3 Finite difference solution of the one-dimensional heat equa-
tion

Let us consider the heat equation with Dirichlet boundary conditions:

ou ,0%u
— — B =1, 0 ¢, t>0
o 722 f <x< >
u(0,t) =u(l,t) =0
u(x,0) = up(x).
As we have now also partial derivative in time, we need an initial condition at t = 0.

Example 3.1. Let =1, f =0, ¢ =1, and up(x) = sin(7rx), then the exact solution of (18) is

(18)

u(x, t) = exp(—7m?t) sin rrx.

3.1 Spatial discretization

Let’s make first spatial discretization of (18). Set
O=x<x1<...<xp<xp11=1¢, Xiz1—Xi=h

and replace spatial derivatives with difference approximations:

oulist) _ o) B VM) oy s

Thus we have replaced the original PDE by a system of ordinary (linear) differential equa-
tions

0 _
{ S+ Ault) = £(1) o0
u(0) = u®

As matrix A is symmetric its eigenvalues are real and its eigenvectors form a basis in R". If
f =0, then the solution of ODE system

ou(t)
ot

+ Au(t) =0 (1)

can be represented as
n .
u(t) = ZCEO) exp(—A;t)ol),
i=1
where (A, v(i)), i =1, ..., n are the eigenvalue/eigenvector pairs of A, and
050 — 4(0),
i=1
Theorem 3.1. Consider a symmetric real tridiagonal matrix

(a b
b a b

SIS
SIS




Then, its eigenvalues are

- Jmy, =
Aj=a+2bcos (n+1>' j=1,..,n (22)
and eigenvectors v\/) € R":

o) = sin (nl]f_l) L i=1,..n (23)

3.2 Temporal discretization

The simplest discretization method is the forward difference (Euler) method:

u(t+ At) — u(t)

A + Au(t) =0
Denote f; := kAt and
u1(t) Uq
ub =1+ | =
un(tk) Uy k
Then Euler’s method can be written as
uD) = 40 _ A A = (I — AtA) ul) = By = B2 — | = (B)ku(o). (24)
‘B

Consistency: The error of difference approximations is
O(h?) + O(At) = O (K> + At).

To get a convergent scheme the stability of the scheme is required, i.e. ||[u¥)|| < C, k — c0. A
necessary condition for stability is p(B) < 1, where p(B) = max{|A| : Ais an eigenvalue of B.
Matrix B is tridiagonal, with the following diagonal and co-diagonal entries (cf. Theo-
rem 3.1)
Atp?
a=1—-r, b=r, ::h—‘f.

Thus the eigenvalues of B are

_ jr -
)\j =1-—2r+2rcos (n——l—l) , j=1,.,n

Using properties of trigonometric functions we get

Ap=1—drsin? =1
n

Thus A <1 for all r > 0. On the other hand A > -1 ifl —4r > —1ie.

At < %hz/ﬁz. (25)

The concrete meaning of equation (25) is that if we refine the grid in spatial direction by
h — 1h, then at the same time we must refine the temporal discretization by At — IAt.
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3.3 6 methods

A family of time discretization schemes can be defined as

(k1) _ (0
At

Example 3.2. Most common choices of theta are
e 0 = 0 (Euler method) local accuracy O (h? + At)
e 0 = 1 (implicit Euler method) local accuracy O(h? + At)
e 9 = 1 (Crank-Nicolson method) local accuracy O (h? + (At)?)

Rewriting (26) in matrix form results in

B, (k1) _ B(2),®

4

where
B =14+06AtA, B? =T1—(1-0)AtA.

Let us now analyze the stability of the scheme. The eigenvalues are

n—+1
Aj(B(z)):l—Zr(l—G) (1—cos n ), i=1,..,n.

Aj(B(l))zl—l—ZrQ (1—COS J7 >, j=1,.,n

n+1

From (27) it follows that

w1 — (B)-1g@ (0 —. gy ®),

As B and B?) have the same eigenvectors, we have

7 (B) = Aj(B(z)) B 1-2r(1-9) (1 — CoS J—L)
: Aj(B(l)) 1+ 2r0 (1 — Cos n]—fl)

In order to have a stable 0-scheme, it must hold |1;(B)| < 1, i.e.

jTT
n+

r(1 — cos 1)(1—20) <1.

If 0 > ; then (28) holds forall ¥ > 0. If § < 1, thenr < m

11

+0Au*) + (1-0)Au® =0, 0<6<1.

(26)

(27)

(28)



3.3.1 Von Neumann stability analysis

Under some assumtions (not presented here) the stability analysis can also be done using
von Neumann method. Let us assume that the discrete solution at a grid point is of the form

=g (=-1,8#0) (29)

Then for a single grid point, the 6-method reads

—Orujyy 1+ (1+20r)uj k0 — 011k
= (1= 0)rujpp+ (1—2(1—0)r)ujp+ (1 — 0)ruj_1x (30)

Inserting (29) into (30) we obtain

(1 + zer)ék-i-leij(p . Orgk-l-lei(j-i-l)(p . Qréck-l-lei(j—l)(p
= (1—2(1—0)r)c%e? 4+ (1 — 0)rekelUHDe 1 (1 — 9)rekell-De. (31)
Dividign (31) by &*el/? we obtain
(14 20r)& — 0rfe'? — 0rfe ™ = (1 —2(1 —0)r) + (1 — 0)re'? + (1 — 0)re 9.
As cos ¢ = 1(€l? + e71?) we finally get

~1-2(1-6)r(1 —cosg)
€= 1+20r(1—cosg)

As stability requires || < 1, then we see that no restriction on stepsize is required for im-
plicit Euler and Crank-Nicholson schemes. For classical Euler method r < % must hold.

3.4 Alternate Direction Implicit (ADI) method

Peaceman & Rachford, 1955.
ADI is an operator splitting method. First “split” the 2D heat equation
ou 0% e 0%u
ot ox2 " gy?’
then solve the resulting 1D heat equation (the left hand side).
The time step t; — t;.1 is divided into two substeps t, — tk+% and tk+% — ta1

( 1 1 1 1
(k+73) (k) (k+3) (k+73) (k+3) (k) (k) (k)
Wij Uy g e N P _p? P T 2 0
At/2 h2 h2 B
(k+1) (k+3) (k+3) (k+1)1 (k+1) (k+1) (k f) (k+1) (32)
+ ! ! ! ! + + +
e _ﬁzui+1j = 2w T g _g? Pjir1 T 2Mp U 0
At/2 h3 h3

In the fist substep partial derivative with respect to x is handled implcitly, and in the second
substep with respect to y.
Practical implementation (unit square, h; = hy):
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Figure 1:

Let
1+ 2r —r 1-—2r r

B —7r 1+2r —r

—r 1+42r r 1-2r
where r = AtB?/2h?. Then one step can be implemented as follows (see also Figure 1):

1. Solve unknowns by rows from the tridiagonal system

By k+3) — g2), (k)

2. Solve unknowns by columns from the tridiagonal system

B, (k+1) _ (@), (k1)

ADI method was very important breakthrough in the 1950’s. Namely, it can be proved that
ADI method is stable for all time step sizes. The accuracy of the method is O (h? + (At)?).
Moreover, the computational cost per timestep is only O(N), where N = nyn,,.
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