
1 Computing eigenvalues with the QR method

Consider the algebraic eigenvalue problem

Find λ and x 6= 0 such that Ax = λx. (1)

If A is triangular (or even diagonal), the eigenvalues are readily available as they are
the diagonal entries of A.
In the more general case the situation is trickier as the numerical solution of an al-
gebraic eigenvalue problem of size five or greater is, unlike numerical solution of a
system of liner equations, always an iterative process. Namely, the polynomial

p(ξ) = (−1)n(ξn − αn−1ξn−1 − ...− α0)

is the characteristic polynomial of the matrix

Cp =


αn−1 αn−2 . . . α1 α0

1 0 . . . 0 0
0 1 . . . 0 0
... . . .
0 0 . . . 1 0


If there would be a “direct” method to compute eigenvalues of the matrix Cp, then
we could (in exact arithmetic) compute the roots of an arbitrary polynomial in closed
form!

1.1 QR method of Francis (and Kublanovskaya)

The most popular method to compute all eigenvalues of a dense matrix is the QR
method. The basic idea is very simple. Let us define the sequence {Ak}∞

k=0 by{
A0 := A
Ak =: QkRk, Ak+1 := RkQk, k = 0, 1, ...

Theorem 1. The matrix Ak is unitarily similar to the matrix A0 for all k.

Proof:

Ak+1 = RkQk = Qk
H AkQk

= Qk
HQk−1

H Ak−1Qk−1Qk = . . . = Qk
H . . . Q0

H A0Q0 . . . Qk.

Example 1. Consider applying the QR iteration to the matrix

A =

 4 −2 −1
−2 4 −2
−2 −2 4

 .
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A1 =

5.6667 −0.5774 −0.4714
0.0000 6.0000 0.0000
0.2357 0.4082 0.3333

 , A2 =

 5.6477 −0.6082 0.6505
0.0011 6.0018 0.4067
−0.0146 −0.0252 0.3505

 ,

A3 =

5.6459 −0.6110 −0.6615
0.0001 6.0001 −0.4318
0.0009 0.0016 0.3540

 , A4 ≈

5.6458 −0.6112 0.6622
0 6.0000 0.4333
0 0 0.3542

 .

During the QR iteration the lower triangular entries of matrices Ak tend to zero and
the vector of diagonal entries tends to the vector(

5.6458, 6.0000, 0.3542
)T.

The eigenvalues of an upper triangular matrix are its diagonal entries. As A4 is similar
to A, then a(4)

ii ≈ λi. In what follows we prove this is in a more general setting.

Theorem 2. A QR factorization of Ak
0 is PkUk, where Pk := Q0 . . . Qk and Uk := Rk . . . R0.

Proof: Using Thorem 1 we get

PkUk = (Q0 . . . Qk)(Rk . . . R0) = (Q0 . . . Qk−1)Ak(Rk−1 . . . R0)
= A0(Q0 . . . Qk−1)(Rk−1 . . . R0) = A0(Q0 . . . Qk−2)Ak−1(Rk−2 . . . R0)

= A2
0(Q0 . . . Qk−2)(Rk−2 . . . R0) = . . . = Ak

0.

In the sequel, we assume (for simplicity) that the eigenvalues of A satisfy 0 < |λn| <
. . . < |λ1|. Then A is invertible and diagonalisable. Denote

D = diag(λ1, ..., λn).

Theorem 3. Let A = XDX−1 =: XDY and let Y have an LU factorization Y = LU. Then
in the QR iteration matrices Qk and Rk satisfy

SH
k−1QkSk → I

Sk
HRkSk−1 → T ∈ Upp(n),

where Sk ∈ Unit(n) ∩Diag(n) ∀k ≥ 1.

Proof: is messy ;-)

Theorem 4. In the QR iteration matrices Ak satisfy

lim
k→∞

a(k)
ij =

{
λi, if i = j
0, if i > j.
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Proof: It holds

Âk := SH
k Ak+1Sk = SH

k RkQkSk = SH
k RkSk−1SH

k−1QkSk → TI = T, as k→ ∞,

where matrices Sk are as above. Now we have

â(k)
ij = s̄(k)

ii a(k+1)
ij s(k)

jj =

 a(k+1)
ii , if i = j,

s̄iia
(k+1)
ij sjj, if i 6= j.

The claim follows by letting k→ ∞.

1.2 Practical implentation of the QR method

Each iteration of the QR method involves computing the QR factorization which is
quite expensive for a full matrix. Thus, in practise, the QR iteration is never applied
to the original full matrix. Instead, the matrix can be cheaply transformed into “al-
most triangular” form, namely the Hessenberg form, i.e. aij = 0 whenever i > j + 1.
The Hessenberg form of a symmetric matrix is a tridiagonal matrix. Applying one
QR iteration to a Hessenberg matrix is cheap. On the other hand, the QR iteration
maintains the Hessenberg form.

1.2.1 Transformation into Hessenberg form

A matrix A can be transformed into similar Hessenberg matrix by multiplications
from left and right by a suitable Householder transformations. First we multiply
from left by the matrix

P1 =


1 0

0 P̂1

 ,

which nullifies the first column starting from third row. Then we multiply from right
with the same matrix (note that PH

1 = P1).
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P1AP1 =


1 0

0 P̂1




a11 A12

A21 A22




1 0

0 P̂1



=


a11 A12

P̂1A21 P̂1A22




1 0

0 P̂1



=


a11 A12P̂1

P̂1A21 P̂1A22P̂1

 =



a11 A12P̂1

β

0
...
0

P̂1A22P̂1


(2)

When we multiply from right by P1, the first column remains untouched so that its
zero part remains zero. We continue this process by multiplying by P2 to nullify
the second column starting from fourthe row etc. Finally the matrix PAPH, P =
P1P2...Pn−2 = PH is in Hessenberg form. The vectors v needed to construct matrices
Pi can be partially stored into the nullified parts of A.

1.2.2 QR iteration for a Hessenberg matrix (including a shift)

Let H be a Hessenberg matrix obtained from the original matrix A. In what follows,
the role of the set of scalar parameters {ηi} (shifts) is to accelerate the convergence.

0. Set H0 := H and i := 1.

1. Set H̃ := Hi−1 − ηi I.

2. Find Qi ∈ Unit(n) and Ri ∈ Upp(n) such that

H̃ = QiRi.

3. Set
Hi := RiQi + ηi I.

4. If Hi is an upper triangular matrix (up to the precision specified) then stop.
Otherwise set i := i + 1 and goto step 1.

As Ri = QH
i (Hi−1 − ηi I), then

Hi = RiQi + ηi I = QH
i Hi−1Qi − ηiQH

i Qi + ηi I = QH
i Hi−1Qi.
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Thus, the next matrix H is similar to the previous one, so they have the same eigen-
values.
Consider now the QR factorization of a Hessenberg matrix H. We should find unitary
Q and upper triangular R such that H = QR or QH H = R. Define a Givens rotation
matrix J(1, 2, θ1) such that the entry (2,1) of the matrix J(1, 2, θ1)H is zero. Then we
multiply by matrix J(2, 3, θ2) such that the entry (3,2) becomes zero, etc. Thus

J(n− 1, n, θn−1) . . . J(2, 3, θ2) J(1, 2, θ1) H = R ∈ Upp(n).

Denote QH = J(n − 1, n, θn−1) . . . J(1, 2, θ1). Then QH H = R from which we obtain
H = QR.
The shifted QR for a Hessenberg matrix gets now the following form (H contains the
latest Hi):

1. Set H := H − ηi I.

2. H := J(n− 1, n, θn−1) . . . J(1, 2, θ1)H.

3. H := HJ(1, 2, θ1)
H . . . J(n− 1, n, θn−1)

H.

4. H := H + ηi I.

5. If H is an upper triangular matrix (up to the precision specified) then stop.
Otherwise set i := i + 1 and goto step 1.

Note that it would be tempting to perform the multiplications from right immediately
on step 2. Doing this, however, would not maintain the similarity!

Theorem 5. If Hi−1 ia an Hessenberg matrix, then Hi is too.

Proof: (Exercise).
If, during the QR iteration, some lower diagonal entry becomes hi+1,i ≈ 0, then H is
approximately a block diagonal matrix

H =
[

H11 H12
0 H22

]
.

The eigenvalue problem then splits into two smaller eigenvalue problems involving
matrices H11 and H22.

1.2.3 Choosing the shifts

The aim is to make hn,n−1 close to zero. When it is close zero (up to precision scpec-
ified) we can apply the QR iteration to smaller matrix excluding the last row and
column of the current H. This process (deflation) further accelerates the convergence.
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A good choice for the shift is η = hmm. Before the application of the last Givens
transformation, the matrix H − η I is of the form

H − η I =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

x y
ε 0

 .

The last Givens matrix is of the form

J(m− 1, m, θm−1) =
[

c s̄
−s c

]
, c ∈ R, s ∈ C, c = |x|/

√
|x|2 + |ε|2, s = cε/x.

Now [
c s̄
−s c

] [
x y
ε 0

]
=
[

. . . . . .
0 −cεy/x

]
.

When the last multiplication from the right has been done, we get[
. . . . . .
0 −εyc/x

] [
c −s̄
s c

]
=
[

. . . . . .
−ε2c2y/x2 . . .

]
.

It holds
|hm,m−1| = |ε2c2y/x2| = |ε|2|y|/(|x|2 + |ε|2).

Thus if |ε| � |x| then |hm,m−1| dimishes quadratically.

1.2.4 QR algorithm for a tridiagonal matrix

If A is symmetric, then the transformation into Hessenberg form actually produces a
tridiagonal matrix. For a tridiagonal matrix the QR iteration can be done in a very
efficient way.
We can apply the previous nonsymmetric QR method to the tridiagonal matrix

T =


a1 b2
b2 a2 b3

. . . . . . . . .
bn−1 an−1 bn

bn an

 ,

i.e. we form orthogonal matrices Q1, Q2, ..., Qk such that

(Q1 . . . Qk)
TT(Q1 . . . Qk) ≈ D,

where D is a diagonal matrix containing the approximate eigenvalues.
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1.2.5 Implicitly shifted QR iteration

It is possible to derive a variant of the QR iteration for a tridiagonal matrix where
matrices Q1, ..., Qk need not to be stored, i.e. the multiplication from right is done
immediately. This variant is based on “Implicit Q Theorem” [Golub & van Loan]. The
theorem essentially says the following: If the first columns of orthogonal matrices U
are V the same, and H = UT AU and G = VT AV are Hessenberg matrices. Then
H and G are “essentially same”, i.e. G = E−1HE, where E = diag(±1,±1, ...,±1).
Note that in any case, there is always some freedon in the QR iteration as the QR
factorization is not unique.
Let η be the shift. In the previously shown QR algorithm the shift was first substracted
from the diagonal entries. After that we multiply from left using Givens rotations
J1, ..., Jn−1 to obtain upper triangular matrix. After that we multiply from right with
matrices JT

1 , ..., JT
n−1 resulting once again a tridiagonal matrix. After that η is added

to the diagonal entries. Thus the initial matrix T was replaced by UTTU, where
U = JT

1 JT
2 . . . JT

n−1 is orthogonal. It is easy to see that the first row of the matrix
UT = J1 J2 . . . Jn−1 is the same as the first row of the matrix J1.
When one uses implicitly shifted QR algorithm for a tridiagonal matrix, the matrix T (not
T − η I) is multiplied from left by J1:lla and immediately from right byJT

1 . The matrix
J1TJT

1 is of the form

J1TJT
1 =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

 ,

as multiplication by J1 replaces rows 1 and 2 of T by their linear combinations. Mul-
tiplication by JT

1 replaces columns by their linear combinations. As a result there are
“extra” nonzero entries at positions (3,1) and (1,3). One should get rid of these. Form
Givens rotation J̃2(2, 3, θ2) such that the entry at (3,1) becomes zero. Due to symmetry
the entry at (1,3) becomes zero when we multiply from right by J̃T

2 :lla. However, now
we have again “extra” nonzeros at positions (4,2) and (2,4). The aim is now to “chase”
these extra entries “out” of the matrix by continuing the multiplication with Givens
matrices J̃3, ...

J̃2 J1TJT
1 J̃T

2 =


∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

 (3)

J̃3 J̃2 J1TJT
1 J̃T

2 J̃T
3 =


∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 (4)
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Finally we have again tridiagonal matrix VTTV. The first rows of matrices VT and JT
1

are the same. Therefore the first rows of VT and UT are the same, and thus the first
columns of V and U are equal. The Impcit Q Theorem now says that the matrices
VTTV and are essentially same UTTU.
The advantage of the implicitly shifted variant is that the Givens transformations need
not to be stored.

Remark 1. For a symmetric matrix, an efficient shift strategy due to Wilkinson can
also be used. Instead of the last diagonal entry an, the eigenvalue of 2× 2 matrix[

an−1 bn
bn an

]
closer to an is chosen as the shift. The eigenvalues are

λ =
1
2
(an−1 + an)±

√(
an−1 − an

2

)2

+ b2
n.

The one closer to an is

λ∗ = an + d− sign(d)
√

d2 + b2
n, d = (an−1 − an)/2.

Remark 2. The practical implementation of the implicitly shifter QR iteration can be
done as follows. The tridiagonal matrix T is stored in two vectors b (co-diagonal) and
a (diagonal). When we multiply from right by Jk and from left by JT

k the following
calculations are done:

JT
k TJk =



k
1

1
k c s

−s c
1




x z
x u v
z v w r

r




1
1

c −s
s c

1


After multiplication by JT

k : k− 1 k k + 1 k + 2
row k : cx + sz cu + sv cv + sw sr

row k + 1 : 0 −su + cv −sv + cw cr


After multiplication by Jk:

k− 1 k k + 1 k + 2
row k− 1 : cx + sz 0

row k : cx + sz c2u + 2csv + s2w cs(w− u) + (c2 − s2)v sr
row k + 1 : cs(w− u) + (c2 − s2)v s2u− 2csv + c2w cr
row k + 2 : sr cr
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1.3 Eigenvector computation

Up to this point, nothing was said about computation of eigenvectors. Let T be a
symmetric tridiagonal matrix. During the QR iteration T is multiplied by Givens
matrices until

QT AQ ≈ diag(λ1, ...., λn),

where orthogonal matrix Q = J1 J2...Jm is the product of aplied Givens matrices. Let
Q = [q1, ..., qn]. Then Tqi = λiqi, i.e. the columns of Q are the eigenvectors of T. The
matrix Q is formed during the computations by first initializing as the identity matrix
and then multiplying it my right by the Givens matrices applied.
Let A be a general symmetric matrix that is transformed to tridiagonal matrix T using
product of Householder transformations. Then

PT AP = T,

where P = P1...Pn−2. If (λ, x) is en eigenpair of T, then (λ, Px) is en eigenpair of A.
If the matrix A is nonsymmetric or one only needs a few eigenvectors the inverse
iteration can be applied.

Theorem 6. If (λ, x) is an eigenpair of A, then

• (λ− η, x) is an eigenpair of A− η I

• (λ−1, x) is an eigenpair of A−1 (provided that λ 6= 0)

• (λk, x) is an eigenpair of Ak (if k < 0 assume λ 6= 0).

Proof: is a simple exercise ;-)
Assume that A ∈ Rn×n has n linearly independent eignvectors. Let 0 6= v ∈ Rn be
arbitrary. Let η be an eigenvalue approximation computed e.g. using the QR method.
The vector v can be represented by as a linear combination of the eigenvectors x1, ..., xn
of A:

v =
n

∑
i=1

αixi, Axi = λixi.

Let x = (A− η I)−1v. Then

x =
n

∑
i=1

αi(A− η I)−1xi =
n

∑
i=1

αixi(λi − η)−1.

Moreoever

(A− η I)−kv =
n

∑
i=1

αi(A− η I)−kxi =
n

∑
i=1

αixi(λi − η)−k.

If η ≈ λm, then for large k it holds that the vector (A− η I)−kv is in the direction xm.
The idea above can be formulated as an algorithm that computes one eigenvector
estimate.
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0. Set k := 0 and choose arbitrary x(0) 6= 0 and the stopping criterion τ > 0.
Perform LU factorization with pivoting for A− η I.

1. Solve
(A− η I)x(k+1) = x(k)

using the LU factorization.

2. Normalize x(k+1) := x(k+1)/‖x(k+1)‖.

3. If ‖x(k+1) − x(k)‖ ≤ τ then stop. Otherwise set k := k + 1 and goto step 1.

In case of zero pivot in LU factorization (due to multiple eigenvalues, or “too good”
eigenvalue estimate) the simple algorithm above obviously needs some additional
steps.

2 Singular value decomposition and solution of overde-
termined system of linear equations

The singular value decomposition is the most general matrix decomposition. It can
be used for many purposes.

Theorem 7. Consider the matrix A ∈ C(m, n). Then there exist unitary matrices

U = [u1, u2, ..., um] ∈ Unit(m) and V = [v1, v2, ..., vn] ∈ Unit(n)

such that
UH AV = diag(σ1, σ2, ..., σp), p = min{m, n},

where the numbers σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 are the singular values of A.

Proof: [Golub & van Loan].

Theorem 8. Let the matrix A have r nonzero singular values. Then A can be represented as
follows

A =
r

∑
i=1

σiuivH
i .

This form is called the singular value decomposition, SVD of A. Moreover

ker(A) = span {vr+1, ..., vn},
R(A) = span {u1, ..., ur},
rank(A) = n− dim(ker(A)) = r.

Proof: Exercise.
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2.1 Numerical computation of singular values

Singular values and eigenvalues are related as follows. Let A ∈ Cm×n. If UH AV =
diag(σ1, ..., σn), then also VH AHU = diag(σ1, ..., σn). By multiplying the previous
equations we get

VH AHUUH AV = [diag(σ1, ..., σn)]
2 = diag(σ2

1 , ..., σ2
n).

As UUH = I, it follows that

VH(AH A)V = diag(σ2
1 , ..., σ2

n).

Thus the singular values are the square roots of the eigenvalues of the Hermitian
matrix AH A. This matrix is, however, never explicitly formed in practise. Instead the
shifted QR method is used in an implicit way to compute the eigenvalues of AH A.

2.1.1 Transforming a matrix into a bidiagonal form

Like in the case of an eigenvalue problem, we first tranform the matrix A ∈ Cm×n

into a simpler form having the same singular values. We transform the matrix A into
bidiagonal form by multiplying it from left and from right by suitable Householder
matrices.
At the end of this process we have

(UH
n ...UH

1 )A(V1...Vn−2) =
[

B
0

]
n

m− n
,

where

B =


d1 f2

d2 f3
. . .

dn−1 fn
dn


is bidiagonal. All matrices Un, ..., U1 and V1, ..., Vn−2 are unitary. Thus there exist
unitary matrices U and V such that UAV is bidiagonal.

Theorem 9. Let B = UH AV, where U and V are Hermitian matrices. The singular values
of B and A are the same.

Proof: We immediately see that

BHB = (VH AHU)UH AV = VH AH AV,

implying that matrices BHB and AH A are similar.
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2.1.2 QR algorithm for singular values

Let us assume a real matrix B. In principle the shifted QR algorithm is applied to
the matrix BTB, where B is bidiagonal. Its eigenvalues are the squares of the singular
values of B. One QR iteration replaces the matrix BTB with matrix VT(BTB)V, where
V is orthogonal. This is repeated until we get an approximately diagonal matrix.
In the Golub–Kahan SVD algorithm the matrix BTB is not explicitly formed. The QR
iteration is done working with bidiagonal matrices, quite analogously to the implicitly
shifted QR method for tridiagonal matrices.

2.2 Solution of an overdetermined system of linear equations

Let A ∈ Rm×n, m > n, and b ∈ Rm. Consider the system

Ax = b. (5)

As there are more equations than unknowns, the system is said overdetermined. The
system has a solution only if b ∈ R(A). As this is not the usual case, we need to
consider the least squares solution.

Example 2. Consider the following simple data fitting problem. Find coefficients
w1, ..., wn such that the function

f (w; x) =
n

∑
j=1

wj ϕj(x)

approximates the data (x1, y1), ..., (xm, ym) in least squares sense, i.e. the coefficients
solve the minimization problem

min
w

{
F(w) :=

m

∑
i=1

( f (w; xi)− yi)2

}
. (6)

The optimality conditions of (6) imply normal equations:

∂F(w)
∂wk

=
m

∑
i=1

2
(

f (w; xi)− yi
)∂ f (w; xi)

∂wk
= 0, k = 1, ..., n. (7)

Let B ∈ Rm×n be a matrix with entries bij = ϕj(xi). Then equation (7) can be written
in matrix form

BTBw = BTy.

Example 3. Consider fitting the linear model

f (x) = w1x1 + w2x2 + ... + wnxn.
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into measured data (y1, x(1)
1 , ..., x(1)

n ), ..., (ym, x(m)
1 , ..., x(m)

n ), m > n. For the unknown
coefficients w1, ..., wn we get the overdetermined system

y1 = w1x(1)
1 + ... + wnx(1)

n
...

ym = w1x(m)
1 + ... + wnx(m)

n .

If we denote A = [aij], aij = x(i)
j we can write it in matrix form

Aw = y.

Definition 1. The vector x̃ ∈ Rn is the least squares solution of the system (5) if it solves
the minimization problem

min
x
‖Ax− b‖2. (8)

Theorem 10. Let X ⊂ Rn be the set of solutions to problem (8). Then

x ∈ X ⇔ AT(b− Ax) = 0,
X is convex,
∃ unique x∗ ∈ X such that ‖x∗‖ = min,
X = {x̃} ⇔ rank(A) = n.

Proof: Exercise.

2.2.1 Solving overdetermined system using QR factorization

If rank(A) = n, the the least squares problem (8) can be solved using a direct method.
First, compute the QR factorization A = QR, where

R =
[

R̂
0

]
n

m− n
.

Using the QR factorization the sum of squares can be written as

‖Ax− b‖2 = ‖QT(Ax− b)‖2 = ‖Rx−QTb‖2.

Denote

QTb =
[

c
d

]
n

m− n
.

Now

‖Rx−QTb‖2 =
∥∥∥∥[R̂x− c

d

]∥∥∥∥2

= ‖R̂x− c‖2 + ‖d‖2.

The RHS obtains its minimum value ‖d‖2 when

R̂x = c. (9)

As R̂ an invertible triangular matrix, equation (9) can be solved using backward sub-
stitutions.
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Example 4. Consider fitting quadratic polynomial

p(ξ) = x1 + x2ξ + x3ξ2

into data (1, 2), (2, 2), (3, 3), (3, 5), (4, 6) in least squares sense. Thus we need to
solve overdetermined system Ax = b, where

A =


1 1 1
1 2 4
1 3 9
1 3 9
1 4 16

 , x =

x1
x2
x3

 and b =


2
2
3
5
6

 .

By computing the QR factorization of A we get

Q =


−0.4472 0.7016 0.4931 −0.0019 −0.2540
−0.4472 −0.2631 −0.3875 0.0056 0.7620
−0.4472 0.1754 −0.3522 −0.7099 −0.3758
−0.4472 0.1754 −0.3522 0.7043 −0.3862
−0.4472 0.6139 0.5988 0.0019 0.2540


and

R =


−2.2361 −5.8138 −17.4413

0 2.2804 11.2263
0 0 2.1839
0 0 0
0 0 0

 .

Solving R̂x = c we get
x = (2.2581,−0.8387, 0.4516)T.

The fitted polynomial is then

p(ξ) = 2.2581− 0.8387 ξ + 0.4516 ξ2.

2.2.2 The more general case

Even if A is of full rank, the diagonal entries of R may become very small in mag-
nitude yielding numerical instability. A more general (and more expensive) way to
solve least squares problem is by using the singular value decomposition. It is an
iterative method as singular value approximations are computed by iteration.

Theorem 11. Let A have the SVD

A =
r

∑
i=1

σiuivT
i = UΣVT.

Then the least square solution of Ax = b is Va, where ai = (uT
i b/σi), i = 1, ..., r, and ai,

i = r + 1, ..., n are arbitrary. If one wants solution with minimal ‖x‖2, then set ar+1 = ... =
an = 0. The value of the sum of squares is

ρ = ‖Ax− b‖2 =
m

∑
i=r+1

(uT
i b)2.
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Proof: For all x ∈ Rn it holds

ρ = ‖Ax− b‖2 = ‖UT(Ax− b)‖2 = ‖UT AV(VTx)−UTb‖2,

as the vector length is preserved when multiplied by an orthogonal matrix. Denote
a = VTx and substitute Σ = UT AV yielding

ρ = ‖Σa−UTb‖2 =
m

∑
i=1

(σiai − uT
i b)2 =

r

∑
i=1

(σiai − uT
i b)2 +

m

∑
i=r+1

(uT
i b)2.

The minimum is obtained when ai = (uT
i b)/σi, i = 1, ..., r.

Example 5. Consider again the linear system of Example 4. A SVD of A is A = UΣVT,
where

U =


0.0607 −0.6228 0.7375 0.0127 −0.2537
0.2050 −0.5679 −0.2340 −0.0381 0.7610
0.4370 −0.2111 −0.3454 −0.6872 −0.4159
0.4370 −0.2111 −0.3454 0.7253 −0.3452
0.7566 0.4477 0.4033 −0.0127 0.2537

 ,

Σ =


21.8132 0 0

0 1.7611 0
0 0 0.2899
0 0 0
0 0 0

 , V =

0.0869 −0.6617 0.7447
0.2805 −0.7011 −0.6556
0.9559 0.2659 0.1247



As r = n the vectpr a reads

a = [0.3927,−0.7860, 2.2878]T,

and the final least squares solution

x = Va = [2.2581,−0.8387, 0.4516]T.
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