
5 On eigenvalue problems for PDEs

Consider the one-dimensional wave equation

∂2U

∂t2
− c2 ∂2U

∂x2
= F(x, t). (40)

Let us assume that f is of the form F(x, t) = f (x)e−iωt, with given ω ∈ R.
We seek the solution in form U(x, t) = Re

(
u(x)e−iωt

)
. Then, inserting this into (40) we

obtain

−ω
2u(x)e−iωt − c2 ∂2u(x)

∂x2
e−iωt = f (x)e−iωt (41)

Dividing (41) by e−iωt we obtain Helmholtz equation

−c2 ∂2u

∂x2
−ω

2u = f . (42)

In case of free vibration f ≡ 0, we again search the solution in the form U(x, t) = Re
(
u(x)e−iωt

)

but now ω is an unknown parameter.
Denoting λ := (ω/c)2 we obtain the following eigenvalue problem for differential equation

−∂2u

∂x2
= λu.

Example 5.1. Consider the following eigenvalue problem

{

−u′′(x) = λu 0 < x < 1

u(0) = u(1) = 0.
(43)

Its analytical solution is
{

λj = (jπ)2, j = 1, 2, ...

uj(x) = sin(jπx), j = 1, 2, ...

Problem (43) can be approximately solved by using finite difference method, i.e.

−ui+1 − 2ui + ui−1

h2
= λui, i = 1, ..., n, h =

1

n + 1
.

This is an algebraic eigenvalue problem and it can be written in matrix form

1

h2










2 −1
−1 2 −1

. . .

−1 2 −1
−1 2



















u1

u2
...

un−1

un










= λ










u1

u2
...

un−1

un










(44)

The exact eigenvalues of the algebraic problem (44) are

λ
h
j = 2(n + 1)2 − 2(n + 1)2 cos

(
jπ

n + 1

)

, j = 1, ..., n.

19

Thus we have the following error estimate

λj − λ
h
j = (jπ)2 − 2(n + 1)2 + 2(n + 1)2

[

1− 1

2

(
jπ

n + 1

)2

+
1

24

(
jπ

n + 1

)4

+O
(

jπ

n + 1

)6
]

=
1

12
λ

2
j h2 +O(h4)

Note that the smallest eigenvalues are approximated better than bigger ones. No approxi-
mation is available for higher modes j > n.
In the general case, the algebraic eigenvalue problem must be solved numerically too.

20

6 Fast solution of the discrete Poisson equation

A solution algorithm for Au = f , where A ∈ R
N×N, u ∈ R

N, f ∈ R
N, is said fast if its

computational complexity is O(N log N) (or better).

6.1 Multigrid methods

The numerical solution of the discrete Poisson problem leads to the solution of a large and
sparse system

Au = f . (45)

If we have an approximate solution vector û ≈ u, then the error vector e := u − û can be
computed from

Ae = r,

where r := f − Aû (residual). Then we obtain the exact solution by

u = û + e = û + A−1r.

Now, if we have cheap approximation B to A−1, we can improve the approximation û by

ū← û + Br.

Next we present one way to construct such B.

Consider one-dimensional Poisson problem

−u′′(x) = f (x), 0 < x < 1; u(0) = u(1) = 0.

After finite difference discretization we obtain a linear algebraic system










2 −1
−1 2 −1

. . .

−1 2 −1
−1 2



















u1

u2
...

un−1

un










= h2










f1

f2
...

fn−1

fn










. (46)

Let us apply a single classical Jacobi iteration to system (46):

u
(k+1)
i =

1

2

(

h2 fi + u
(k)
i−1 + u

(k)
i+1

)

, i = 1, ..., n.

If we compare this to the exact solution to (46)

ui =
1

2

(

h2 fi + ui−1 + ui+1

)

the error e
(k)
i := ui − u

(k)
i reads

e
(k+1)
i =

1

2

(

e
(k)
i−1 + e

(k)
i+1

)

.

Thus, Jacobi iteration merely smooths the error, i.e. it reduces the high frequence components
of the error. On the other hand, if we restrict a smooth error component into a coarser grid, it

21

appears more oscillating. Thus performing Jacobi iteration on a coarser grid reduces lower
frequency error components.
The idea of reducing different frequency error components on different grids forms the basis
of the multigrid method.
Consider one iteration of a two-grid method:

uh = current approximation

uh = Jac(f h, uh) one Jacobi iteration

rh = f h − Auh residual

rH = IH
h rh restrict residual into coarse grid

AHeH = rH solve error on coarse grid (47)

eh = Ih
HeH interpolate error to fine grid

uh = uh + eh correction

The steps can be combined into a single matrix-vector product

uh = uh + Ih
H A−1

H IH
h

︸ ︷︷ ︸

=:B

rh. (48)

Thus we have a cheap approximation of A−1 as AH corresponds to a problem discretized on
a coarse grid.
The same idea can now be applied recursively to (47) resulting a multigrid method.
Multigrid methods are very efficient. Some variants are optimal in terms of computational
complexity requiring O(N) arithmetic operations where N is the number of unknowns.

6.2 Methods based on separation of variables

The tensor product of matrices A ∈ R
m1×n1 , B ∈ R

m2×n2 is defined by

A⊗ B :=








a11B a12B . . . a1n1
B

...
a21B a22B . . . a2n1

B
am11B am12B . . . am1n1

B







∈ R

m1m2×n1n2 . (49)

The tensor product has the properties

(A⊗ B)(C⊗ D) = AC⊗ BD (50)

(A⊗ B)−1 = A−1 ⊗ B−1. (51)

Let us assume a two-dimensional Poisson problem discretized in a uniform grid of N = n2

unknowns. Moreover, we assume natural numbering of the unknowns by grid rows (see eq.
(16)). The discrete problem can then represented in the form

(T ⊗ I + I ⊗ T)u = f , (52)

where T = tridiag{−1, 2,−1} ∈ R
n×n and I ∈ R

n×n is the identity matrix, and f =
[h2 f1, ..., h2 fN]T.
Let Λ be a diagonal matrix containing the eigenvalues of T and let matrix W contain the
orthonormal eigenvectors as its columns. Then WTTW = Λ and WTW = I.

22

Multiplying equation (52) from left by WT ⊗ I and denoting u := (W ⊗ I)v we obtain

(WT ⊗ I)(T ⊗ I + I ⊗ T)(W ⊗ I)v = (WT ⊗ I) f .

Using (50) we get after some manipulation

(Λ⊗ I + I ⊗ T)v = (WT ⊗ I) f =: f̂ . (53)

Let us write (53) in block form:















λ1I
λ2I

. . .

λn I








+








T
T

. . .

T






















v(1)

v(2)

...

v(n)








=









f̂
(1)

f̂
(2)

...

f̂
(n)









. (54)

The nodal values of the modified Poisson equation can be computed by rows by solving n
independent tridiagonal systems

(T + λj I)v(j) = f̂ (j), j = 1, ..., n.

The cost of a single tridiagonal solution is O(n).
Matrix-vector products f̂ = (WT ⊗ I) f and u = (W ⊗ I)v can be evaluated using the
discrete sine transformation. As

f̂
(l)
j =

n

∑
k=1

w
(l)
k f

(k)
j , w

(l)
k = sin

(
klπ

n + 1

)

we see that f̂ can be evaluated by columns by applying each column of f the discrete sine
transform. Similarly, the columns of u are obtained by applying each column of v the dis-
crete inverse sine transform.
The discrete sine transform (and its inverse) can be computed with O(n log n) arithmetic
operations using the fast Fourier transformation (FFT).
The total number of arithmetic operations to solve (52) equals

n · O(n) + 2n · O(n log n) = O(n2 log n) = O(N log
√

N).

23

