4 On numerical solution of hyperbolic PDEs

Consider a first oder hyperbolic PDE

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+a(x, t, u) \frac{\partial u}{\partial x}=g(x, t, u), \quad t>0 \tag{33}\\
u(x, 0)=u_{0}(x), \quad-\infty<x<\infty
\end{array}\right.
$$

Let us consider curves ("characteritics") in t-x-plane defined by the differential equation $d x / d t=a(x, t, u)$.
Along every characteristic $x(t)$ the solution of (33) satisfies

$$
\frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} a(x, t, u)=g(x, t, u)
$$

A characteristic x and the value of the solution u on it can be calculated by solving ordinary differential equation system

$$
\begin{cases}x^{\prime}(t)=a(x, t, u), & x(0)=x_{0} \tag{34}\\ u^{\prime}(t)=g(x, t, u), & u(0)=u_{0}\left(x_{0}\right)\end{cases}
$$

Example 4.1. Consider the problem

$$
\frac{\partial u}{\partial t}+\alpha \frac{\partial u}{\partial x}=\beta, \quad \alpha \neq 0, \text { and } \beta \text { are constants. }
$$

In this case (34) reads

$$
\begin{cases}x^{\prime}(t)=\alpha, & x(0)=x_{0} \\ u^{\prime}(t)=\beta, & u(0)=u_{0}\left(x_{0}\right) .\end{cases}
$$

This is easily solved resulting in $x(t)=\alpha t+x_{0}, \quad u(t)=\beta t+u_{0}\left(x_{0}\right)$. The solution of the original PDE along a characteristic is

$$
\begin{aligned}
& \left.u(x, t)\right|_{x-\alpha t=x_{0}}=\beta t+u\left(x_{0}\right) \\
& \Longrightarrow u(x, t)=\beta t+u_{0}(x-\alpha t) \quad \forall x, \forall t>0
\end{aligned}
$$

Example 4.2. Consider the problem

$$
\frac{\partial u}{\partial t}+\alpha \frac{\partial u}{\partial x}=\beta u, \quad \alpha \neq 0, \text { and } \beta \text { are constants. }
$$

In this case (34) reads

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\alpha, \quad x(0)=x_{0} \\
u^{\prime}(t)=\beta u, \quad u(0)=u_{0}\left(x_{0}\right) .
\end{array}\right.
$$

This is again easily solved resulting in $x(t)=\alpha t+x_{0}, \quad u(t)=u_{0}\left(x_{0}\right) e^{\beta t}$. The solution of the original PDE along a characteristic is

$$
\begin{aligned}
& \left.u(x, t)\right|_{x-\alpha t=x_{0}}=u\left(x_{0}\right) e^{\beta t} \\
& \Longrightarrow u(x, t)=u_{0}(x-\alpha t) e^{\beta t} \quad \forall x, \forall t>0
\end{aligned}
$$

4.1 Finite difference approximation

Consider the simple hyperbolic PDE

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0
$$

with constant $a>0$.
Forward difference in time:

$$
\frac{\partial u}{\partial t}=\frac{u_{k+1, j}-u_{k, j}}{\Delta t} .
$$

Spatial discretization:

$$
\frac{\partial u}{\partial x}=\frac{u_{k, j+\epsilon}-u_{k, j-\eta}}{(\epsilon+\eta) h}
$$

Several formulas depending on the values of ϵ, η, for example

$$
\begin{array}{ll}
\epsilon=1, \eta=1 & \text { central difference } \mathcal{O}\left(h^{2}\right) \\
\epsilon=1, \eta=0 & \text { forward difference } \mathcal{O}(h) \\
\epsilon=0, \eta=1 & \text { backward difference } \mathcal{O}(h) .
\end{array}
$$

What about the stability of the above schemes? Let's perform the von Neumann stability analysis, i.e. we assume that $u_{k, j}=\xi^{k} e^{\mathrm{i} j \varphi}$. Substituting this into the difference scheme above we obtain

$$
\begin{equation*}
\frac{\xi^{k+1} e^{\mathrm{i} j \varphi}-\xi^{k} e^{\mathrm{i} j \varphi}}{\Delta t}+a \cdot \frac{\xi^{k} e^{\mathrm{i}(j+\epsilon) \varphi}-\xi^{k} e^{\mathrm{i}(j-\eta) \varphi}}{(\epsilon+\eta) h}=0 . \tag{35}
\end{equation*}
$$

Let us define the Courant number $r:=a \cdot \Delta t / h$. Solving ξ from (35) we obtain

$$
\xi=1-\frac{r}{\epsilon+\eta}\left(e^{\mathrm{i} \epsilon \varphi}-e^{-\mathrm{i} \eta \varphi}\right) .
$$

Now, the choices of ϵ, η above result in:

$$
\begin{aligned}
& \epsilon=\eta=1 \Longrightarrow \xi=1+\mathrm{i} r \sin \varphi \Longrightarrow\|\xi\| \geq 1 \forall r \\
& \epsilon=1, \eta=0 \Longrightarrow \xi=1+r-r e^{\mathrm{i} \varphi} \Longrightarrow\|\xi\| \geq 1 \forall r \\
& \epsilon=0, \eta=1 \Longrightarrow \xi=1-r+r e^{-\mathrm{i} \varphi} \Longrightarrow\|\xi\| \leq 1 \text { if } r \leq 1 .
\end{aligned}
$$

Thus, only the combination "forward difference in time / backward difference in space" works provided that $a \cdot \Delta t / h \leq 1$ (the Courant-Friedrichs-Levy condition, CFL).

Lax-Wendroff scheme

This scheme is a modification of the unsuccesfull $\epsilon=\eta=1$ scheme. It reads as

$$
\begin{equation*}
\frac{u_{k+1, j}-u_{k, j}}{\Delta t}+\frac{a}{2 h}\left(u_{k, j+1}-u_{k, j-1}\right)-\frac{a^{2} \Delta t}{2 h^{2}}\left(u_{k, j+1}-2 u_{k, j}+u_{k, j-1}\right)=0 . \tag{36}
\end{equation*}
$$

It can be shown that the accuracy of the scheme is $\mathcal{O}\left(h^{2}+(\Delta t)^{2}\right.$. Once again, the stability limits the step sizes, i.e. $r \leq 1$ should hold.
Notice that one can interpret this scheme by adding "artificial diffusion" to the original problem, i.e. we solve numerically the modified problem

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}-\frac{1}{2} a^{2} \Delta t \frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

4.2 Finite difference approximation of the wave equation

Consider the followiing wave equation in one space dimension:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0, \quad a<x<b, t>0 \tag{37}\\
u(a, t)=\alpha(t), \quad u(b, t)=\beta(t) \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
\end{array}\right.
$$

Here α, β, f, g are known functions.
We discretize both derivatives using central differences:

$$
\begin{equation*}
\frac{u_{k+1, j}-2 u_{k, j}+u_{k-1, j}}{(\Delta t)^{2}}-c^{2} \frac{u_{k, j+1}-2 u_{k, j}+u_{k, j-1}}{h^{2}}=0 . \tag{38}
\end{equation*}
$$

The numerical solution is obtained by marching in time by solving $u_{k+1, j}$ from equation (38). This is depicted in Figure 2 (the black nodal value is computed using the white ones).
In order to start the marching process, a small trick is needed. Artifical values $u_{-1, j}$ are obtained by taking into account the initial conditions:

$$
\frac{u_{1, j}-u_{-1, j}}{2 \Delta t}=g\left(x_{j}\right), \quad u_{0, j=f\left(x_{j}\right)} .
$$

The accuracy of the leapfrog method is $\mathcal{O}\left(h^{2}+(\Delta t)^{2}\right)$ and the CFL condition $c \Delta t / h \leq 1$ must hold.

Figure 2: Leap frog scheme

4.3 On the nature of the solution of the wave equation

Consider the following wave equation in an unbounded domain

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0, \quad-\infty<x<\infty, t>0 \tag{39}\\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
\end{array}\right.
$$

The analytical solution to (39) is

$$
u(x, t)=\frac{1}{2} f(x+c t)+\frac{1}{2} f(x-c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

If $g \equiv 0$ then

$$
u(x, t)=\frac{1}{2} f(x+c t)+\frac{1}{2} f(x-c t)
$$

Thus the information of the initial condition spreads with constant speed c along two characteristics.

Example 4.3. Let $g \equiv 0$ and

$$
f(x)= \begin{cases}1, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

$t=0$:

$\longrightarrow \cdots>_{x}$

From the picture
we see that the "information" (discontinuity at $x=0$) travels to two directions at speed c.

