
&

Because it is known that the mass matrix is responsible #irtbrtia the error in the
description of the physical system is tolerable for manyliappons.



Chapter 4

Hyperbolic equations

In the first chapter the Fourier’s law for heat transport dfudion processes was intro-
duced. A slight variation of this equation was the transgoation which describes
convective heat transport. The difference between thisaguations might seem small
but for the numerical treatment it is quite important. Saniéquations also appear in
many other physical phenomena. Examples like the wave iequalhe telegraph equa-
tion and the transport equation will be shown. After that sgroperties of the solutions
of hyperbolic equations will be analysed. Finally finitefdrence schemes to find an
approximate solution will be shown.

4.1 Introduction

Many physical phenomena like sound and electromagnetidsfieéed to be modelled
with waves. Thus the wave equation:

————T:O@U—Au:o (4.1)

is one prototype of a hyperbolic equation. Another one cofmes transport processes,
as shown in the heat equation with convective transport:

ou

e —B2Au+ (VT -Vu) = f (4.2)
wherev' is a prescribed velocity field. In the extreme cfise 0, which describes a pure
convective transport, the equation becomes the transgoéti®n (shown in 1D):

ou au_

5 V3, =0 (4.3)

Another example is an elastic string (in a piano, or a guit&n(x,t) is the displacement
of the string at a certain point the acceleration(ig t). According to Newton’s the law the

forceis themp% wherep is the density of the string. Assuming small displacemdrés t

force from the elastic deformation J}sTgZTQ with T being a material constant describing
the strength of the string. Putting these terms togethdn aiit external force term it
follows that:

60
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Figure 4.1: Diagram of the quadrupole modelling a small @ieicthe wire

%u _d%u

So the motion of elastic string can also be described by thve wgquation.

4.1.1 Telegraph equation

Now we will consider an example from electrical engineerittgs called thetelegraph
eguation because it models the behaviour of electrical signals oregrigph line. The
first step in building the model is to replace a small piecehefwire by a quadrupole
build from resistors, capacitors and coils (see Bid). Letting the size of this piece go
to zero we obtain a partial differential equation descugidtime behaviour of signals on the
wire.

Using Kirchhoff’s laws we obtain the following two equatifor the quadrupole:

—U+I-R’I+%L’-I+U+AU =0 (4.5)

| —lc—lg—I—Al = 0 (4.6)

The two currents at the capacit@Grand the conductivitys can be expressed in terms of
the voltage change:

d(U +AU)

= ! 4.7
I
lc = a(u +AU) (4.8)
Letting| go to zero and inserting E4.(7) into Eq. @.5) we get:
oU ,0l
& = Ri-Us (4.9)
ol ou
x = _CE —Su (4.10)

HereS is a replacement fdr/G'. Using matrix notation Eq4(9 and Eq. 4.10 can be
written as:

S efalt o Eelalv e RI] e
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Multiplying Eq. (4.9) with the partial differential operata@/ox and Eq. 4.10 with 0/0t
gives:

0%U o, 0%
02l , 07 oU
Inserting Eq.4.13 into Eq. @.12 results in:
0°U ,,0U U, ,0%U
W_S’R’U +C R’ﬁ—I—S'LE—i—CLF (4.14)
Sorting the terms and adding a source tefmt we finally obtain:
U (R S\oUu 10U SR
ra (U * a) o craee TorY TV (4.19)

Looking at Eq. 4.15 shows that this equation is very similar to the wave equatiavo
additional terms;U andc,dU /ot are the only difference. The effect of these terms will
be examined later. But the main result is that the propagatigignals on a wire can be
seen as a wave phenomenom and thus be described by a hypedhation.

4.1.2 Analytical solutions

Again the analysis of hyperbolic equations should be siasi¢h analytical solutions to
these equations. Exponential functions in time and spameldive a good first ansatz:

u(x,t) =A-ePe™  A+£0 (4.16)

wherep andk are some constantg. describes the amplification of the solution in time,
while k is the wave number of the solution. Highlecorrespond to higher frequencies
(perhaps for the telegraph equation the frequency of thatisignal).

Transport equation

The partial derivatives of the ansatz with respedtaodx are:

ou ou .

G =PU &_lku (4.17)
Inserting these expressions into the transport equatior(4£8), which is the simplest
hyperbolic equation, we get:

p-u—viku=0= p=ivk (4.18)

So if Eq. @.16 satisfies the transport equation the amplification faptisrpurely imagi-
nary. Hence it does not describe an amplification but is aratlave length. Introducing
the circular frequencw it follows that:
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iw=p=ivk= w=VK (4.19)

From this relation we also get another form for the analyscdution which satisfies the
transport equation:

u(x,t) = Ad(@ekx = ad(@+kg _ pgkM+) (4.20)

Looking into the spatial direction this solution is a trigmnetric function or wave. On
the other hand an observer standing at one point of the domthsee that the solution in
time also is a wave. If the observer will move with the top ofave/the time and spatial
wave must be in constant phase, which meansx = 0. Therefore the observer must
choose his position such that:

X= —Wt & X = Cpt (4.21)

wherecy, is thephase velocity which is in this case equal tev.

Wave equation

Now we will take a look at the wave equation as another tyghgakerbolic equation:

°u  ,0%u
The partial derivatives are:
d?u L2 i (kx—) 2 i (kx—cx)
52 = (—iw)°A¢ = - A€e (4.23)
U o k) 2 p i (kx—1)
Inserting these terms into Edt.22 we obtain:
— W u+ck u=0=w?=c?k®= w=+ck (4.25)

Eq. @.29 is called thedispersion relation of a wave. The dispersion describes the differ-
ence in speed of waves with different frequencyw}fk = const holds, all waves travel
with the same speed. So there is no dispersion. A signal Inaitd several waves of
different frequencies will travel along the domain uncheohg

Putting the dispersion relation into the ansatz we getifor

u = Ag (Fek) (4.26)

It can be seen that for the wave equation to phase speeds éxistwith positive sign
and the other with negative sign. Information can traveiir@ point at time into both
directions with the same speed. But for the wave equati@ribt possible that informa-
tion travels faster than the phase speed. Thus it is podsildeaw an area in the time
space domain which can be influenced by the information at@engpoint in space and
time (see Fig4.2).
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Figure 4.2: Lightcone of the wave equa- Figure 4.3: Dispersion relation of the
tion Klein-Gordon equation (blue) compared
with the dispersion of the wave equation
(green)

Because for electromagnetic waves the speed of light islihsgspeed this area of in-
fluence is often called thiéghtcone. Applying a binomial formula to the wave equation
shows that it can be seen as two transport equations witrelift directions:

0 0 0 0

Klein-Gordon equation

A slight variation of the pure wave equation is the Klein-Gam equation. Although it
has it origins in quantum physics it can also be interpreged string which oscillates in
some foam which damps the oscillations:

0°u 0%
ﬁu—cWeru—O (4.28)

The termdu is responsible for the damping. Deriving the dispersioatieh shows that:

w=+vck2+d (4.29)

Drawing this function together with the dispersion relatiof the wave equation (see
Fig. 4.3) shows that this time there is dispersion. So waves withéomgvelength travel
slower than waves with shorter wavelength. A signal put thit system will become
a different signal as time progresses. For the telegraphteoua similar result can be
obtained. Therefore it is not possible to transfer infoioratossless over long distances.
After some time a signal having rectangular shape wouldineagnrecognisable.

Beam equation

Another equation which seems to be hyperbolic is the bearatiou

9%u  El 9%

PoE T o 3 O (4.30)
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HereEl denotes the elastic modulus apds the density of the material whilke is the
displacement of the beam. Putting all material constagistter in one constaat gives:

0%u 0*u
W+a2'a_x420 (4.31)
The partial derivatives of the ansatz E4.1© are:
d9?u 2 ji(k—cat)
4 .
% — o) (4.33)

With Eq. 4.31) we obtain:

_ @Pdllat) | g2pddiloat)

0 (4.34)

and hence:

w(k) = +ak? (4.35)

So the transmission speed is not limited. It can become talniarge if the frequency

is high enough. Actually the equation is not really hypeitolt is a parabolic equation

which only looks like a hyperbolic equation. For parabolguations it is known that

these allow infinite transmission speeds. But althoughak$oas if this observation can
be used to achieve infinite transmission speeds with thediddpams, it is not possible
because the model does not represent the real physics amyfrtior frequencies become
infinitely high.

4.1.3 Fourier seriessolution

Also for the hyperbolic equations it is possible to congtausolution for arbitrary initial
conditions by a Fourier series approximation. As shown engfrevious sections, the ex-
ponential function is a solution of the hyperbolic equasio8o the integral over different
wavenumbers must be also a solution of the hyperbolic egusti

D(x) = / d(k) e dk (4.36)
With the dispersion relation for the equation the time deleen solution can be found:
uxt) = / (k) el koK) g (4.37)

[N

It is the sum over the different branches of the dispersidation. This solution will
become quite useful for the stability analysis and for thevd&on of the group speed.
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4.1.4 D’'Alambert’ssolution

In the previous section the ansatz function was always aorexgial function. For the
wave and transport equation another analytical solutisi®xTaking the following initial
conditions:

u(x,0) = up(x) = P(x) (4.38)

the transport equation has the following analytical solurti

u(x,t) = d(x+wt) (4.39)

For this solution we have the partial derivatives:

0 _
S0 = (v (4.40)
%qa = (x4 vV (4.41)

Then the transport equation is with these derivatives:

v (x+wt) —v@'(x+wt)=0 < 0=0 (4.42)

Obviously this equation is always satisfied and thus E@9j a solution of the transport
equation. For the wave equation a similar result can be e@rivHere the analytical
solution is (with the same initial conditions as for the spart equation):

ad(x+ct) +BP(x—ct) (4.43)

For the second partial derivatives we can compute:

0%u
e ad(x+ct) + PP(x+ct)) (4.44)
2
% — ad(x+ct) + BO(x+ct)) (4.45)

With this solution Eq.4.22 becomes:

(ad(x+ct) +BP(x+ct)) — A(ad(x+ct) + BP(x+ct)) =0 0=0  (4.46)

So Eq. .43 satisfies the wave equation. Although the result might seieral it is quite
useful for the analysis of numerical schemes, becausecito#f huge range of analytical
solutions which can be used as a test case.
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4.1.5 Characteristicsof 1st order equations

A first order hyperbolic equation can be written in generatf@as:

ou du
a—-+b—=c 4.47
ot P (4.47)
Geometrically the function(&,n) describes a surface in a three dimensional vector space
with dimensionsy, &, n. A normal vector can thus be found in every point of the s@fac
From analysis it is known that this vector is:

du du T

—,—,—1 4.4
(%) (449

Using the normal scalar product E4.47) can be written as:
T ou

a gz
b . % =0 (4.49)
c -1

This allows another interpretation of the partial differahequation. Its solution is then
the surface which normal vector is orthogonal to the coeifitvector of the partial dif-
ferential equation. The idea for timethod of characteristicsis now to find a coordinate
transformation which reduces the partial differential &tun to an ordinary differential
equation. Introducing the paramesdghe coordinates become:

&(s),n(s), u(s) (4.50)
The geometric interpretation is a line in the three dimemsispace. We now choose that
u should depend linearly o
du _
ds
Writing u in terms of the coordinat€gs), n(s) we get

c (4.51)

u(g,n) = u&(s),n(s) (4.52)

and thus (with the chain rule):

du 0udg oduon

d_s_ﬁé_er%g_C (453)
Comparing this equation with Ecg@7)it is clear that:
d¢ __ dn _
G- g b (4.54)

From these equations it can be seen that the coordinatédranragion is a line in th€, n
plane (at least for constant coefficieatandb). The steepness of this line with respect to
time limits the speed at which signals can be transmitted =10 the solutioru does not
change along this line because/ds= c = 0. So the initial conditions will be transported
along the characteristic (see Fg4).
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u

n Characteristics

€

Figure 4.4: Transmission of initial conditiong along the characteristic

4.1.6 Group velocity

The dispersion relation showed the theoretical limits far transmission of waves. Nor-
mally it is not very useful to send waves along media becadusg do not transport in-
formation. For practical purposes it is more important town, how fast the maximal
amplitude of a signal will travel along the domain. As alrgagentioned the solution of
hyperbolic equations can be formulated in terms of a Foseees as:

/ d(k)d (4.55)
Considering two waves with slightly different wavenumbdes solution is:
gl (—at) | i ((ktak)x—(w+Aw)t)) (4.56)
A short modification gives:
glocat) (- qy dlBlbat) (4.57)

=2 if (Akx—Awt)=0

So the condition, which must be satisfied at the point of makiamplitude is(Akx —
Awt) = 0. Bringing the speer/t to the left side of the equation we obtain:

X Aw
£ K (4.58)
Letting theAk go to zero we get the definition of the group speed:
: _dw(k)
Mak = ak % (4.59)

While the phase speed limits transmission of waves withdotimation, the group speed
limits the transfer of information. Applying this result tbe wave equation with the
dispersion relatiom(k) = +-ck we obtain the following speeds:

w(k) dw(k)

=T TS T e

Here the phase speed is equal to the group speed. The waw®adgan thus transport
information with the same speed as waves. Looking at d’Alamsisolution this is clear

= 4c (4.60)
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because arbitrary initial conditions are transported sutrany change. So the maximum
of the solution will travel with the same speed as everytlelsg. Taking again a look
at the beam equation with the dispersion relatiafik) = 4+-ak?® we obtain the following
speeds:

w(k)

dw(k

dk
It is interesting that here the group speed is even higher tha phase speed. So the

maximum travels faster than the waves itself. But as meataarlier this is due to the
insufficient model which is not good to describe the wave phegna in beams.

N

— +2ak (4.61)

4.1.7 Eigenvector decomposition

Let u be a vector of time dependent functions:

U1
u(x,t)=1| : (4.62)
Ug

Then a multidimensional hyperbolic equation can be wrigten

9 9
SUTAS U=0 (4.63)

whereA € RY x RY is a matrix. With a set of eigenvectofsy,...,eq4} and eigenvalues
Ai,...,Aq the following equation must hold:

Aej=Aje; Vjell,...,d] (4.64)

By using the eigenvector basis it is possible to write theefiom vectoru in terms of the
eigenvectors:

u(x,t) = % aj(xt)e (4.65)
=1

For the partial derivatives we obtain:

9 49

U = Zlaaj (x.t)e (4.66)
J:

9 9

Y = Zl pa (X,1)e (4.67)
=

Inserting these expressions into E41.63 the partial differential equation becomes:

d d
0 0
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Using Eq. .64 and sorting the terms gives:

% (ga-+)\-3a-)e- =0 (4.69)
& ot J Jax J J

Now this equation can be divided intlindependent transport equations for the functions
a;.

0 0 :
aaj—)\,a—xaj_o Vield,...,d] (4.70)

The initial conditions for the functions; must be constructed such that:

u(x,0) = % aj(x,0)e; (4.71)
=1

With these equations it is possible to find analytical solsieven for multidimensional
hyperbolic equations. But this method is limited to casabaeuit dispersion.

4.2 Numerical methods

Now we will consider numerical methods for hyperbolic edqued. First the three sim-
plest finite difference approximations will be shown. Afteat a stability analysis will
show which method may be used. Then some comparisons betweesgrical and an-
alytical solutions regarding the propagation of will be dofrinally the influence of the
used time discretisation will be examined.

4.2.1 Finitedifference approximation

The transport equation in 1D consists of a first partial adeiwve with respect to time and
a first partial derivative with respect to In analogy to the discretisation of the heat
equation the continuous time and space domain is divideddistcrete points (compare
Fig. 1.5. For the time derivative we use forward differences:

ou 1

The spatial derivative should be approximated with thréemint schemes because the
properties of these discretisations should be analysed lat

OU  Unjie—Unjq
0x (e+n) (4.73)

Heree andn are the parameters determining the type of spatial disetéiin:

e £=1,n =1, central difference®(h?)

e £ =1n=0, forward difference®(h)
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e £¢=0,n =1, backward difference®(h)

With these approximations we get the discrete form of thesjpart equation:

1 Un,j+e — Un j—
E(Urpr]_’j —Un]>+C(W) :O (474)

422 Stability analysis

For the stability analysis we use the following ansatz:

Up j = & () (4.75)

Inserting the index to coordinate transformatians j - h andt = n- At we obtain:

Un,j = g~ lAngkin — G(k)ngkin (4.76)

whereG(k) is the gain factor which describes the amplification of a waith wavenum-
berk. Using this ansatz in Eq4(74) gives the following expression:

T (Gmnekiten _gngki-nhy —o  (4.77)

G(k)rH—leikjh . G(k>ne|kjh +
eE+n

wherer = C‘—hm is theCourant-number which is an important parameter for the numerical

solution of hyperbolic equations. Dividing I6(k)"elikjh) and solving foiG(k) the result
is:

r

G(k) =1-
(K €+n

(eikeh_e—ikr]h> (4.78)

Forward differences

Inserting the parametegs= 1,n = 0O for the forward differences into Eq}.(79) it follows
that

Gk =1-r"—1)=1+4+r(1—-")=14r—rd" (4.79)

Recalling that for stabilityG(k)| < 1 we can see from Figh.5that this method is unstable
forallr > 0. So itis clear that it can not be use for hyperbolic equation

Taking a look at the computational stencil reveals that thenerical method takes the
value in front of the current point (let the front be definedlas direction in which the

convection transports the solution). Therefore this metisooften referred to as the
downwind method.
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Im Im Im

Stab.Reg. G(K) Stab.Reg. Stab.Reg. G(K)
/
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Figure 4.5: Stability re- Figure 4.6: Stability re- Figure 4.7: Stability re-
gion of the forward differ-  gion of the backward dif- gion of the central differ-
ence method ference method ence method

Backward differences

For the backward differences the amplificati®(k) becomes:

GK)=1—r(1—e * M) =1—r+4re'k (4.80)

From Fig.4.6it can be seen that this time the amplification factor liehwithe stability
region. At least for

r= % <1 (4.812)
This relation is called th€ourant-Friedrichs-Levy condition. If it is satisfied, the trans-
port equation can be solved with the backward differencenotetvhich is often called,
in analogy to the forward differences, thpwind method because it uses the value which

lies upstream.

It should be noted that similar to the heat equation somenmdtion about the relation

between convective velocity, time step and spatial digagon can be seen. If either the
velocity is higher or the spatial discretisation becomesrfithe time step size must be
reduced.

Central differences

Finally the gain factor for the central difference scheme is

G(K) = 1—%(ékh—e—ikh> — 1 ri(sin(kh)) (4.82)

Hence the absolute value will always be greater or equal éordrnich makes this method
unstable. But the central difference scheme is the only dnehwachieves second accu-
racy. So some methods are proposed which cure the insyatiilihe central difference
scheme while being stable.

4.2.3 Friedrich’'smethod

An intuitive explanation for the absolute instability ofetltentral difference method is
similar to the Richardson scheme for the heat equation. Di&gpused for the space
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t Central diff.

n+1

n+1/2

°
/ Friedrichs

12+l j+2

Figure 4.8: Lax-Wendroff method

discretisation are not attached to the points which arelweebin the time discretisation.
A workaround which corresponds to the Du Fort Frankel schiamthe heat equation is
to replaceun, j in the time derivative by1/2)(un j—1+ Un j+1). This scheme is called the
Friedrich’s method:

1
Unst,j — E(Un,jfl —Un j+1) + 7 (Unj+1—Unj—1) (4.83)

Doing a von Neumann stability analysis gives the followirgngfactor:

Y L P T A S G T
G(k) = <§ +§> 0+ <§ - E) ¢ (4.84)
— cog(kh) — ir sin(kh)

For the absolute value & we can get the following expression:

IG(k)| = cog(kh) +r?sirf(kh) <1 for r<1=0 (4.85)

As a consequence the Friedrich’'s scheme for the transpodtieq is stable for courant
numbers less than one and also second order accurate in sgack is an advantage
over the upwind scheme.

4.2.4 Lax-Wendroff method

Another proposed method for the transport equation is theWandroff method. Its
goal is to achieve also second order accuracy in time. dettf@rence approximations
have this property, but simply replacing the forward defece, which is used for the time
derivative, by a central difference produces an unstabléaode Instead the first point of
the idea is to introduce intermediate points, which lie estwthe discretisation points.
This is possible due to the fact that the Friedrich’s schepesadot usel, j. So if we
insertun j andun j4+1 for uyj—1 andupn j1 the Friedrich’s scheme will compute a point

Unt1/2,j+1/2-
After that has been done for all points, these points can eé as the basis for applying
a central difference scheme (see Hd@).

Writing the three steps (two times Friedrich’s method, dneetthe central difference
scheme) we get:
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2 1 C : .
Kt(u”“/z’j“/z_ é(un,j +Un7j+1)>+ﬁ<un’j+1—un7j> =0 right blue tri¢4.86)
2 1 C :
E(Un+l/2,j—l/2_ Q(Un,j +Un,j—1)>+ﬁ(un,j —Unj-1) = O left blue tria(4.87)
1 C .
A—t(un+1,j ~Unj)+p(Uni1j2 112 = Unpajzj-12) = O centdiff.  (4.88)

After several steps this equations can be brought to the aldorm which only includes
the real discretisation points:

1 c c2At

g (Un+L = Unj) + o (Unje1 = Unj-1) = —rs (Unj+1— 2Unj +Unj-1) =0 (4.89)

-~

2 2
~_C 04u
-GS S

It is easy to see that the Lax-Wendroff scheme adds a termhvdoicesponds to a diffu-
sive part in the partial differential equation althoughréhis no such term in the original
equation. This is calleshumerical diffusion. The smoothing property of the Laplace
operator stabilises the numerical scheme. Also in the d-iBlement method adding a
small diffusive part was one of the first methods to handlepifdolem occurring with
hyperbolic equations.

4.2.5 Dispersion of numerical methods
During the analysis of the properties of the analytical Bohs it came out that dispersion

Is an important aspect of hyperbolic equations. Now theagpction of the dispersion
relation by a numerical method should be examined in moraildet

One analytical solution of the transport equation was:

u(x,t) = / (k) gk (4.90)
where®(k) depends on the initial conditions. The phase sppgavas defined as:

w(k)

and the group speed as:
dw(k
y = 10 (4.92)

The discretisation replaced the exponential term in Eqd by a discrete counterpart:

d(—a(k)t) _ di(kih—w(k)atn) _ (e—iw(k)At)neikjh (4.93)
G(k)

Introducing the numerical dispersion relatiak) we get:
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G(k) = e = InG(k) = ida(k)At (4.94)
and hence:

(k) = ﬁm G(K) (4.95)

Now it is trivial to derive the numerical phase and group si&g andcy:

Con(k) = @ (4.96)
Cor (k) = —d(gﬁk) (4.97)

A further investigation of these equations will be givenhe hext section.

4.3 Timeintegration

In the previous section two methods were proposed for theretisation of the time
derivative. One was the well known Euler forward method dredther was the Cen-
tral difference scheme which was only stable together withadificial diffusion term
(in the Lax-Wendroff method). Now the aspects of time iné¥gn should be analysed
more detailed because they are quite important for the b\miaaviour of the numerical
solution.

4.3.1 General remarks

During the analysis of the beam equation which is a paralegji@tion, it came out that
parabolic equations allow infinite transmission speedseXticit time integration meth-
ods, which compute the result of the next time step only fratues which lie close to
the computed point, cannot reproduce this infinite transimmsspeed. In contrast im-
plicit methods like the Euler backward method or the trapgadaule can reproduce this
behaviour because all points are coupled through the systénear equations.

Comparing the situation with hyperbolic equations wherenaee only a finite transmis-
sion speed, the explicit methods seem more appropriateeci&dly the Upwind method
reproduces the behaviour of the transport equation veytively. It simply takes the
value of the point which lies upstream and "transportss’value to the next point. Ex-
plicit methods are therefore more "'natural™ for hyperisa@quations than implicit meth-
ods. Nevertheless if large timesteps should be used, implethods are also necessary
for hyperbolic equations. This is clear, because for langesteps the value of a point
may have to be transported over a distance which is longerttieadistance between two
points. Only an implicit method can do this.

Summarising these results we get the following rules of thum

e Parabolic equations with diffusive solution: implicit ttnmtegration methods in the
method of lines are

natural™.
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Figure 4.9: Problem of measuring the Figure 4.10: Relation between numer-
error between waves ical group speed and analytical group

speed for finite elements (schematic)

e Parabolic equations with waves: explicit methods are Urat’ but enforce severe
restrictions on the timestep si2¢.

e Hyperbolic equations with wave behaviour: explicit methade "'natural™ but the
time step size must be kept small enough.

e Hyperbolic equations with large time step size: implicitthwe are "’ natural

4.3.2 Analysisof thetimeintegration

Speaking of the accuracy of a numerical method is not tribetause especially for wave
phenomena the difference between the exact solution amutherical solution might be
large although the solution is not so bad at all (see##. Here the distance between the
two functions is large but it is easy to see that basicallyfitaguency is slightly different.
So for the wave equation the comparison between the nurharidghe analytical group
or phase speed will probably bring more useful results.

Spatial discretisation

Starting again with the wave equation:
0%u CzaZu B
ot? ox2

a spatial discretisation (today mostly finite elementsiidfarms the partial differential
equation into a system of second order differential equatio

0 (4.98)

MV +Kv=f (4.99)

In the previous sections the group and phase speed weredlaéne
() dw
Cph = D& Cor = ak

Now we are looking the dispersion relation of spatially ditised wave equation. As an
ansatzfunction the exponential function will be used again

(4.100)
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v(t) = voe™ (4.101)
=V(t) = —wPvee® (4.102)

The discrete equation becomes with this ansatz:

Kvo = ’Mvg (4.103)

This can be seen as a generalised eigenvalue problenvgiibing an eigenvector and
«? the eigenvalue. Computing these eigenvalues the dispersiation for the spatially

discretised wave equation can be found. In FdLOthe relation between the group
speed of the analytical solution and the group speed of theengal solution is shown

for different relative wavelengths (relative to the sizetlo¢ finite elements). If linear

elements are used, the especially short waves travel maoales| Cubic elements can
improve this behaviour.

Timediscretisation

Summarising the results of the previous sections, thest #xiee dispersion relations:

e (k) dispersion relation of the partial differential equation
¢ w(k) dispersion relation of the spatially discretised equation

e (k) dispersion relation of the totally discrete equation

Numerical methods for first order ordinary differential atjans can be analysed by using
the test equation:

X = AX (4.104)

with its analytical solution:

X(t) = xge (4.105)
This equation is not sufficient to examine numerical metlavdsécond order differential

equations because these equations describe waves in timgead the following test
equation shows to be very useful:

X = —0’X (4.106)

It has the following exact solution:

X(t) = Ad? 4 B (4.107)

Here the initial conditions go into the parametérandB. With the starting valuegy =
X(0) andvg = xo = X(0) normal numerical method for first order system can be writen
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h h
< X ) - ( Xl ) (4.108)
Vn Vn+1

Introducing the operatoh which maps the solution at one time step into the solution at
the next time step the numerical method can be written:

h h
X} —an( X (4.109)
Vn Vn+1
Analysing the eigenvalues of the operafowill therefore give some insights about the
development of the solution.

(Hier hoeren meine Aufzeichnungen auf ...)
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