
8 On the finite element method

8.1 Weighted residual methods

Consider the model problem

−u′′(x) = f (x), 0 < x < 1, u(0) = u(1) = 0. (59)

Multiply (59) by a test function v ∈ V and integrating we obtain

∫ 1

0
(−u′′ − f )v dx = 0, ∀v ∈ V. (60)

Expressing the approximate solution by uh = ∑
N
i=1 ui ϕi and “testing” against N functions

ψi ∈ V we obtain
N

∑
j=1

uj

∫ 1

0
−ϕ′′

j ψi dx =
∫ 1

0
f φi dx, i = 1, ..., N. (61)

This is called weighted residual method. The realization of the method depends, of course, on
the choise of the weight functions ψi.

8.2 Weak formulation of second order PDEs

Consider again the model problem (59). Let V contain those functions v that satisfy v(0) =

v(1) = 0, are continuous, and whose derivative are square integrable, i.e.
∫ 1

0 (v′)2 dx < ∞.
Multiply (59) by v ∈ V and integrate by parts:

−
∫ 1

0
u′′v dx = −

/1

0
u′v +

∫ 1

0
u′v′ dx =

∫ 1

0
f v dx.

Taking into account the boundary conditions on v we get

∫ 1

0
u′v′ dx =

∫ 1

0
f v dx ∀v ∈ V (62)

as v ∈ V was arbitrarily chosen.
Divide the interval [0, 1] into n + 1 subintervals 0 = x0 < x1 < ... < xn < xn+1 = 1 of length
h = 1/(n + 1). Let us define a subspace Vh of V such that Vh contains piecewise linear and
continuous functions ϕi defined as

ϕi(x) =











(x − xi−1)/h, xi−1 ≤ x ≤ xi

(xi+1 − x)/h, xi ≤ x ≤ xi+1

0 otherwise.

(63)

Substituting uh(x) = ∑
n
j=1 uj ϕj(x) and v = ϕi into (62) we obtain

n

∑
j=1

uj

∫ 1

0
ϕ′

j(x)ϕ′
i(x) dx =

∫ 1

0
f ϕi(x) dx, i = 1, ..., n. (64)

In matrix form this reads
Au = f , (65)

27



where the matrix entries are easily found to be

aij =











2
h if i = j

− 1
h if |i − j| = 1

0 otherwise.

(66)

If we use trapetzoidal rule
∫ b

a f dx ≈ (b−a)
2 ( f (a) + f (b)) to evaluate the integrals on the right

hand side we get
fi = h f (xi).

In this way we obtain exactly the same algebraic system as with the (central) finite difference
method!

The generalization of the integration by parts formula in higher dimensions is the Green’s
formula:
Let Ω ⊂ R

d be a domain, and let v, w ∈ C1(Ω̄), then

∫

Ω
w

∂v

∂xj
dx =

∫

∂Ω
wvnj ds −

∫

Ω

∂w

∂xj
v dx, 1 ≤ j ≤ d. (67)

Here n = (n1, ..., nd) is the external unit normal vector defined on the boundary ∂Ω of Ω.
Green’s formula implies e.g. the following formulas

∫

Ω
(∆u)v dx =

∫

∂Ω

∂u

∂n
v ds −

∫

Ω
∇u · ∇v dx

∫

Ω
(∇ · w) dx =

∫

∂Ω
w · n ds, w : Ω → R

d

Consider the problem
{

−∇ · (k∇u) + cu = f in Ω

αu + k∇u · n = 0 on ∂Ω.
(68)

Let us choose an arbitrary v ∈ V = {v : Ω → R |
∫

Ω
v2 dx < ∞,

∫

Ω
|∇v|2 dx < ∞}.

Multiplying (68) by v and integrating yields

−
∫

Ω
∇ · (k∇u)v dx +

∫

Ω
cuv dx =

∫

Ω
f v dx.

Using Green’s formula we obtain

∫

Ω
k∇u · ∇v dx −

∫

∂Ω
k∇u · nv ds +

∫

Ω
cuv dx =

∫

Ω
f v dx. (69)

Inserting the boundary condition of (68) into (69) we obtain

∫

Ω
k∇u · ∇v dx +

∫

∂Ω
αuv ds +

∫

Ω
cuv dx =

∫

Ω
f v dx. (70)

Equation (70) is defined even if the known coefficients k, c, f , α are only piecewise smooth, or
even discontinuous.
Problem (70) is called the weak formulation of problem (68). The classical solution of a PDE
always satisfies the weak formulation but not the opposite. Therefore the weak formulation
is a generalization of the original problem.
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8.3 Approximation of elliptic equations using the finite element method

Consider the abstract PDE in weak form

u ∈ V : a(u, v) = F(v) ∀v ∈ V. (P)

Here a : V × V → R is a continuous bilinear form and F : V → R is a continuous linear
form.
Let Vh ⊂ V be a finite dimensional subspace. Define the approximate problem

uh ∈ Vh : a(uh, vh) = F(vh) ∀vh ∈ Vh. (Ph)

Let us assume that the bilinear form a(·, ·) is symmetric and V-elliptic, i.e. ∃c > 0 : a(v, v) ≥
c‖v‖2 ∀v ∈ V. Then the problems (P) and (Ph) are uniquely solvable.
Let {ϕi}

N
i=1 be a basis of Vh. Then the approximate solution uh can be represented as

uh =
N

∑
j=1

cj ϕj.

Inserting this into (Ph) results in

a(
N

∑
j=1

cj ϕj, ϕi) = F(ϕi), i = 1, ..., N.

Taking into accout the (bi)linearity of a(·, ·) we obtain

N

∑
j=1

cja(ϕj, ϕi) = F(ϕi), i = 1, ..., N. (71)

As ϕj:s are known functions we write (71) in matrix form

Ac = f , (72)

where A ∈ R
N×N, f ∈ R

N, c ∈ R
N, and

aij = a(ϕi, ϕj), fi = F(ϕi).

If the bilinear form a(·, ·) is symmetric and V-elliptic, then the matrix A is symmetric and
positive definite.

8.4 Approximation using piecewise linear elements

Let us divide the domain Ω into set of nonoverlapping triangles Th (tetrahedrons in 3D)
such that

Ω̄ =
⋃

T∈Th

T.

We call Th the triangulation (or the finite element mesh) of Ω. We define the approximation
Vh of V as follows:

Vh = {v : Ω̄ → R | v is continuous and piecewise linear}.

A basis of Vh is then simply defined by piecewise linear continuous functions ϕi : Ω̄ → R

satisfying

ϕi(x(j)) = δij.

Here {x(j)}N
j=1 is the set of nodes of the triangulation.
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Figure 5: Example of regular refinement of an unstructured triangulation

Theorem 8.1. Let Ω̄ ⊂ R
2 be a polygon and let the solution to (P) be “sufficiently” regular. Let

{Th} be a regular (see Figure 5) collection of triangulations (i.e. there are no arbitrary large or small
angles in triangles as h → 0). Then there exists C > 0 such that for h > 0 sufficiently small

√

∫

Ω
(u − uh)2 dx = O(h2).

Often one is more interested in the gradient of the solution than the solution itself. One can
derive the following error estimate

√

∫

Ω
|∇(u − uh)|2 dx = O(h).

Instead of piecewise linear approximation, higher order elements are often used in practical
computations. For piecewise quadratic (and C0 continuous) approximation we have the
following estimations

√

∫

Ω
(u − uh)2 dx = O(h3)

√

∫

Ω
|∇(u − uh)|2 dx = O(h2).

30


