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Introduction

This text is an introduction to negatively curved spaces. Part |I| begins with general
background on geodesic metric spaces. After this, we study Euclidean and spherical
geometry to set the stage for a quick tour of the basics of hyperbolic geometry.
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Notations and conventions

For any mapping f: X — X, the fized point set of f is
fix f={reX: f(x)=21}.
If a group G acts on a space X and A is a nonempty subset of X, the stabilizer of A
in G is
Stabg A ={ge G : gA = A}.

Clearly, stabilisers are subgroups of G.

« N={0,1,2,...}.

o #(A) e Nu {0} cardinality of A.

e A-B={aeA:a¢ B}

e f|a is the restriction of. mapping f: X — Y to a subset A < X, f|a(a) = f(a) for
all a e A.

e A& B means A is a proper subsetof B: Ac B and A # B.
. ]_[jej X; ={(z,j) -z e X, je J}is the disjoint union of the family of sets (X;);es.
o diag(ay,as,...,a,) is the n x n-diagonal matrix with ay,as,...,a, on the diagonal.

o diag(Aj, As, ..., A,) is the block diagonal matrix with square matrices Ay, Ay, ..., A,
on the diagonal.

o [, =diag(1,1,...,1).

o A is the transpose of a matrix A.

o Homeo(X) the group of homeomorphisms of a topological space X.
o Isom(X) the group of isometries of a metric space X.

« C(X,Y) space of continuous functions from a topological space X to a metric space
Y with the topology of compact convergence.
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vi

Contents

Definitions are boxed like this and not numbered.

A box like this has some remark or convention that is good to notice!
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Part 1

Elements
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Chapter 1

Geodesic metric spaces

In this chapter, we collect background material on metric spaces, in particular on geodesic
spaces. We also introduce some convenient terminology to be used throughout the course.

1.1 Metric spaces

In this section, for the convenience of the reader, we collect some standard definitions,
notations and examples on metric spaces. For more details and background, see for
example [Boull Bou2, Mun].

Let X # . A function d: X x X — [0,00[ is a metric in X if

(1) d(z,z) =0 for all z € X and d(z,y) > 0 if x # v,

(2) d(z,y) = d(y,x) for all z,y € X, and

(3) d(z,y) < d(x,z)+ d(z,y) for all x,y,z € X (the triangle inequality).
The pair (X, d) is a metric space.

Example 1.1. (a) Any normed space is a metric space. In particular, the space R”
with the Euclidean distance is a metric space.

(b) The circle S' with the distance between two points defined as their angle as vectors
in E? is a metric space, see Section for details and generalisations.

(c) Let X # ¢J. The discrete metric d: X x X — [0, co[ is defined by setting d(z, z) = 0 for
all ze X and d(z,y) =1 for all z,y e X if x # y.

Open and closed balls in a metric space, continuity of maps between metric spaces
and other “metric properties” are defined in the usual manner. In particular, if X is a
metric space, r € X and r > 0,

B(xg,r) = By(xo,r) ={x € X : d(x,z) <71}

November 5, 2024 3



Geodesic metric spaces

is the open ball of radius r and
B(xg,7) = Bg(xg,7) = {r e X : d(x,x9) <1}
is the closed ball of radius 7.

A metric space is proper if its closed balls are compact.

Euclidean spaces are proper metric spaces by the theorem of Heine and Borel, see for
example [Strl, Theorem (3.40)].

1.2 Isometric embeddings and isometries

If (X3,dy) and (X5, do) are metric spaces, then amap i: X — Y is an isometric embedding,
if

dZ(Z(x)a Z(y)) = dl(l'a y)
for all x,y € Xj.

A mapi: X — Y isa locally isometric embedding if each point x € X has a neighbourhood
U such that the restriction of i to U is an isometric embedding.

Lemma 1.2. (a) Isometric embeddings are continuous injective mappings.

(b)) If f: X - Y and ¢g:Y — Z are isometric embeddings, then g o f is an isometric
embedding.

(b)) If f: X > Y and g:Y — Z are locally isometric embeddings, then go f is a locally
isometric embedding.

Proof. Exercise. O]

If an isometric embedding i: X — Y is a bijection, then it is called an isometry between
X and Y.

An isometry 7: X — X is called an isometry of X.

If (X, d) is a metric space, Y is a set and f: Y — X is a bijection, then we get a metric
in Y by setting df(y1,y2) = d(f(v1), f(y2)) for all y;,y2. Now f: (Y,dy) — (X,d) is an
isometry and it is natural to think of (Y, ds) as a model of (X, d). We will see concrete
examples in Chapter [5| when we consider models of hyperbolic space.

We consider two isometric metric spaces to be models of the same abstract metric space.

Proposition 1.3. The isometries of a metric space X form a group Isom(X) with the
composition of mappings as the group law.

Proof. Exercise O
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1.3. Group actions

1.3 Group actions

Let Perm(A) be the group of permutations of a set A. A group G acts on A if there is a
homomorphism ¢: G — Perm(A). The homomorphism ¢ is an action of G on A.

Let X be a topological space. A group G acts on (X, d) by homeomorphisms if there is a
homomorphism ¢: G — Homeo(X, d).

Let (X,d) be a metric space. A group G acts on (X,d) by isometries if there is a
homomorphism ¢: G — Isom(X,d).

If a group GG acts on a set A, we use the notation

for all g € G and all a € A. If the group is a subgroup of the permutation group of A,
the notation g(a) is natural to use, and if we have an action of a group of matrices on a
vector space with a fixed basis[]] the usual notation of matrix multiplication is used.

In this course, we are mainly interested in actions by isometries but linear action is
also used for example in chapters [2] to

Let X be a set and let G be a group that acts on X. The stabilizer (in G) of a point
reXis
Stabgr ={geG:g -z =uxa}.

Proposition 1.4. Let X be a metric space and let x € X. Then Stab X s a subgroup of
Isom X.

Proof. Exercise O
Example 1.5. We will see in section [2.3] that the Euclidean group
E(n) ={zx— Az +0b: A O(n),be R"}

is the group of isometries of the n-dimensional Euclidean space E"P| The stabilizer of
0 € E" in E(n) is O(n).

If a group G acts on a space X, and z is a point in X, the set
G(z) = {g-v: 9 G}

is the G-orbit of . The action of a group is said to be transitive if G(x) = X for some
(and therefore for any) z € X.

A more elementary way to express this is that a group G acts transitively on X if for
all x,y € X there is some g € G such that g-x = y.

I'We call such an action a linear action.

2See Theorem,
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Geodesic metric spaces

1.4 Geodesics

In this section, we give names to a particularly important class of isometric and locally
isometric embeddings and use these objects to define the class of metric spaces that plays
a central role in this course.

Let I < R be an interval. A (locally) isometric embedding i: I — X is a (local) geodesic.
More precisely, it is

(1) a (locally) geodesic segment, if I < R is a (closed) bounded interval,
(2) a (locally) geodesic ray, if I = [0, +oo[, and
(3) a (locally) geodesic line, if I = R.

Note that in Riemannian geometry, the definition of a geodesic is different from the
above: If (M,g) is a Riemannian manifold and [ is an open interval, a Riemannian
geodesic v: I — M is a differentiable path whose acceleration is 0. If v: I — M is a
Riemannian geodesic, then there is some ¢ > 0 and such that the mapping ¢ — g(%) is
a local geodesic according to our definition. See for example [Leel Chapter 6] or [Pet],
Chapter 5] for more information.

If v: [a,b] — X is a path, then v connects the points y(a) to v(b).
If ~ is a geodesic segment that connects z € X to y € X, the points x and y are the
endpoints of ~.

Sometimes it is convenient to use more precise terminology and, for instance, refer to
the endpoint j(0) as the origin of j and to the other endpoint as the terminal point or
the terminus of j.

A metric space (X, d) is a geodesic metric space, if for any x,y € X there is a geodesic
segment that connects = to y.

Example 1.6. Any normed space is a geodesic metric space: Let (V.| - |) be a normed
space. For any two distinct points z,y € V, the map

y—x

td o4t ,
ly — |

is a geodesic line that passes through the points x and y. Indeed, for any s,t € R, we have

y j—
ly — |

= |t —s|.

l57(8) = 3(s)] =

B SH)H _ '@_ )
ly — | ly — =

The restriction j|[o,jo—y|) is & geodesic segment that connects x to y.

Example 1.7. It can be shown that h,(s,t) = |[s—t|* isametricin R if 0 < o < 1. The
metric space (R, h,) is homeomorphic to R with the usual metric given by the expression
hi but it is not a geodesic metric space if 0 < o < 1.
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1.4. Geodesics

A metric space (X, d) is uniquely geodesic, if for any x,y € X there is exactly one geodesic
segment that connects x to y.

If X is a uniquely geodesic metric space and =,y € X,  # y, we denote the (image of
the) unique geodesic segment connecting z to y by [z, y][]

%This notation is often used even in spaces that are not uniquely geodesic.

Note that the inverse path of a geodesic that connects x to y is a geodesic that connects
y to x so even in a uniquely geodesic space there are two geodesic segments with endpoints
x and y if we do not specify the order of the endpoints.

Proposition 1.8. Any inner product space is a uniquely geodesic metric space.

Proof. Let V be an inner product space and let z,y € V. We show that the geodesic
segment j|[o,|z—y|] constructed in Example is the only geodesic segment that connects
T to y.

Let 7: [0, |z — y||] = V be a geodesic segment with j(0) = = and 7(|z —y|) = y. If
0<t<|z—y|, then ||z —3(t)| = ||7(t) — 7(t)| =t and |j(t) — y| = 1 — t. Thus, we have
the equality

|z =30 + 15 =yl = [z =yl

in the triangle inequality. We may assume for simplicity that z = 0. Squaring, the
equation [y — J(t)| = [yl — [7(t)[, we get after simplification (y|7(t)) = [y[|7(t)]. The
equality case of Cauchy’s inequality implies that y — z is in the linear segment from z to
y. Thus, 7(t) = j(¢). O

Let X be a uniquely geodesic metric space. A nonempty subset K < X is convex if
[z,y] € K for all z,y € K.

A convex set K < X is strictly convez if [x,y] n 0K < {x,y} for any z,y € K.

Example 1.9. A normed space is uniquely geodesic if and only if its unit ball is strictly
convex. See [BHL Prop. I.1.6]. Thus, for example the normed spaces (R?, | - |,) with

|zlp = R/ +

are uniquely geodesic metric spaces if 1 < p < o0.
There are plenty of examples of metric spaces arising from normed spaces that are not
uniquely geodesic. For example, the unit balls of the norms

|20 = max{|zy], [za]}

and

|20 = faa| + |2

in R? are not strictly convex.

3up to replacing the interval of definition [0, |z — y||] of the geodesic by [a,a+ |z —y|] for some a € R.
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Geodesic metric spaces

It is easy to check that, among many others, the mappings ji, jo: [0,1] — (R?,dy)
defined by j;(t) = ¢(1,0) and

, t(1,1), if0 <t < i,
ja(t) = (11) 1
(t1—t), ifi<t<1

are both geodesic segments in (R?, d) connecting 0 to (1,0).

Example 1.10. The Euclidean round circle S' « E? with the induced metric is not a
geodesic metric space because the ambient space E? is uniquely geodesic and the geodesic
segment in E? that connects any two distinct points of S! intersects S! only at these two
points.

In certain contexts[] it is convenient to use mappings that multiply distances with a
fixed constant.

Let X be a metric space, let I < R be a compact interval and let K > 0. A mapping
j: I — X is an affinely reparametrized geodesic segment if d(j(s),j(t)) = K |s — t| for all
s, tel.

1.5 Metric graphs

Metric graphs and, in particular, metric trees are important examples in this course. The
definition, based on see [Ser], Sect. 2.1], is somewhat involved.

Let EX and VX be two nonempty sets and let o,t: EX — VX and -: EX — EX be
mappings that satisfy € # e, € = e and o(e) = t(e) for all e € EX. The quintuple
X = (VX EX t,0,7) is a graph.

The sets EX and VX called the set of vertices and the set of edges of X.

The elements o(e), t(e) and € are called the initial vertex, the terminal vertexr and the
opposite edge of an edge e € EX. The quotient of EX by the equivalence relation induced
by the involution e — € is called the set of nonoriented edges of X.

The cardinality of the preimage o~ '(v) is the degree degv of the vertex v € VX. If
deg: X — N is a constant mapping, then X is a regular graph.

Note that we assume that the sets of vertices and edges are not empty but we make
no further assumptions on the cardinalities of these sets. Often, graphs are defined in a
different way, taking the set of nonoriented edges to be a set consisting of pairs of distinct
vertices. The above definition allows for loops where o(e) = t(e) for some edge e, and for
multiple edges with equal initial and terminal vertices.

A graph is not a geometrical or topological object but one can associate natural spaces
to it as follows. Recall that an equivalence relation ~ is finer than ~ if x ~ y implies
T ~y.

4See the proof of Theorem ?? and the definition of metric convexity in section ??.
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1.5. Metric graphs

The topological realisation |X| of a graph X is the topological space obtained from the
disjoint union of the family (I.)ecpx of closed unit intervals I, and VX by the finest
equivalence relation that identifies intervals corresponding to an edge I. and its opposite
edge I; by the map ¢t +— 1 — t and identifies 0 € I, with o(e) € VX for all e € EX.

More precisely, let | [, .y Ie be the disjoint union of a family (I.)eepx of closed unit
intervals I, with the topology of the disjoint union.ﬁ Let ~ be the equivalence relation in
[1.cpx generated? by the identifications (¢,e) ~ (1 —t,¢€) for all ¢ € [0,1] and all e € EX
and (0,e) ~ (0,¢') if and only if o(e) = o(¢') € VX.

A graph is connected if its topological realisation is path connected as a topological space.

A connected graph is a tree if its topological realisation is uniquely arcwise connected [

%Recall that the image of an injective path defined on a compact interval is an arc. A topological
space X is uniquely arcwise connected if for any two distinet points z,y € X there is a unique arc |v|
whose endpoints are x and y.

Example 1.11. (1) f VX =7, EX=7Zx{0,1}, o(k,j) = k+j, t(k,j) =k+1—jand
(k,7) = (k,1—7), then it is easy to check using Figure that the topological realization
of X is homeomorphic to E!. If we replace Z by N in the construction, we obtain a graph
X" whose topological realization is homeomorphic to [0, oof.

-t
—e ° ° ° ° ] ° — [X|
-3 -2 -1 0 1 2 3 4
—

(0,0) (1,0) (2,0)
Figure 1.1 — E! as a metric graph

(2) Let A # ¢J be any nonempty set and let VX = {0} U A and EX = A x {0,1}. Let
0(a,0) = 0 = t(a,1) and o(a,1) = a = t(a,0) for all a € A and define (a, k) = (a,1 — k)
for all @ € A. If A is an infinite set, for example A = S!, the geometric realization of X is

a hedgehog space that is not locally compact at the vertex 0.

(3) Often, we describe a graph more informally, for example by drawing a picture of the
geometric realization or a sufficiently large part of it if the structure repeats itself in a
reasonable manner.

A metric graph (X, \) is a pair consisting of a connected graph X and edge length map
A EX — )0, +0] such that A(e) = A(e).
A simplicial graph X is a metric graph whose edge length map is constant equal to 1.

°This is the finest topology for which all the natural injections I. < [ [ .z« I are continuous.
5The equivalence relation generated by a relation R on a set X is the smallest equivalence relation
on X that contains R.
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Geodesic metric spaces

Figure 1.2 — The topological realization of a graph with two vertices and three undi-
rected edges that has two loops.

Let (X,\) be a metric graph and let mx: [ [, zx Ie — |X]| be the canonical projection.
A continuous mapping c¢: [0,1] — |X| is a piecewise linear path if there is a subdivision
0=ty <ty <---<t, =10f [0,1], a collection of edges e1,...,e, € EX and affine
mappings ¢;: [ti_1,t;] — I, such that c|, , ] = 7x o ¢;. The length of ¢ is

() = 2 et — eultn) A

If x,y € |X], let
PL(z,y) = {c: [0,1] — |X] : ¢ piecewise linear, c¢(0) =z, c¢(1) = y}.
We will now study a useful method to construct geodesic metric spaces from metric
graphs. In some cases, this construction would not produce a metric space. Such problems
do not arise if, for example, the edge length map has a positive lower bound as in the

following result. In Exercise [1.2] we see there are examples of metric graphs that define
metric spaces even if the edge lengths have no positive lower bound.

Proposition 1.12. Let (X, \) be a metric graph such that any two points in |X| can be
connected by a piecewise linear path and A has a positive lower bound. The expression

da(z,y) = inf {)(c) (1.1)

cePL(z,y)
defines a metric on the topological realization of X.

Proof. Exercise [1.3 [

Let (X, \) be a metric graph such that d is a metric[] The geometric realisation of (X, \)
is the metric space (|X|,d,).

2See equation

From now on, we usually assume that the edge length map of a metric graph has a positive
lower bound.
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1.6. Triangles 11

Figure 1.3 — Part of the geometric realization of a regular infinite simplicial tree such
that the degree of each vertex is 4. Imagine all the branches extending indefinitely with
the same branching at every vertex.

The metric space X determines (X, \) up to subdivisions of edges, hence we will often
not make a strict distinction between X and (X, \). In particular, we identify VX with
its image in X and we will refer to convex subsets of (X, \) as convex subsets of X, etc.

A uniquely arcwise connected geodesic metric space is an R-tree.

Example 1.13. (1) For any x,y € R, let

|lx —y|  if z and y are linearly dependent,

dsner(z,y) = {

|z|| + |y| otherwise.

The French railroad space (R? dsncr) is an R—tree. The closed unit ball B(0,1) of this
space is a geometric realisation of the simplicial hedgehog space of Example [1.11{(2).

(2) Figure [1.3 shows a simplicial tree.

1.6 Triangles

The definitions of negatively curved spaces in Chapters [6] and ?? are based on the prop-
erties of triangles and we will also treat classical properties of triangles in the Euclidean,
spherical and hyperbolic spaces. A precise definition of this fundamental object is there-
fore in order:

"SNCF=Société nationale des chemins de fer francais is the French national railroad company.
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12 Geodesic metric spaces

Let X be a metric space. A triangle in X is a triple A = {j1, jo, j3} of geodesic segments
such that the terminus of j; is the origin of j;;; with the index ¢ considered cyclically
mod 3.

The geodesic segments j;, jo and j3 are the sides of A.
A triangle A is degenerate if it is contained in the image of one of its sides.

The endpoints of the geodesic arcs ji, jo and j3 are the vertices of A.

A triangle A in a uniquely geodesic metric space is determined by its vertices but in
general F| one has to specify the sides.

If X is a uniquely geodesic metric space and z,y, 2z € X, then

A(J:?yaz) = {[x,y], [y»x]7 [Z,I]}

is the triangle with vertices x, y and z.

A

Figure 1.4 — A triangle in the Euclidean plane with a standard notation for the vertices,
the lengths of the edges and the angles.

If X is a geodesic metric space and three points A, B, C' € X are the vertices of a triangle,
we denote the lengths of the sides with endpoints A and B, B and C and C and A, in the
corresponding order, by ¢, a and b. If the angles at the vertices are defined[’] the angles
between the sides at the vertices A, B and C be «, [ and 7. See Figure [1.4]

%for example in Chapters and

8See Example
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1.6. Triangles 13

Exercises

1.1. Prove Propositions [I.3] and [1.4]

1.2. Give examples of metric graphs (X;, A;) and (X3, A2) such that
(1) the edge length maps A; and A do not have a positive lower bound.
(2) the geometric realization of (X, \;) is isometric with E!, and

(3) the geometric realization of (Xg, Ag) is isometric with a bounded half-open interval.

1.3. Prove Proposition Why do we assume that the length function has a positive
lower bound?

1.4. Prove that (R? dsncr) is not a proper metric space.ﬂ Describe the isometry group
Of (RQ, dSNCF)-

1.5. For any z,y € R?, let

i) = \za| + |21 —yi| + |yo| , if 21 # y1,
’ |zy — Yo itz =y,

(a) Prove that (R?,d) is an R-tree.
(b) Draw the sphere 0B(0,1) of (R? d). Is it compact or connected?

Let [a,b] = R be a compact interval. An ordered finite sequence
oc=(a=09g<o01 < <0, =0b)

is a partition of [a,b]. Let P, be the set of partitions of [a, b].

Let X be a metric space and let v: [a,b] — X be a path. The variation of vy with respect
to a partition 0 = (a =09 <0y < -+ <0, =b) is

V(.0) = Do) Al

)

The length of ~ is its total variation

((y) =V2(y) = sup V}(7,0).

O’GWGJ,

1.6. Let X be a metric space and let : [0,b] — X be a geodesic segment.
(a) Compute the length of .
(b) Prove that v is a shortest path from ~(0) to v(b).

1.7. Fill in the details in Example

9See Example for the definition.
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Chapter 2

Euclidean geometry

This chapter collects background information on Euclidean spaces. Most of this should
be known in some form from linear algebra and elementary geometry.

2.1 Euclidean space

As we use various different structures on the space R”, it is convenient to have a fixed
notation for the situation where we use the standard Euclidean structure. The notation
R™ therefore does not carry the Euclidean structure, it is just the n-fold Cartesian product
of R™, and we usually consider it with the standard structure of a vector space over R.

Let us denote the Fuclidean inner product of R"™ by
(z]y) = 2%% .
i=1

The Fuclidean norm |z| = +/(z|x) defines the Fuclidean distance d(z,y) = |z — y|. The
triple E* = (R, (-|-), | - ||) is n-dimensional Euclidean space.

Proposition 2.1. Euclidean space is a uniquely geodesic metric space.

Proof. See Proposition O

2.2 FEuclidean triangles

The first two results are classical formulae that connect the side lengths and angles of
triangles in Euclidean space.

Proposition 2.2 (The Euclidean law of cosines). The relation

& =a*+b* — 2abcosy

November 5, 2024 15
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Euclidean geometry

holds for all triangles in E".

Proof. The proof is linear algebra:

c=|B-APP=|B-C+C—-AP=0+2(B-C|C—A)+ad’
=0 +2(B-C|C—A)+a®>=0b"—2abcosy + a*. O

Proposition 2.3 (The Euclidean law of sines). The relation

a b c

sina  sinf8  sin7y

holds for all triangles in E".
Proof. Exercise. O]

The following result will be useful in Chapter 7?7 when we discuss comparison geometry
and CAT(—1) spaces. The content is this: Given any three positive numbers that satisfy
the conditions arising from the triangle inequality to be the sides of a triangle in a geodesic
metric space, there is a triangle in E? with precisely these side lengths.

Proposition 2.4. Let a,b,c > 0 and assume that a +b > c, a+c > b and b+ c > a.
There is a triangle in E? with side lengths a, b and c.

Proof. The inequality a +b > ¢ implies % > —1 and the inequality a + ¢ > b implies
GZJ;lfb*CQ < 1. Thus, we can solve the equation ¢ = a* + b* — 2abcos~y to find ~ € [0, 7].

Placing two segments of lengths a and b starting at 0 with the angle v at the vertex 0
determines a triangle in E2. The Euclidean law of cosines implies that the length of the
third edge is c. O

Proposition 2.5. The sum of the angles of a triangle in E? is 7.

Proof. There are many different proofs, here is one that uses complex numbers: Note that

C—A_)C—A i A—B_HA—B i B—C_HB—C iy
B-—A IB-al® " c¢c-p lc=Bl" " a-c¢c la-cl®
The product of the left sides of these equations is —1, and therefore, e!@8+7) — _1.
Thus, o + f+ v =7+ k27 for some ke Z. As 0 < «, 3,7 < m and at most one of them
can be 7, we get the claim. O

2.3 Isometries of E"

We will now study the isometries of Euclidean space more closely.

The (Euclidean) orthogonal group of dimension n is

O(n) = {A e GL,(R) : (Az| Ay) = (z|y) for all x,y € E"}
={AeGL,(R): ATA=1,}.
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Recall the following basic result from linear algebra:

Lemma 2.6. An n x n-matric A = (a1,...,a,) is in O(n) if and only if the vectors
ai,...,a, form an orthonormal basis of E™. [

It is easy to check that elements of O(n) give isometries on E™ for any n € N: Let
A€ O(n) and let z,y € E". Now
d(Az, Ay)* = (Az — Ay | Az — Ay) = (A(z — y) [ A(z — y))
(ATA(@ —y) |z —y) = (r —y |z —y)
d(x —y)?.

For any b € R", let t,(x) = x + b be the translation by b. Again, it is easy to see that
translations are isometries of E”. The translation group is

T(n) ={t,: be R"}.
Orthogonal maps and translations generate the Fuclidean group
E(n)={z— Az +b: AcO(n),beR"} =T(n)O(n)
which consists of isometries of E™.

Proposition 2.7. E(n) acts transitively by isometries on E". In particular, Isom(E")
acts transitively on E™.

Proof. The Euclidean group of E" contains the group of translations T(n) as a subgroup.
This subgroup acts transitively because for any =,y € R", we have T, _,(z) = y. O

Next, we want to prove that all isometries of Euclidean space E™ are elements of the
Euclidean group.

Theorem 2.8. Isom(E") = E(n).

The proof of this theorem and the introduction of the tools needed in the proof takes
up the rest of this section.

An affine hyperplane of E™ is a subset of the form
H=H(Pu)=P+u",
where P,u € E" and ||ul]| = 1. The reflection in H is the map
rg(x) =z —2(z— Plu)u.
Lemma 2.9. The definition of ry is independent of the choice of P € H.
Proof. If P,Q € H, then P — Q € u*. Thus,

r—2x—-Pluu=2—2(zr—Plu)u—2(P-Q|uv)u=2—-2(x—Q|u)u . (2.1)
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Reflections are very useful isometries, the following results give some of their basic
properties.
Proposition 2.10. Let H be an hyperplane in E™. Then
(1) g ory is the identity.
(2) ry € E(n). In particular, rgy is an isometry, and if 0 € H, then ry € O(n).
(3) d(ry(z),y) = d(z,y) for allz € E" and ally € H.
(4) The fized point set of ry is H.

Proof. We will prove (3) and leave the rest as exercises. Let x € E® and y € H. We have
ry(z) = r — 2(x — y | u)u, which implies

d(ru(x),y)? = (ru(z) —y|ra(z) —y) = (@ —y — 2=z —y|wu|z —y — 2(z — y|u)u)

=(z—ylr—y) —4z—y|@@—-—y|lwuw +4((z—y|u)u|(z —y|u)u)
= (z—yle—y) =d(z,y). O

The bisector of two distinct points p and ¢ in E™ is the affine hyperplane
bis(p, q) = {x € E" : d(z, p) = d(z,q)} .
Lemma 2.11. If p,q € E", p # q, then

. p
bis(p, q) = ——+(p—q)".
Proof. Exercise. m

Proposition 2.12. (1) If rg(z) =y and x ¢ H, then H = bis(x,y).

(2) If p.q € B", p # q, then ruispq(p) = ¢-

(8) Let ¢ € Tsom(E"™), ¢ # id. Ifa € B, ¢(a) # a, then the fized points of ¢ are contained
in bis(a, ¢(a)).

(4) Let ¢ € Isom(E"), ¢ # id. If H is a hyperplane such that ¢|y is the identity, then
¢=rpg.

Proof. (1) follows from Proposition [2.10]3).
(2) From the definitions we get

p+q p—q
rmmmm=p—2@——§*M%@M@_ﬂ2=q

(3) If ¢(b) = b, then d(a,b) = d(¢(a), d(b)) = d(¢(a),b), so that b € bis(a, ¢(a)).

(4) Let a ¢ H be a point that is not fixed by ¢. Claim (3) implies that H is contained
in bis(a, ¢(a)). As H and bis(a, ¢(a)) are both hyperplanes, we have H = bis(a, ¢(a)).
Thus, by Claim (2), 7y (a) = ¢(a). But this holds for all a ¢ H. As ry|g = ¢g = idy, we
have ¢ = ry. O]

The idea of the proof of Theorem [2.8] is to show that each isometry of E" is the
composition of reflections in affine hyperplanes. In order to do this, we show that the
isometry group has a stronger transitivity property than what was noted above.
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Proposition 2.13. Let p1,pa, ..., Pk, q1,G2, - - -, qx € E™ be points that satisfy

d(pi, p;) = d(@ q;)

for all i,j € {1,2,... k}. Then, there is an isometry ¢ € E(n) < Isom(E") such that
o(p;) = q; for allie {1,2,...,k}. Furthermore, the isometry ¢ is the composition of at
most k reflections in affine hyperplanes.

$2(p3)

pl \

@ = ¢1(p1)

b3

D2

bis(p1, ql') ¢1(p2) ¢1(p3)

Figure 2.1 —

Proof. We construct the isometry by induction. If p; = ¢q1, let ¢ be the identity, other-
wise, let ¢ be the reflection in the bisector of p; and ¢;. Let m > 1 and assume that there
is an isometry ¢,, such that ¢,,(p;) = ¢; for all : € {1,2,...,m}, which is the composition
of at most m reflections. The mapping ¢ is in E(n) by Proposition m

Assume that ¢, (Pm+1) # Gme1- NOW, q1, . -« @ € biS(Om (Pm+1), Gm+1) because for each
1 <17 < m, we have

d(qi, Om(Pm+1)) = d(Dm(Di), Pm(Pm+1)) = d(Dis Prmr1) = A(Gis Gme1) -

Thus, the map

Pms1 = Tbis(¢m (Pm+1),gm+1) © Pm

satisfies ¢, 1(p;) = ¢; forall 1 <i<m+ 1. O

Corollary 2.14. If T and T" are two triangles in E™ with equal side lengths, then there
is an isometry ¢ of B™ such that ¢(T) = T". O

Corollary 2.15. Any isometry of E" can be represented as the composition of at most
n + 1 reflections.
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Proof. Let ¢ € Isom(E™). Proposition implies that there is an isometry ¢y € E(n)
such that ¢o(¢p(e;)) = e; for all 1 < i < n and ¢o(¢(0)) = 0. The set of fixed points of
¢ © ¢ contains the points 0,eq,...,e,. In particular, the fixed point set of ¢y o ¢ is not
contained in any affine hyperplane. Proposition [2.12(3) implies that ¢y o ¢ = id. Thus,

¢ =y O

Proof of Theorem[2.8. The elements of E(n) are isometries by Proposition 2.7 The op-
posite inclusion follows from Corollary and Proposition [2.10]2). O

Proposition 2.16. The stabiliser in Isom(E™) of any point x € E™ is isomorphic to O(n).
An isometry F' of E™ fizes b e E" if and only if there is an orthogonal linear map Fy such
that F = Tyo Fyo T, .

Proof. An element of E(n) fixes the origin if and only if it is an orthogonal linear transfor-
mation. Thus the claim holds for 0. If b € E"—{0} and F € Stabb, then T, 'o FoT}, € O(n)
and for any Ae O(n), T,oAoT, ' efixb O

Proposition 2.17. For each affine k-plane P, there is an isometry ¢ € Isom(E"™) such
that
H(P) ={zreR": 2" = 2"2 = ... = 2" = 0}.

FEach affine k-plane of E" is isometric with EF.

Proof. This is a direct generalisation of Proposition The details are left as an exercise.
O

Exercises

2.1. Prove Proposition 2.3
2.2. Let o € E” and let u,v € S". Let F': E® — E" be an isometry.

(1) Show that F' o j,, ., and F o j,, , are geodesic lines.

(2) Show that F' o ju, . and F o j,, , intersect and that the angle of intersection is the
same as for ju, . and .-

2.3. Find an isometry F of E? such that F(0) = (1,0), F(1,0) = (1,1) and F(0,1) =
(2,0).

2.4. Let H(0,u) be a line in E? that forms an angle %With the positiv z;-axis. Let r, be
the reflection in H (0, u).

(1) Compute the matrix of r, in the standard basis.
(2) Let uy,us € St. Compute the matrix of r,, o r,, in the standard basis.
(3) Write the rotation by 7 as the composition of two reflections.

2.5. Prove the remaining parts of Proposition [2.10]
2.6. Prove Lemma 2.111
2.7. Prove Proposition [2.17]
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Spherical geometry

3.1 The sphere

The unit sphere in (n — 1)-dimensional Euclidean space is
S" = {zxeE"™ |z = 1}.
Let us show that the angle distance
dsn (z,y) = arccos(z | y) € [0, 7] (3.1)

is a metric. In order to do this, we will use the analog of the Euclidean law of cosines,
but first we have to define the objects that are studied in spherical geometry.

Each 2-dimensional linear subspace T' = R™! intersects S™ in a great circle. If A €
S™ and u € S™ is orthogonal to A (u € A*), then the path ja,: R — S",

Jau(t) = Acost + usint,

parametrises the great circle (A, u) N S™, where (A, u) is the linear span of A and u. The
vectors A and u are linearly independent, so (A, u) is a 2- plane.

Lemma 3.1. If ds» is a metric, then ja, is a locally geodesic line.
Proof. Observe that as A and u are unit vectors such that (Aju) = 0, we have

(Jau(s) | jau(t)) = (Acoss + usins| Acost + usint)
= | A|*cos scost + (cosssint + sinscost)(A|u) + sin ssin ¢|u?

= cosscost + sinssint = cos(s —t). (3.2)
Thus, if ||s —t| < 7w, we have
d(jau(s), jau(t)) = arccos(jau(s) | jau(t)) = arccoscos(s —t) = |s — t|,

which implies that the restriction of js, to any segment of length less than 7 is an
isometric embedding. O]
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Note that the computation applied with s = t implies that the image of the
mapping ja, is contained in St.

If A, B € S" such that B # + A, then there is a unique plane that contains both points.
Thus, there is unique great circle that contains A and B, in the remaining cases, there
are infinitely many such planes. The great circle is parametrised by the map j,, with

 B-(B|A)A  B—(A|B)A
B (BIA)A]  \/1-(A]B)?

Now j(0) = A and j(d(A, B)) = B.

If B = —A, then there are infinitely many great circles through A and B: the map
Ja. parametrises a great circle through A and B for any u € A*.

We call the restriction of any j4, as above to any compact interval [0, s] a spherical
segment, and u is called the direction of j4,. Once we have proved that d is a metric, it
is immediate that a spherical segment is a geodesic segment.

Our proof showing that the expression defines a metric is based on the spherical
law of cosines.

A triangle in S™ is defined as in the Euclidean case but now the sides of the triangle
are the spherical segments connecting the vertices.

(3.3)

u

Figure 3.1 — A triangle in S*.

Let jou([0,d(C, A)]) be the side between C and A, and let je,([0,d(C, B)])v be the
side between C' and B. The angle between the sides jo,. ([0, d(C, A)]) and je ([0, d(C, B)])
is arccos(u|v), which is the angle at A between the segments jc,([0,d(C,A)]) and
Jeu([0,d(C, B)]) in the ambient space E"*.

Now we can state and prove
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Proposition 3.2 (The spherical law of cosines). In spherical geometry, the relation
cosc = cosacos b + sinasin b cosy
holds for any triangle.

Proof. Let u and v be the initial tangent vectors of the spherical segments jc, from C' to
A and jo, from C to B. As u and v are orthogonal to C, we have

cosc = (A|B) = (cos(b)C + sin(b)u | cos(a)C + sin(a)v)
= cos(a) cos(b) + sin(b) sin(a)(u |v) . O
Proposition 3.3. The angle distance is a metric on S".
Proof. Clearly, the triangle inequality is the only property that needs to be checked to
show that the angle metric is a metric. Let A, B,C' € S be three distinct points and use
the notation introduced above for triangles. The function
v +— f(v) = cos(a) cos(b) + sin(a) sin(b) cos()
is strictly decreasing on the interval [0, 7], and
f(m) = cos(a) cos(b) — sin(b) sin(a) = cos(a + b) .
Thus, the law of cosines implies that for all v € [0, 7], we have
cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(y) = cos(a + b), (3.4)
which implies ¢ < a + b. Thus, the angle distance is a metric. O

Note that the inequality ((3.4)) is strict unless v = 7. This also implies that for triangles
that are not completely contained in a great circle,

c<a+b<2m—c. (3.5)
We return to this observation in Section [3.4]

Theorem 3.4. (S",ds) is a geodesic metric space. If 0 < dsa(A, B) < [\| then there is
a unique geodesic segment from A to B.

Proof. If x,y € S with y # +x, then, by Lemma the spherical segment with direction
given by the equation ([3.3)) is a geodesic segment that connects x to y. If the points x and
y are antipodal, then it is immediate from the expression of the spherical segment that
Jeu(m) = —x for all w € zt with [lu|| = 1. Thus, in this case there are infinitely many
geodesic segments connecting x to y.

If j is a geodesic segment connecting A to B, then any C in j([0,d(A, B)]) satisfies

dS” (A7 C) + dS” (Cv B) = dS” (A7 B)

by definition of a geodesic segment. In the proof of Proposition 3.3 we saw that equality
holds in the triangle inequality if and only if v = 7. In this case, all the points A, B and
C' lie on the same great circle and C' is contained in the side connecting A to B. Thus, the
spherical segments are the only geodesic segments connecting A and B. If A # +B, then
there is exactly one 2-plane containing both points. This proves the second claim. O

Note that the sphere has no geodesic lines or rays because the diameter of the sphere
is .

IThis condition is equivalent with B # +A.
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3.2 More on cosine and sine laws

The law of cosines implies that a triangle in E™ or S” is uniquely determined up to an
isometry of the space, if the lengths of the three sides are known. In Euclidean space the
angles are given by
a’ + b — 2

2ab
and the corresponding equations for o and 3 obtained by permuting the sides and angles,
and in the sphere we have

cosy =

cosc — cosacosb

cosy = - -
sin asin b

In Euclidean space, the three angles of a triangle do not determine the triangle uniquely
because dilations of E™ preserve angles. In S the angles determine a triangle uniquely
up to isomorphism. This is the content of

Proposition 3.5 (The second spherical law of cosines). In spherical geometry, the relation

cos o cos 3 + cos 7y

cosc = - -
sin « sin 3

holds for any triangle.

Proof. This formula follows from the first law of cosines by manipulation. The first law
of cosines implies

oy ) 1+ 2cosacosbcosc — (cos® + cos? b + cos? c) D
sin“y=1—cos”y = ———— = ——
sin® a sin® b sin

asin®b’
and D is symmetric in a, b and ¢. Thus, using the law of cosines, we get

cosa — cosbcosccosb — cosacosc n cosc — cosacosb

Cos €08 3 + cosy _ sin bsin ¢ sin a sin ¢ sin asin b
sin a sin 8

= COScC.

sin a sin bsin? ¢

Spherical geometry even has its own sine law
Proposition 3.6 (The spherical law of sines). In spherical geometry, the relation

sina sinb sin ¢

sina sinf  sinv
holds for any triangle.

Proof. In the proof of the second law of cosines we saw that he first law of cosines implies

that
sinc > _ sin*asin®bsin’ ¢
siny) D
The claim follows because this expression is symmetric in a, b and c. O
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3.3 Isometries of S"

Proposition 3.7. The orthogonal group O(n + 1) acts transitively by isometries on S™.
In particular, Isom(S™) acts transitively on S™.

Proof. Let A € O(n + 1) and let € E*"!. By definition of orthogonal matrices, we
have |Az|? = (Az | Ax) = |z|®>. Thus, A defines a bijection of the sphere S™ to itself.
Furthermore, for any z,y € S*™!, again by the definition of orthogonal matrices,

cosdsn (Az, Ay) = (Az | Ay) = (z|y) = cosdsn(z,vy),

which implies that the above mapping is an isometry.

Transitivity follows from the fact that any element of S™ can be taken as the first
element of an orthonormal basis of E” or, equivalently, as the first column of an orthogonal
matrix. [

Theorem 3.8. Isom(S") = O(n + 1)

Proof. The claim follows from Proposition [3.7] and Corollary and Proposition [3.9
below in the same way as its Euclidean analog, Theorem [2.8] was proven. O

Let Hy be a linear hyperplane in E". The intersection H = Hy n S™ is a hyperplane of
S™.

The reflection ry in H is the restriction of the reflection in Hy to the sphere: ry = ry,|sn.

Note that each hyperplane of S™ is isometric with S*~! and that, by Propositions
2.10(2) and 3.7] the image of 74, |s» is contained in S™.

Proposition 3.9. Let H be an hyperplane in S™. Then
(1) ry ory is the identity.

(2) rg € O(n + 1). In particular, rg is an isometry of S".
(3) dsn(rp(x),y) = dsn(z,y) for all z € S™ and all y € H.
(4) The fixed point set of ry is H.

Proof. Claims (1), (2) and (4) are direct consequences of Proposition [2.10} Claim (3) is
Exercise 3.1 O

The bisector of two distinct points p, q € S™ is

bis(p,q) = {z € S" : dsn(x,p) = dsn(x,q)} .

Lemma 3.10. Let p,q € S", p # q. Then bis(p,q) = (p — ¢)* n S". In particular, the
bisector is a hyperplane, it is the intersection of the Fuclidean bisector of p and p with

the S™.

Proof. The points p, q,x € S™ satisfy ds.(x,p) = dsn(z,q) if and only if (p|z) = (¢|x),
which is equivalent with (p — ¢ |x) = 0. O
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Proposition 3.11. Let x,y € S™ and let H be a hyperplane of S™.

(1) If rg(z) =y and x ¢ H, then H = bis(x,y).

(2) If p,q €S™, p # q, then Tvisp)(p) = ¢

(8) Let ¢ € Isom(S"), ¢ # id. If a € S, ¢p(a) # a, then the fized points of ¢ are contained
in bis(a, ¢(a)).

(4) Let ¢ € Isom(S™), ¢ # id. If H is a hyperplane such that ¢|y is the identity, then
¢ =ry.

Proof. (1) follows from Proposition [3.9((3).

(2) Using the definitions and the fact that % is in the Euclidean bisector of p and ¢, we
get
p+q p—4q
Tbis(p,q)(p) =p— 2(p - P — Q) Hp B qH2

2
The proofs of (3) and (4) are formally the same as in the Euclidean case. O

ZQ'

We leave it as an exercise to check that the following result is proved in the same way
as their Euclidean counterparts.

Proposition 3.12. Let p1,pa, ..., Pk, q1, G2, - .., qx € S™ be points that satisfy
d(Piapj) = d(%‘;%‘)

for alli,j € {1,2,...,k}. Then, there is an isometry ¢ € Isom(S"™) such that ¢(p;) = q;
forallie {1,2,... k}. ]

Corollary 3.13. Any isometry of S™ can be represented as the composition of at most
n + 1 reflections. ]

Proposition 3.14. The stabilizer in Isom(S") of any point x € S™ is isomorphic to O(n).

Proof. The north pole e, is stabilized by the subgroup of O(n) that consists of block
diagonal matrices diag(A4, 1), where A € O(n). Proposition |3.7/implies the claim as in the
Euclidean case, see Proposition [2.16] O

Proposition 3.15. Each k-plane of S™ is isometric with S¥. For each k-plane P, there
is an isometry ¢ € Isom(S™) such that

P(P) ={xeS": 2 = gF3 = ... =yt = 0},

Proof. The proof is similar to that of the Euclidean analog, Proposition [2.17] Exercise
O

3.4 Triangles in the sphere

In this section, we prove among other results that the sum of the angles of a nondegenerate
triangle in S? is greater than 7. In order to do this, we introduce the polar triangle of a
spherical triangle.
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Let A, B,C € S? be points that do not all lie on the same great circle, and let A be the
triangle with vertices A, B and C. The polar points A*, B* Cx e S? of A, B and C' are
the unique points that satisfy the conditions

(A*[B) =0 = (A"|C), (A"]A)>0
(B*|C) =0 = (B*|A), (B*|B)>0 (3.6)
(C*|A) =0 = (C*| B), (C*|C)>0.

The triangle A* with vertices A*, B* and C* is the polar triangle of A. Let a*, b* and
c* be the side lengths and let o*, §* and v* be the angles of (ABC)*.

Geometrically, for each vertex of the triangle, the dual vertex is the intersection point
of the line orhogonal to the plane that contains the other two vertices, on the same side
of the plane as the original vertex.

Lemma 3.16. The polar points of the vertices of a nondegenerate triangle A in S* are
linearly independent and (A*)* = A.

Proof. Exercise O]

Proposition 3.17. Let ABC be a triangle in S* such that the vertices do not all lie on
the same great circle. Then

at+a*=b+p" =c+y" =ad"+a=b"+p=c"+y=m.

Proof. The situation is completely symmetric so it suffices to prove a + a* = 7. Let
u,v € At = (B* C*) be the directions of the edges AB and AC, respectively. Recall that
(u|v) = cosa and (B* |C*) = cosa*.

Now, u € (A, B) implies that (u | C*) = 0 and similarly we have (v | B*) = 0. Further-
more,

w_ (B=(BIHA LN\ (B[B)
<“‘B>‘<B—<B|A>AH‘B) 5 - B4

and similarly (v|C*) > 0. Thus, we have either the points u, B*, C* and v on the circle
(B*,C*) in this order or in the order B* u, v and C* with the right angles between u
and C* and v and B* overlapping in both cases. The claim follows easily. O

Lemma 3.18. The perimeter of a spherical triangle is at most 2m. If the perimeter is
27, then the vertices are all contained in the same great circle.

Proof. This follows from the inequality (3.5)) and the fact that this inequality is an equality
if and only if v = 7. O

Proposition 3.19. The sum of the angles of a nondegenerate triangle in S? is greater
than .

Proof. Proposition implies that a + S+ v+ a* + 0" +c* = 3m. Asa* +b* +c¢* <27
by Lemma [3.18, we get the claim of Proposition [3.19] O

The following is the spherical analog of Proposition [2.4]
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Figure 3.2 — If A is the north pole and B and C' are on the equator, then A = A*.

Proposition 3.20. Let0 < a,b,c <m. Ifa+b>c,b+c>a,c+a>banda+b+c < 2,
then there is a triangle in S* with side lengths a, b and c. All such triangles are isometric.

Proof. We use the law of cosines in the construction: Note that if such a triangle exists,
then the angle at C' satisfies the cosine law. Therefore, we can compute it if we know that

cosc — cosacosb
<1

, (3.7)

sinasin b

because then %;izm is in the range of cos, and we can proceed with the construction.

The pair of inequalities ¢ < a + b < 27 — ¢ implies
cosc > cos(a + b) = cosacosb —sinasinb.
The inequalities b+ ¢ > a and ¢+ a > b give |a — b| < ¢, which implies
cosc < cos(a —b) = cosacosb+ sinasinb.
These two inequalities give
—sinasinb < cosc — cosacosb < sinasinb,

which implies the inequality . Now we can place the sides of length a and b starting
at C' in the correct angle . The cosine law implies that the lengths of the side opposite
to C'is indeed c.

The triangles are isometric by Proposition [3.12 [
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3.5 Some elementary Riemannian geometry on S2.

Let x € S%. The latitude of x is

O(x) = T ds2(z,e3) = g — arccos(z | e3) = g — arccos(z3) € [—g,g

! ]

which is the oriented angle of z from the equator {x € S? : x3 = 0}. The longitude of
reS?— {£e3}is

, (21, 29,0) [en) | _ . v
¢(x) = sign(zz) arccos (M) = sign(x,) arccos (W) €]-m, ],

where sign(t) = ﬁ for nonzero t and we set sign(0) = 1.

The longitude is the oriented angle between x and the geodesic segment from the north
pole ez to the south pole —e3, called the O-mem'dz'anE] Here we have chosen the value m
for the longitude on the international date line which is the geodesic segment between
the poles that passes through —e;. More generally, the geodesic line between the poles
determined by an equation ¢ = c¢ is a meridian and the circle determined by an equation
0 = cis a parallel.

The longitude and latitude of a point define a bijection L: §? — {£e3} — |—7, 7] x

15. 5L
The inverse of this map is given by
L7(¢,0) = (cos ¢pcos b, sin ¢ cosd, sinb).

This map is good close to the equator but distances, areas and angles are badly distorted
close to the poles.

Let a € R — {0} and consider the projection plane P, = {x € E3 : 23 = a}. For any z € S?,
let S§: S* — P, be the map

T — €3

Sg(z)=(1—a) + e3

1-— T3

that associates to x the unique point on P, that lies on the affine line through ez and .
The stereographic projection S*: S* — {e3} — E? is pry 0S%, where pr;(y) = (y1,y2) is the
orthogonal projection of E? to E? identified with the hyperplane E? x {0}:

S() = (1= a) (2, ).

1—ZE371—£L‘3

Most often, one uses a = 0, which is the case where the projection plane passes through
the origin, or a = —1, which is the case where the projection plane is tangent to the
sphere at the south pole.

2This is the Greenwich meridian if we consider the Earth with its standard coordinates.
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Length and area

The (differential geometric) length of a piecewise continuously differentiable path 7: I —

S? is
Ur) = f 1,
I

where 7(t) is the tangent (derivative) vector of the path for each ¢ € I.

Proposition 3.21. Let A,B € S?, A # B. Let j be a spherical segment that connects A
and B. Then ((j) < {(7) for all piecewise continuously differentiable paths 7.

Proof. Using an isometry of S?, we can assume that A and B are contained in the 0-
meridian. Using longitude-latitude coordinates, consider the continuous map proj de-
fined by proj(¢,d) = (0,6) whose image is contained in the 0-meridian. Clearly, £(j) <
{(projot) < U(T). O

In the computation of the length of a path 7, the norm of the tangent vector 7(t) is
computed in the tangent plane 7(¢)* at 7(t). Using the coordinate maps, we get

The inner product of the tangent spaces can be used to define the area of a subset of
the sphere. This gives the expressions

Area A = cos 0dfd¢
L(A)

in the longitude-latitude coordinates and

4
Area A = f %3;22
so(ay (1 +[|lz[?)

in the coordinates given by the stereographic projection.
Proposition 3.22. The area of S? is 4.

Let 0 < a < 7. The area of the (spherical) sector S, = {x € §? : 0 < ¢(x) < a} and
any of its isometric images is easily seen to be 7-47 = 2a.

Proposition 3.23 (Girard). The area of a triangle with angles o, f and 7y is a+S+vy—m.

Proof. Let A, B and C be the vertices of the triangle. The antipodal points —A, —B
and —C' determine a triangle (—A)(—B)(—C) that is isomorphic with ABC. The three
great circles (A, B) n'§?, (B,C) n'§* and {(C, A) N S? determine six sectors with angles
a,a, 3, 8,7, that cover the sphere. In the complement of the great circles, the triangles
ABC and (—A)(—B)(—C) are both covered by three sectors, other points are contained
in one sector. Thus,

4 = AreaS* = 2(Area S, + Area S; + Area S,) — 4 Area ABC
=2(2a+ 20 +2y) —4 Area ABC',

which gives the claim. O]
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Exercises

3.1. Prove Proposition [3.9(3).

3.2. Let H be a hyperplane in S". Prove that d(rg(z),y) = d(z,y) for all x € S™ and
ye H.

3.3. Let ¢ € Isom(S™) — {id}. Let H be a hyperplane such that ¢|y = id|g. Prove that
¢ =ry.

3.4. Prove Corollary for n = 2.

3.5. Prove Corollary [3.13]

3.6. Prove Proposition [3.15]

3.7. Prove Lemma [3.16]
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Chapter 4

Hyperbolic space

In this chapter, we define hyperbolic space as a submanifold of Minkowski space with a
metric that is analogous with the angle metric on the sphere. We will show that hyperbolic
space is a uniquely geodesic metric space and that the orthogonal group of the Minkowski
bilinear form is the group of isometries of hyperbolic space. The proof uses the hyperbolic
law of cosines.

4.1 Minkowski space

In this section we introduce the indefinite Minkowski bilinear form in R**! and, in par-
ticular, the associated subset H" that is used to define hyperbolic n-space in Section

4.3l

Let V and W be real vector spaces. A map ®: V x W — R is a bilinear form, if the maps
v — (v, wp) and v — P(vg, w) are linear for all wy € W and all vy € V.

A bilinear form ® is nondegenerate if
e O(x,y) =0 for all ye W only if z = 0, and
o O(x,y) =0 for all z €V only if y = 0.
If W =V, then ® is symmetric if ®(x,y) = ®(y,x) for all z,y e V. It is
o positive semidefinite if ®(x,x) =0 for all x € V|
« positive definite if ®(x,z) > 0 for all x € V — {0},
» negative (semi)definite if —® is positive (semi)definite, and
o indefinite otherwise.

The function ¢: V' — R, q(x) = ®(x, z) is the quadratic form corresponding to a bilinear
form ¢: V xV — R.
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A positive definite symmetric bilinear form is often called an inner product or a scalar
product.

If V is a real vector space with a symmetric bilinear form ®, two vectors u,v € V are
orthogonal, u L v, if ®(u,v) = 0. The orthogonal complement of u e V is

ut={veV uluvl}
Let us consider the indefinite nondegenerate symmetric bilinear form {-|-) on R™"*!
given by

(x|y) = —woyo + Z Ty = —xoyo + (T |y) = 2T Jy,
i=1

where
J=Ji, =diag(-1,1,...,1)

and © = (zg,x1,...,2,) = (o, T).
The bilinear form (- |-) is the Minkowski bilinear form, and the pair
i = (1))
is the n + 1-dimensional Minkowski space.
A vector x € MM — {0} is
o lightlikd’]if (x| z) = 0,
o timelike if {x|z) < 0, and

o spacelike if (x| x) > 0.

?Light-like vectors are also called null-vectors

The names for the three different types of vectors in Minkowski space come from
Einstein’s special theory of relativity, which lives in M3, Minkowski space has a number
of geometrically significant subsets: The subset of null-vectors is the light cone

L ={reM"™: (z|z)=0}.
The smooth submanifold
L ={veM" : (z|x) = -1}
is a two-sheeted hyperboloid, and its upper sheet is
H" = {z e M"" : (x|2) = -1, x4 > 0}.

The smooth submanifold

Lt ={reM"™  (z|z) =1}

is a one-sheeted hyperboloid.
The following is an important observation on time-like vectors.
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Figure 4.1 — The upper sheet of the two-sheeted hyperboloid with the lightcone and
the one-sheeted hyperboloid.

Lemma 4.1. If u,v € H", then {u|v) < —1 with equality only if u = v.

Proof. Using the Cauchy inequality for the Euclidean inner product in R™ for the first
inequality and a simple calculationﬂ for the second, we have

n n n
{u|v) = —ugvy + Z uv; < —Uglpy + Z u? Z v?
o1 Vici Vo

= —ugvo + V12 —1W/E —1< —1.

Cauchy’s inequality is an equality if and only if u and v are parallel, and the final inequality
is an equality if and only if ug = vy. This implies the claim on equality. O]

4.2 The orthogonal group of Minkowski space

The orthogonal group of the Minkowski bilinear form is

O(1,n) = {A e GL,11(R) : {(Ax | Ay) = (x| y) for all z,y e M}
={AeCGL,1(R):"AJ; , A= J.,}.

An element of O(1,n) is an orthogonal transformation.

'Manipulate the given inequality to remove the square roots etc.
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Clearly, the linear action of O(1,n) on MM preserves the light cone and the two-
sheeted hyperboloid .£".

Let A = (ag,a1,...,a,) bean (n+1) x (n+ 1)-matrix A in terms of its column vectors
ag,ai, . ..,a, € R If A e O(1,n), then ag = A(eg) for eg = (1,0,...,0) € H*. Thus
A(eg) € H" if and only if Agy > 0, and therefore the stabiliser in O(1,n) of the upper
sheet H" is

0% (1,n) = {Ae0O(1,n) : AH" = H"}
={AeGL,1(R): Ay > 0, (Az| Ay) = (x|y) for all z,y e M""}  (4.1)
= {A € GLn+1(R) : AOD > 07 7;41]177114 = Jl,n} .

Let us check that the second of the three equalities in holds: Let A € GL,41(R)
with Agy > 0 and (Az | Ay) = (x|y) for all z,y € M!Y". The first and third properties
are equivalent with A € O(1,n) so it remains to check that AH" = H". We know that
Aey € H". Linear automorphisms of E**! are continuous mappings and the image of a
connected set under a continuous map is connected, so H" is mapped into H". Similarly,
the lower half of the hyperboloid .Z" is mapped into itself. Furthermore, the elements of
GL,+1(R) are linear bijections, so the restriction to H" is a bijection of H".

A basis {vg, v1, . . ., v,} of MY is orthonormal if the basis elements are pairwise orthogonal
and if (vg|voy = —1 and (v; |v;) =1 forallie {1,2,...,n}.
The following observation is proved in the same way as its Euclidean analog:

Lemma 4.2. An (n+ 1) x (n+ 1)-matriz A = (ag, a1, . .., ay) is in O(1,n) if and only if
the vectors ag, ay, . .., a, form an orthonormal basis of MY™. Furthermore, A € O*(1,n)
if and only if A€ O(1,n) and ay € H".

Proof. Exercise. m
Example 4.3. (1) Let ¢t € R. The matrix

cosht sinht 0
Ly = | sinht cosht 0 |eO7(1,2)
0 0 1

stabilizes any affine hyperplane
H, ={xeM":zy=c}. (4.2)
In particular, the path ¢t — Lieq = (cosht,sinht,0) parametrizes the hyperbola
{(reH?: 2y =0} =H?n {z e M"*?: 2, =0}.

cosf —sinf

@ Forany 9 R tet By = (Gog o

) e O(2), and let

0 10 0
Ry = diag(1, Ry) = ~ = |0 cos® —sinf |eO*(1,2).
0 R(6) 0 sinf cos 6
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The mapping Ry is a Euclidean rotation around the vertical axis by the angle #. The
rotation Ry stabilizes each affine hyperplane

E,={zreM": 15 =r}

for any r € R. Another important mapping that comes by extension from O(2) is given by
the matrix diag(1, 1, —1), which is a reflection in the hyperplane H, defined in equation

E3).

(3) The above examples can be generalized to higher dimensions:
o L, is extended as the identity on the last coordinates to diag(Ls, I,,_2) € OT(1,n).
« Any Euclidean orthogonal matrix A € O(n) gives an isometry diag(1, A) € O*(1,n).

Proposition 4.4. The group O (1,n) acts transitively on H" and on the one-sheeted
hyperboloid £}

Proof. We use the notation of Example If z € H", then x = (£/|Z||> + 1,Z). There is
some Ry € O(n) such that Rpz = |Z|es, and thus, Ry(z) = (1/]|Z|? + 1, |Z[le1). Further-

more,
Larsinh |z|€0 = (\/ Hi.H2 + 17 "jHel) )

and we have © = Ry Losinn izj€o- This implies that H" is the O™ (1, n)-orbit of e.
A similar proof shows that £ is the O" (1, n)-orbit of e; € M, see Exercise . O]

S XA A

D e SMVANANAAV/ |

Figure 4.2 — The idea of the proof of Proposition 4.4 : Ry moves the point z along
the red circle to the blue curve and L; moves the point along the blue curve to eg. The
hyperboloid is seen from the side and from the top.

The proofs of the following propositions demonstrate the use of a transitive group of
transformations:

Proposition 4.5. The restriction of the Minkowski bilinear form to the orthogonal com-
plement of a timelike vector is positive deﬁm’teﬂ

2Naturally, the orthogonal complement is defined with respect to the Minkowski bilinear form.
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Proof. Let v € M be a timelike vector. We may assume that v € H”. Proposition
implies the existence of an element A € O*(1,n) such that Av = ¢;. The orthogonal
complement of ey is the subspace {x € M"" : x5 = 0}. The restriction of the Minkowski
bilinear form to this subspace is the standard Euclidean inner product. By definition,
(A7 | A7y = (u|u)y > 0 for all u € ep . O

Proposition 4.6. For any a € H", the tangent space T,H" of H" at a coincides with a™.

Proof. Let p € H". As the group O"(1,n) acts transitively on H" there is some A €
O*(1,n) such that Aey = p. As in Proposition Aeg = pt. Considering the linear
map A as a differentiable mapping of R**! to itself, its differential that coincides with A
maps the tangent space at ey to the tangent spaces at p. Clearly,

T.,H* = {z e M : 29 = 0} = et

and the same holds at p by the observations we just made. O]

Figure 4.3 — The orthogonal complement p* of a point p € H? coincides with the tangent
space T,(H?) as a vector subspace of R®. The figure also shows the affine tangent plane
p+ p* that is tangent to H? at p. If we consider the standard Euclidean inner product in
R3, the tangent plane coincides with the orthogonal complement only at e.

Propositions [£.5] and [4.6] imply that the restriction of the Minkowski bilinear form to
each tangent space defines a Riemannian metric.
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The Riemannian metric of H" associates the inner product (- |-)|,+ to all points a € H".

jul = /Culw)

The norm in a— is

for all u € at.

The angle % (u,v) of any two vectors u,v € T,H" = a+ — {0} is

% (u,v) = arccos <<u | U>> :

Jul ]

We will not discuss Riemannian geometry in a formal manner. Hyperbolic space is
an important example of a Riemannian manifold, and Sometimesﬂ hyperbolic metric is
defined as a Riemannian metric. In that approach, hyperbolic metric appears as the path
metric of the Riemannian metric.

The Riemannian length of a piecewise smooth path 7: [a,b] — H" is

b
) = [ VE@ o).
The length metric of the Riemannian metric of H" is

dRiem(xa ?/) = 1Ilf£(’7),

where the infimum is taken over all piecewise smooth paths that connect x to y.

In section [5.3], we will show that the Riemannian approach leads to the same hyperbolic
metric as the one we will define in section [£.3] Riemannian geometry also provides a
natural concept of volume in hyperbolic space, and we will discuss this in section [5.9]

4.3 Hyperbolic space

In this section, we define a metric on the upper sheet H" using the Minkowski bilinear
form analogously with the definition of the spherical metric in section [3.1]

The metric space (H", d), where
d(z,y) = arcosh(~(x | ) € [0,00]

is the hyperboloid model of n-dimensional (real) hyperbolic space. The metric d is the
hyperbolic metric.

We still need to show that the hyperbolic metric is a metric. The proof follows the
same idea that was used to treat the angle metric for the sphere S™.

3See [And] or [Beal.
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Let a € H", and let u € a* such that (u|u) = 1. |E| The mapping jo.: R — H",
Jau(t) = acosh(t) + usinh(t),

is the hyperbolic line through a in direction u. For any T' > 0, the restriction j,.|[7] is
a hyperbolic segment.

“Recall that the restriction of the Minkowski bilinear form to a' is positive definite by Corollary

Lemma 4.7. Let a € H" and u € at.

(1) The image of ja. is contained in H".
(2) For all s,t € R, we have

d(ja,u(t)vja,u(s)) = ’8 - t’ . (43)
(3) A0 Juu = Jaanau for all Ae OF(1,n).
Proof. Exercise [4.3] O

As in section for the sphere, if we show that d is a metric, then Lemma implies
that jg . is a geodesic line.

Lemma 4.8. Let p,q € H" be two distinct points. Let
q+plap

Vil -1

Then jpvu(o) =p and jp,U(arCOSh(*Q? 9))) =q.

Proof. Observe that Lemma [4.1| implies

{g+p|p|a+ |y =plg? —1>0.

Thus, u is a unit tangent vector to the hyperboloid. The fact that j,,(0) = p is immediate,
and the other claim follows by noting that sinh(arcosh(—{p|¢))) = 1/{p|¢)* — 1. H

Lemma 4.9. For any a € H" and any u € at, jo.(R) = H" n {a,u). If a 2-plane T
intersects H™, then T' n H" is the image of a hyperbolic line.

Proof. Clearly, the image of j,,, is contained in the 2-plane {(a,u). The fact the image of
Jau coincides with {a,u) n H" follows from the second statement of the Lemma that we
prove below.

If T = {eg,e1), then H" n T is a copy of the upper half of the hyperbola

{reR*: -z} — 2] = —1},

and this intersection is parametrized by je,e,. If T = {eo,v) for any v € eg, then there is
an element B € O(n) such that Be; = v and, consequently, an element B’ = diag(1, B) €
O*(1,n) such that Bey = ¢y and Be; = v. Thus, H* n T = B'(H" n {eg, e;)) coincides
with the image of the hyperbolic line B ¢ jeye, = jpreg,Brer = Jeow, Se€ Lemma [4.7]

If the plane T' does not pass through eg but intersects H", then Proposition [4.4] provides
an element A € O (1,n) such that T = A(T}) for some plane Ty that intersects H" at eq.
We saw above that this intersection is parametrized by a hyperbolic line j.,, for some
v € eg. As above, we see that H" N T is parametrized by A0 jey.» = Jaeo. A0 [
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Figure 4.4 — A linear plane that intersects H? seen from two different angles.

The fact that the hyperbolic metric is indeed a metric is proved in the same way as
Proposition in the spherical case. First we prove the law of cosines for triangles in
hyperbolic space. As we cannot use a metric yet, we consider triangles whose sides are
hyperbolic segments. The angles at the vertices are defined using the Riemannian metric
of H". We use the notation for triangles introduced in section [I.6}

Figure 4.5 — A triangle in H? with a vertice at e.

Proposition 4.10 (The first hyperbolic law of cosines).

cosh ¢ = cosh a cosh b — sinh a sinh bcos~ .
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Proof. Let u and v be the initial tangent vectors of the hyperbolic segments from C' to A
and from C' to B. As u and v are orthogonal to C, we have as in the spherical case,

coshc = —(A| B) = —({cosh(b)C' + sinh(b)u | cosh(a)C + sinh(a)v)
= cosh(a) cosh(b) — sinh(b) sinh(a){u|v). O

Theorem 4.11. Hyperbolic space is a uniquely geodesic metric space. Hyperbolic lines
are geodesic lines.

Proof. To show that the hyperbolic metric is a metric, let A, B,C' € H"”. Using the
fixed notation for the hyperbolic triangle with vertices A, B and C', consider the strictly
increasing function f: [0, 7] — R,

f() = cosh a cosh b — sinh a sinh b cos 7,
that has a unique maximum at v = 7 with
v(m) = cosh acosh b + sinh asinh b = cosh(a + b).

The first law of cosines implies that coshc < cosh(a + b), which yields the triangle in-
equality.

Now that we know that hyperbolic space is a metric space, hyperbolic lines are geodesic
lines by Lemma[£.7(2). If A and B are distinct points in H", there is a unique 2-plane 7'
through them. Thus, there is exactly one image of a hyperbolic line through these points.
Assume that there is a geodesic segment k: [0,d(A, B)] — H" such that k(0) = A,
k(d(A, B)) = B and the image of k is not contained in T'. Let C € k([0, d(A, B)]) —T and
consider the triangle with vertices A, B and C and sides the unique hyperbolic segments
connecting A to B, B to C' and C to A. As the function f is strictly increasing, equality
is possible in the triangle inequality only when v = 7. This implies that the segments
from B to C and from C' to A are contained in a hyperbolic line. This hyperbolic line
contains A and B and, therefore, the sides from B to C' and from C' to A are contained
in the side from A to B, but this is a contradiction. Thus, H" is uniquely geodesic. [

We will postpone the proof of the following important result until Section where
the details are simplified by a smart choice of coordinates.

Theorem 4.12. Hyperbolic metric is the length metric of the Riemannian metric of
hyperbolic space.

4.4 Isometries of H"

Proposition 4.13. O (1, n) acts transitively by isometries on H". In particular, Isom(H")
acts transitively on H™.

Proof. Transitivity of the action was proved in Proposition so it remains to show that
the elements of O (1,n) act as isometries. Let g € O"(1,n), and let z,y € H". By the
definition of the hyperbolic metric and of O (1,7n), we have

d(g(),g(y)) = arcosh(—(g(x) | g(y))) = arcosh(—(x | y)) = d(z,y) . O
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Example 4.14. (1) Let ¢ € R. The matrix L; of Example |4.3|acts on H? as an isometry
that preserves the intersection of H? with any affine 2-plane {x € M : 23 = ¢}. In
particular, it stabilizes the geodesic line

(={zeH: zy,=0}.
For any point p = (a,b,0) € ¢, we have
d(L:(p), p) = arcosh(—(Lyp | p)) = arcosh((—a* + b*) cosh(t)) = |t] .

In chapter |5 we will see that all other points are moved a longer distance than |¢|.
(2) If r > 0, then the set

H" n {(coshr,z) : z € R"} = {(coshr,z) : x € R" | ||z|| = sinhr}

is the sphere of radius r centered at the point ¢y € H". If A € O(n), the isome-
try diag(1,A) € O"(1,n) maps each sphere centered at ey to itself, and the subgroup
{diag(1,4) € O"(1,n) : A € O(n)} = Stabey < Isom H" acts transitively on each such
sphere.

(3) For each v e £? and ¢ < 0, the set
{rel*: (v|z)=c}

is called a horosphere based at v. The mapping given by the matrix

52 52
1+25 —?2 S
_ S s +
No=| £ 1-2 s|eor(1,2)
s —s 1

maps each horosphere based at (1,1,0) € £ to itself.

(4) Composing some number of the above mappings we obtain further examples of isome-
tries of the hyperbolic plane. For example, if p € H?, then there is some § € R such that
Ry(p) € L. Now, L;(lemp)(Rg(p)) = L_g(eop)(Ro(p)) = €o, and for any ¢ € R, the mapping
S = R_go Lggeypy © Ry © L;éo’p) o Ry is an isometry that fixes p and maps each sphere

centered at p to itself. The mapping S is conjugatﬁ to Ry in Isom(H").

The isometries introduced above are classified according to the conic sections they
correspond to. The mapping L, and any of its conjugates in Isom(H") is called hyperbolic
because L; maps each affine plane parallel to the (zg,x;)-plane in M2 to itself, and
these planes intersect the light cone in hyperbola, except for the (xq, z1)-plane itself that
intersects the lightcone in a pair of lines.

The mapping Ry and any of its conjugates is called elliptic because Ry preserves all
horizontal hyperplanes in M? and their intersections with %, which are circles centered
at points of the 0:th coordinate axis.

The mapping Ny and any of its conjugates is called parabolic because it preserves all
affine hyperplanes {z € M2 : (v|x) = ¢}, which intersect .£? in a parabola when ¢ < 0.

As in the Euclidean and spherical geometries, we will now study a fundamental class
of isometries, reflections in a hyperplane.

4If G is a group and g, h € G, then the elements g and hgh™! are conjugate elements in G.
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If T is an (m + 1)-dimensional linear subspace of R™*! that intersects H", then 7' n H" is
an m-dimensional hyperbolic subspace of H™. If m =n — 1, then T is a hyperplane.

Proposition 4.15. Let 1 < m < n. Any two hyperbolic m-dimensional subspaces of H"
can be mapped to each other by isometries of H™.

Proof. Exercise [4.4] O

Corollary 4.16. If 2 < k < n, then any k-dimensional hyperbolic subspace of H™ 1is
isometric to HF.

Proof. The hyperplane {x € H" : 4,1 = Tp4o = -+ = , = 0} is clearly isometric to HF.
The claim follows from Proposition [£.15] O

Any hyperplane T in M is of the form T = u! for some v € M'" — {0} because the
Minkowski bilinear form is nondegenerate. Let H = u* n H" be a hyperbolic hyperplane.
Since H intersects H", it contains a vector v for which (v|v) = —1. Proposition
implies that (u|u) > 0, and after normalising, we may assume that u is a unit vector.

Let u e Z". The reflection in H = u* n H" is the map
rp(x) =x—2(x|uyu. (4.4)

Example 4.17. If up = 0, then {(z |u) = (x| u) for all z € M"™. This implies that the
reflection in u* coincides with the Euclidean reflection in the hyperplane u' that contains
€p.

The proofs of the basic properties of reflections are natural modifications of those in
the spherical case. Note that the expression defines a mapping in Minkowski space,
fixing the hyperplane u*. The reflection in hyperbolic space is, in fact, the restriction of
a reflection of Minkowski space.

Proposition 4.18. Let H be a hyperbolic hyperplane. Then
(0) rg maps H"™ into itself.

(1) rg ory is the identity.

(2) rg € OF(1,n).

(3) d(ru(z),y) = d(x,y) for allx e H" and all y € H.

(4) The fized point set of ry is H

Proof. (0) Let € H". Using bilinearity and symmetry of the Minkowski form and the
fact that u is a unit vector, we get

rg(z)|ru(z)) = <a: — 2z |uyu ‘ x — 2(z| u>u>
=z |2) — 2z [uyx|uy — 2z |wu|z) + 4Kz [uy(z [ uyu|u)
={(x|z)=—1.

Thus, ry(z) € £". Furthermore, for any v € H,

rg(v) =v—20|uyu = v,
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so there are points in H" which are mapped to H". Since ry is continuous and preserves
the Minkowski form, ry(H") < H".

(1) This easy computation is left as an exercise.
(2) Clearly, ry is a linear mapping, and it is a bijection by (1). As in (0), we get

(ru (@) |ru(y)) = (o — 20 upu |y — 2y [upu) = (x| y).
Thus, ri € O(1,n). Claim (0) gives rg € O7(1,n).
(3) For any z € H" and all y € H, we have
ra(e) 19D = (o — 2o |yl y) = (ol g — 2 | uxu |y = (|,

where the final equality follows from the assumption u € H*.
(4) This follows immediately from (3) by taking x =y € H. O

The bisector of two distinct points p and ¢ in H” is the hyperplane
bis(p,q) = {x € H" : d(z,p) = d(z,q)} .

Lemma 4.19. If p,qe H", p # q, then bis(p,q) = (p — ¢)* n H".
Proof. Exercise [£.5 O

Proposition 4.20. (1) For any p,q € H", the bisector bis(p, q) is a hyperbolic hyperplane.
(2) If H is a hyperplane in H" and z,y € H" — H with rg(z) =y, then H = bis(x,y).
(3) If p,ge H", p # q, then Tvispq)(P) = ¢-

(4) Let ¢ € Isom(H"), ¢ # id. If a € H" with ¢(a) # a, then the fized points of ¢ are
contained in bis(a, ¢(a)).

(5) Let ¢ € Isom(H"), ¢ # id. If H is a hyperplane such that ¢|g is the identity, then
¢=rpy.

Proof. (1) Lemma [4.1] implies that

p—qlp—q=-2-2p|g>0.

Let A > 0 and u € £" such that p — ¢ = M. Obviously, (p — ¢)* = vt. The second part
of Proposition implies that there is an element A € O"(1,n) such that Av = e;. The
orthogonal complement of e; is the hyperplane {x € M!'" : x; = 0} that contains eg. The
claim follows as A maps H" to itself and (Av)t = A(vt).

(2) follows from Proposition [4.18(3).
(3) Using the computation from (1) above, we have

2plp—q) =2plp)—pl) = —2-2p|le =p—q*.

Thus,
Thisp,g)(P) =P — 2{p|p — @ ’5__;2 =q.
(4) If ¢(b) = b, then d(a,b) = d(¢(a), (b)) = d(¢p(a),b), so that b € bis(a, p(a)).
(5) is an instructive exercise. O
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Proposition 4.21. Any two reflections in hyperbolic hyperplanes of H" are conjugate in
Isom H".

Proof. Exercise O

Next, we prove that all isometries of hyperbolic space are restrictions to H" of linear
automorphisms of M!":

Theorem 4.22. Isom(H") = O*(1,n).

The idea of the proof is to show that each isometry of H" is the composition of
reflections in hyperbolic hyperplanes. Again, the proof follows the same ideas as in the
FEuclidean and spherical cases.

Proposition 4.23. Let p1,pa, ..., Pk, q1, G2, - - ., qr € H™ be points that satisfy

d(pi,p;) = d(a, q;)

foralli,j € {1,2,...,k}. Then, there is an isometry ¢ € Isom(H") such that ¢(p;) = q;
for all i € {1,2,... k}. Furthermore, the isometry ¢ is the composition of at most k
reflections in hyperplanes.

Proof. Exercise [4.8 m

Note that Proposition implies that if 7" and 7" are two triangles in H" with equal
sides, then there is an isometry ¢ of H" such that ¢(7T) = T".

Proof of Theorem[].23. Let ¢ € Isom(H"). Let {ag,a1,...,a,} be a set of points in H"
which is not contained in any proper hyperbolic subspace. This is achieved by choosing
them so that they generate M as a vector space. Proposition implies that there
is an isometry ¢y € O"(1,n) such that ¢g(é(a;)) = a; for all 0 < i < n. Since the set
of fixed points of ¢y o ¢ contains the points ag, aq, ..., a,, the fixed point set of ¢y o ¢ is
not contained in a proper hyperbolic subspace. Proposition M(él) implies that ¢g o ¢ is
the identity map. Thus, ¢ = ¢y '. In particular, ¢ € O*(1,n), which is all we needed to
show. O]

Corollary 4.24. Any isometry of H" can be represented as the composition of at most
n + 1 reflections. O

Proposition 4.25. The stabilizer of any point x € H" is isomorphic to O(n).

Proof. Exercise O

4.5 Triangles in H"

The law of cosines implies that a triangle in E”, S or H" is uniquely determined up to
an isometry of the space, if the lengths of the three sides are known. In Euclidean space,
the three angles of a triangle do not determine the triangle uniquely. In S™ and H" the
angles determine a triangle uniquely. For H", this is the content of
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Proposition 4.26 (The second hyperbolic law of cosines).

cos avcos 3 + cosy

coshc = . -
sin «r sin 3

Proof. This formula follows from the first law of cosines by a lengthy manipulation anal-
ogous to the proof of Proposition See for example [Beal, p. 148-150]. O

The second law of cosines and Proposition imply that if 7" and 7" are two triangles
in H™ with equal sides, then there is an isometry ¢ of H" such that ¢(T) = T".

Proposition 4.27 (The hyperbolic law of sines).

sinha  sinhb _ sinh ¢

sina sinf3 sinvy

Proof. The first law of cosines implies that

sinh ¢ 2 B sinh? a sinh? bsinh? ¢
sin vy 2 cosh a cosh b cosh ¢ — cosh? a — cosh? b — cosh® ¢+ 1

The claim follows because this expression is symmetric in a, b and c. O
The following two results on triangles will be useful later.

Proposition 4.28. For any 0 < a, b, ¢ for whicha+b>c¢, b+c¢ > a and c+a > b, there
is a triangle with side lengths a, b and c. Any two such triangles are isometric.

Proof. The proof is analogous with that of Proposition without the upper bound on
the lengths. We use the hyperbolic law of cosines in the construction. If a triangle with
the asserted properties exists, then the angle at C' satisfies the cosine law. Therefore, we
can compute what this angle needs to be if we know that

cosh acosh b — coshc‘ (4.5)

sinh a sinh b

The inequality ¢ < a + b implies
cosh ¢ < cosh(a + b) = coshacoshb + sinh asinh b,

which gives
cosh acosh b — cosh ¢

sinh @ sinh b
The inequalities b + ¢ > a and ¢ + a > b give |a — b < ¢, which implies

cosh ¢ > cosh(a — b) = coshacoshb + sinh asinh b,

and we get
cosh a coshb — cosh e

sinh a sinh b
Now we can place the sides of length a and b starting at C' in the correct angle ~. The
cosine law implies that the distance of the endpoints points A and B of these segments
is ¢. There geodesic arc from A to B is therefore the side opposite to C' of the desired
length c.
The triangles are isometric by Proposition [4.23] O
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Proposition 4.29. Any triangle in H" is contained in an isometrically embedded copy of
H? in H".

Proof. Any three points in the hyperboloid model H" are contained in the intersection of
H" with a 3-dimensional linear subspace of M, which is an isometrically embedded copy
of the hyperbolic plane. The geodesic arc through any two of these points in is contained
in the same hyperbolic 2-plane by Lemma [1.9 O

Using the hyperbolic law of cosines and the Taylor polynomials of hyperbolic functions
at 0, cosht = 1+ % + o(t?) and sinht = t + o(t), we see that if the sides of a triangle
in hyperbolic space are short, then the sides satisfy the Euclidean law of cosines up to a
small error.

Exercises

4.1. Prove Lemma 2

4.2. Prove that 7 is the O (1,2)-orbit of e; € M'2[]
4.3. Prove Lemma 4.7

4.4. Prove Proposition [4.15

4.5. Prove Lemma [£.19

4.6. Prove Proposition [4.20)5).

4.7. Prove Proposition E|

4.8. Prove Proposition E]

4.9. Prove Proposition E|

5See Proposition

6Use Proposition

"The proof is formally exactly the same as that of Proposition @}
8Follow the proof of Proposition Assume that we know Isom H" = O (1,7n) and use transitivity.
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Chapter 5

Models of hyperbolic space

The hyperboloid model of hyperbolic space introduced in chapter 4] model is used in
many arithmetical applications and the closely related projective model has important
generalizations to complex and quaternionic hyperbolic spaces.

In this chapter, we consider a number of other models for hyperbolic space. Hyperbolic
space of dimension n is the class of all metric spaces isometric with the hyperboloid model
(H", d), and we can use any model that is best suited for the geometric problem at hand.
After this section we will often talk about the “upper halfplane model of H?” etc.

The underlying set of the Klein model and the Poincaré model is the unit ball in
Euclidean space. Therefore, we introduce a special notation for this set:

B"™ is the unit ball in E™.

In sections [5.2] and we use the geometric properties of inversions in spheres.
We refer to Appendix [A] for details on inversions.

5.1 Klein’s model

Each line in M through the origin which intersects the hyperboloid model H", intersects
it in exactly one point, and it also intersects the embedded copy {1} x B™ in M!'" of B" in
exactly one point. This correspondence determines a bijection K : B" — H", which has

the explicit expression
(1, )

Vi=lz?

The map K becomes an isometry when we define a metric on B" by setting

1 (z]y)

V1221 —y[?

The metric space (B", dk) is the Klein model of n-dimensional hyperbolic space.

K(x) =

dig(x,y) = d(K(z), K(y)) = arcosh
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-2 -1 b 1 2

Figure 5.1 — The map K used in the construction of the Klein model.

Proposition 5.1. The images of geodesic lines of the Klein model are the Euclidean open
segments connecting two points in the Euclidean unit sphere.

Proof. Geodesic lines in H" are the intersections of H" with 2-planes in M'" by Lemma
[1.9] The intersection of such a plane with {1} x B" is the preimage under K of the geodesic
line. Conversely, any line in {1} x R™ is the intersection of a 2-plane with {1} x R™. Such

a plane intersects H" in the image of a geodesic line if and only if the 2-plane intersects
the Klein model. O

Corollary 5.2. (1) For any two distinct points a,b € S"~!' = 0B", there is a unique image
of a geodesic line |a,b| in the Klein model.

(2) If o € B™ and b e 0B™, there is a unique geodesic ray py,p: [0,0[ — B™ in the Klein
model of H" such that p,,,(0) = x¢ and such that the Euclidean closure of the image
Puon([0,00[) = [0, b] is the Euclidean closed segment [z, b]. O

We call ]a, b[ the geodesic line with endpoints a and b in the Klein model of H™.

If v: R — H" is a geodesic line and 7" € R, then the mapping ¢ +> v(t — T') defined on
R is a geodesic line such that v(R) = ~7(R).

Recall that in Euclidean plane geometry, two (geodesic) lines are parallel if they do
not intersect. The parallel axiom states that through any point P in the Euclidean plane
that is not contained in a line L, there is exactly one line that is parallel with L. It easy
to see using the Klein model that the parallel axiom does not hold in H?, see Figure

5.2 Poincaré’s ball model

Each affine line that passes through the point (—1,0) € RxR™ = M which intersects H",
intersects it in exactly one point, and it also intersects the n-dimensional ball {0} x B"
embedded in M!" in exactly one point. This correspondence determines a bijection
P:B" — H",
(1 + |l 2)
Plx)=———"-2-
1 —|l]?
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Figure 5.2 — Three red lines through the origin that are parallel in the Klein model
with the line whose endpoints are (0, 1) and (1, 0).

This expression is found by computing for any = € B™ that the point y, = (0, ) + t(1, )
on the line through the points (0, ) and (—1,0) of R x R™ = M"" is in H" if and only if

1] 2
t= .
EEE

Figure 5.3 — The map P used in the construction of the Poincaré model.

The map P becomes an isometry when we define a metric on B" by setting

LRI

dp(x,y) = d(P(x), P(y)) = arcosh (1 +2 (1= [T = [y[?)

The metric space (B", dp) is the Poincaré model of n-dimensional hyperbolic space.
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Lemma 5.3. The hyperbolic ball of radius r > 0 centered at 0 in the Poincaré model
coincides with the Euclidean ball of radius tanh 3 centered at 0. The Euclidean ball of
radius 0 < R < 1 centered at 0 coincides with the hyperbolic ball of radius log % centered
at 0 in the Poincaré model.

Proof. 1f x € B", we have

=] 1+ ||
dp(z,0) = arcosh (1 + 2 7> = log .
1= |z[? 1 =[]

Both claims follow from this equation. O

Figure 5.4 — The construction of the map h from the Poincaré model to the Klein
model.

Proposition 5.4. The images of geodesic lines of the Poincaré model are the intersections
of the Euclidean unit ball with Euclidean circles and lines that are orthogonal to the unit
sphere.

Proof. The map h = K~ o P is an isometry between the Poincaré and Klein models. A

computationﬂ shows that
h(z) 2z
r)=—"—.
1+ J?

IThis can be done by observing that A is a radial map and then solving the equation

1=y

(Ly) _(1+x2 236)
1—22"1—22

with0 <z,y < 1.
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The inversion ¢(_1 )2 in the sphere centered at (—1,0) € E' x E" of radius 1/2 maps
{0} x E™ U {00} to S™. It maps {0} x B" U {oo} to the upper hemisphere of S", fixing
{0} x S"7L. In coordinates,

1—|z[> 2z )
Lot 22 1+ ]2/

L(fl,O),Z(fL') = <

so that if pr: E**! = E! x E® — E” is the Euclidean orthogonal projection on the second
component of the product, we have

h = pr OL(,170)72 .

The inversion ¢(_1 )2 maps any circle in {0} x B" orthogonal to {0} x S"~* to a circle
on the unit sphere in E"™! orthogonal to {0} x S*™'. These circles are orthogonal to
{0} x E™, and they are exactly the intersections of the unit sphere with 2-planes parallel
to the xgp-axis, and thus, pr maps them to the geodesic lines of the Klein model. As h is
an isometry, the result follows. O]

Figure 5.5 — Some geodesic lines and a ball in the Poincaré disk model of H?Z.

Note that the mapping h from the Klein model to the Poincaré model is the restriction
of a homeomorphism of the Euclidean closure of B" to itself. This extended mapping is
the identity in the boundary of B".

Corollary 5.5. (1) For any two distinct points a,b € S*™' = 0B", there is geodesic line
|a, b in the Poincaré model that we call the geodesic line with endpoints a and b in the
Poincaré model of H".

(2) If xy € B" and b € 0B", there is a unique geodesic 1aY py,p: [0,00[ — B™ in the
Poincaré model of H" such that p.,,(0) = zo and such that the Fuclidean closure of the
image pgs([0,0[) = [x0,b] is a closed Euclidean segment or a closed circular segment
with one endpoint at b. O
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Figure 5.6 — Geodesic rays starting at 0 and at (%, 0) with circles centered at the same
points in the Poincaré disk model of H?.

Proposition 5.6. The Riemannian metric of the ball model is %

Proof. For all tangent vector u € T,,B(0,1), we have

_( Aalw) 2w Ao ) yn
DP(x)“‘(u—uP)?’1—ux||2 <1—|:r2>2) .

Using this, for u,v € T,B", we compute

16(z|u)(z|v) | 4ulv)  16(z|u)(z|v)  16(z|u)(z]|v)]z]?
A=) @ =) @ —]=]?)? (1 — Jl=]*)*
A(u|v
- ] l 2" -
(1 —]?)

Proposition [5.6/implies that the angles between tangent vectors of paths in the Poincaré
model are the same as the angles measured in the ambient Euclidean space. The Klein
model does not have this useful property. This is illustrated in Figure

(DP(z)u| DP(x)v) = —

5.3 The upper halfspace model

Let
R", ={zeR": x, > 0}

be the n-dimensional upper halfspace. Let v_., o be the inversion in the sphere of center
—e, € E" of radius /2. The map

F={(t_¢,2)|pn: B" —>R", (5.1)
is a bijection, which becomes an isometry if we use the metric
. —1 —1 - |z — yH2
dgn, (2,y) = dp(F~(x), F~(y)) = arcosh (1 + Y (5.2)

1 n
in R",.
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Figure 5.7 — The blue geodesic lines of the Poincaré model in this figure are the images
of the red geodesic lines of the Klein model. The angles at the points of intersection are
the same in hyperbolic plane but the angle in the ambient Euclidean space of the red lines
is not the same as that of the blue circular segments.

Figure 5.8 — The mapping F' corresponds to the reflection in the red circle when E2 is
identified with S? by the stereographic projection. See section and Appendix

The metric space (R™;,dgn, ) is the upper halfspace model of n-dimensional hyperbolic
space.

Example 5.7. An elementary computation shows that if z = (a,z,) and y = (a,y,) for
any a € R"!, then

Tn
an+(l', y) = IOg y—

November 5, 202}



56

Models of hyperbolic space

It is very common to identify the upper halfplane model of H? with the upper halfplane
in C, and we will often do this, as in Example |5.§|(2) below.

Example 5.8. (1) Let n > 3. The subspace {r € R} : zy = --- = x,1 = 0} with
the metric induced from the upper halfplane model is an isometrically embedded copy of
H? in the upper halfspace model of H".

(2) Let 0 < ¢ < m. Then the distance of the points i and ¢ in the upper halfplane model

is
cos? ¢ + (1 — sin ¢)?
2sin ¢

dgz, (i,€"*) = arcosh (1 + ) = arcosh

sing

Proposition 5.9. The images of the geodesic lines of the upper halfspace model are the
intersections of the upper halfspace with Euclidean circles and lines that are orthogonal to
E"~1 x {0}.

Proof. The inversion used in the definition of the upper halfspace model maps lines and
circles to lines or circles and preserves angles. The claim follows from Proposition[5.4, [

H2

.172:0

Figure 5.9 — Some geodesic lines in the upper halfplane model of H?.

Geodesic lines in the upper halfspace model are images under F' of geodesic lines of
the Poincaré model. If one of the endpoints of a geodesic line in the Poincaré model is
—e,, then F' maps this geodesic line to a halfline orthogonal to E"~! x {0} at one end,
and the other endpoint is mapped to o € En.

Corollary 5.10. For any two distinct points a,b € E"™! x {0} U {00}, there is geodesic
line |a,b| in the upper halfspace model with endpoints a and b. [

We have seen that the unit sphere in the Klein and Poincaré ball models and the set
E"! x {0} U {00} = E™ in the upper halfspace model have a geometric meaning, and that
there is a natural homeomorphism between these sets. In chapter 77, we will see that
these sets appear naturally as a geometrically defined boundary at infinity of H"™, and we
will use the notation d,H™ for this set from now on.
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In practical applications, it is good to remember that a circle is perpendicular to
E x {0} = E? if and only if its center is in E x {0}. In higher dimensions, this is no longer
true.

The following lemma records the expressions of the geodesics in the upper halfspace.

Lemma 5.11. Let € R" and y > 0. The mapping v,,: R — R?,

Yeu(t) = (2, ye’)

is a geodesic line in the upper halfspace model of H" such that v,,(0) = (z,y) and with
endpoints x an 0. For any isometry g of the upper halfspace model, the mapping g o vz,
s a geodesic line.

Proof. The mapping 7,,: R — R’} is a geodesic line by Example [5.7] O

1)

.-
3,

Proposition 5.12. The Riemannian metric of the upper halfspace model is

Proof. The proof is similar to that of Proposition , using (the inverse of) the map F
defined in equation (5.1) to transfer the Riemannian metric from the ball to the upper
halfspace. Note that F o F' = id. As in the proof of Proposition 5.4, we compute

DF(2)u = Azt ) (@ +en|u) 2u ‘
|z + e |z + e
The claim follows because
2
T
(1= [F@)*)? = —53
(1= =)

and

(DF(z)u| DF(z)v)
_ 16]|z + en|*(z + en | u)(x + €, | v) _16(z +en |u)(z +en|v) 4(ul|v)

|z + e |z + el |z + e

4uv)

= 0
|z + en*

Proposition [5.12|implies that the angles between tangent vectors of paths in the upper
halfspace model are the same as the angles measured in the ambient Euclidean space.

Proof of Theorem[{.13. We will use the upper halfspace model to prove the result. Both
quantities are invariant under isometries of hyperbolic space. Therefore, it is sufficient to
show that the geodesic segment [(0,1), (0,7)] is the Riemannian geodesic segment from
(0,1) to (0,7T) for any T > 0.
Let ¢: [0,1] — H" be a piecewise smooth path such that ¢(0) = (0,1) and ¢(1) =
(0,7). | Let p: H® — [0,1],
p(ZE, S) = (07 S)

2We can assume that all paths are defined on [0, 1] because smooth reparametrization does not change
the Riemannian length of a path, see for example [Petl, Section 5.3].
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for all z € R"! and s > 0, be the horospherical projection to the geodesic line |0, oo[ that
contains the points (0,1) to (0,T). Note that Dp(x, s)u = u, for all (z,s) € H" and all
u e R". This implies that |(po ¢)(7)| < |¢(7)] for all 7 € [0,1] . This gives the inequality
we want:

o) = > [ 12D 1 oo 1) = togT = a(0.1), (0.7

Note that the second inequality is strict if the mapping ¢ — ¢, () is not monotonous.
If 7p,1 is the geodesic line of Lemma [5.11], 791(0) = (0,1), v0,1(logT) = (0,T") and

log T | : log T
¥(0)] f ye'
l o = J dt = dt =logT .
(70,1’[0,1 gT]) . () o yet

This completes the proof. O

5.4 Isometries of the upper halfspace model

In the upper halfspace model, it is often convenient to move a geodesic line by an isometry
such that the endpoints of the geodesic in the model are 0 and co. The following results
on isometries allow to do that and a bit more. We illustrate the utility of the transitivity
properties of the group of isometries in Proposition [5.16]and its corollaries, and in Lemma
b.221

Let b e R"! x {0} < R". The mapping T;: R? — R”,
Tb(ZL‘) =T+ b,

is a horizontal translation by b.
Let A > 0. The mapping Ly: R} — R,

L)\(‘r) = )\SL’,

is a dilation by factor \.
Let Qo € O(n — 1) and let us use the notation « = (Z,z,). The mapping @: R} — R”,

Q(j7 mn) = (QO(-CI_:)’ xn) )
is an orthogonal mapping around the geodesic line 10, col.
Lemma 5.13. Let a,be R"! x {0} =« R™ and let A > 0.

(1) Tb Olgr2© T—b = lg+br2-
(2) Ly o Loy2 O L§ = Lo,(Ar)2-

Proof. Exercise []

Proposition 5.14. The maps

3 f is the notation we use for the derivative vector of a path f.
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o Ty, for any be R"1 x {0} c R",
e Loz, for any a e R x {0} < R" and any r > 0 ,
e Ly for any A\ > 0, and
e Q forany Qo€ O(n—1)
are isometries of the upper halfspace model.

Proof. Let us consider the inversion in the Euclidean unit sphere. It preserves all affine
rays from a, so it preserves the upper halfspace. To prove that its restriction to H" is

an isometry, equation ({5.2]) implies that it is enough to show that the expression % is
invariant under the inversion. Let us compute:

a(@) —toaly) _ =y afy)® - yla)?

r? Izl [yl lz[?[y)>
which gives
[=P0y]* = 2 [9) = [y)* + =]yl
ltoa(2) — woa(W)|* _ EINF _ Nz —yl?
£0,1(Z)nt0,1(Y)n _Ln¥n__ TnYn
=[]yl

The rest of the computations is done in Exercise [5.6] O

Corollary 5.15. The subgroup of Isom(H"™) generated by dilations fizing 0 and horizontal
translations acts transitively on the upper halfspace model of H".

Proof. If = is in the upper half plane,

T (21,29, n1,0) (@) = (0,...,2,) = Ly, €.

Thus,
T = T($1»5527-~-In—170) oLy,é€n. L

We will now apply the transitivity of the action of the group of isometries and of
suitable subgroups to geometric and topological questions.

Proposition 5.16. Balls in the upper halfspace model and in the Poincaré ball model are
FEuclidean balls in the Fuclidean space that contains the model.

Proof. By Lemmal[5.3], balls centered at the origin of the Poincaré ball model are Euclidean
balls. The inversion that maps the ball model to the upper halfspace model is an isometry,
and on the other hand it preserves generalized spheres. Thus, the images of the balls
centered at the origin are hyperbolic and Euclidean balls. The hyperbolic center of these
balls can be mapped to any other point in H" by one of the isometries of Corollary [5.15]
These mappings preserve spheres, which implies that all balls in the upper halfspace model
are Euclidean balls. The rest of the claim follows by one more application of the inversion
that maps the ball model to the upper halfspace model. O

Corollary 5.17. Hyperbolic space H"™ is homeomorphic with the open unit ball of E™.
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Proof. The identity map from the Poincaré model to B” < E" with the induced metric is

a homeomorphism by Proposition [5.16] O
Corollary 5.18. Hyperbolic space H"™ is a proper metric space. [

Our study of the Klein, Poincaré and upper halfspace models of hyperbolic space
suggest that it makes sense to compactify hyperbolic space by adding the boundary at
infinity.

We will now consider H” U 0,H,, with the topology induced by the embedding of the
Poincaré model and its boundary in Euclidean space.

We will see in Example 7?7 that this choice of topology is mathematically natural.

Proposition 5.19. Let x1, 29,23 and y1,y2,y3 be two triples of distinct points in the
boundary at infinity of H". There is an isometry of H" which is the restriction of a
homeomorphism g of H" U 0,H" to itself such that g(x;) = y; for all i € {1,2,3}.

Proof. Let us consider the question in the upper halfspace model. The mappings given
in Proposition are clearly continuous mappings of E" to itself.

It suffices to show that we can use a combination of these isometries to map x1, x2, 3
to 0,0, (1,0,...,0). If all points x1,x, x3 are finite, map z; by a translation T_,, to 0
and then by the inversion ¢ to c0. Relabel toT ., (z2) and toT_,, (x3) to x2 and x3. Map
T2 to 0 by a translation. This map keeps oo fixed. Map x5 (again relabeled) to the unit
sphere by a dilation and then to (1,0,...,0) by the extension of an orthogonal map of
E"~!. These two maps fix co and 0. O

Proposition 5.20. Let x,y € H" and a,b € 0,H". There is an isometry of H" which
is the restriction of a homeomorphism g of H" U 0,H" to itself such that g(x) = y and

g(a) = 0.
Proof. Exercise O

In the proofs of Propositions and [5.20] we used explicit isomorphisms of the upper
half plane model that are restrictions of homeomorphic self-maps of H" U d,H". In fact,
there is a result that generalizes this observation to all isometries:

Theorem 5.21. The isometries of H" are restrictions of homeomorphic self-maps of
H" U 0,H".

Proof. We could prove this by showing that all reflections in hyperbolic hyperplanes have
this property, and then using the fact that reflections generate Isom H"™. The proof relies
on showing that in the upper halfplane model, reflections in hyperbolic hyperplanes are
either conjugates of the map @) of Proposition with Qg a hyperplane reflection in
E"~1, or inversions. 0

For any r > 0, the r-neighbourhood of any nonempty subset A < H" is

M(A) ={zeH" : d(x,A) <r}.
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A

Figure 5.10 — Neighbourhoods of geodesic lines in the upper halfplane model and in
the Poincaré ball model of H?.

Lemma 5.22. Let L = |0, 00[ in the upper halfspace model of H".
(1) (0,]lz]]) € R*! x Ry is the unique closest point to x € R in L.
(2) The r-neighbourhood of L is the Euclidean infinite coneﬁ

1
coshr

N (L) = {zeR} : cos£o(L,z) >

Proof. (1) The function

24 as+ -+ 22+ (2, — |z)et)?
2, ||x||et

 2xp|zfet + 224+ a3+ + 22+ 22— 2x,||z)el + |z]Pe®

t — coshd(z,v9,2(t)) = 1 +

2z, |z|et
2 1 2t
_ P+ e =l
2z, |z et T,
has a unique minimum at 0, and 7o | (0) = |z|e,.
(2) Exercise [5.8, O

If L' is a geodesic line in the upper halfspace model, we can map it to L by a com-
position of the isometries used in Proposition [5.19 These isometries are conformal maps
which map the set of spheres and hyperplanes in E" to itself. It is easy to see that
the neighbourhoods 4, (L) are infinite cones over Euclidean (n — 1)-balls or shaped like
n-dimensional bananas with opening angles at the endpoints given by Lemma [5.22] see
Figure [5.10] As the isometry used to map the ball model to the upper halfspace model is
an inversion, the r-neighbourhoods of geodesic lines in the ball model are bananas.

5.5 Mobius transformations and isometries of H?>

The isometries of the upper halfplane model and the ball model of H? can be described
using 2 x 2- matrices and Mobius transformations.

4%0(L, ) is the angle between the Euclidean ray L and the Euclidean ray from 0 through .
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We can use complex Mobius transformations to describe isometries of the hyperbolic
plane and hyperbolic 3-space.
The special linear group with real and complex coefficients are

and
SLQ(C) = {A € G’LQ(C) cdet A = 1},

and the special unitary group of signature (1,1) is
SU(1,1) = {A e SLy(C) : A*JA = J} = { <% 2) al? = [b]* = 1},
where J = diag(—1.1) and A* = TA.

a b

Recall from complex analysi that any matrix A = ( ) with a,b,c,d € C and

c d
det A # 0 determines a Mdbius transformation Mob A: C— @,
Moh Az — 0 (5.3)
6b Az = )
cz+d’

~

and that the mapping Méb: SLy(C) — Homeo(C) is an action by homeomorphisms with
ker Méb = {+15}.

Proposition 5.23. Let K € {R,C}. The group SLy(K) is generated by the elements

J:((l] _(1)) and sz(é f),

Proof. Let (: g) € SLy(K). Assume «, 3,7, € K with v # 0. Then, since ad— v = 1,

we have the following equation in SLy(K):

666 D66

The claim now follows from the observation that

o) -6 )G )6 )0 )6 )6 )

The remaining case v = 0 is easier. [

with € K.

°See for example [Ahl, Section 3.3].
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Let f e Méb(@l), flz) = ‘gis be a Mobius transformation. The Poincaré extension of

ftoH%is f: H? — H?, f(z) = %Is. This can be seen, for example, using the Proposition

[.23]and observing that the reflections in the Euclidean unit circle and the imaginary axis
have simple expressions using complex numbers

z

o)

I

and
Rig(z) =2—2Re z=—=2.

Similarly, the Poincaré extension of any element of SU(1, 1) to the ball model is given by
equation ({5.3)).

Proposition 5.24. (1) PSLy(R) = SLy(R)/{xid} is the subgroup of index 2 in the isom-
etry group of the upper halfplane model of H? that consists of the orientation-preserving
1sometries.

(2) PU(1,1) = SU(1,1)/{xid} is the subgroup of index 2 in the isometry group of the
Poincaré disk model of H? that consists of the orientation-preserving isometries.

Proof. The Mobius transformations that are defined by elements of SLy(R) are analytic
functions, thus they are orientation-preserving.
(1) It is easy to check that Mob.J and MobTj for any 8 € R are compositions of two
reflections of the upper halfplane. Proposition implies that Mob SLy(R) is a subgroup
of the group of isometries.

See for example [And, Theorem 2.26] for the remaining parts of the claim.

(2) The isometry ¢_;> between the Poincaré disk model and the upper halfplane model
has the expression
—1Zz+ 1

Z—1

L,i?g (Z) =

Y

and the reflection in the geodesic line |0, o[ is z — —Z. Their composition is the M&bius
transformation g: z — =2-1 and a computation shows that g gives a conjugacy between

z+i

SL,(R) and SU(1, 1). O

Note that, in fact, we found all orientation-preserving isometries of H? and H? in our
proof of Proposition [5.19

Remarks 5.25. (1) The trace of a matrix is invariant under conjugation:
tr(BAB™) =tr A

for all A, B € SLy(C). Since the kernel of the map from SLy(C) to Isom(H") is +1s,
the traces of the two matrices associates with an orientarion-preserving isometry differ
by a sign, we can define a map tr?: Isom, (H?®) — R,. This map is invariant under
conjugation, and it classifies the elements of PSLy(R) and PSLy(C) in three types. Items
(2) to (4) below elaborate on the classification of PSLy(R).

(2) Using the representation of orientation-preserving isometries of H? by Mobius trans-
formations, it is straightforward to check that an orientation-preserving isometry A of H?
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which is not the identity has one or two fixed points in H? U 0, H?. More precisely, the

b
fixed points of the transformation (CCL d) are

a—d+\/tr2A—4

2¢c 2c

From this formula, we see that an isometry A € PSLy(R) has
e no fixed points in H? and two fixed points in 0, H? if tr? A > 4,
« one fixed point in H? and no fixed points in 0,,H? if tr* A € [0, 4[, and

e no fixed points in H? and one fixed point in 0,H? if tr? A = 4.

(3) Using the above results, one can show that any two Mobius transformations A, B €
SLy(R) with tr> A = tr? B are conjugate in Isom(H?). For example, if A € SLy(R) with
tr? A > 4, then A has two fixed points, which we may assume are 0 and co. Now, the
equations for fixed points and the determinant imply that A = diag(A, A™!), which implies
that tr* A = (A+1/))2. Conjugating with the map z — —1/z, we may assume that A > 1.
Similarly, B is conjugate with diag(\, A\™!). The other cases are proved in a similar way.

5.6 Triangles in H" (part 2)

The Poincaré model and the upper halfspace model are very useful in many proofs for
example because the angle between two tangent vectors is in these models is the same
as the Euclidean angle. We use this property to prove the following facts on triangles in
hyperbolic space.

Proposition 5.26. (1) The sum of the angles of a nondegenerate triangle in hyperbolic
space is strictly less than .

(2) For any 0 < «, 3,7 < m for which a + B + v < m, there is a triangle with angles
a, B and v. Any two such triangles are isometric.

Proof. By Proposition 4.29] it suffices to consider the hyperbolic plane.

(1) Let T be a triangle with vertices A, B and C. We may assume that one of the vertices
A is the origin in the Poincaré disk model. Thus, two sides of the triangle are contained
in two radii of the ball and the third one is contained in a circle which is orthogonal to the
boundary of B". Consider the Euclidean triangle with the same vertices as T'. The angles
B and 7 are strictly smaller than the corresponding angles in the Euclidean triangle. This
implies the result as the angles of an Euclidean triangle sum to 7.

(2) The second hyperbolic law of cosinesﬁ implies that the angles of a triangle determine
it up to isometry.

Let us consider the upper halfplane model of H?. Let 0 < » < 1. At most one of
the angles can be greater than or equal to 7, and we may assume that 0 < o, < 7.
The geodesic line contained in the Fuclidean circle with center cosa > 0 and radius 1

intersects the geodesic line |0, o0 at an angle «, and the geodesic line contained in the

6Propositiorm
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Euclidean circle with center —rcosf < 0 and radius r intersects ]0,c0[ at an angle £.

When i;zgzg <r< :Eg, there are subsegments of these three geodesic lines that make

up a triangle where the third angle grows from 0 to 7 — a — 5. O]
— 1=
T = Ticos

-2 -1 0 1 2

5.7 Generalized triangles in H".

We now extend the definition of triangles and allow some of the vertices to be points at
infinity of H"™:

A (generalized) triangle consists of three distinct points A, B, C' € H" U d,,H", called the
vertices, and of the geodesic arcs, rays or lines, called the sides, connecting the vertices.

If all vertices of a triangle A are in d,,H", then A is an ideal triangle.
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Proposition 5.27. (1) Any generalized triangle in H" is contained in an isometrically
embedded copy of H? in H".

(2) If A and A" are ideal triangles in H", there is an isometry v € IsomH" such that
v(A) = A,

Proof. Exercise 5.9 O

Next, we prove an analog of the second law of cosines for a special kind of generalized
triangles. Note that the first law of cosines cannot be generalized to this setting as the
triangle in question has two infinitely long sides.

Proposition 5.28. Let A, B € H" and let C € 0,H". Then

1 4 cosacos 8

coshe =

sin asin 8

Figure 5.12 —

Proof. By proposition [5.27], it is enough to consider the hyperbolic plane. We use the
upper halfplane model and normalize, using Proposition [5.19| with x; = C', x5 and x5 the
endpoints of the geodesic line through A and B, and y; = o0, y9 = —1 and y3 = 1, so that
A and B are on the Euclidean unit circle and C' = 0.

Now, A = (—cosa,sina) and B = (cos3,sin3). The result follows from equation

(G-2), as

|A — B|? 14 (cosa + cos §)* + (sina —sin §)* 1+cosozcosﬁi

1 = ]
* 2A58, 2sin asin 8 sin acsin 8

The special case of equation (5.4) with 8 = :
1

coshe = — (5.5)

sin a
is known as the angle of parallelism. Another useful form of equation ([5.5) is
¢ = log cot % . (5.6)
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Note that equation (5.4)) agrees with the second law of cosines if we define that
the angle at a vertex at infinity is 0.

From now on, we will use this convention.

5.8 Halfspaces and polytopes

Proposition implies that hyperbolic hyperplanes are bisectors of two distinct points
in H". Using this, we can prove

Proposition 5.29. Hyperplanes in the upper halfspace model are Fuclidean hyperplanes
orthogonal to the boundary at infinity or intersections with the upper halfspace of Fuclidean
spheres whose center is in the boundary at infinity.

Proof. Let x,y be points in the upper halfplane model. Using equation [5.2] we see that
the bisector of  and y consists of the solutions z in the upper halfspace of the equation

lo =2 _ ly—=|

Tn Yn

(5.7)

If x, = y,, then equation defines an affine plane in E™ that is orthogonal to the
boundary at infinity because it is a translate of the orthogonal complement of the z — y
whose nth coordinate is 0.

If x, # y,, then equation defines a sphere centered at zny_" x + —*2—y, which is

Yn Yn—2Tn
in the boundary at infinity. m

The two connected components of the complement of a hyperplane P H" are open hyper-
bolic halfspaces. Their closures in H™ are closed hyperbolic halfspaces.

Lemma 5.30. Closed and open halfspaces are convex in H™.

Proof. Exercise [5.10] O

If I is a finite or countable index set and (H;);c; is a collection of closed halfplanes in H"
with nonempty intersection P = ﬂie ; H; such that (0H,)cr is a locally finite collection of
hyperplanes[’] then P is a locally finite polytope in H".

In dimension n = 2, polytopes are polygons and in dimension n = 3, polyhedra.

2This means that for any compact K < H", the set {i € [ : K n 0H; # ¢} is finite.

Lemma 5.31. Let X be a uniquely geodesic metric space. Let K, < X be convex sets for
all o € A. Then (.4 Ko is convex or empty.

acA
Proof. Exercise [5.11] ]
Proposition 5.32. Polytopes in H" are convexz. O
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y 2B

Figure 5.13 — Three polygons in the upper halfplane model of the hyperbolic plane.

5.9 Riemannian metrics, area and volume

The Riemannian metrics of the ball and upper halfspace models are conformal metrics:
their expressions are a positive function times the Euclidean Riemannian metric of the
underlying subset of E”.

The Riemannian structure defines a natural volume form and a volume measure on
hyperbolic space: If V' is for example an open subset of n-dimensional hyperbolic space,
and A, is the n-dimensional Lebesgue measure, the volume of V' is

B 2" dA\, ()
Vol(V) = f = [2?)"

in the Poincaré ball model and

in the upper halfspace model.

Proposition 5.33. The volume of a ball in hyperbolic space is

Vol(B(z,r)) = Vol(S™™ ) f sinh™ ' ¢ dt.
0

In the hyperbolic plane, we have
Vol(B?(z,r)) = 47 sinh? g

for all x € H2.

The length of a circle of radius r in H? is 27 sinhr.

Proof. As the isometry group acts transitively, the volume of each ball of a fixed radius
is the same. Thus, it suffices to consider balls centered at the origoin in the Poincaré
ball model. Recall that the Euclidean radius of a ball of hyperbolic radius r centered at
0 in the Poincaré model is tanh 3. In order to compute the volume of the ball of radius
r, recall that the Lebesgue measure is given in the spherical coordinates (x < (r,u)) by
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dAn(z) = r"~'d Volga—1(u), and thus, using a change of variables s <> tanh £, we get

Vol(B(, 1)) = Vo(B(07)) = Volig™) [ " (5o

= 2""1Vol(S") J sinh™ ™! ! cosh™ ™! ! dt
. 2 2

= Vol(S" 1) f sinh™ ' ¢ dt.
0

The computation of the length of a circle is left as an execise. m
It is clear from the expression of the volume, that for all z € H", we have

VO](S“) e(n—l)r
on—1 )

Vol(B"(x,r)) ~
as r — o0. Thus, the volume of balls in hyperbolic space grows exponentially with the

radius, much faster than in Euclidean space.

Proposition 5.34. The area of the polygon in H? bounded by a generalized triangle with
angles a, B and vy ism™— (a+ B+ 7).

Proof. Any triangle T' can be described as the difference of two triangles with one vertex
at infinity. By the additivity of area and angles in the hyperbolic plane, we may restrict
to this special case. Using Proposition [5.19] we can assume that that A and B are on the
Euclidean unit circle and that the vertex C' has been moved to infinity. Now, the area of

T is 5 5
dA COS d d COS d
J 2 f J 7} xzzj $=7T—Ct—ﬁ. u
cos( z? cos(m—a) 1 - «T%

Exercises

5.1. Fill in the details of the proof of Proposition [5.6,
5.2. Compute the radius of the red ball in Figure [5.5]
5.3. Prove that a ball in hyperbolic space has a unique center.

5.4. Compute the hyperbolic radius and center of the ball {z € H? : |z — ci| < 1} for all
¢ > 1 in the upper halfplane model of H? E|

5.5. Prove Lemma [5.13

5.6. Complete the proof of Proposition H
5.7. Prove Proposition [5.20]

5.8. Prove Lemma[5.22)2).

5.9. Prove Proposition [5.27]

5.10. Prove Lemma [5.300

"We identify the upper halfplane model of H? with the upper halfplane in C.
8Use Lemma for inversions.
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5.11.
5.12.

Prove Lemma 5.311

Prove that the length of a circle of radius r in H? is 27 sinh .
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Appendix A

Inversive geometry

A.1 One-point compactification

Lemma A.1. Let (X, 1) be a topological space and let oo be a point that is not an element
of X. Let X = X u {0} and let

To ={U X:oweUand X —U c X is closed and compact}.
Then T = T U T is a topology in X.

Proof. See the basic course in topology. O

Let X be a topological space that is not compact. The topological space X is the one
point compactification or the Aleksandroff compactification of X.

Theorem A.2. Let (X,7) be a topological space that is not compact. The one point
compactification of X is compact and (X)= = X. The topology of X induces the original
topology of X on X.

Proof. Let (U, )aes be an open cover of X. There is an index Qo € J such that oo e U, .
The sets U, n X form an open cover of X —U,,, in X. As X —U,,, is compact in X, there
is some finite Jy < J such that X — U, < UaeJO Us. The finite collection (Uy)aetoufas}

is a cover of X. R

The subset X is dense in X because, by definition, every open neighbourhood of
oo intersects X. The topology 7 induces the topology 7 in X because 7 consists, by
definition of elements of 7 and of sets formed as the union of an element of 7 and {o0}. O

Example A.3. The stereographic projection . : S" — {e3} — E" = E" x {0} < E"™[ljs
the mapping
T, T,y Tp)

I- Tnt1

y(m)z(

Lfrom the north pole to the level of the equator
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It is a homeomorphism that maps each point x € S — {e,,+1} to the unique point in E"
(thought of as the hyperplane E? x {0} in E*)on the affine line through e, and x. Setting
(en+1) = 00 we obtain a homeomorphism .%: S" — En.

The one-point compactification of the Euclidean plane appears in complex analysis
as the Riemann sphere C U {0}. For example, the mapping z — % becomes a self-
homeomorphism of the Riemann sphere if we set 0 — o0 and o — 0.

A.2 Inversions

In this short section, we review some basic material on inversions.

Let ¢ € E™ and let @ € R — {0}. The mapping t.: E" — {c¢} - E" — {c},

r —C
LC’Q(Z‘) = C+OZW7

is an a-inversion with a pole at c¢. The number « is called the power of the inversion.

Example A.4. In the complex plane,

z

o) =

| =

Clearly, for all x € E™ — {c}, we have

(x —clicalr) —c) =a

and teq © oo = id [gn_goy. If @ > 0, then the restriction of ¢, to the sphere of center c
and radius y/« is the identity. The points x and ¢(x) are on the same ray starting at c,
and they satisfy

lz = el (z) — ¢ = r*.

Let ce E" and r > 0. The mapping ¢ ,2 is the inversion in the sphere of radius r centered
at c.

We extend the definition of an inversion ¢., to the one-point compactification En of
E™ by setting t.o(c) = 00 and ¢.4(0) = c.

Example A.5. ., o|sn = S" — En.

Spheres and hyperplanes in E" are generalized hyperplanes.

Proposition A.6. Let c € E" and let « € R — {0}. The inversion t., maps
(1) the affine subspaces that contain c to themselves,

(2) spheres passing through c to affine hyperplanes that do not contain c,

(3) affine hyperplanes that do not contain ¢ to spheres passing through ¢, and
(4) spheres that do not pass through c to spheres that do not pass through c.
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Figure A.1 — Stereographic projection is the restriction to the sphere of an inversion
whose center is the north pole.

Proof. (1) is clear from the expression of the inversion.

(2) Clearly, it is enough to consider the case ¢ = 0. For any a € E® — {0}, the sphere
0B(a, |al)) passes through 0 and

0B(a, ) = {z € E" : |z]* = 2(x] a)}.

This implies that for any « € 0B(a, |a|), we have iy o (x) = 37s [y and this gives (i(z)]a) =
$. Thus
2 )

. . o
ina(0B(a, al))) = {y eE": (y]a) = 5},
which is a hyperplane.

(3) follows from (2) and the fact that 4j, = id [g»_{o}.

(4) Consider the sphere 0B(a, p) with p # ||a|. If 21,22 € 0B(a, p) are on a line L (through
0), then % is the orthogonal projection of a on L, and we have

|1 + @a|® + |21 + 22 — 2a]* = 4|a|?
and
|21 — @a|? + |21 + 22 — 2a]® = 4P|
Thus,
(1| 22) = [a]* = p°,

and therefore x9 = g jqj2_,2(21), and we have = 1 42— ,2(0B(a, p)) = 0B(a, p). A simple

computation shows that for any «, f € R — {0}, we have ¢, 0 t5(z) = g forall z # 0, so
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we get
«
0T gt

which implies ¢g o (0B(a, p)) = (0B(a, p)). O

Let D be an open subset of E*. A mapping F': D — E" is locally conformal, if it
preserves the angles between tangent vectors. Clearly, any mapping whose differential
at any point is the composition of an orthogonal transformation and a dilation is locally
conformal. A homeomorphism which is a locally conformal map is called a conformal
mapping. Sometimes one wants to be more precise and say that mappings which preserve
angles and orientation are (directly) conformal and those that preserve angles but reverse
the orientation are indirectly conformal.

Proposition A.7. Let c € E" and let « € R — {0}. The inversion i., is conformal.

Proof. Observe that t., = T, 0194 0 T_.. Translations and dilation by « are clearly
conformal mappings so it suffices to prove the claim for the standard inversion ¢y ;. Note
that

1 2

BB

DLO’l (13)

where 'z is the transpose of  when x is a column vector. Observe that "Dig(z) = Dig ()
and that

1 4 4 1
Dao,l(ac)2 =L — —alr+ —alalr = —1,.
[=[> = | =]® =]
Thus, Dy, (x) is a multiple of an orthogonal matrix. O

Exercises

A.1. Fill in the details Example [A.5]
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Chapter 6

Gromov-hyperbolic spaces

Gromov-hyperbolic spaces form a class of geodesic metric spacedwhere some geomet-
ric features are similar to hyperbolic space. There are several equivalent definitions of
Gromov-hyperbolicity in the literature, most of which formalize the idea that triangles
are thin or slim in these spaces in a controlled way. In this chapter, we introduce Gromov-
hyperbolic spaces in the same way as they are defined in [BH] and the introduction of
|[GdIH]. We will also discuss the definition used by [BS], and we will show that these
definitions give the same class of Gromov hyperbolic spaces.

6.1 The Rips condition and /-hyperbolic spaces

The first definition captures a feature of triangles in hyperbolic space.

Let X be a geodesic metric space and let 6 > 0. A triangle A satisfies the Rips conditiorn’]
with constant § if any side of A is contained in the union of the closed d-neighbourhoods
of the other two.

®or is d-slim as in [BH]

Proposition 6.1. All triangles in H" satisfy the Rips condition with constant log(1++/2).

Proof. By Proposition [4.29] it suffices to consider H?. Let z, y and z be the vertices of
a nondegenerate triangle in the upper halfplane model of the hyperbolic plane. Using
the transitivity properties of the isometry group we may assume that the geodesic line
containing the edge [z,y] is |—1, 1[, which is the intersection of the Euclidean unit circle
with the upper halfplane. Furthermore, using reflections in the imaginary axis and the
Fuclidean unit circle, we may assume that Re x < Re y and that the Euclidean distance
of z from 0 is greater than 1. Using an isometry ¢_; o0 L;0t_1 5 with an appropriate t € R,
we may assume that z is in the imaginary axis as in Figure [6.1]

1See [Vii] for a treatment of the theory with weaker assumptions.

2See Proposition

November 5, 2024 7



78

Gromov-hyperbolic spaces

log(1 ++/2)

Figure 6.1 — The ideas of Example [6.2]

Let us show that [z, y] © A0 va) ([2, 2]) U 10g1 4 va) ([Y; 2]), using the ideal triangle
with vertices at —1, 1 and oo. If p € [z, y] = H?, then the shortest geodesic segment from
]—1, o0[ to p passes through [z, z] U [z, y], and similarly for the shortest geodesic segment
from ]—1, oo[ to p. It is easy to check with the help of Lemmal[5.22]that ]—1, 1[ is contained
in the union of the closed log(1 + ﬁ)—neighbourhood of the geodesic lines |—1, oo[ and
]—1, 00[. Thus, the distance from p to [z,2] U [2,] is at most log(1 + v/2). O

Let X be a geodesic metric space. If all triangles in X satisfy the Rips condition with
constant 9, then X is a d-hyperbolic space.

If X is -hyperbolic for some § > 0, then X is A Gromov hyperbolic space.

Example 6.2. (1) We showed in Proposition [6.1| that H" is log(1 + /2)-hyperbolic.

(2) E" is not a hyperbolic space if n > 2. If A is a non-degenerate triangle in E", the
midpoint of any one of the sides is at a positive finite distance s from the union of the
two others. If & > 0, the image of A under the homothety (stretch map) x — kx is a
triangle where the corresponding distance is ks. Letting k grow to oo proves the claim.

(3) If X is a a geodesic metric space such that the diameter diam X of X is finite, then
X is diam X-hyperbolic. We are not interested in spaces like this.

(4) Any R-tree is 0-hyperbolic: Let X be an R-tree and let z,y,z € X. If [z,y] n [z, 2] =
{z}, then [z,y] U [, z] is an arc with endpoints y and z. Thus, it is the unique arc that
joins y to z, in particular, [z,y] U [z, 2| = [y, z]. If [x,y]| N [z, 2] = [z, w] for some w # z,
then [w,y] N [w, z] = {w} and [y, z] = [y, w] N [w, 2] < [z, y] U [z, z].

In particular, E! is Gromov-hyperbolic.

(5) The bi-infinite simpliciaﬂ ladder is Gromov-hyperbolic. See Figure

Sarcosh 1= =log(1 + v/2).
4

4Recall from section that this means we have a metric graph with constant edge length 1.

November 5, 202}



6.2. The Gromov product and thin triangles 79

O @)
@) @
Q O
O O
Q O
O Q
O O
Q O
Q @)
O 0 y O O
O O
O O
W
O z O
° ,
O () " 0O
O @)
O Q
O x O
Q
O O
O O
O O
O @)

O @)

Figure 6.2 — A triangle with vertices x, y and z in a tree.
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Figure 6.3 — The bi-infinite simplicial ladder.

6.2 The Gromov product and thin triangles

Let X be a metric space and let x,y, z € X. There is a unique triple of positive numbers
Tz, Ty, 7> > 0 such that

ry + 1y = d(x,y)
Ty + 1, = d(l’, Z) (61>
ry + 1. =d(y, z).

Let X be a metric space and let z,y, z € X. The Gromov product of y and z with respect
to x is

(y]2). = 5 (dlwy) + d(z,2) — dly.2)).

It is easy to check that the triple (ry,ry,7.) = ((y]2)s, (z]2)y, (x |y).) is a solution

of the linear system (6.1). The triangle inequality implies that the Gromov product is
nonnegative.

November 5, 202}



80 Gromov-hyperbolic spaces

SIS

Figure 6.4 — The geometric meaning of the solution of the system in the Euclidean
plane. The green circle is the incircle of the triangle with endpoints x, y and 2. It is the
unique circle inside the triangle that is tangent to all the sides. The points of tangency
are exactly the internal points of the triangle.

A metric tree with three sides and four vertices such that one vertex has degree 3 and
three vertices have degree 1 is a tripod.

Figure 6.5 — The tripod Ta of a triangle A with side lengths 3, 4 and 5.

Lemma 6.3. Let X be a geodesic metric space and let x,y,y, z, 2" € X such thaty' € [z, y]
and 2" € [z, z]. Then

W'2)e < (Y]2)s-

Proof. Exercise O
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Lemma 6.4. Let X be a geodesic metric space and let A be a triangle with vertices v, z.
Let Ta be the tripod with side lengths (y|2)z, (x]2), and (x|y).. There is mapping
fa: A — T such that the restriction of fa to any side of A is an isometry.

Proof. This is clear because the Gromov products of the vertices give the solution of the
system of equations (6.1]). ]

In many statements and proofs starting from Lemma the notation [a, b] means some
or any geodesic segment with endpoints a and b in places where the actual choice of the
possible geodesic segments is not important.

Lemma 6.5. Let X be a geodesic metric space. Let A be a triangle with vertices x,vy, z €
X. Then

(Y] 2)e < d(z, [y, 2]) -

Proof. Let w € [y, z] be a closest point to z. By Lemma there is a point @ e
[z,y] U [z, 2] such that fa(w) = fa(w). We may assume that @ € [x,y]. Note that
d(y,w) = d(y,w) and, as w € [y, z], (v] 2)z < d(z,w). Thus,

(y]2)e < d(z,w) = d(z,y) — d(y, W) = d(z,y) — d(y,w) < d(zv,w) = d(z,[y,2]). O

Let X be a geodesic metric space and let 6 > 0. A triangle A in X is 0-thin if d(a,b) < ¢
for all b e fi'(fa(a)) and all a € A.

Lemma 6.6. Let X be a geodesic metric space. If A is a d-thin triangle with vertices
x,y,z€ X. Then

(y]2)e <d(z, [y, 2]) < (y]2)s + 9.

Proof. The first inequality holds by Lemma[6.5] To prove the second, let vy be the central
vertex of Ta, and let a € fx*(vo) N [x,y] and b e fi'(vo) N [y, 2]. By assumption, we get

d(z, |y, z]) < d(z,a) +d(a,b) < (y|2). +d. O
Proposition 6.7. A §-thin triangle satisfies the Rips condition with constant 9.
Proof. Exercise [6.2 O
Proposition 6.8. Let X be a d-hyperbolic space. Then all triangles in X are 46-thin.

Proof. Assume that there is a triangle A with vertices z, y, z € X that is not 46-thin. Then
(changing the names of the vertices if necessary) there are points u € [z, y] and v € [z, 2]
such that fa(u) = fa(v) and d(u,v) > 46. By continuity and as we are assuming a strict
inequality d(u,v) > 49, we may choose the points u and v such that

d(z,u) =d(z,v) < (y]2). (6.2)

Lemma [6.5] applied to triangles with vertices x, u and v, and with vertices y, u and v
implies that

d(v,[z,y]) = min (d(v, [z, u]),d(v, [u, y])) > min ((x | 1)y, (v | u)v) ) (6.3)
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fa(y)

fa(u) = fa(v)

T p v Ja(@) \.fA(Z)

o 00 —0:

Figure 6.6 — The choice of u and v.

Furthermore, using the assumption that d(x,u) = d(z,v),

2(z|u), =d(z,v) + d(u,v) — d(z,u) = d(u,v)

and
2(y | u), = d(y,v) + d(u,v) — d(y, u)
=d(y,v) + d(u,v) — (d(y, ) — d(z, u))
= d(u,v) + (d(y,v) + d(z,v) — d(y, z))
= d(u,v) + 2(z |y)o = d(u, v)

Combining these observations with the inequality (6.3)), we get

d(v, [z,y]) = =d(u,v) > 20.

In particular, d(z,v) > 2 and there is a unique point p € [z, v] with d(p,v) = § and

d(p, [2,y]) > 6. (6.4)

It remains to estimate the distance from p to [y, z]: Lemma and the inequality (6.2)
imply
d(p, [y, z]) = d(, [y, z]) — d(p,z) = (y| 2). — d(p, z)
> d(x,v) o d(l’,p) = d(p,’l)) =0.
The inequalities (6.4]) and (6.5)) show that the triangle A does not satisfy the Rips condi-

tion with constant §. ]

(6.5)

6.3 The 4-point condition

A metric space X satisfies the 4-point condition with parameter ¢, if
(.2? ‘ Z)w > min ((.17 ‘ y)un (y ’ Z)w) - 5

for all z,y, z,we X.
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Lemma 6.9. A metric space X satisfies the 4-point condition with parameter § if and

only if
d(x,z) + d(y,w) < max (d(x,y) + d(z,w) , d(z,w) + d(z, y)) + 20

forall x,y,z,we X.

Proof. Exercise O

Example 6.10. Ifz =0,y = (r,0), z = (r,7) and w = (0,7) for r > 0 in the Euclidean
plane, then d(z,2) + d(y,w) = 2¢/2r and d(z,y) + d(z,w) = d(x,w) + d(z,y) = 2r, and
there is no 0 > 0 such that the 4-point condition would hold for all r.

Proposition 6.11. If X satisfies the 4-point condition with constant &, then all triangles
in X are 46-thin.

Proof. Let A be a triangle with vertices z,y,z € X. Let u € [x,y]| and v € [z, z] such that
fa(u) = fa(v). By assumption, we have d(z,y) < (4] 2)e. and (u]y), = (0] 2), = d(z, u).
The 4-point condition gives

(u|v)y = min((u|2)s, (2| v)z) — 0 = min((u] 2),, d(x,u)) —

and
(u|2)e = min((u|y)a, (y]2)2) — 0.

Combining these two inequalities, we have

(u]v)y = d(z,u) — 20. (6.6)
On the other hand,
d d —d d
2 2
Combining inequality and equation ([6.7]), we have the claim
[

Proposition 6.12. If all triangles in X are d-thin, then X satisfies the 4-point condition
with constant 29.

Proof. Let z,y,z,w € X, and let us prove that the 4-point condition with parameter
0 holds for these points. There is nothing to prove unless

win (2| 9). (v] 2)) > (2] 2o (6.8)

so we will assume that inequality holds.
Let o’ € [w, z], ¥ € [w,y], 2’ € [w, z] such that

d(w,z') = d(w,y') = d(w,z") = min (| Y)w, (¥ 2)w) -
As the triangles A, with vertices w, z,y and A, with vertices w, y, z are d-thin, we have
d(«',y'),d(y,2") <0, so that
d(z',2') < 24. (6.9)
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By inequality [6.8] there are points p,,p. € [z,z] such that fa,. (ps) = fa,.(2') and
fa..(p2) = fa,.(Z"). In particular, d(p,,x"),d(p., 2’) < 0. Note that using the definitions
of the various points, we have

d(z,p) = d(z,2') = d(z,w) — d(w,2") = d(z,w) = min ((z|Y)w, (Y] 2)w) ,
and
d(z,p.) =d(z,2") = d(z,w) — d(w, ') = d(z,w) — min ((x | Y)ws (V] z)w) .

Thus,

d(x,z) —d(z,p;) — d(p., 2)
d(z,2) —d(x,w) —d(z,w) + 2 min ((x | ) w, (Y] z)w)
2(min (2 Y)w, (Y] 2)w) — (@] 2)w)

Therefore, using the triangle inequality in the beginning,

d<p:capz)

d(SC/, Z/) = d(pwapz> — 20
— 2(min (@] Y)as (4] 2)a) — (@] 2)a — )

Combining this with inequality gives the claim. O]

6.4 Approximation of paths by geodesics

In this section, we prove a technical result that is useful in section ??. The proof makes
strong use of d-hyperbolicity.

Proposition 6.13. Let X be a d-hyperbolic space. Let v: [0,1] — X be a rectifiable
pathf] and let j: [0,d(v(0),7(1)] — X be a geodesic segment such that j(0) = ~(0) and

J(1) =~(1). For any t € [0,d(v(0),v(1))],
d(j(t),~([0,1])) < dlogy £(y) + 1. (6.10)

Proof. The inequality (6.10]) is satisfied trivially if ¢(y) < 1. We assume that ¢(y) > 1
and that + is parametrized proportional to arclength[f]
Let N € N such that 6(2—7) < ?N < {(vy). Let t € [0,d(~(0),v(1))]. Let Ay be a triangle

with vertices v(0), (1) and 7(3) such that one of the sides is the image of the geodesic

segment j. As X is -hyperbolic,

1(1) € T 5 ([0, 7)) 0 Fs(17(5) (D))

Thus, there is a point y; € [¥(0),7(3)] U [¥(3),7(1)] such that d(j(t),y:) < 6. If y, €
[7(0),7(3)], let Ay be a triangle with vertices 7(0), v() and ~(3). Otherwise, let Ay be
the triangle with vertices y(1), 7(2) and ~(1).

A path 7 is rectifiable if £(y) < 0.
6See [BH, Proposition 1.1.20] and the remarks after it for a proof that we can make the second
assumption without loss of generality.
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A () — ()
Y1
) 0 (1)

Figure 6.7 — The idea of the proof of Proposition [6.13]

Assume that we are in the first case. Then, using d-hyperbolicity as above, there is
a point y, € [fy(O), ’y(i)] U [’y(i),’y(%)] such that d(y,y2) < d. We continue inductively,
and construct a finite sequence of points y;,ys, ..., yn such that d(yx, yx+1) < 0 for all
1 < k < N—1. Note that, by construction, yy € [y(5), v(55)] for some 0 < k < 2V -1,

and therefore, d(yy,v([0,1])) < 2{51)1 < 1. The triangle inequality gives the estimate

d(5(t),v([0,1])) < N6+ 1 < logy {(7) + 1. O

Example 6.14. In the Euclidean plane, the distance from the center of a half-circle
to the half-circle grows linearly with the radius. Therefore, the inequality cannot
be satisfied for the geodesic segment [—r,r] and a parametrization v(t) = re’™ of the
half-circle.

Exercises

6.1. Prove Lemma 6.3
6.2. Prove Proposition [6.7]

6.3. Let A be a triangle in a geodesic space X and let 6 > 0. Prove that A is J-thin if
and only if

A, ) < d(fau), fa(0)) +3
for all u,v € A.
6.4. Prove Lemma [6.9

6.5. Let T be a simplicial tree. Let xg € T and let py, ps: [0,00[ — T be geodesic rays
such that p;(0) = p2(0) = zo and p; # pe. Prove that the limit limy_,.(p1(t) | p2(t))z, €x-
ists 1]

6.6. Let p1, p2: [0, 0] — H? be geodesic rays such that p;(0) = p;(0) = 0 in the Poincaré
disk model and p; # ps. Prove that (p1(t)|p2(t))o is bounded ]

6.7. Let p1, pa: [0, 0] — E? be geodesic rays such that pi(0) = p1(0) = 0 and p; # —ps.
Prove that (p1(t) | p2(t))o is not bounded.

"Prove that the function t — (p1(¢) | p2(t))s, is constant for large t.

8Lemma and Proposition can be useful.
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