
3 Finite difference solution of the one-dimensional heat equa-

tion

Let us consider the heat equation with Dirichlet boundary conditions:






∂u

∂t
− β2 ∂2u

∂x2
= f , 0 < x < ℓ, t > 0

u(0, t) = u(ℓ, t) = 0

u(x, 0) = u0(x).

(18)

As we have now also partial derivative in time, we need an initial condition at t = 0.

Example 3.1. Let β = 1, f ≡ 0, ℓ = 1, and u0(x) = sin(πx), then the exact solution of (18) is

u(x, t) = exp(−π2t) sin πx.

3.1 Spatial discretization

Let’s make first spatial discretization of (18). Set

0 = x0 < x1 < . . . < xn < xn+1 = ℓ, xi+1 − xi = h

and replace spatial derivatives with difference approximations:

∂u(xi, t)

∂t
− β2 u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

h2
= f (xi, t), i = 1, ..., n. (19)

Thus we have replaced the original PDE by a system of ordinary (linear) differential equa-
tions 





∂u(t)

∂t
+ Au(t) = f (t)

u(0) = u(0)
(20)

As matrix A is symmetric its eigenvalues are real and its eigenvectors form a basis in R
n. If

f ≡ 0, then the solution of ODE system

∂u(t)

∂t
+ Au(t) = 0 (21)

can be represented as

u(t) =
n

∑
i=1

c
(0)
i exp(−λit)v(i),

where (λi, v(i)), i = 1, ..., n are the eigenvalue/eigenvector pairs of A, and

n

∑
i=1

c
(0)
i v(i) = u(0).

Theorem 3.1. Consider a symmetric real tridiagonal matrix

A =










a b
b a b

. . . . . . . . .

b a b
b a
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Then, its eigenvalues are

λj = a + 2b cos

(
jπ

n + 1

)

, j = 1, ..., n (22)

and eigenvectors v(j) ∈ R
n:

v
(j)
i = sin

(
ijπ

n + 1

)

, i = 1, ..., n. (23)

3.2 Temporal discretization

The simplest discretization method is the forward difference (Euler) method:

u(t + ∆t)− u(t)

∆t
+ Au(t) = 0

Denote tk := k∆t and

u(k) :=






u1(tk)
...

un(tk)




 =:






u1,k
...

un,k




 .

Then Euler’s method can be written as

u(k+1) = u(k) − ∆t · Au(k) = (I − ∆tA)
︸ ︷︷ ︸

=:B

u(k) = Bu(k) = B2u(k−1) = ... = (B)ku(0). (24)

Consistency: The error of difference approximations is

O(h2) +O(∆t) = O(h2 + ∆t).

To get a convergent scheme the stability of the scheme is required, i.e. ‖u(k)‖ ≤ C, k → ∞. A
necessary condition for stability is ρ(B) ≤ 1, where ρ(B) = max{|λ| : λis an eigenvalue of B.
Matrix B is tridiagonal, with the following diagonal and co-diagonal entries (cf. Theo-
rem 3.1)

a = 1− r, b = r, r :=
∆tβ2

h2
.

Thus the eigenvalues of B are

λj = 1− 2r + 2r cos

(
jπ

n + 1

)

, j = 1, ..., n.

Using properties of trigonometric functions we get

λj = 1− 4r

≤1
︷ ︸︸ ︷

sin2 jπ

2(n + 1)
︸ ︷︷ ︸

≥0

.

Thus λj ≤ 1 for all r > 0. On the other hand λj ≥ −1 if 1− 4r ≥ −1 i.e.

∆t ≤
1

2
h2/β2. (25)

The concrete meaning of equation (25) is that if we refine the grid in spatial direction by
h → 1

2 h, then at the same time we must refine the temporal discretization by ∆t → 1
4 ∆t.
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3.3 θ methods

A family of time discretization schemes can be defined as

u(k+1) − u(k)

∆t
+ θAu(k+1) + (1− θ)Au(k) = 0, 0 ≤ θ ≤ 1. (26)

Example 3.2. Most common choices of theta are

• θ = 0 (Euler method) local accuracy O(h2 + ∆t)

• θ = 1 (implicit Euler method) local accuracy O(h2 + ∆t)

• θ = 1
2 (Crank–Nicolson method) local accuracy O(h2 + (∆t)2)

Rewriting (26) in matrix form results in

B(1)u(k+1) = B(2)u(k), (27)

where
B(1) = I + θ∆tA, B(2) = I − (1− θ)∆tA.

Let us now analyze the stability of the scheme. The eigenvalues are

λj(B(1)) = 1 + 2rθ

(

1− cos
jπ

n + 1

)

, j = 1, ..., n

λj(B(2)) = 1− 2r(1− θ)

(

1− cos
jπ

n + 1

)

, j = 1, ..., n.

From (27) it follows that

u(k+1) = (B(1))−1B(2)u(k) =: Bu(k).

As B(1) and B(2) have the same eigenvectors, we have

λj(B) =
λj(B(2))

λj(B(1))
=

1− 2r(1− θ)
(

1− cos
jπ

n+1

)

1 + 2rθ
(

1− cos
jπ

n+1

) .

In order to have a stable θ-scheme, it must hold |λj(B)| ≤ 1, i.e.

r(1− cos
jπ

n + 1
)(1− 2θ) ≤ 1. (28)

If θ ≥ 1
2 then (28) holds for all r > 0. If θ <

1
2 , then r ≤ 1

2(1−2θ)
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3.3.1 Von Neumann stability analysis

Under some assumtions (not presented here) the stability analysis can also be done using
von Neumann method. Let us assume that the discrete solution at a grid point is of the form

uj,k = ξkeijϕ (i2 = −1, ξ 6= 0). (29)

Then for a single grid point, the θ-method reads

− θruj+1,k+1 + (1 + 2θr)uj,k+1 − θruj−1,k+1

= (1− θ)ruj+1,k + (1− 2(1− θ)r)uj,k + (1− θ)ruj−1,k. (30)

Inserting (29) into (30) we obtain

(1 + 2θr)ξk+1eijϕ − θrξk+1ei(j+1)ϕ − θrξk+1ei(j−1)ϕ

= (1− 2(1− θ)r)ξkeijϕ + (1− θ)rξkei(j+1)ϕ + (1− θ)rξkei(j−1)ϕ. (31)

Dividign (31) by ξkeijϕ we obtain

(1 + 2θr)ξ − θrξeiϕ − θrξe−iϕ = (1− 2(1− θ)r) + (1− θ)reiϕ + (1− θ)re−iϕ.

As cos ϕ = 1
2(eiϕ + e−iϕ) we finally get

ξ =
1− 2(1− θ)r(1− cos ϕ)

1 + 2θr(1− cos ϕ)
.

As stability requires |ξ| ≤ 1, then we see that no restriction on stepsize is required for im-
plicit Euler and Crank–Nicholson schemes. For classical Euler method r ≤ 1

2 must hold.

3.4 Alternate Direction Implicit (ADI) method

Peaceman & Rachford, 1955.
ADI is an operator splitting method. First “split” the 2D heat equation

∂u

∂t
− β2 ∂2u

∂x2
= β2 ∂2u

∂y2
,

then solve the resulting 1D heat equation (the left hand side).
The time step tk → tk+1 is divided into two substeps tk → tk+ 1

2
and tk+ 1

2
→ tk+1.







u
(k+ 1

2 )
i,j − u

(k)
i,j

∆t/2
− β2

u
(k+ 1

2 )
i+1,j − 2u

(k+ 1
2 )

i,j + u
(k+ 1

2 )
i−1,j

h2
1

− β2
u

(k)
i,j+1 − 2u

(k)
i,j + u

(k)
i,j−1

h2
2

= 0

u
(k+1)
i,j − u

(k+ 1
2 )

i,j

∆t/2
− β2

u
(k+ 1

2 )
i+1,j − 2u

(k+ 1
2 )

i,j + u
(k+ 1

2 )
i−1,j

h2
2

− β2
u

(k+1)
i,j+1 − 2u

(k+1)
i,j + u

(k+1)
i,j−1

h2
2

= 0

(32)

In the fist substep partial derivative with respect to x is handled implcitly, and in the second
substep with respect to y.
Practical implementation (unit square, h1 = h2):
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Figure 1:

Let

B(1) =








1 + 2r −r
−r 1 + 2r −r

. . . . . . . . .

−r 1 + 2r








, B(2) =








1− 2r r
r 1− 2r r

. . . . . . . . .

r 1− 2r








,

where r = ∆tβ2/2h2. Then one step can be implemented as follows (see also Figure 1):

1. Solve unknowns by rows from the tridiagonal system

B(1)u(k+ 1
2 ) = B(2)u(k)

2. Solve unknowns by columns from the tridiagonal system

B(1)u(k+1) = B(2)u(k+ 1
2 ).

ADI method was very important breakthrough in the 1950’s. Namely, it can be proved that
ADI method is stable for all time step sizes. The accuracy of the method is O(h2 + (∆t)2).
Moreover, the computational cost per timestep is only O(N), where N = nxny.
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