
7 System of (nonlinear) PDEs

7.1 Two-dimensional Navier–Stokes equations

Consider two-dimensional Navier–Stokes equations (in dimensionless form):
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boundary conditions for u, v on ∂Ω
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Here (u, v) is the velocity and p is the pressure. The dimensionless parameter Re > 0 is
related to the viscosity, density and characteristic speed of the flow. In realistic simulations,
Re is usually very large (∼ 106 or even more).
To simplify computations we introduce stream function Ψ : Ω → R by
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By differentiating (55) with respect to x and y we obtain
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Subtracting the second equation from the first one results in
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Taking into account ∂u
∂x + ∂v

∂y = 0 and (56) we obtain
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Let ω satisfy −∆Ψ = ω. Then we have
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Equation (57) is called the stream function / vorticity formulation of the 2D Navier–Stokes
equations.

Example 7.1. Consider the classical “lid driven cavity” problem
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Figure 3: Physical boundary conditions for the velocity vector field (u, v)
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Figure 4: Boundary conditions for the stream funtion Ψ
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Let us perform a finite difference discretization of (57). We assume that uniform stepsizes
hx, hy in both spatial dimensions are used and explicit Euler discretization of the time deriva-
tive:
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On every time step we have to also solve a Poisson problem
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On boundary nodes ω is approximated as follows. From Taylor expansion we get
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