Misc. exercises and notes \#2

1. Any linearly independent set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ serves as a basis for an m-dimensional linear (sub)space V. Why it is necessary (or at least very desirable) that in numerics the basis is orthogonal?
Hint: consider $V=\mathbb{R}^{2}$ and its basis $\left\{v_{1}, v_{2}\right\}$ with $v_{1}=(1,0), v_{2}=(1, \epsilon)$, where $0<\epsilon \ll 1$. Hint: what are the coordinates of a vector $x \in V$ in that basis?
2. Consider the two-dimensional subspace $V=\left\{x \in \mathbb{R}^{3} \mid x=(\alpha, \alpha, \beta), \alpha, \beta \in \mathbb{R}\right\}$. Its basis is e.g. $v_{1}=(0,0,1), v_{2}=(\epsilon, \epsilon, 1)$, where $0<\epsilon \ll 1$ is given. Build an orthonormal basis for V using the Gram-Schmidt algorithm to the set $\left\{v_{1}, v_{2}\right\}$.
3. One may wonder why Krylov subspace methods are based on the maybe not so obvious choice $\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\}$?
Consider the Richardson method for $A x=b$:

$$
x_{k+1}=x_{k}+\alpha\left(b-A x_{k}\right), \quad \alpha>0 \text { given constant. }
$$

Assume (for simplicity) that $x_{0}=0$. Then

$$
\begin{aligned}
x_{1} & =\alpha\left(b-A x_{0}\right) \\
x_{2} & =x_{1}+\alpha\left(b-A x_{1}\right)=\ldots=2 \alpha r_{0}-\alpha^{2} A r_{0} \\
x_{3} & =x_{2}+\alpha\left(b-A x_{2}\right)=\ldots=3 \alpha r_{0}-3 \alpha^{2} A r_{0}+\alpha^{3} A^{2} r_{0} \\
& \vdots \\
x_{k} & =\sum_{j=1}^{k} \alpha_{j} A^{j-1} r_{0} .
\end{aligned}
$$

We see that the approximate solution x_{k} is given as a linear combination of vectors $\left.\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\} \quad:-\right)$
4. Consider solving a system $A x=b, A=\operatorname{diag}(11,12,13,14,15,16), b=[1,1,1,1,1,1]^{T}$ using any Krylov-like iterative method starting from $x_{0}=0$. It seems odd that for such a trivial problem the methods take at least six iterations to converge to the exact solution. Why doesn't the method "see" that we are solving a trivial problem?

