
9 Time dependent problems

9.1 Parabolic problem

Consider the following parabolic PDE (“heat equation”) on time interval I :=]0, T]















γ
∂u

∂t
−∇ · (k∇u) = f in Ω × I

u = 0 on ∂Ω × I

u(x, 0) = u0(x) x ∈ Ω̄ (initial condition)

(73)

For a fixed t we can define a weak formulation of (73)



















Find u(t) ∈ V, t ∈ I such that
∫

Ω
γ

∂u(t)

∂t
v dx +

∫

Ω
k∇u(t) · ∇v dx =

∫

Ω
f v dx ∀v ∈ V

u(0) = u0

(74)

The semidiscrete Galerkin formulation of (74) reads



















Find uh(t) ∈ Vh, t ∈ I such that
∫

Ω
γ

∂uh(t)

∂t
vh dx +

∫

Ω
k∇uh(t) · ∇vh dx =

∫

Ω
f vh dx ∀vh ∈ Vh

uh(0) = u0

(75)

If {ϕi} is the basis of Vh then

uh(x, t) =
N

∑
i=1

qi(t)ϕi(x).

Problem (75) is then a system of ordinary differential equations















N

∑
j=1

dqi(t)

dt

∫

Ω
γϕi ϕj dx +

N

∑
j=1

qj(t)
∫

Ω
k∇ϕi · ∇ϕj dx =

∫

Ω
f ϕi dx i = 1, ..., N

qi(0) = u0(Ni), i = 1, ...N.

(76)

Equation (76) can be written in matrix form

{

Mq′(t) + Aq(t) = f (t)

q(0) = q0.
(77)

The time derivatives in (77) can be discretized using standard methods, like

M
qn+1 − qn

∆t
+ Aqn = f n (Euler) (78)

M
qn+1 − qn

∆t
+ Aqn+1 = f n+1 (implicit Euler) (79)

M
qn+1 − qn

∆t
+ A

qn+1 + qn

2
=

f n+1 + f n

2
(Crank–Nicolson) (80)
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At each time step one has to solve linear system of equations with coefficient matrix M
(Euler), M + ∆tA (implicit Euler), or M + 1

2 ∆tA (Crank–Nicolson). If one uses constant time
step and direct method to solve the linear system of equations (e.g. Cholesky method), then
triangular factorization needs to be done only once, for example

M +
1

2
∆tA = LLT.

9.2 Hyperbolic problem

A hyperbolic problem























γ
∂2u

∂t2
−∇ · (k∇u) = f in Ω × I

u = 0 on ∂Ω × I

u(x, 0) = u0(x),
∂u(x, 0)

∂t
x ∈ Ω̄ (initial conditions)

(81)

can be semidiscretized in the same way as the parabolic problem. Here we get the following
system of second order ordinary differential equations:

{

Mq′′(t) + Aq(t) = f (t)

q(0) = q0, q′(0) = q̃0.
(82)

The time discretization of (82) can be done using e.g. the following family of formulas:

M
qn+1 − 2qn + qn−1

(∆t)2
+ Aqn,θ = f n,θ, (83)

where qn,θ := θqn+1 + (1 − 2θ)qn + θqn−1.
If one chooses θ = 1

4 in (83), then one gets an implicit method that is stable for all time step

lengths and is O((∆t)2) accurate in time.
The choice θ = 0 yields the conditionally stable “leap-frog” method.
To start the time stepping, one needs the solution on time level −∆t. This can be obtained
from Taylor expansion and assuming that the wave equation is satisfied at t = 0 too:

q−1 = q(−∆t) ≈ q(0) − q′(0)∆t +
1

2
(∆t)2q′′(0)

= q0 − ∆tq̃0 +
1

2
(∆t)2M−1( f 0 − Aq0).
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