9 Time dependent problems

9.1 Parabolic problem

Consider the following parabolic PDE ("heat equation") on time interval $I:=] 0, T]$

$$
\left\{\begin{align*}
\gamma \frac{\partial u}{\partial t}-\nabla \cdot(k \nabla u)=f & \text { in } \Omega \times I \tag{73}\\
u=0 & \text { on } \partial \Omega \times I \\
u(x, 0)=u_{0}(x) & x \in \bar{\Omega} \text { (initial condition) }
\end{align*}\right.
$$

For a fixed t we can define a weak formulation of (73)

$$
\left\{\begin{array}{l}
\text { Find } u(t) \in V, t \in I \text { such that } \tag{74}\\
\int_{\Omega} \gamma \frac{\partial u(t)}{\partial t} v d x+\int_{\Omega} k \nabla u(t) \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in V \\
u(0)=u_{0}
\end{array}\right.
$$

The semidiscrete Galerkin formulation of (74) reads

$$
\left\{\begin{array}{l}
\text { Find } u_{h}(t) \in V_{h}, t \in I \text { such that } \tag{75}\\
\int_{\Omega} \gamma \frac{\partial u_{h}(t)}{\partial t} v_{h} d x+\int_{\Omega} k \nabla u_{h}(t) \cdot \nabla v_{h} d x=\int_{\Omega} f v_{h} d x \quad \forall v_{h} \in V_{h} \\
u_{h}(0)=u_{0}
\end{array}\right.
$$

If $\left\{\varphi_{i}\right\}$ is the basis of V_{h} then

$$
u_{h}(x, t)=\sum_{i=1}^{N} q_{i}(t) \varphi_{i}(x) .
$$

Problem (75) is then a system of ordinary differential equations

$$
\left\{\begin{array}{l}
\sum_{j=1}^{N} \frac{d q_{i}(t)}{d t} \int_{\Omega} \gamma \varphi_{i} \varphi_{j} d x+\sum_{j=1}^{N} q_{j}(t) \int_{\Omega} k \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x=\int_{\Omega} f \varphi_{i} d x \quad i=1, \ldots, N \tag{76}\\
q_{i}(0)=u_{0}\left(N_{i}\right), \quad i=1, \ldots N
\end{array}\right.
$$

Equation (76) can be written in matrix form

$$
\left\{\begin{array}{l}
\boldsymbol{M} \boldsymbol{q}^{\prime}(t)+\boldsymbol{A} \boldsymbol{q}(t)=f(t) \tag{77}\\
\boldsymbol{q}(0)=\boldsymbol{q}^{0}
\end{array}\right.
$$

The time derivatives in (77) can be discretized using standard methods, like

$$
\begin{align*}
& M \frac{q^{n+1}-q^{n}}{\Delta t}+A q^{n}=f^{n} \quad \text { (Euler) } \tag{78}\\
& M \frac{q^{n+1}-q^{n}}{\Delta t}+A q^{n+1}=f^{n+1} \quad \text { (implicit Euler) } \tag{79}\\
& M \frac{q^{n+1}-q^{n}}{\Delta t}+A \frac{q^{n+1}+q^{n}}{2}=\frac{f^{n+1}+f^{n}}{2} \quad \text { (Crank-Nicolson) } \tag{80}
\end{align*}
$$

At each time step one has to solve linear system of equations with coefficient matrix \boldsymbol{M} (Euler), $\boldsymbol{M}+\Delta t \boldsymbol{A}$ (implicit Euler), or $\boldsymbol{M}+\frac{1}{2} \Delta t \boldsymbol{A}$ (Crank-Nicolson). If one uses constant time step and direct method to solve the linear system of equations (e.g. Cholesky method), then triangular factorization needs to be done only once, for example

$$
M+\frac{1}{2} \Delta t A=L L^{\mathrm{T}}
$$

9.2 Hyperbolic problem

A hyperbolic problem

$$
\left\{\begin{align*}
\gamma \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(k \nabla u)=f & \text { in } \Omega \times I \tag{81}\\
u=0 & \text { on } \partial \Omega \times I \\
u(x, 0)=u_{0}(x), \quad \frac{\partial u(x, 0)}{\partial t} & x \in \bar{\Omega} \text { (initial conditions) }
\end{align*}\right.
$$

can be semidiscretized in the same way as the parabolic problem. Here we get the following system of second order ordinary differential equations:

$$
\left\{\begin{array}{l}
\boldsymbol{M} \boldsymbol{q}^{\prime \prime}(t)+\boldsymbol{A} \boldsymbol{q}(t)=\boldsymbol{f}(t) \tag{82}\\
\boldsymbol{q}(0)=\boldsymbol{q}^{0}, \quad \boldsymbol{q}^{\prime}(0)=\tilde{\boldsymbol{q}}^{0}
\end{array}\right.
$$

The time discretization of (82) can be done using e.g. the following family of formulas:

$$
\begin{equation*}
M \frac{q^{n+1}-2 q^{n}+q^{n-1}}{(\Delta t)^{2}}+A q^{n, \theta}=f^{n, \theta} \tag{83}
\end{equation*}
$$

where $\boldsymbol{q}^{n, \theta}:=\theta \boldsymbol{q}^{n+1}+(1-2 \theta) \boldsymbol{q}^{n}+\theta \boldsymbol{q}^{n-1}$.
If one chooses $\theta=\frac{1}{4} \mathrm{in}$ (83), then one gets an implicit method that is stable for all time step lengths and is $\mathcal{O}\left((\Delta t)^{2}\right)$ accurate in time.
The choice $\theta=0$ yields the conditionally stable "leap-frog" method.
To start the time stepping, one needs the solution on time level $-\Delta t$. This can be obtained from Taylor expansion and assuming that the wave equation is satisfied at $t=0$ too:

$$
\begin{aligned}
q^{-1} & =\boldsymbol{q}(-\Delta t) \approx \boldsymbol{q}(0)-\boldsymbol{q}^{\prime}(0) \Delta t+\frac{1}{2}(\Delta t)^{2} \boldsymbol{q}^{\prime \prime}(0) \\
& =\boldsymbol{q}^{0}-\Delta t \tilde{\boldsymbol{q}}^{0}+\frac{1}{2}(\Delta t)^{2} \boldsymbol{M}^{-1}\left(f^{0}-A \boldsymbol{q}^{0}\right)
\end{aligned}
$$

