8 On the finite element method

8.1 Weighted residual methods

Consider the model problem

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad 0<x<1, \quad u(0)=u(1)=0 \tag{59}
\end{equation*}
$$

Multiply (59) by a test function $v \in V$ and integrating we obtain

$$
\begin{equation*}
\int_{0}^{1}\left(-u^{\prime \prime}-f\right) v d x=0, \quad \forall v \in V \tag{60}
\end{equation*}
$$

Expressing the approximate solution by $u_{h}=\sum_{i=1}^{N} u_{i} \varphi_{i}$ and "testing" against N functions $\psi_{i} \in V$ we obtain

$$
\begin{equation*}
\sum_{j=1}^{N} u_{j} \int_{0}^{1}-\varphi_{j}^{\prime \prime} \psi_{i} d x=\int_{0}^{1} f \phi_{i} d x, \quad i=1, \ldots, N \tag{61}
\end{equation*}
$$

This is called weighted residual method. The realization of the method depends, of course, on the choise of the weight functions ψ_{i}.

8.2 Weak formulation of second order PDEs

Consider again the model problem (59). Let V contain those functions v that satisfy $v(0)=$ $v(1)=0$, are continuous, and whose derivative are square integrable, i.e. $\int_{0}^{1}\left(v^{\prime}\right)^{2} d x<\infty$. Multiply (59) by $v \in V$ and integrate by parts:

$$
-\int_{0}^{1} u^{\prime \prime} v d x=-\int_{0}^{1} u^{\prime} v+\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x
$$

Taking into account the boundary conditions on v we get

$$
\begin{equation*}
\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x \quad \forall v \in V \tag{62}
\end{equation*}
$$

as $v \in V$ was arbitrarily chosen.
Divide the interval [0,1] into $n+1$ subintervals $0=x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}=1$ of length $h=1 /(n+1)$. Let us define a subspace V_{h} of V such that V_{h} contains piecewise linear and continuous functions φ_{i} defined as

$$
\varphi_{i}(x)= \begin{cases}\left(x-x_{i-1}\right) / h, & x_{i-1} \leq x \leq x_{i} \tag{63}\\ \left(x_{i+1}-x\right) / h, & x_{i} \leq x \leq x_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

Substituting $u_{h}(x)=\sum_{j=1}^{n} u_{j} \varphi_{j}(x)$ and $v=\varphi_{i}$ into (62) we obtain

$$
\begin{equation*}
\sum_{j=1}^{n} u_{j} \int_{0}^{1} \varphi_{j}^{\prime}(x) \varphi_{i}^{\prime}(x) d x=\int_{0}^{1} f \varphi_{i}(x) d x, \quad i=1, \ldots, n \tag{64}
\end{equation*}
$$

In matrix form this reads

$$
\begin{equation*}
A u=f \tag{65}
\end{equation*}
$$

where the matrix entries are easily found to be

$$
a_{i j}= \begin{cases}\frac{2}{h} & \text { if } i=j \tag{66}\\ -\frac{1}{h} & \text { if }|i-j|=1 \\ 0 & \text { otherwise }\end{cases}
$$

If we use trapetzoidal rule $\int_{a}^{b} f d x \approx \frac{(b-a)}{2}(f(a)+f(b))$ to evaluate the integrals on the right hand side we get

$$
f_{i}=h f\left(x_{i}\right) .
$$

In this way we obtain exactly the same algebraic system as with the (central) finite difference method!

The generalization of the integration by parts formula in higher dimensions is the Green's formula:
Let $\Omega \subset \mathbb{R}^{d}$ be a domain, and let $v, w \in C^{1}(\bar{\Omega})$, then

$$
\begin{equation*}
\int_{\Omega} w \frac{\partial v}{\partial x_{j}} d x=\int_{\partial \Omega} w v n_{j} d s-\int_{\Omega} \frac{\partial w}{\partial x_{j}} v d x, \quad 1 \leq j \leq d \tag{67}
\end{equation*}
$$

Here $n=\left(n_{1}, \ldots, n_{d}\right)$ is the external unit normal vector defined on the boundary $\partial \Omega$ of Ω. Green's formula implies e.g. the following formulas

$$
\begin{aligned}
\int_{\Omega}(\Delta u) v d x & =\int_{\partial \Omega} \frac{\partial u}{\partial n} v d s-\int_{\Omega} \nabla u \cdot \nabla v d x \\
\int_{\Omega}(\nabla \cdot \boldsymbol{w}) d x & =\int_{\partial \Omega} w \cdot n d s, \quad w: \Omega \rightarrow \mathbb{R}^{d}
\end{aligned}
$$

Consider the problem

$$
\left\{\begin{align*}
&-\nabla \cdot(k \nabla u)+c u=f \text { in } \Omega \tag{68}\\
& \alpha u+k \nabla u \cdot n=0 \\
& \text { on } \partial \Omega .
\end{align*}\right.
$$

Let us choose an arbitrary $v \in V=\left\{v:\left.\Omega \rightarrow \mathbb{R}\left|\int_{\Omega} v^{2} d x<\infty, \quad \int_{\Omega}\right| \nabla v\right|^{2} d x<\infty\right\}$. Multiplying (68) by v and integrating yields

$$
-\int_{\Omega} \nabla \cdot(k \nabla u) v d x+\int_{\Omega} c u v d x=\int_{\Omega} f v d x
$$

Using Green's formula we obtain

$$
\begin{equation*}
\int_{\Omega} k \nabla u \cdot \nabla v d x-\int_{\partial \Omega} k \nabla u \cdot n v d s+\int_{\Omega} c u v d x=\int_{\Omega} f v d x . \tag{69}
\end{equation*}
$$

Inserting the boundary condition of (68) into (69) we obtain

$$
\begin{equation*}
\int_{\Omega} k \nabla u \cdot \nabla v d x+\int_{\partial \Omega} \alpha u v d s+\int_{\Omega} c u v d x=\int_{\Omega} f v d x . \tag{70}
\end{equation*}
$$

Equation (70) is defined even if the known coefficients k, c, f, α are only piecewise smooth, or even discontinuous.
Problem (70) is called the weak formulation of problem (68). The classical solution of a PDE always satisfies the weak formulation but not the opposite. Therefore the weak formulation is a generalization of the original problem.

8.3 Approximation of elliptic equations using the finite element method

Consider the abstract PDE in weak form

$$
\begin{equation*}
u \in V: \quad a(u, v)=F(v) \quad \forall v \in V \tag{P}
\end{equation*}
$$

Here $a: V \times V \rightarrow \mathbb{R}$ is a continuous bilinear form and $F: V \rightarrow \mathbb{R}$ is a continuous linear form.
Let $V_{h} \subset V$ be a finite dimensional subspace. Define the approximate problem

$$
\begin{equation*}
u_{h} \in V_{h}: \quad a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in V_{h} . \tag{h}
\end{equation*}
$$

Let us assume that the bilinear form $a(\cdot, \cdot)$ is symmetric and V-elliptic, i.e. $\exists c>0: a(v, v) \geq$ $c\|v\|^{2} \forall v \in V$. Then the problems (\mathcal{P}) and $\left(\mathcal{P}_{h}\right)$ are uniquely solvable.
Let $\left\{\varphi_{i}\right\}_{i=1}^{N}$ be a basis of V_{h}. Then the approximate solution u_{h} can be represented as

$$
u_{h}=\sum_{j=1}^{N} c_{j} \varphi_{j}
$$

Inserting this into $\left(\mathcal{P}_{h}\right)$ results in

$$
a\left(\sum_{j=1}^{N} c_{j} \varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right), \quad i=1, \ldots, N .
$$

Taking into accout the (bi)linearity of $a(\cdot, \cdot)$ we obtain

$$
\begin{equation*}
\sum_{j=1}^{N} c_{j} a\left(\varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right), \quad i=1, \ldots, N \tag{71}
\end{equation*}
$$

As φ_{j} :s are known functions we write (71) in matrix form

$$
\begin{equation*}
A c=f \tag{72}
\end{equation*}
$$

where $A \in \mathbb{R}^{N \times N}, f \in \mathbb{R}^{N}, c \in \mathbb{R}^{N}$, and

$$
a_{i j}=a\left(\varphi_{i}, \varphi_{j}\right), \quad f_{i}=F\left(\varphi_{i}\right)
$$

If the bilinear form $a(\cdot, \cdot)$ is symmetric and V-elliptic, then the matrix A is symmetric and positive definite.

8.4 Approximation using piecewise linear elements

Let us divide the domain Ω into set of nonoverlapping triangles \mathcal{T}_{h} (tetrahedrons in 3D) such that

$$
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T .
$$

We call \mathcal{T}_{h} the triangulation (or the finite element mesh) of Ω. We define the approximation V_{h} of V as follows:

$$
V_{h}=\{v: \bar{\Omega} \rightarrow \mathbb{R} \mid v \text { is continuous and piecewise linear }\} .
$$

A basis of V_{h} is then simply defined by piecewise linear continuous functions $\varphi_{i}: \bar{\Omega} \rightarrow \mathbb{R}$ satisfying

$$
\varphi_{i}\left(x^{(j)}\right)=\delta_{i j} .
$$

Here $\left\{x^{(j)}\right\}_{j=1}^{N}$ is the set of nodes of the triangulation.

Figure 5: Example of regular refinement of an unstructured triangulation
Theorem 8.1. Let $\bar{\Omega} \subset \mathbb{R}^{2}$ be a polygon and let the solution to (\mathcal{P}) be "sufficiently" regular. Let $\left\{\mathcal{T}_{h}\right\}$ be a regular (see Figure 5) collection of triangulations (i.e. there are no arbitrary large or small angles in triangles as $h \rightarrow 0$). Then there exists $C>0$ such that for $h>0$ sufficiently small

$$
\sqrt{\int_{\Omega}\left(u-u_{h}\right)^{2} d x}=\mathcal{O}\left(h^{2}\right)
$$

Often one is more interested in the gradient of the solution than the solution itself. One can derive the following error estimate

$$
\sqrt{\int_{\Omega}\left|\nabla\left(u-u_{h}\right)\right|^{2} d x}=\mathcal{O}(h)
$$

Instead of piecewise linear approximation, higher order elements are often used in practical computations. For piecewise quadratic (and C^{0} continuous) approximation we have the following estimations

$$
\begin{aligned}
\sqrt{\int_{\Omega}\left(u-u_{h}\right)^{2} d x} & =\mathcal{O}\left(h^{3}\right) \\
\sqrt{\int_{\Omega}\left|\nabla\left(u-u_{h}\right)\right|^{2} d x} & =\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

