Misc. exercises and notes #2

1. Any linearly independent set $\{v_1, v_2, ..., v_m\}$ serves as a basis for an *m*-dimensional linear (sub)space V. Why it is necessary (or at least very desirable) that in numerics the basis is orthogonal?

Hint: consider $V = \mathbb{R}^2$ and its basis $\{v_1, v_2\}$ with $v_1 = (1, 0), v_2 = (1, \epsilon)$, where $0 < \epsilon \ll 1$. Hint: what are the coordinates of a vector $x \in V$ in that basis?

- 2. Consider the two-dimensional subspace $V = \{x \in \mathbb{R}^3 \mid x = (\alpha, \alpha, \beta), \alpha, \beta \in \mathbb{R}\}$. Its basis is e.g. $v_1 = (0, 0, 1), v_2 = (\epsilon, \epsilon, 1)$, where $0 < \epsilon \ll 1$ is given. Build an orthonormal basis for V using the Gram–Schmidt algorithm to the set $\{v_1, v_2\}$.
- 3. One may wonder why Krylov subspace methods are based on the maybe not so obvious choice span{ $r_0, Ar_0, A^2r_0, ..., A^{k-1}r_0$ }?

Consider the Richardson method for Ax = b:

$$x_{k+1} = x_k + \alpha(b - Ax_k), \quad \alpha > 0$$
 given constant.

Assume (for simplicity) that $x_0 = 0$. Then

$$x_{1} = \alpha(b - Ax_{0})$$

$$x_{2} = x_{1} + \alpha(b - Ax_{1}) = \dots = 2\alpha r_{0} - \alpha^{2} Ar_{0}$$

$$x_{3} = x_{2} + \alpha(b - Ax_{2}) = \dots = 3\alpha r_{0} - 3\alpha^{2} Ar_{0} + \alpha^{3} A^{2} r_{0}$$

$$\vdots$$

$$x_{k} = \sum_{j=1}^{k} \alpha_{j} A^{j-1} r_{0}.$$

We see that the approximate solution x_k is given as a linear combination of vectors $\{r_0, Ar_0, ..., A^{k-1}r_0\}$:-)

4. Consider solving a system Ax = b, A = diag(11, 12, 13, 14, 15, 16), $b = [1, 1, 1, 1, 1, 1]^T$ using any Krylov-like iterative method starting from $x_0 = 0$. It seems odd that for such a trivial problem the methods take at least six iterations to converge to the exact solution. Why doesn't the method "see" that we are solving a trivial problem?