9 Time dependent problems

9.1 Parabolic problem

Consider the following parabolic PDE ("heat equation") on time interval I :=]0, T]

$$\begin{cases}
\gamma \frac{\partial u}{\partial t} - \nabla \cdot (k \nabla u) = f & \text{in } \Omega \times I \\
u = 0 & \text{on } \partial \Omega \times I \\
u(x, 0) = u_0(x) & x \in \bar{\Omega} \text{ (initial condition)}
\end{cases}$$
(73)

For a fixed t we can define a weak formulation of (73)

$$\begin{cases}
\operatorname{Find} u(t) \in V, \ t \in I \text{ such that} \\
\int_{\Omega} \gamma \frac{\partial u(t)}{\partial t} v \, dx + \int_{\Omega} k \nabla u(t) \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in V \\
u(0) = u_{0}
\end{cases} \tag{74}$$

The semidiscrete Galerkin formulation of (74) reads

$$\begin{cases}
\operatorname{Find} u_h(t) \in V_h, \ t \in I \text{ such that} \\
\int_{\Omega} \gamma \frac{\partial u_h(t)}{\partial t} v_h \, dx + \int_{\Omega} k \nabla u_h(t) \cdot \nabla v_h \, dx = \int_{\Omega} f v_h \, dx \quad \forall v_h \in V_h \\
u_h(0) = u_0
\end{cases} \tag{75}$$

If $\{\varphi_i\}$ is the basis of V_h then

$$u_h(x,t) = \sum_{i=1}^N q_i(t)\varphi_i(x).$$

Problem (75) is then a system of ordinary differential equations

$$\begin{cases}
\sum_{j=1}^{N} \frac{dq_i(t)}{dt} \int_{\Omega} \gamma \varphi_i \varphi_j dx + \sum_{j=1}^{N} q_j(t) \int_{\Omega} k \nabla \varphi_i \cdot \nabla \varphi_j dx = \int_{\Omega} f \varphi_i dx & i = 1, ..., N \\
q_i(0) = u_0(N_i), & i = 1, ..., N.
\end{cases}$$
(76)

Equation (76) can be written in matrix form

$$\begin{cases} Mq'(t) + Aq(t) = f(t) \\ q(0) = q^{0}. \end{cases}$$
(77)

The time derivatives in (77) can be discretized using standard methods, like

$$M\frac{q^{n+1}-q^n}{\Delta t} + Aq^n = f^n \quad \text{(Euler)}$$

$$M\frac{q^{n+1}-q^n}{\Delta t} + Aq^{n+1} = f^{n+1} \quad \text{(implicit Euler)}$$
 (79)

$$M\frac{q^{n+1} - q^n}{\Delta t} + A\frac{q^{n+1} + q^n}{2} = \frac{f^{n+1} + f^n}{2}$$
 (Crank-Nicolson) (80)

At each time step one has to solve linear system of equations with coefficient matrix M (Euler), $M + \Delta t A$ (implicit Euler), or $M + \frac{1}{2}\Delta t A$ (Crank–Nicolson). If one uses constant time step and direct method to solve the linear system of equations (e.g. Cholesky method), then triangular factorization needs to be done only once, for example

$$M + \frac{1}{2}\Delta t A = LL^{\mathrm{T}}.$$

9.2 Hyperbolic problem

A hyperbolic problem

$$\begin{cases}
\gamma \frac{\partial^{2} u}{\partial t^{2}} - \nabla \cdot (k \nabla u) = f & \text{in } \Omega \times I \\
u = 0 & \text{on } \partial \Omega \times I \\
u(x,0) = u_{0}(x), & \frac{\partial u(x,0)}{\partial t} & x \in \bar{\Omega} \text{ (initial conditions)}
\end{cases} \tag{81}$$

can be semidiscretized in the same way as the parabolic problem. Here we get the following system of second order ordinary differential equations:

$$\begin{cases} Mq''(t) + Aq(t) = f(t) \\ q(0) = q^{0}, \quad q'(0) = \tilde{q}^{0}. \end{cases}$$
(82)

The time discretization of (82) can be done using e.g. the following family of formulas:

$$M\frac{q^{n+1}-2q^n+q^{n-1}}{(\Delta t)^2}+Aq^{n,\theta}=f^{n,\theta},$$
(83)

where $q^{n,\theta} := \theta q^{n+1} + (1-2\theta)q^n + \theta q^{n-1}$.

If one chooses $\theta = \frac{1}{4}$ in (83), then one gets an implicit method that is stable for all time step lengths and is $\mathcal{O}((\Delta t)^2)$ accurate in time.

The choice $\theta = 0$ yields the conditionally stable "leap-frog" method.

To start the time stepping, one needs the solution on time level $-\Delta t$. This can be obtained from Taylor expansion and assuming that the wave equation is satisfied at t = 0 too:

$$q^{-1} = q(-\Delta t) \approx q(0) - q'(0)\Delta t + \frac{1}{2}(\Delta t)^2 q''(0)$$

= $q^0 - \Delta t \tilde{q}^0 + \frac{1}{2}(\Delta t)^2 M^{-1} (f^0 - Aq^0).$