Let $\mathscr{F} : \mathbb{R}^n \to \mathbb{R}^n$ be a vector valued function. Nonlinear algebraic system of equations $\mathscr{F}(x) = 0$ can be solved using Newton's method

$$x^{(k+1)} = x^{(k)} - \left[\mathcal{J}(x^{(k)}) \right]^{-1} \mathcal{F}(x^{(k)}), \quad k = 0, 1, 2, \dots$$

Here $\mathcal{J}(x^{(k)})$ is the Jacobian of \mathcal{F} at $x^{(k)}$. Thus, at each Newton iteration one has to solve a linear system of equations. If the Jacobian is large and sparse one can use e.g. GMRES method to solve it. This linear system can be solved without forming the matrix \mathcal{J} explicitly. Namely from Taylor expansion $\mathcal{F}(x + \epsilon v) \approx \mathcal{F}(x) + \epsilon \mathcal{J}(x) v$ it follows that the matrix-vector product needed in GMRES can be approximated by

$$\mathcal{J}(x) v \approx \frac{1}{\epsilon} \left(\mathcal{F}(x + \epsilon v) - \mathcal{F}(x) \right).$$