4 On numerical solution of hyperbolic PDEs

Consider a first oder hyperbolic PDE

Ju oJu
3 +a(x, t,u)g =gq(x,t,u), t>0 (33)
u(x,0) = up(x), —oo < x < oo.

Let us consider curves (“characteritics”) in t-x-plane defined by the differential equation
dx/dt =a(x,t,u).
Along every characteristic x(t) the solution of (33) satisfies

= B S B S ) = gl )
dt ot oxdt ot  ax U T &N

A characteristic x and the value of the solution u on it can be calculated by solving ordinary
differential equation system

{x’(t) =a(x,t,u), x(0)=xg

(34)
u'(t) = g(x,t,u),  u(0) = up(xo).
Example 4.1. Consider the problem

ou

ou
m + o= B, « #0, and B are constants.

In this case (34) reads

o

u'(t) =B, u(0) = uo(xo).

This is easily solved resulting in x(t) = at + x9, u(t) = Pt + up(xp). The solution of the
original PDE along a characteristic is

{x'(t) =a, x(0)=x

u(x't)|x71xt:xo = pt+ u(xo)
— u(x,t) = Bt +up(x —at) Vx, Vi > 0.
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Example 4.2. Consider the problem

ou ou
o + zxg = Bu, « # 0, and B are constants.
In this case (34) reads
X(t)=a, x(0)=x
u'(t) = Bu, u(0) = up(xp).

This is again easily solved resulting in x(t) = at +xg, u(t) = up(xg) ef*. The solution of
the original PDE along a characteristic is

u(x' t)leoct:xo - u(xo) et

— u(x,t) = up(x —at) P Vx, Vt > 0.

4.1 Finite difference approximation

Consider the simple hyperbolic PDE

ou + aa—u =0
ot ox
with constant a > 0.

Forward difference in time:
ou  Ugy1,j — U

ot At
Spatial discretization:
ou  Ugjte — Ukj—y
ox  (e+n)h

Several formulas depending on the values of €, 77, for example

e=1,17=1 central difference O(h?)
e=1,1n1=0 forward difference O(h)
€ =0, 7 =1 backward difference O(h).
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What about the stability of the above schemes? Let’s perform the von Neumann stability

analysis, i.e. we assume that uy ; = kel Substituting this into the difference scheme above

we obtain N N » »
gktleije — akeljg gkeilite)p _ akeilj—me

+a-

At (e+n)h

Let us define the Courant number r := a - At/h. Solving ¢ from (35) we obtain

621_6117 (eieg"—e*im").

Now, the choices of €, 7 above result in:

— 0. (35)

e=n=1= {=1+irsing = ||| >1Vr
e=1,71=0= E=1+r—re? = ||¢]| >1Vr
e=0,n1=1= ¢=1—r+re? = ||&]| <1ifr<1.

Thus, only the combination “forward difference in time / backward difference in space”
works provided that a - At/h < 1 (the Courant-Friedrichs-Levy condition, CFL).

Lax—Wendroff scheme

This scheme is a modification of the unsuccesfull € = 17 = 1 scheme. It reads as

Upy1j — Uk @ A’ At B
T AF + o (Mk,j+1 - uk,j—l) T o2 (“k,j+1 - 2uk,j + ”k,j—l) = 0. (36)

It can be shown that the accuracy of the scheme is O(h? + (At)?. Once again, the stability
limits the step sizes, i.e. r < 1 should hold.

Notice that one can interpret this scheme by adding “artificial diffusion” to the original
problem, i.e. we solve numerically the modified problem

ou du 1, ou

4.2 Finite difference approximation of the wave equation

Consider the followiing wave equation in one space dimension:

°u  ,0%u
w—Cﬁ—o, a<x<b,t>0
u(a, t) =w(t), u(bt)=pB(1) (37)

u(x,0) = £x), 55,0 = g(x),

Here «, B, f, g are known functions.
We discretize both derivatives using central differences:

Miy1j = 2+ k1 pMkj+1 = 24kt ki
(A1) 2

= 0. (38)
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The numerical solution is obtained by marching in time by solving uy 1 ; from equation (38).
This is depicted in Figure 2 (the black nodal value is computed using the white ones).

In order to start the marching process, a small trick is needed. Artifical values u_;; are
obtained by taking into account the initial conditions:

Wij—u-1;
—oar =8, o jmp(xy-

The accuracy of the leapfrog method is O(h? + (At)?) and the CFL condition cAt/h < 1
must hold.

k+1 1 ®
ko4 o o o
k—1 L o

j

Figure 2: Leap frog scheme

4.3 On the nature of the solution of the wave equation

Consider the following wave equation in an unbounded domain

02 02
a—:—cza—;zo, —oo<x<oo,t>0
ou

u(x,0) = fx),  =-(x,0) =g(x).

(39)

The analytical solution to (39) is

w(x, b) = %f(x bt + %f(x e+ 2lc /;;Ctg(s) ds.
If ¢ = 0 then
1 1
u(x,t) = Ef(x+ct) +§f(x—ct).

Thus the information of the initial condition spreads with constant speed c along two char-
acteristics.

Example 4.3. Let ¢ = 0 and

0, otherwise.

Flx) = {1, x>0
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From the picture
we see that the “information” (discontinuity at x = 0) travels to two directions at speed c.
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