Number theory 22024

Exercises 4

1. Find a solution to the inequality

$$
\left|\sqrt{3}-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

that satisfies $\left.|q \sqrt{3}-p|<\frac{1}{9} \right\rvert\, 1$

Solution. As in Example 10.3 of the lectures, we compute the fractional parts of the numbers $k \sqrt{3}$ for $0 \leq k \leq 9$. We divide the unit interval in 9 segments of length $\frac{1}{9}$.

k	$k \sqrt{3}-\lfloor k \sqrt{3}\rfloor$	\approx	number of segment
0	0	0.	0
1	$\sqrt{3}-1$	0.732051	6
2	$2 \sqrt{3}-3$	0.464102	4
3	$3 \sqrt{3}-5$	0.196152	1
4	$4 \sqrt{3}-6$	0.928203	8
5	$5 \sqrt{3}-8$	0.660254	5
6	$6 \sqrt{3}-10$	0.392305	3
7	$7 \sqrt{3}-12$	0.124356	1
8	$8 \sqrt{3}-13$	0.856406	7
9	$9 \sqrt{3}-15$	0.588457	5

We see that $\frac{1}{9} \leq 3 \sqrt{3}-5,7 \sqrt{3}-12<\frac{2}{9}$. Therefore, $|4 \sqrt{3}-7|=|3 \sqrt{3}-5-(7 \sqrt{3}-12)|<\frac{1}{9}$, and $\left|\sqrt{3}-\frac{7}{4}\right|<\frac{1}{4.9}<\frac{1}{4^{2}}$.
2. Let $\frac{a}{b} \in \mathbb{Q}$. Prove that the inequality

$$
\begin{equation*}
\left|\frac{a}{b}-\frac{p}{q}\right|<\frac{1}{q^{2}} \tag{1}
\end{equation*}
$$

has only finitely many solutions.

Solution. Assume $\frac{a}{b} \neq \frac{p}{q}$. Then $|a q-b p|>0$ because it is a positive integer. The inequality (1) gives

$$
\frac{1}{q^{2}}>\left|\frac{a}{b}-\frac{p}{q}\right|=\left|\frac{a q-b p}{b q}\right| \geq \frac{1}{[b q \mid},
$$

which implies $|q|<b$. If $q=1$, then $\frac{p}{q}$ is an integer, and there are at most two integers at a distance less than 1 from any rational number. If $q \geq 2$, then for $n, m \in \mathbb{Z}$, we have

$$
\left|\frac{n}{q}-\frac{m}{q}\right| \geq \frac{1}{q} \geq 2 \frac{1}{q^{2}} .
$$

[^0]This implies that at most one value of p may give a solution to the inequality (1) for a fixed q.

The discriminant of a polynomial $P(X)=a X^{2}+b X+c$ of degree 2 is $\operatorname{Disc}(P(X))=b^{2}-4 a c$.
3. Let $a, b, c \in \mathbb{R}$ with $a \neq 0$, and let α and α^{\prime} be the roots of the polynomial $P(X)=$ $a X^{2}+b X+c$. Prove that

$$
\operatorname{Disc}(P(X))=a^{2}\left(\alpha-\alpha^{\prime}\right)^{2} .
$$

Solution. The roots of $P(X)$ are $\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $\alpha^{\prime}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$. Therefore,

$$
a^{2}\left(\alpha-\alpha^{\prime}\right)^{2}=a^{2}\left(\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)^{2}=b^{2}-4 a c .
$$

Let $F_{0}=0$ and $F_{1}=1$ and set for all $n \geq 2$

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

The sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ is the Fibonacci sequence.

The roots of the polynomial $P(X)=X^{2}-X-1$ are the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ and $\hat{\varphi}=\frac{1-\sqrt{5}}{2}$.
4. Prove ${ }^{2}$ that

$$
\begin{equation*}
F_{n}=\frac{\varphi^{n}-\hat{\varphi}^{n}}{\sqrt{5}} \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}$.

Solution. Let us first check that

$$
\frac{\varphi^{0}-\hat{\varphi}^{0}}{\sqrt{5}}=\frac{1-1}{\sqrt{5}}=0=F_{0}
$$

and

$$
\frac{\varphi^{1}-\hat{\varphi}^{1}}{\sqrt{5}}=\frac{\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}}{\sqrt{5}}=1=F_{1} .
$$

Assuming that (2) holds for all indices up to n, we have

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1}=\frac{\varphi^{n}-\hat{\varphi}^{n}+\varphi^{n-1}-\hat{\varphi}^{n-1}}{\sqrt{5}} \\
& =\frac{\varphi^{n-1}(\varphi+1)-\hat{\varphi}^{n-1}(\widehat{\varphi}+1)}{\sqrt{5}}=\frac{\varphi^{n-1}\left(\varphi^{2}\right)-\hat{\varphi}^{n-1}\left(\hat{\varphi}^{2}\right)}{\sqrt{5}}=\frac{\varphi^{n+1}-\hat{\varphi}^{n+1}}{\sqrt{5}}
\end{aligned}
$$

using the defining equation of φ and $\widehat{\varphi}$.

[^1]5. Prove that
$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varphi .
$$

Solution. Using equation (2), we have

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{\varphi^{n+1}-\widehat{\varphi}^{n+1}}{\varphi^{n}-\widehat{\varphi}^{n}}=\varphi \lim _{n \rightarrow \infty} \frac{1-\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n+1}}{1-\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n}}=\varphi
$$

because $\left|\frac{\widehat{\varphi}}{\varphi}\right|<1$.
6. Prove that

$$
\begin{equation*}
F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1} \tag{3}
\end{equation*}
$$

for all $n \in \mathbb{N}$.

Solution. Note that

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

for all $n \in \mathbb{N}^{*}$. This gives

$$
F_{n+1} F_{n-1}-F_{n}^{2}=\operatorname{det}\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=(-1)^{n} .
$$

7. What do the previous exercises tell about how well the golden ratio φ is approximated by the sequence of rational numbers $\left(\frac{F_{n+1}}{F_{n}}\right)_{n \in \mathbb{N}}$?

Solution. If n is odd, then $\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n+1}>0$ and $\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n}<0$, and we have

$$
\frac{F_{n+1}}{F_{n}}=\varphi \frac{1-\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n+1}}{1-\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n}}<\varphi
$$

and if n is even, we have

$$
\frac{F_{n+1}}{F_{n}}=\varphi \frac{1-\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n+1}}{1-\left(\frac{\widehat{\varphi}}{\varphi}\right)^{n}}>\varphi
$$

Using equation (3) and the fact that the Fibonacci sequence is increasing, we get the estimate

$$
\left|\varphi-\frac{F_{n+1}}{F_{n}}\right|<\left|\frac{F_{n+2}}{F_{n+1}}-\frac{F_{n+1}}{F_{n}}\right|=\left|\frac{F_{n+2} F_{n}-F_{n+1}^{2}}{F_{n+1} F_{n}}\right|=\frac{1}{\left|F_{n+1} F_{n}\right|}<\frac{1}{F_{n}^{2}} .
$$

[^0]: ${ }^{1}$ Example 10.3.

[^1]: ${ }^{2}$ Induction.

