7 System of (nonlinear) PDEs

7.1 Two-dimensional Navier-Stokes equations

Consider two-dimensional Navier-Stokes equations (in dimensionless form):
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Here (u,v) is the velocity and p is the pressure. The dimensionless parameter Re > 0 is
related to the viscosity, density and characteristic speed of the flow. In realistic simulations,

Re is usually very large (~ 10° or even more).
To simplify computations we introduce stream function ¥ : (3 — R by
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By differentiating (55) with respect to x and y we obtain
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Subtracting the second equation from the first one results in
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Taking into account g—;‘ + g—; = 0 and (56) we obtain
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Let w satisfy —AY = w. Then we have
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Equation (57) is called the stream function / vorticity formulation of the 2D Navier-Stokes

equations.

Example 7.1. Consider the classical “lid driven cavity” problem
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(v,v) =(1,0)

(u,v)=(0,0)
(u,v)=(0,0)

(4, v)=(0,0)

Figure 3: Physical boundary conditions for the velocity vector field (u, v)
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Figure 4: Boundary conditions for the stream funtion ¥
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Let us perform a finite difference discretization of (57). We assume that uniform stepsizes
hx, hy in both spatial dimensions are used and explicit Euler discretization of the time deriva-
tive:
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On every time step we have to also solve a Poisson problem
—AT(k+1) — w(k+1) in O
(58)

Yk =0 onaQ.

On boundary nodes w is approximated as follows. From Taylor expansion we get
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and then w(x,1) = _P) 2 (¥(x,1—hy) +hy).
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