7 System of (nonlinear) PDEs

7.1 Two-dimensional Navier-Stokes equations

Consider two-dimensional Navier-Stokes equations (in dimensionless form):

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}= & -\frac{\partial p}{\partial x}+\frac{1}{\operatorname{Re}} \Delta u
\end{align*} \text { in } \Omega, ~ \begin{array}{rl}
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}= & -\frac{\partial p}{\partial y}+\frac{1}{\operatorname{Re}} \Delta v \tag{55}\\
\text { in } \Omega \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 & \text { in } \Omega \\
\text { boundary conditions for } u, v & \text { on } \partial \Omega
\end{array}\right.
$$

Here (u, v) is the velocity and p is the pressure. The dimensionless parameter $\operatorname{Re}>0$ is related to the viscosity, density and characteristic speed of the flow. In realistic simulations, Re is usually very large ($\sim 10^{6}$ or even more).
To simplify computations we introduce stream function $\Psi: \Omega \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
u=\frac{\partial \Psi}{\partial y}, \quad v=-\frac{\partial \Psi}{\partial x} . \tag{56}
\end{equation*}
$$

By differentiating (55) with respect to x and y we obtain

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial y \partial t}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}+u \frac{\partial^{2} u}{\partial y \partial x}+\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}+v \frac{\partial^{2} u}{\partial y^{2}} & =-\frac{\partial^{2} p}{\partial y \partial x}+\frac{1}{\operatorname{Re}} \frac{\partial}{\partial y}(\Delta u) \\
\frac{\partial^{2} v}{\partial x \partial t}+\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+u \frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}+v \frac{\partial^{2} v}{\partial x \partial y} & =-\frac{\partial^{2} p}{\partial x \partial y}+\frac{1}{\operatorname{Re}} \frac{\partial}{\partial x}(\Delta v)
\end{aligned}
$$

Subtracting the second equation from the first one results in

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}-\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} & +\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}-\frac{\partial v}{\partial x} \frac{\partial v}{\partial y} \\
& +u \frac{\partial^{2} u}{\partial y \partial x}+v \frac{\partial^{2} u}{\partial y^{2}}-u \frac{\partial^{2} v}{\partial x^{2}}-v \frac{\partial^{2} v}{\partial x \partial y}=\frac{1}{\operatorname{Re}} \Delta\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)
\end{aligned}
$$

Taking into account $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ and (56) we obtain

$$
\frac{\partial}{\partial t}(\Delta \Psi)+u \frac{\partial}{\partial x}(\Delta \Psi)+v \frac{\partial}{\partial y}(\Delta \Psi)=\frac{1}{\operatorname{Re}} \Delta^{2} \Psi
$$

Let ω satisfy $-\Delta \Psi=\omega$. Then we have

$$
\begin{equation*}
\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+v \frac{\partial \omega}{\partial y}=\frac{1}{\operatorname{Re}} \Delta \omega . \tag{57}
\end{equation*}
$$

Equation (57) is called the stream function / vorticity formulation of the 2D Navier-Stokes equations.

Example 7.1. Consider the classical "lid driven cavity" problem

Figure 3: Physical boundary conditions for the velocity vector field (u, v)

Figure 4: Boundary conditions for the stream funtion Ψ

Let us perform a finite difference discretization of (57). We assume that uniform stepsizes h_{x}, h_{y} in both spatial dimensions are used and explicit Euler discretization of the time derivative:

$$
\begin{aligned}
\frac{\omega_{i j}^{(k+1)}-\omega_{i j}^{(k)}}{\Delta t}+u_{i j}^{(k)} \frac{\omega_{i+1, j}^{(k)}-\omega_{i-1, j}^{(k)}}{2 h_{x}}+v_{i j}^{(k)} \frac{\omega_{i, j+1}^{(k)}-\omega_{i, j-1}^{(k)}}{2 h_{y}} \\
=\frac{1}{\operatorname{Re}}\left(\frac{\omega_{i+1, j}^{(k)}-2 \omega_{i j}^{(k)}+\omega_{i-1, j}^{(k)}}{h_{x}^{2}}+\frac{\omega_{i, j+1}^{(k)}-2 \omega_{i, j}^{(k)}+\omega_{i, j-1}^{(k)}}{h_{y}^{2}}\right)
\end{aligned}
$$

On every time step we have to also solve a Poisson problem

$$
\left\{\begin{align*}
-\Delta \Psi^{(k+1)}=\omega^{(k+1)} & \text { in } \Omega \tag{58}\\
\Psi^{(k+1)}=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

On boundary nodes ω is approximated as follows. From Taylor expansion we get

$$
\Psi\left(1-h_{x}, y\right) \approx \underbrace{\Psi(1, y)}_{=0}-h_{x} \underbrace{\frac{\partial \Psi(1, y)}{\partial x}}_{=0}+\frac{1}{2} h_{x}^{2} \frac{\partial^{2} \Psi(1, y)}{\partial x^{2}}
$$

Thus $\omega(1, y)=-\frac{\partial^{2} \Psi(1, y)}{\partial x^{2}} \approx-\frac{2}{h_{x}^{2}} \Psi\left(1-x_{x}, y\right)$.
Similarly

$$
\Psi\left(x, 1-h_{y}\right) \approx \underbrace{\Psi(x, 1)}_{=0}-h_{y} \underbrace{\frac{\partial \Psi(x, 1)}{\partial y}}_{=1}+\frac{1}{2} h_{y}^{2} \frac{\partial^{2} \Psi(x, 1)}{\partial y^{2}}
$$

and then $\omega(x, 1)=-\frac{\partial^{2} \Psi(x, 1)}{\partial y^{2}} \approx-\frac{2}{h_{y}^{2}}\left(\Psi\left(x, 1-h_{y}\right)+h_{y}\right)$.

