
4 On numerical solution of hyperbolic PDEs

Consider a first oder hyperbolic PDE







∂u

∂t
+ a(x, t, u)

∂u

∂x
= g(x, t, u), t > 0

u(x, 0) = u0(x), −∞ < x < ∞.
(33)

Let us consider curves (“characteritics”) in t-x-plane defined by the differential equation
dx/dt = a(x, t, u).
Along every characteristic x(t) the solution of (33) satisfies

du

dt
=

∂u

∂t
+

∂u

∂x

dx

dt
=

∂u

∂t
+

∂u

∂x
a(x, t, u) = g(x, t, u).

A characteristic x and the value of the solution u on it can be calculated by solving ordinary
differential equation system

{

x′(t) = a(x, t, u), x(0) = x0

u′(t) = g(x, t, u), u(0) = u0(x0).
(34)

Example 4.1. Consider the problem

∂u

∂t
+ α

∂u

∂x
= β, α 6= 0, and β are constants.

In this case (34) reads
{

x′(t) = α, x(0) = x0

u′(t) = β, u(0) = u0(x0).

This is easily solved resulting in x(t) = αt + x0, u(t) = βt + u0(x0). The solution of the
original PDE along a characteristic is

u(x, t)|x−αt=x0
= βt + u(x0)

=⇒ u(x, t) = βt + u0(x− αt) ∀x, ∀t > 0.
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Example 4.2. Consider the problem

∂u

∂t
+ α

∂u

∂x
= βu, α 6= 0, and β are constants.

In this case (34) reads
{

x′(t) = α, x(0) = x0

u′(t) = βu, u(0) = u0(x0).

This is again easily solved resulting in x(t) = αt + x0, u(t) = u0(x0) eβt. The solution of
the original PDE along a characteristic is

u(x, t)|x−αt=x0
= u(x0) eβt

=⇒ u(x, t) = u0(x− αt) eβt ∀x, ∀t > 0.

4.1 Finite difference approximation

Consider the simple hyperbolic PDE

∂u

∂t
+ a

∂u

∂x
= 0

with constant a > 0.
Forward difference in time:

∂u

∂t
=

uk+1,j − uk,j

∆t
.

Spatial discretization:
∂u

∂x
=

uk,j+ǫ − uk,j−η

(ǫ + η)h

Several formulas depending on the values of ǫ, η, for example

ǫ = 1, η = 1 central difference O(h2)

ǫ = 1, η = 0 forward difference O(h)

ǫ = 0, η = 1 backward difference O(h).

-
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What about the stability of the above schemes? Let’s perform the von Neumann stability
analysis, i.e. we assume that uk,j = ξkeijϕ. Substituting this into the difference scheme above
we obtain

ξk+1eijϕ − ξkeijϕ

∆t
+ a ·

ξkei(j+ǫ)ϕ − ξkei(j−η)ϕ

(ǫ + η)h
= 0. (35)

Let us define the Courant number r := a · ∆t/h. Solving ξ from (35) we obtain

ξ = 1−
r

ǫ + η

(

eiǫϕ − e−iηϕ
)

.

Now, the choices of ǫ, η above result in:

ǫ = η = 1 =⇒ ξ = 1 + ir sin ϕ =⇒ ‖ξ‖ ≥ 1 ∀r

ǫ = 1, η = 0 =⇒ ξ = 1 + r− reiϕ =⇒ ‖ξ‖ ≥ 1 ∀r

ǫ = 0, η = 1 =⇒ ξ = 1− r + re−iϕ =⇒ ‖ξ‖ ≤ 1 if r ≤ 1.

Thus, only the combination “forward difference in time / backward difference in space”
works provided that a · ∆t/h ≤ 1 (the Courant–Friedrichs–Levy condition, CFL).

Lax–Wendroff scheme

This scheme is a modification of the unsuccesfull ǫ = η = 1 scheme. It reads as

uk+1,j − uk,j

∆t
+

a

2h

(

uk,j+1 − uk,j−1

)

−
a2

∆t

2h2

(

uk,j+1 − 2uk,j + uk,j−1

)

= 0. (36)

It can be shown that the accuracy of the scheme is O(h2 + (∆t)2. Once again, the stability
limits the step sizes, i.e. r ≤ 1 should hold.
Notice that one can interpret this scheme by adding “artificial diffusion” to the original
problem, i.e. we solve numerically the modified problem

∂u

∂t
+ a

∂u

∂x
−

1

2
a2

∆t
∂2u

∂x2
= 0.

4.2 Finite difference approximation of the wave equation

Consider the followiing wave equation in one space dimension:























∂2u

∂t2
− c2 ∂2u

∂x2
= 0, a < x < b, t > 0

u(a, t) = α(t), u(b, t) = β(t)

u(x, 0) = f (x),
∂u

∂t
(x, 0) = g(x).

(37)

Here α, β, f , g are known functions.
We discretize both derivatives using central differences:

uk+1,j − 2uk,j + uk−1,j

(∆t)2
− c2

uk,j+1 − 2uk,j + uk,j−1

h2
= 0. (38)
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The numerical solution is obtained by marching in time by solving uk+1,j from equation (38).
This is depicted in Figure 2 (the black nodal value is computed using the white ones).
In order to start the marching process, a small trick is needed. Artifical values u−1,j are
obtained by taking into account the initial conditions:

u1,j − u−1,j

2∆t
= g(xj), u0,j= f (xj)

.

The accuracy of the leapfrog method is O(h2 + (∆t)2) and the CFL condition c∆t/h ≤ 1
must hold.

-
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Figure 2: Leap frog scheme

4.3 On the nature of the solution of the wave equation

Consider the following wave equation in an unbounded domain















∂2u

∂t2
− c2 ∂2u

∂x2
= 0, −∞ < x < ∞, t > 0

u(x, 0) = f (x),
∂u

∂t
(x, 0) = g(x).

(39)

The analytical solution to (39) is

u(x, t) =
1

2
f (x + ct) +

1

2
f (x− ct) +

1

2c

∫ x+ct

x−ct
g(s) ds.

If g ≡ 0 then

u(x, t) =
1

2
f (x + ct) +

1

2
f (x− ct).

Thus the information of the initial condition spreads with constant speed c along two char-
acteristics.

Example 4.3. Let g ≡ 0 and

f (x) =

{

1, x > 0

0, otherwise.
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From the picture
we see that the “information” (discontinuity at x = 0) travels to two directions at speed c.
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