
Number theory 2 2024

Exercises 4

1. Find a solution to the inequality ∣∣∣√3 − p

q

∣∣∣ <
1
q2

that satisfies |q
√

3 − p| < 1
9 .1

Solution. As in Example 10.3 of the lectures, we compute the fractional parts of the
numbers k

√
3 for 0 ≤ k ≤ 9. We divide the unit interval in 9 segments of length 1

9 .

k k
√

3 − ⌊k
√

3⌋ ≈ number of segment

0 0 0. 0

1
√

3 − 1 0.732051 6

2 2
√

3 − 3 0.464102 4

3 3
√

3 − 5 0.196152 1

4 4
√

3 − 6 0.928203 8

5 5
√

3 − 8 0.660254 5

6 6
√

3 − 10 0.392305 3

7 7
√

3 − 12 0.124356 1

8 8
√

3 − 13 0.856406 7

9 9
√

3 − 15 0.588457 5

We see that 1
9 ≤ 3

√
3−5 , 7

√
3−12 < 2

9 . Therefore, |4
√

3−7| = |3
√

3−5−(7
√

3−12)| < 1
9 ,

and |
√

3 − 7
4 | < 1

4·9 < 1
42 .

2. Let a
b

∈ Q. Prove that the inequality∣∣∣∣ab − p

q

∣∣∣∣ <
1
q2 (1)

has only finitely many solutions.

Solution. Assume a
b

̸= p
q
. Then |aq−bp| > 0 because it is a positive integer. The inequality

(1) gives
1
q2 >

∣∣∣∣ab − p

q

∣∣∣∣ =
∣∣∣∣aq − bp

bq

∣∣∣∣ ≥ 1
[bq|

,

which implies |q| < b. If q = 1, then p
q

is an integer, and there are at most two integers at
a distance less than 1 from any rational number. If q ≥ 2, then for n, m ∈ Z, we have∣∣∣∣nq − m

q

∣∣∣∣ ≥ 1
q

≥ 2 1
q2 .

1Example 10.3.



This implies that at most one value of p may give a solution to the inequality (1) for a
fixed q.

The discriminant of a polynomial P (X) = aX2 + bX + c of degree 2 is

Disc(P (X)) = b2 − 4ac .

3. Let a, b, c ∈ R with a ̸= 0, and let α and α′ be the roots of the polynomial P (X) =
aX2 + bX + c. Prove that

Disc(P (X)) = a2(α − α′)2 .

Solution. The roots of P (X) are α = −b+
√

b2−4ac
2a

and α′ = −b−
√

b2−4ac
2a

. Therefore,

a2(α − α′)2 = a2
(√

b2 − 4ac

2a

)2
= b2 − 4ac .

Let F0 = 0 and F1 = 1 and set for all n ≥ 2

Fn = Fn−1 + Fn−2 .

The sequence (Fn)n∈N is the Fibonacci sequence.

The roots of the polynomial P (X) = X2 − X − 1 are the golden ratio φ = 1+
√

5
2 and

φ̂ = 1−
√

5
2 .

4. Prove2 that
Fn = φn − φ̂n

√
5

(2)

for all n ∈ N.

Solution. Let us first check that

φ0 − φ̂0
√

5
= 1 − 1√

5
= 0 = F0

and
φ1 − φ̂1

√
5

=
1+

√
5

2 − 1−
√

5
2√

5
= 1 = F1 .

Assuming that (2) holds for all indices up to n, we have

Fn+1 = Fn + Fn−1 = φn − φ̂n + φn−1 − φ̂n−1
√

5

= φn−1(φ + 1) − φ̂n−1(φ̂ + 1)√
5

= φn−1(φ2) − φ̂n−1(φ̂2)√
5

= φn+1 − φ̂n+1
√

5

using the defining equation of φ and φ̂.
2Induction.



5. Prove that
lim

n→∞

Fn+1

Fn

= φ .

Solution. Using equation (2), we have

lim
n→∞

Fn+1

Fn

= lim
n→∞

φn+1 − φ̂n+1

φn − φ̂n
= φ lim

n→∞

1 −
(

φ̂
φ

)n+1

1 −
(

φ̂
φ

)n = φ

because
∣∣∣ φ̂

φ

∣∣∣ < 1.

6. Prove that
Fn+2Fn − F 2

n+1 = (−1)n+1 (3)

for all n ∈ N.

Solution. Note that (
1 1
1 0

)n

=
(

Fn+1 Fn

Fn Fn−1

)
for all n ∈ N∗. This gives

Fn+1Fn−1 − F 2
n = det

(
Fn+1 Fn

Fn Fn−1

)
= det

(
1 1
1 0

)n

= (−1)n .

7. What do the previous exercises tell about how well the golden ratio φ is approximated
by the sequence of rational numbers (Fn+1

Fn
)n∈N?

Solution. If n is odd, then
(

φ̂
φ

)n+1
> 0 and

(
φ̂
φ

)n
< 0, and we have

Fn+1

Fn

= φ
1 −

(
φ̂
φ

)n+1

1 −
(

φ̂
φ

)n < φ

and if n is even, we have
Fn+1

Fn

= φ
1 −

(
φ̂
φ

)n+1

1 −
(

φ̂
φ

)n > φ

Using equation (3) and the fact that the Fibonacci sequence is increasing, we get the
estimate ∣∣∣∣φ − Fn+1

Fn

∣∣∣∣ <
∣∣∣∣Fn+2

Fn+1
− Fn+1

Fn

∣∣∣∣ =
∣∣∣∣Fn+2Fn − F 2

n+1
Fn+1Fn

∣∣∣∣ = 1
|Fn+1Fn|

<
1

F 2
n

.


