5 On eigenvalue problems for PDEs

Consider the one-dimensional wave equation

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial t^{2}}-c^{2} \frac{\partial^{2} U}{\partial x^{2}}=F(x, t) \tag{40}
\end{equation*}
$$

Let us assume that f is of the form $F(x, t)=f(x) e^{-\mathrm{i} \omega t}$, with given $\omega \in \mathbb{R}$.
We seek the solution in form $U(x, t)=\operatorname{Re}\left(u(x) e^{-\mathrm{i} \omega t}\right)$. Then, inserting this into (40) we obtain

$$
\begin{equation*}
-\omega^{2} u(x) e^{-\mathrm{i} \omega t}-c^{2} \frac{\partial^{2} u(x)}{\partial x^{2}} e^{-\mathrm{i} \omega t}=f(x) e^{-\mathrm{i} \omega t} \tag{41}
\end{equation*}
$$

Dividing (41) by $e^{-\mathrm{i} \omega t}$ we obtain Helmholtz equation

$$
\begin{equation*}
-c^{2} \frac{\partial^{2} u}{\partial x^{2}}-\omega^{2} u=f \tag{42}
\end{equation*}
$$

In case of free vibration $f \equiv 0$, we again search the solution in the form $U(x, t)=\operatorname{Re}\left(u(x) e^{-\mathrm{i} \omega t}\right)$ but now ω is an unknown parameter.
Denoting $\lambda:=(\omega / c)^{2}$ we obtain the following eigenvalue problem for differential equation

$$
-\frac{\partial^{2} u}{\partial x^{2}}=\lambda u
$$

Example 5.1. Consider the following eigenvalue problem

$$
\left\{\begin{align*}
-u^{\prime \prime}(x) & =\lambda u \quad 0<x<1 \tag{43}\\
u(0) & =u(1)=0
\end{align*}\right.
$$

Its analytical solution is

$$
\left\{\begin{aligned}
\lambda_{j} & =(j \pi)^{2}, \quad j=1,2, \ldots \\
u_{j}(x) & =\sin (j \pi x), \quad j=1,2, \ldots
\end{aligned}\right.
$$

Problem (43) can be approximately solved by using finite difference method, i.e.

$$
-\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=\lambda u_{i}, \quad i=1, \ldots, n, \quad h=\frac{1}{n+1}
$$

This is an algebraic eigenvalue problem and it can be written in matrix form

$$
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
2 & -1 & & & \tag{44}\\
-1 & 2 & -1 & & \\
& & \ddots & & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]=\lambda\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]
$$

The exact eigenvalues of the algebraic problem (44) are

$$
\lambda_{j}^{h}=2(n+1)^{2}-2(n+1)^{2} \cos \left(\frac{j \pi}{n+1}\right), \quad j=1, \ldots, n
$$

Thus we have the following error estimate

$$
\begin{aligned}
\lambda_{j}-\lambda_{j}^{h} & =(j \pi)^{2}-2(n+1)^{2}+2(n+1)^{2}\left[1-\frac{1}{2}\left(\frac{j \pi}{n+1}\right)^{2}+\frac{1}{24}\left(\frac{j \pi}{n+1}\right)^{4}+\mathcal{O}\left(\frac{j \pi}{n+1}\right)^{6}\right] \\
& =\frac{1}{12} \lambda_{j}^{2} h^{2}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Note that the smallest eigenvalues are approximated better than bigger ones. No approximation is available for higher modes $j>n$.
In the general case, the algebraic eigenvalue problem must be solved numerically too.

6 Fast solution of the discrete Poisson equation

A solution algorithm for $\boldsymbol{A} u=f$, where $A \in \mathbb{R}^{N \times N}, u \in \mathbb{R}^{N}, f \in \mathbb{R}^{N}$, is said fast if its computational complexity is $\mathcal{O}(N \log N)$ (or better).

6.1 Multigrid methods

The numerical solution of the discrete Poisson problem leads to the solution of a large and sparse system

$$
\begin{equation*}
A u=f \tag{45}
\end{equation*}
$$

If we have an approximate solution vector $\hat{\boldsymbol{u}} \approx \boldsymbol{u}$, then the error vector $\boldsymbol{e}:=\boldsymbol{u}-\hat{\boldsymbol{u}}$ can be computed from

$$
A e=r
$$

where $r:=f-A \hat{u}$ (residual). Then we obtain the exact solution by

$$
\boldsymbol{u}=\hat{\boldsymbol{u}}+\boldsymbol{e}=\hat{\boldsymbol{u}}+A^{-1} \boldsymbol{r}
$$

Now, if we have cheap approximation \boldsymbol{B} to \boldsymbol{A}^{-1}, we can improve the approximation $\hat{\boldsymbol{u}}$ by

$$
\bar{u} \leftarrow \hat{u}+B r .
$$

Next we present one way to construct such \boldsymbol{B}.
Consider one-dimensional Poisson problem

$$
-u^{\prime \prime}(x)=f(x), \quad 0<x<1 ; \quad u(0)=u(1)=0
$$

After finite difference discretization we obtain a linear algebraic system

$$
\left[\begin{array}{ccccc}
2 & -1 & & & \tag{46}\\
-1 & 2 & -1 & & \\
& & \ddots & & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]=h^{2}\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n-1} \\
f_{n}
\end{array}\right]
$$

Let us apply a single classical Jacobi iteration to system (46):

$$
u_{i}^{(k+1)}=\frac{1}{2}\left(h^{2} f_{i}+u_{i-1}^{(k)}+u_{i+1}^{(k)}\right), \quad i=1, \ldots, n
$$

If we compare this to the exact solution to (46)

$$
u_{i}=\frac{1}{2}\left(h^{2} f_{i}+u_{i-1}+u_{i+1}\right)
$$

the error $e_{i}^{(k)}:=u_{i}-u_{i}^{(k)}$ reads

$$
e_{i}^{(k+1)}=\frac{1}{2}\left(e_{i-1}^{(k)}+e_{i+1}^{(k)}\right) .
$$

Thus, Jacobi iteration merely smooths the error, i.e. it reduces the high frequence components of the error. On the other hand, if we restrict a smooth error component into a coarser grid, it
appears more oscillating. Thus performing Jacobi iteration on a coarser grid reduces lower frequency error components.
The idea of reducing different frequency error components on different grids forms the basis of the multigrid method.
Consider one iteration of a two-grid method:

$$
\begin{array}{ll}
\boldsymbol{u}_{h}=\text { current approximation } & \\
\boldsymbol{u}_{h}=\mathrm{Jac}\left(f_{h}, \boldsymbol{u}_{h}\right) & \text { one Jacobi iteration } \\
\boldsymbol{r}_{h}=\boldsymbol{f}_{h}-\boldsymbol{A} \boldsymbol{u}_{h} & \text { residual } \\
\boldsymbol{r}_{H}=\boldsymbol{I}_{h}^{H} \boldsymbol{r}_{h} & \text { restrict residual into coarse grid } \\
\boldsymbol{A}_{H} \boldsymbol{e}_{H}=\boldsymbol{r}_{H} & \text { solve error on coarse grid } \tag{47}\\
\boldsymbol{e}_{h}=\boldsymbol{I}_{H}^{h} \boldsymbol{e}_{H} & \text { interpolate error to fine grid } \\
\boldsymbol{u}_{h}=\boldsymbol{u}_{h}+\boldsymbol{e}_{h} & \text { correction }
\end{array}
$$

The steps can be combined into a single matrix-vector product

$$
\begin{equation*}
\boldsymbol{u}_{h}=\boldsymbol{u}_{h}+\underbrace{\boldsymbol{I}_{H}^{h} \boldsymbol{A}_{H}^{-1} \boldsymbol{I}_{h}^{H}}_{=: B} \boldsymbol{r}_{h} . \tag{48}
\end{equation*}
$$

Thus we have a cheap approximation of A^{-1} as A_{H} corresponds to a problem discretized on a coarse grid.
The same idea can now be applied recursively to (47) resulting a multigrid method.
Multigrid methods are very efficient. Some variants are optimal in terms of computational complexity requiring $\mathcal{O}(N)$ arithmetic operations where N is the number of unknowns.

6.2 Methods based on separation of variables

The tensor product of matrices $\boldsymbol{A} \in \mathbb{R}^{m_{1} \times n_{1}}, \boldsymbol{B} \in \mathbb{R}^{m_{2} \times n_{2}}$ is defined by

$$
A \otimes B:=\left[\begin{array}{ccc}
a_{11} B & a_{12} B & \ldots a_{1 n_{1}} B \tag{4}\\
\vdots & & \\
a_{21} B & a_{22} B & \ldots a_{2 n_{1}} B \\
a_{m_{1} 1} B & a_{m_{1} 2} B & \ldots a_{m_{1} n_{1}} B
\end{array}\right] \in \mathbb{R}^{m_{1} m_{2} \times n_{1} n_{2}} .
$$

The tensor product has the properties

$$
\begin{align*}
(A \otimes B)(C \otimes D) & =A C \otimes B D \tag{50}\\
(A \otimes B)^{-1} & =A^{-1} \otimes B^{-1} . \tag{51}
\end{align*}
$$

Let us assume a two-dimensional Poisson problem discretized in a uniform grid of $N=n^{2}$ unknowns. Moreover, we assume natural numbering of the unknowns by grid rows (see eq. (16)). The discrete problem can then represented in the form

$$
\begin{equation*}
(T \otimes I+I \otimes T) u=f, \tag{52}
\end{equation*}
$$

where $T=\operatorname{tridiag}\{-1,2,-1\} \in \mathbb{R}^{n \times n}$ and $I \in \mathbb{R}^{n \times n}$ is the identity matrix, and $f=$ $\left[h^{2} f_{1}, \ldots, h^{2} f_{N}\right]^{T}$.
Let $\boldsymbol{\Lambda}$ be a diagonal matrix containing the eigenvalues of \boldsymbol{T} and let matrix W contain the orthonormal eigenvectors as its columns. Then $W^{\mathrm{T}} \boldsymbol{T} \boldsymbol{W}=\Lambda$ and $W^{\mathrm{T}} W=\boldsymbol{I}$.

Multiplying equation (52) from left by $\boldsymbol{W}^{\mathrm{T}} \otimes \boldsymbol{I}$ and denoting $\boldsymbol{u}:=(\boldsymbol{W} \otimes \boldsymbol{I}) \boldsymbol{v}$ we obtain

$$
\left(\boldsymbol{W}^{\mathrm{T}} \otimes \boldsymbol{I}\right)(\boldsymbol{T} \otimes \boldsymbol{I}+\boldsymbol{I} \otimes \boldsymbol{T})(\boldsymbol{W} \otimes \boldsymbol{I}) \boldsymbol{v}=\left(\boldsymbol{W}^{\mathrm{T}} \otimes \boldsymbol{I}\right) \boldsymbol{f}
$$

Using (50) we get after some manipulation

$$
\begin{equation*}
(\Lambda \otimes I+I \otimes T) v=\left(W^{\mathrm{T}} \otimes I\right) f=: \hat{f} \tag{53}
\end{equation*}
$$

Let us write (53) in block form:

$$
\left(\left[\begin{array}{cccc}
\lambda_{1} \boldsymbol{I} & & & \tag{54}\\
& \lambda_{2} \boldsymbol{I} & & \\
& & \ddots & \\
& & & \lambda_{n} \boldsymbol{I}
\end{array}\right]+\left[\begin{array}{cccc}
\boldsymbol{T} & & & \\
& \boldsymbol{T} & & \\
& & \ddots & \\
& & & \boldsymbol{T}
\end{array}\right]\right)\left[\begin{array}{c}
v^{(1)} \\
\boldsymbol{v}^{(2)} \\
\vdots \\
\boldsymbol{v}^{(n)}
\end{array}\right]=\left[\begin{array}{c}
\hat{f}^{(1)} \\
\hat{f}^{(2)} \\
\vdots \\
\hat{f}^{(n)}
\end{array}\right]
$$

The nodal values of the modified Poisson equation can be computed by rows by solving n independent tridiagonal systems

$$
\left(T+\lambda_{j} I\right) v^{(j)}=\hat{f}^{(j)}, \quad j=1, \ldots, n
$$

The cost of a single tridiagonal solution is $\mathcal{O}(n)$.
Matrix-vector products $\hat{f}=\left(\boldsymbol{W}^{\mathrm{T}} \otimes \boldsymbol{I}\right) f$ and $\boldsymbol{u}=(\boldsymbol{W} \otimes \boldsymbol{I}) \boldsymbol{v}$ can be evaluated using the discrete sine transformation. As

$$
\hat{f}_{j}^{(l)}=\sum_{k=1}^{n} w_{k}^{(l)} f_{j}^{(k)}, \quad w_{k}^{(l)}=\sin \left(\frac{k l \pi}{n+1}\right)
$$

we see that \hat{f} can be evaluated by columns by applying each column of f the discrete sine transform. Similarly, the columns of u are obtained by applying each column of v the discrete inverse sine transform.
The discrete sine transform (and its inverse) can be computed with $\mathcal{O}(n \log n)$ arithmetic operations using the fast Fourier transformation (FFT).
The total number of arithmetic operations to solve (52) equals

$$
n \cdot \mathcal{O}(n)+2 n \cdot \mathcal{O}(n \log n)=\mathcal{O}\left(n^{2} \log n\right)=\mathcal{O}(N \log \sqrt{N})
$$

