More jargon...

e Deadlock is a situation wherein two or more competing actions are waiting for the other
to finish, and thus neither ever does.

Example: A thread may require exclusive access to a table, and in order to gain exclusive
access it asks for a lock. If one thread holds a lock on a table and attempts to obtain the
lock on a second table that is already held by another thread, this may lead to deadlock
if the second thread then attempts to obtain the lock that is held by the first thread.

e Livelock is similar to a deadlock, except that the states of the processes involved in the
livelock constantly change with regard to one another, none progressing.

...jargon

e Race condition is a flaw in a program whereby the output of the program is unexpectedly
and critically dependent on the sequence or timing of other events.

e Efficiency is defined by
E = s/N,

where s is the observed speedup, and N is the number of processors.
Ideally E = 1 = 100%.

5 Cost of communication

5.1 Local communication

Cost of communication: 2D finite differences

do j=1,n
do i=1,n
unew(i,j) = bxu(i,j) + &
cx(u(i+l,j)+u(i—1,j)+u(i,j+1)+u(i,j—1))
end do
end do ¢ P

C\ O N N N N N
a a a
a E a
9
AV AV AV
C/ oOUT OO I




Simplified communications cost model

N = number of processors

t. = time spent by one fp operation

ts = communication startup time (latency)

t,, = time spent by communicating one fp number

Work done by processor in one iteration (or time step):
T = Tcomp + Tcomm?
where

Teomp = tc - number of arithmetic operations
Teomm = ts + t,, - number of fp numbers transferred

1D domain decomposition

Each task needs 2n values from the two neighboring tasks. (Assume periodic boundary
conditions).

2D domain decomposition

Each task needs 4% values from the four neighboring tasks.




Total cost (execution time)

1D decomposition:
2

n
T = Tcomp + Tcomm = tcN + 2(ts + twn)

2D decomposition:

2

n n
T = Tcomp + Tcomm - tcN + 4(ts + tw——

Vink

Isoefficiency analysis
Assume that the number of processors NN is increaseing. How should the problem size
increased to maintain constant efficiency?

T
E = —— = constant,
NTyn

where
Ty, = execution time using k processors.

Parallel algorithm is said to be scalable if for constant E the problem size should increase
as O(N).

Isoefficiency of 1D domain decomposition

t.n?
N (tc%z T 2(t, + twn)>

t.n?

Eip =

ten? + 2t;N + 2t,Nn

Thus n ~ N, and the computational work to be done is O(n?) = O(IN?).
Thus, the problem is not scalable.

Isoefficiency of 2D domain decomposition

t.n?
E.p = - -
N (82 + 4(t + tu )
t.n?

ten2 + 4t ,N + 4t ,nvV N

Thus n ~ vV N, and therefore the problem is scalable as the computational work to be
done is O(n?) = O(N).



5.2 Global communication

Global communication
e A global communication operation is one in which many tasks must participate.

e When such operations are implemented, it may not be sufficient simply to identify indi-
vidual producer/consumer pairs.

e Such an approach may result in too many communications or may restrict opportunities
for concurrent execution.

Example
Parallel reduction operation, that is, an operation that reduces IN values distributed over
N tasks using a commutative associative operator (such as addition):

N-1
s = E Ir;
=0

Solution #1
e Let us assume that a single "master” task requires the result s.

e Taking a purely local view of communication, we recognize that the manager requires
values g, ®1,..., xny_1 from tasks 0,..., N — 1.

e Define a communication structure that allows each task to communicate its value to
the master independently. The master would then receive the values and add them into
s.

e However, because the manager can receive and sum only one number at a time, this
approach takes O(IN) — not good!

Solution #2

e We can distribute the summation of the IV numbers by making each task 7, 0 < 7 <
N — 1, compute the sum:

S; = ®; + Si—1-

e The communication requirements associated with this algorithm can be satisfied by
connecting the N tasks in a one-dimensional array.

7 7 7 7 7 7
O OO 0020200




...solution #2

e Task IN —1 sends its value to its neighbor in this array. Tasks 1 through IV —2 each wait
to receive a partial sum from their right-hand neighbor, add this to their local value, and
send the result to their left-hand neighbor.

e Task O receives a partial sum and adds this to its local value to obtain the complete
sum.

e This algorithm distributes the N — 1 communications and additions, but permits con-
current execution only if multiple summation operations are to be performed.

e A single summation still takes N — 1 steps.

The solution: Divide and conquer

e Opportunities for concurrent computation and communication can often be uncovered by
applying a problem-solving strategy called divide and conquer.

e To solve a problem (such as summing N numbers), we seek to partition it into two or
more simpler problems of roughly equivalent size (e.g., summing IN/2 numbers).

e This process is applied recursively to produce a set of subproblems that cannot be
subdivided further (e.g., summing two numbers).

Divide and conquer

e The divide-and-conquer technique is effective in parallel computing when the subprob-
lems generated by problem partitioning can be solved concurrently.

e For example, in the summation problem, we can take advantage of the following identity

(N = 2m):
2n—1 2n—1-1 2n—1
i=0 i=0 i=2n—1

e The two summations on the right hand side can be performed concurrently. They can
also be further decomposed if n > 1, to give a tree structure. Summations at the same
level in this tree of height n = log N can be performed concurrently, so the complete
summation can be achieved in log IV rather than N steps.




Tree structure divide-and-conquer summation

Tree structure divide-and-conquer summation

e The NN (here N = 8) numbers located in the tasks at the bottom are communicated to
the tasks in the row immediately above.

e These each perform an addition and then forward the result to the next level.
e The complete sum is available at the root of the tree after log IV steps.

e The result can be broadcasted to all nodes ("allreduce” operation) again in log IV steps
using the same communication pattern in reverse direction.



