
10 On the implementation of FEM

Assume that d = 2 and that we will use linear triangular elements. Consider element E

shown in Figure 6. Let x(i), x(j), x(k) be the coordinates of its vertices. Inside E, the expres-
sions of the basis functions related to nodes i, j, k read
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ϕk(x) =
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(ak + bkx1 + ckx2),

(84)
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The other coefficients in (84) are evalueated in an analogous way.
The gradients of basis functions inside E are easily obtained

∇ϕi =
1

2A

[

bi

ci

]

, ∇ϕj =
1

2A

[

bj

cj

]

, ∇ϕk =
1

2A

[

bk

ck

]

.

Consider now the following Poisson problem with mixed homogeneous boundary condi-
tions
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


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





−∆u = f in Ω

u = 0 on Γ0

∂u

∂n
= 0 on Γ1, ∂Ω = Γ0 ∪ Γ1.

(85)
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The weak formulation of (85) reads

u ∈ V :
∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx ∀v ∈ V, (86)

where
V = {v ∈ H1(Ω) | v = 0 on Γ0}.

The finite element approximation of (86) leads to the linear system of equations

Aq = f , (87)

where

A = {ars}
N
r,s=1, f = { fs}

N
s=1

ars =
∫

Ω
∇ϕr · ∇ϕs dx = ∑

E

∫

E
∇ϕr · ∇ϕs dx =: ∑

E

a
(E)
rs

fs =
∫

Ω
f ϕs dx = ∑

E

∫

E
f ϕs dx =: ∑

E

f
(E)
s .

Thus the coefficients of the linear system (87) can be computed element by element. For exam-
ple

a
(E)
jk =

∫

E
∇ϕj · ∇ϕk dx =

∫

E

1

4A2
(bjbk + cjck) dx

=
1

4A2
(bjbk + cjck)

∫

E
dx =

1

4A
(bjbk + cjck)

f
(E)
k =

∫

E
f (x)ϕk(x) dx.

If f (x) is piecewise constant, then the integral on right hand side can be evaluated exactly
using midpoint rule

∫

E
f (x)ϕk(x) dx = A f (G)ϕk(G) =

A

3
f (G),

where G is the center of gravity of triangle E. In general case, numerical integration (quadra-
ture) must be used.
The coefficients related to element E constitute matrix A(E) ∈ R

3×3 and vector f (E) ∈ R
3

which are called local stiffnes matrix and force vector.
The assembly of the system (87) can now be expressed as a simple algorithm:

f := 0 ∈ R
N

A := 0 ∈ R
N×N

for each E ∈ Th do

Compute local contributions A(E) and f (E)

Let ✐♥❞(1 : 3) = {global node numbers of element E}
for i = 1 : 3 do

for j = 1 : 3 do

A(✐♥❞(i), ✐♥❞(j)) := A(✐♥❞(i), ✐♥❞(j)) + A(E)(i, j)
end for

end for
end for
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Until now we did not mention the boundary conditions. The homogenous Neumann bound-
ary condition is a natural boundary condition and contributes nothing to the linear system.
The Dirichlet condition u = 0 on Γ0, however, must be explicitly forced. The most common
way to handle Dirichlet boundary conditions is elimination during assembly: If node s is on
Γ0 set ✐♥❞(s) = 0. The unknown qs is eliminated from the system and the corresponding
row and column are not assembled in the global system.

Remark 10.1. If the unknowns (degrees of freedom) in the linear system of equation are nodal
values of the approximate solution, then the respective element is called Lagrangian finite
element.

Example 10.1. Let us study the assembling of the stiffness matrix of a simple model problem.
Let the unit square be divided into regular linear triangular elements as shown below:
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All triangles in the mesh are either of type E1 or E2. Let us consider a triangle of type E1

(length of base = height = h):
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Inside E1 only basis functions ϕi, ϕj, ϕk are nonvanishing and their gradients are

∇ϕi = (−
1

h
, 0), ∇ϕj = (

1

h
, −

1

h
), ∇ϕk = (0,

1

h
)
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The coefficients of the local stiffness matrix are thus
∫

E1

∇ϕi · ∇ϕi dx =
∫

E1

1

h2
dx =

1

2
∫

E1

∇ϕi · ∇ϕj dx =
∫

E1

−
1

h2
dx = −

1

2
∫

E1

∇ϕi · ∇ϕk dx =
∫

E1

0 dx = 0

∫

E1

∇ϕj · ∇ϕj dx =
∫

E1

2

h2
dx = 1

∫
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∇ϕj · ∇ϕk dx =
∫

E1

−
1

h2
dx = −

1

2
∫

E1

∇ϕk · ∇ϕk dx =
∫

E1

1

h2
dx =

1

2

The local stiffness matrix related to E1 in “compressed” form reads

A(1) =





1
2 −1

2 0

−1
2 1 −1

2
0 −1

2
1
2





Similarly the local matrix corresponding triangles of type E2 is

A(2) =





1
2 0 −1

2
0 1 −1

2
−1

2 −1
2 1



 .

For the element E1 the array containing node numbers is ✐♥❞❂✭✴ ✶✱ ✷✱ ✻ ✴✮, for E2 ✐♥❞❂✭✴

✶✱ ✻✱ ✺ ✴✮, and so on.
We go through the elements E1, E2, E3, ... one by one and form and assemble the local matri-
ces into the global one A:
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As we see, the matrix A is sparse and banded (due to the nodal numbering similar to nat-
ural numbering in the finite difference method). Actually, if we pose Dirichlet boundary
condition u = 0, then the degrees of freedoms corresponding to boundary nodes are elimi-
nated. The resulting matrix would then be exactly the same as in the 5-point finite difference
method.
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11 Solving PDE systems with FEM

11.1 Introduction

Consider the simple system of two Helmholtz-type PDE’s:











−∆u1 − cu2 = f1 in Ω

−∆u2 + cu1 = f2 in Ω

u1 = u2 = 0 on ∂Ω.

(88)

Let v1, v2 ∈ H1
0(Ω). Multiply the first equation by v1 and the second by v2 and use Green’s

formula. Then we get























∫

Ω
∇u1 · ∇v1 dx −

∫

Ω
cu2v1 dx =

∫

Ω
f1v1 dx in Ω

∫

Ω
∇u2 · ∇v2 dx +

∫

Ω
cu1v2 dx =

∫

Ω
f2v2 dx in Ω

u1 = u2 = 0 on ∂Ω.

(89)

System (89) can be represented in vector form

Find u ∈ V :
∫

Ω

2

∑
i=1

∇ui · ∇vi dx +
∫

Ω
(−cu2, cu1) · v dx =

∫

Ω
f · v dx ∀v ∈ V, (90)

where V = H1
0(Ω) × H1

0(Ω) = {v = (v1, v2) | vi ∈ H1
0(Ω), i = 1, 2}. The corresponding

bilinear and linear forms read

a(u, v) :=
∫

Ω

2

∑
i=1

∇ui · ∇vi dx +
∫

Ω
(−cu2, cu1) · v dx

F(v) :=
∫

Ω
f · v dx.

With these notations, problem (90) reads in abstract form:

Find u ∈ V : a(u, v) = F(v) ∀v ∈ V.

The finite element discretization is performed analogously to the scalar case. The unknowns

are approximated in the form u1(x) ≈ ∑
N
i=1 q1i ϕi(x), u2(x) ≈ ∑

N
j=1 q2j ϕj(x), where {ϕi} are

the piecewise polynomial and continuous basis functions, and N is the number of nodes not
belonging to the boundary.
Numbering the unknowns as follows q11, q12, ..., q1N, q21, q22, ..., q2N the resulting linear sys-
tem has the following block structure

[

K −M
M K

] [

q(1)

q(2)

]

=

[

f (1)

f (2)

]

.

11.2 Plane strain problem of linear elasticity

Consider a two-dimensional homogeneous and isotropic elastic solid Ω under internal (body)
forces f and external forces (surface tractions) g on part Γ1 of ∂Ω. Let u = (u1, u2) be
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the displacement of the solid under the applied forces. We define so-called strain tensor
e(u) = {eij(u)}2

i,j=1 and stress tensor e(u) = {eij(u)}2
i,j=1 as follows1

eij(u) =
1

2

(

∂u1

∂x2
+

∂u2

∂x1

)

, i, j = 1, 2.

σij(u) = λδij∇ · u + 2µeij(u), i, j = 1, 2.

Here λ, µ > 0 are material parameters (Lame’s constants).
The equations of plane strain then read















































−
∂σ11(u)

∂x1
−

∂σ12(u)

∂x2
= f1 in Ω

−
∂σ21(u)

∂x1
−

∂σ22(u)

∂x2
= f2 in Ω

u1 = u2 = 0 on Γ0

σ11(u)n1 + σ12n2 = g1 on Γ1

σ21(u)n1 + σ22n2 = g2 on Γ1.

(91)

The weak form of (91) is: Find u ∈ V such that
∫

Ω

(

σ11(u)
∂v1

∂x1
+ σ12(u)

∂v1

∂x2

)

dx =
∫

Ω
f1v1 dx +

∫

Γ1

g1v1 ds

∫

Ω

(

σ21(u)
∂v2

∂x1
+ σ22(u)

∂v2

∂x2

)

dx =
∫

Ω
f2v2 dx +

∫

Γ1

g2v2 ds

for all v ∈ V = {v ∈ H1(Ω) × H1(Ω) | v = 0 on Γ1}.

Remark 11.1. Sometimes engineers prefer to express σ and e as vectors

σ(u) =





σ11

σ22

σ12



 , e(u) =





e11

e22

2e12



 .

Then the linear stress–strain relationship can be written as matrix–vector product σ(u) =
De(u) (the matrix D being defined solely by λ and µ).
Then the weak formulation of (91) can be written shortly as

∫

Ω
[e(u)]TDe(v) dx =

∫

Ω
f · v dx +

∫

Γ1

g · v ds.

Example 11.1. Consider the following “pure tension” problem for perforated solid. The
original problem is a pure Neumann problem but taking into account the obvious symmetry
we get a mixed boundary condition problem for the 1/4 geometry.

✫✪
✬✩

✲

✲

✲

✲

✲

✛

✛

✛

✛

✛

g−g

❝ ❝ ❝ ❝

❝❝

✲

✲

✲

✲

✲

gΓ1g

Γ02

Γ01
Γfree

Γfree

1Here “tensors” can simply be identified with 2 × 2 symmetric matrix functions
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The weak formulation for the 1/4 problem reads

u ∈ V :
∫

Ω
[e(u)]TDe(v) dx =

∫

Γ1g

g · v ds ∀v ∈ V,

where
V = {v ∈ [H1(Ω)]2 | v1|Γ01

= 0, v2|Γ02
= 0}.

Thus, on Γ0i the displacement in the i-th direction is restricted (“roller contact”).

11.3 Stokes problem

The simplest model of a steady-state viscous incompressible fluid is the Stokes problem















































−µ∆u1 +
∂p

∂x1
= f1 in Ω

...

−µ∆ud +
∂p

∂xd
= fd in Ω

∇ · u = 0 in Ω

u = u0 on ∂Ω.

(92)

Here u, p are unknown velocity and pressure distributions in a domain Ω ⊂ R
d. We as-

sume, for simplicity, that the velocity field is known on the boundary. Note that there are no
boundary conditions for the pressure and therefore it is unique up to a constant.
Let us now derive a weak formulation for the Stokes problem (92). Assume for simplicity
that d = 2 and u0 = 0. Let V = [H1

0(Ω)]2 and Q = L2(Ω)/R. Multiply the momemtum
equations by components of v ∈ V and the continuity equation by q ∈ Q, and use Green’s
formula. Then we obtain the weak formulation































∫

Ω
∇u1 · ∇v1 dx −

∫

Ω
p

∂v1

∂x1
dx =

∫

Ω
f1v1 dx

∫

Ω
∇u2 · ∇v2 dx −

∫

Ω
p

∂v2

∂x2
dx =

∫

Ω
f2v2 dx

−
∫

Ω
∇·u q dx = 0.

(93)

Problem (93) can be written in abstract form

{

a(u, v) + b(v, p) = F(v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q.
(94)

The solvability of the abstract problem (94) can be proved provided that the bilinear forms
a(·, ·), b(·, ·) and the spaces V, Q satisfy the following conditions: ∃c, β > 0 such that

a(v, v) ≥ c‖v‖2
V

∀v ∈ V (95)

sup
0 6=v∈V

|b(v, q)|

‖v‖V

≥ β‖q‖Q ∀q ∈ Q. (96)
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The latter condition is called LBB condition or inf-sup condition as it can be expressed in an
equivalent form

inf
q∈Q

sup
0 6=v∈V

|b(v, q)|

‖v‖V‖q‖Q
≥ β > 0.

The difficulty in finite element approximations is that the discrete finite element spaces
Vh, Qh must also satisfy the discrete versions of (95), (96). Unfortunately, some obvious
choices e.g. piecewise linear continuous velocity and pressure do not satisfy the discrete
inf-sup condition. In order to satisfy it, the element for the pressure must be lower order
(or “simpler”) than for the velocity. For example quadratic element for velocity and linear
element for pressure is a working combination.
Let uh ∈ Vh, ph ∈ Qh,

uhi(x) =
N

∑
j=1

qij ϕj(x), i = 1, 2

ph(x) =
M

∑
k=1

q3kψk(x).

Then the approximate problem in algebraic form reads















































N

∑
j=1

q1j

∫

Ω
µ∇ϕj · ∇ϕi dx −

M

∑
k=1

q3k

∫

Ω
ψj

∂ϕi

∂x1
dx =

∫

Ω
f1ϕi dx, i = 1, ..., N

N

∑
j=1

q2j

∫

Ω
µ∇ϕj · ∇ϕi dx −

M

∑
k=1

q3k

∫

Ω
ψk

∂ϕi

∂x2
dx =

∫

Ω
f2ϕi dx, i = 1, ..., N

−
N

∑
j=1

q1j

∫

Ω

∂ϕj

∂x1
ψi dx −

N

∑
j=1

q2j

∫

Ω

∂ϕj

∂x2
ψi dx = 0, i = 1, ..., M.

Using similar numbering for unknowns as in Subsection 11.1 the coefficient matrix has a
block structure





K 0 B
0 K B

BT BT 0









q(1)

q(2)

q(3)



 =





f (1)

f (2)

0



 . (97)

The numerical solution of (97) is complicated by the fact that the coefficient matrix is not
positive definite but indefinite (i.e. it has both negative and positive eigenvalues).
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