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Introduction

This text is an introduction to negatively curved spaces. Part I begins with general
background on geodesic metric spaces. After this, we study Euclidean and spherical
geometry to set the stage for a quick tour of the basics of hyperbolic geometry.
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Notations and conventions

For any mapping f : X Ñ X, the fixed point set of f is

fix f “ tx P X : fpxq “ xu .

If a group G acts on a space X and A is a nonempty subset of X, the stabilizer of A
in G is

StabG A “ tg P G : gA “ Au .

Clearly, stabilisers are subgroups of G.

• N “ t0, 1, 2, . . . u.

• #pAq P N Y t8u cardinality of A.

• A ´ B “ ta P A : a R Bu.

• f |A is the restriction of. mapping f : X Ñ Y to a subset A Ă X, f |Apaq “ fpaq for
all a P A.

• A Ł B means A is a proper subset of B: A Ă B and A ‰ B.

•
š

jPJ Xj “ tpx, jq : x P X, j P Ju is the disjoint union of the family of sets pXjqjPJ .

• diagpa1, a2, . . . , anq is the n ˆ n-diagonal matrix with a1, a2, . . . , an on the diagonal.

• diagpA1, A2, . . . , Anq is the block diagonal matrix with square matrices A1, A2, . . . , An

on the diagonal.

• In “ diagp1, 1, . . . , 1q.

• tA is the transpose of a matrix A.

• HomeopXq the group of homeomorphisms of a topological space X.

• IsompXq the group of isometries of a metric space X.

• CpX, Y q space of continuous functions from a topological space X to a metric space
Y with the topology of compact convergence.
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vi Contents

Definitions are boxed like this and not numbered.

A box like this has some remark or convention that is good to notice!
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Chapter 1

Geodesic metric spaces

In this chapter, we collect background material on metric spaces, in particular on geodesic
spaces. We also introduce some convenient terminology to be used throughout the course.

1.1 Metric spaces
In this section, for the convenience of the reader, we collect some standard definitions,
notations and examples on metric spaces. For more details and background, see for
example [Bou1, Bou2, Mun].

Let X ‰ H. A function d : X ˆ X Ñ r0, 8r is a metric in X if

(1) dpx, xq “ 0 for all x P X and dpx, yq ą 0 if x ‰ y,

(2) dpx, yq “ dpy, xq for all x, y P X, and

(3) dpx, yq ď dpx, zq ` dpz, yq for all x, y, z P X (the triangle inequality).

The pair pX, dq is a metric space.

Example 1.1. (a) Any normed space is a metric space. In particular, the space Rn

with the Euclidean distance is a metric space.
(b) The circle S1 with the distance between two points defined as their angle as vectors
in E2 is a metric space, see Section 3.1 for details and generalisations.
(c) Let X ‰ H. The discrete metric d : XˆX Ñ r0, 8r is defined by setting dpx, xq “ 0 for
all x P X and dpx, yq “ 1 for all x, y P X if x ‰ y.

Open and closed balls in a metric space, continuity of maps between metric spaces
and other “metric properties” are defined in the usual manner. In particular, if X is a
metric space, x P X and r ą 0,

Bpx0, rq “ Bdpx0, rq “ tx P X : dpx, x0q ă ru
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4 Geodesic metric spaces

is the open ball of radius r and

Bpx0, rq “ Bdpx0, rq “ tx P X : dpx, x0q ď ru

is the closed ball of radius r.

A metric space is proper if its closed balls are compact.

Euclidean spaces are proper metric spaces by the theorem of Heine and Borel, see for
example [Str, Theorem (3.40)].

1.2 Isometric embeddings and isometries

If pX1, d1q and pX2, d2q are metric spaces, then a map i : X Ñ Y is an isometric embedding,
if

d2pipxq, ipyqq “ d1px, yq

for all x, y P X1.
A map i : X Ñ Y is a locally isometric embedding if each point x P X has a neighbourhood
U such that the restriction of i to U is an isometric embedding.

Lemma 1.2. (a) Isometric embeddings are continuous injective mappings.
(b) If f : X Ñ Y and g : Y Ñ Z are isometric embeddings, then g ˝ f is an isometric
embedding.
(b) If f : X Ñ Y and g : Y Ñ Z are locally isometric embeddings, then g ˝ f is a locally
isometric embedding.

Proof. Exercise.

If an isometric embedding i : X Ñ Y is a bijection, then it is called an isometry between
X and Y .
An isometry i : X Ñ X is called an isometry of X.

If pX, dq is a metric space, Y is a set and f : Y Ñ X is a bijection, then we get a metric
in Y by setting df py1, y2q “ dpfpy1q, fpy2qq for all y1, y2. Now f : pY, df q Ñ pX, dq is an
isometry and it is natural to think of pY, df q as a model of pX, dq. We will see concrete
examples in Chapter 5 when we consider models of hyperbolic space.

We consider two isometric metric spaces to be models of the same abstract metric space.

Proposition 1.3. The isometries of a metric space X form a group IsompXq with the
composition of mappings as the group law.

Proof. Exercise 1.1.
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1.3. Group actions 5

1.3 Group actions

Let PermpAq be the group of permutations of a set A. A group G acts on A if there is a
homomorphism ϕ : G Ñ PermpAq. The homomorphism ϕ is an action of G on A.
Let X be a topological space. A group G acts on pX, dq by homeomorphisms if there is a
homomorphism ϕ : G Ñ HomeopX, dq.
Let pX, dq be a metric space. A group G acts on pX, dq by isometries if there is a
homomorphism ϕ : G Ñ IsompX, dq.

If a group G acts on a set A, we use the notation

g ¨ a “ ϕpgqpaq “
`

ϕpgq
˘

paq

for all g P G and all a P A. If the group is a subgroup of the permutation group of A,
the notation gpaq is natural to use, and if we have an action of a group of matrices on a
vector space with a fixed basis,1 the usual notation of matrix multiplication is used.

In this course, we are mainly interested in actions by isometries but linear action is
also used for example in chapters 2 to 4

Let X be a set and let G be a group that acts on X. The stabilizer (in G) of a point
x P X is

StabG x “ tg P G : g ¨ x “ xu .

Proposition 1.4. Let X be a metric space and let x P X. Then Stab X is a subgroup of
Isom X.

Proof. Exercise 1.1.

Example 1.5. We will see in section 2.3 that the Euclidean group

Epnq “ tx ÞÑ Ax ` b : A P Opnq, b P Rn
u

is the group of isometries of the n-dimensional Euclidean space En.2 The stabilizer of
0 P En in Epnq is Opnq.

If a group G acts on a space X, and x is a point in X, the set

Gpxq “ tg ¨ x : g P Gu

is the G-orbit of x. The action of a group is said to be transitive if Gpxq “ X for some
(and therefore for any) x P X.

A more elementary way to express this is that a group G acts transitively on X if for
all x, y P X there is some g P G such that g ¨ x “ y.

1We call such an action a linear action.
2See Theorem, 2.8.
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6 Geodesic metric spaces

1.4 Geodesics
In this section, we give names to a particularly important class of isometric and locally
isometric embeddings and use these objects to define the class of metric spaces that plays
a central role in this course.

Let I Ă R be an interval. A (locally) isometric embedding i : I Ñ X is a (local) geodesic.
More precisely, it is

(1) a (locally) geodesic segment, if I Ă R is a (closed) bounded interval,

(2) a (locally) geodesic ray, if I “ r0, `8r, and

(3) a (locally) geodesic line, if I “ R.

Note that in Riemannian geometry, the definition of a geodesic is different from the
above: If pM, gq is a Riemannian manifold and I is an open interval, a Riemannian
geodesic γ : I Ñ M is a differentiable path whose acceleration is 0. If γ : I Ñ M is a
Riemannian geodesic, then there is some c ą 0 and such that the mapping t ÞÑ gp t

c
q is

a local geodesic according to our definition. See for example [Lee, Chapter 6] or [Pet,
Chapter 5] for more information.

If γ : ra, bs Ñ X is a path, then γ connects the points γpaq to γpbq.
If γ is a geodesic segment that connects x P X to y P X, the points x and y are the
endpoints of γ.

Sometimes it is convenient to use more precise terminology and, for instance, refer to
the endpoint jp0q as the origin of j and to the other endpoint as the terminal point or
the terminus of j.

A metric space pX, dq is a geodesic metric space, if for any x, y P X there is a geodesic
segment that connects x to y.

Example 1.6. Any normed space is a geodesic metric space: Let pV, } ¨ }q be a normed
space. For any two distinct points x, y P V , the map

t
j

ÞÑ x ` t
y ´ x

}y ´ x}
,

is a geodesic line that passes through the points x and y. Indeed, for any s, t P R, we have

}jptq ´ jpsq} “

›

›

›

›

x0 ` t
y ´ x

}y ´ x}
´

´

x0 ` s
y ´ x

}y ´ x}

¯

›

›

›

›

“

›

›

›

›

pt ´ sq
y ´ x

}y ´ x}

›

›

›

›

“ |t ´ s| .

The restriction j|r0,}x´y}s is a geodesic segment that connects x to y.
Example 1.7. It can be shown that hαps, tq “ |s´t|α is a metric in R if 0 ă α ď 1. The
metric space pR, hαq is homeomorphic to R with the usual metric given by the expression
h1 but it is not a geodesic metric space if 0 ă α ă 1.
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1.4. Geodesics 7

A metric space pX, dq is uniquely geodesic, if for any x, y P X there is exactly one geodesic
segment that connects x to y.
If X is a uniquely geodesic metric space and x, y P X, x ‰ y, we denote the (image of
the) unique geodesic segment connecting x to y by rx, ys.a

aThis notation is often used even in spaces that are not uniquely geodesic.

Note that the inverse path of a geodesic that connects x to y is a geodesic that connects
y to x so even in a uniquely geodesic space there are two geodesic segments with endpoints
x and y if we do not specify the order of the endpoints.

Proposition 1.8. Any inner product space is a uniquely geodesic metric space.

Proof. Let V be an inner product space and let x, y P V . We show that the geodesic
segment j|r0,}x´y}s constructed in Example 1.6 is the only geodesic segment that connects
x to y. 3

Let rȷ : r0, }x ´ y}s Ñ V be a geodesic segment with rȷp0q “ x and rȷp}x ´ y}q “ y. If
0 ă t ă }x ´ y}, then }x ´ rȷptq} “ }rȷptq ´ rȷptq} “ t and |rȷptq ´ y} “ 1 ´ t. Thus, we have
the equality

}x ´ rȷptq} ` }rȷptq ´ y} “ }x ´ y}

in the triangle inequality. We may assume for simplicity that x “ 0. Squaring, the
equation }y ´ rȷptq} “ }y} ´ }rȷptq}, we get after simplification py |rȷptqq “ }y}}rȷptq}. The
equality case of Cauchy’s inequality implies that y ´ x is in the linear segment from x to
y. Thus, rȷptq “ jptq.

Let X be a uniquely geodesic metric space. A nonempty subset K Ă X is convex if
rx, ys Ă K for all x, y P K.
A convex set K Ă X is strictly convex if rx, ys X BK Ă tx, yu for any x, y P K.

Example 1.9. A normed space is uniquely geodesic if and only if its unit ball is strictly
convex. See [BH, Prop. I.1.6]. Thus, for example the normed spaces pR2, } ¨ }pq with

}x}p “
p
a

xp
1 ` xp

2

are uniquely geodesic metric spaces if 1 ă p ă 8.
There are plenty of examples of metric spaces arising from normed spaces that are not

uniquely geodesic. For example, the unit balls of the norms

}x}8 “ maxt|x1|, |x2|u

and
}x}8 “ |x1| ` |x2|

in R2 are not strictly convex.
3up to replacing the interval of definition r0, }x´y}s of the geodesic by ra, a` }x´y}s for some a P R.
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8 Geodesic metric spaces

It is easy to check that, among many others, the mappings j1, j2 : r0, 1s Ñ pR2, d8q

defined by j1ptq “ tp1, 0q and

j2ptq “

#

tp1, 1q, if 0 ď t ď 1
2 ,

pt, 1 ´ tq, if 1
2 ď t ď 1

are both geodesic segments in pR2, d8q connecting 0 to p1, 0q.

Example 1.10. The Euclidean round circle S1 Ă E2 with the induced metric is not a
geodesic metric space because the ambient space E2 is uniquely geodesic and the geodesic
segment in E2 that connects any two distinct points of S1 intersects S1 only at these two
points.

In certain contexts,4 it is convenient to use mappings that multiply distances with a
fixed constant.

Let X be a metric space, let I Ă R be a compact interval and let K ą 0. A mapping
j : I Ñ X is an affinely reparametrized geodesic segment if dpjpsq, jptqq “ K |s ´ t| for all
s, t P I.

1.5 Metric graphs
Metric graphs and, in particular, metric trees are important examples in this course. The
definition, based on see [Ser, Sect. 2.1], is somewhat involved.

Let EX and V X be two nonempty sets and let o, t : EX Ñ V X and ¨ : EX Ñ EX be
mappings that satisfy e ‰ e, e “ e and opeq “ tpeq for all e P EX. The quintuple
X “ pV X, EX, t, o, ¨ q is a graph.
The sets EX and V X, called the set of vertices and the set of edges of X.
The elements opeq, tpeq and e are called the initial vertex, the terminal vertex and the
opposite edge of an edge e P EX. The quotient of EX by the equivalence relation induced
by the involution e ÞÑ e is called the set of nonoriented edges of X.
The cardinality of the preimage o´1pvq is the degree deg v of the vertex v P V X. If
deg : X Ñ N is a constant mapping, then X is a regular graph.

Note that we assume that the sets of vertices and edges are not empty but we make
no further assumptions on the cardinalities of these sets. Often, graphs are defined in a
different way, taking the set of nonoriented edges to be a set consisting of pairs of distinct
vertices. The above definition allows for loops where opeq “ tpeq for some edge e, and for
multiple edges with equal initial and terminal vertices.

A graph is not a geometrical or topological object but one can associate natural spaces
to it as follows. Recall that an equivalence relation „ is finer than » if x „ y implies
x » y.

4See the proof of Theorem ?? and the definition of metric convexity in section ??.
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1.5. Metric graphs 9

The topological realisation |X| of a graph X is the topological space obtained from the
disjoint union of the family pIeqePEX of closed unit intervals Ie and V X by the finest
equivalence relation that identifies intervals corresponding to an edge Ie and its opposite
edge Iē by the map t ÞÑ 1 ´ t and identifies 0 P Ie with opeq P V X for all e P EX.

More precisely, let
š

ePEX Ie be the disjoint union of a family pIeqePEX of closed unit
intervals Ie with the topology of the disjoint union.5 Let „ be the equivalence relation in
š

ePEX generated6 by the identifications pt, eq „ p1 ´ t, ēq for all t P r0, 1s and all e P EX
and p0, eq „ p0, e1q if and only if opeq “ ope1q P V X.

A graph is connected if its topological realisation is path connected as a topological space.
A connected graph is a tree if its topological realisation is uniquely arcwise connected.a

aRecall that the image of an injective path defined on a compact interval is an arc. A topological
space X is uniquely arcwise connected if for any two distinct points x, y P X there is a unique arc |γ|

whose endpoints are x and y.

Example 1.11. (1) If V X “ Z, EX “ Zˆ t0, 1u, opk, jq “ k ` j, tpk, jq “ k ` 1 ´ j and
pk, jq “ pk, 1 ´ jq, then it is easy to check using Figure 1.1 that the topological realization
of X is homeomorphic to E1. If we replace Z by N in the construction, we obtain a graph
X1 whose topological realization is homeomorphic to r0, 8r.

p2, 1q

´2 ´1´3 1 2 3 40
|X|

p0, 0q

p0, 1q p1, 1q

p1, 0q p2, 0q

Figure 1.1 — E1 as a metric graph

(2) Let A ‰ H be any nonempty set and let V X “ t0u Y A and EX “ A ˆ t0, 1u. Let
opa, 0q “ 0 “ tpa, 1q and opa, 1q “ a “ tpa, 0q for all a P A and define pa, kq “ pa, 1 ´ kq

for all a P A. If A is an infinite set, for example A “ S1, the geometric realization of X is
a hedgehog space that is not locally compact at the vertex 0.
(3) Often, we describe a graph more informally, for example by drawing a picture of the
geometric realization or a sufficiently large part of it if the structure repeats itself in a
reasonable manner.

A metric graph pX, λq is a pair consisting of a connected graph X and edge length map
λ : EX Ñ s0, `8s such that λpeq “ λpeq.
A simplicial graph X is a metric graph whose edge length map is constant equal to 1.

5This is the finest topology for which all the natural injections Ie ãÑ
š

ePEX Ie are continuous.
6The equivalence relation generated by a relation R on a set X is the smallest equivalence relation

on X that contains R.
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10 Geodesic metric spaces

Figure 1.2 — The topological realization of a graph with two vertices and three undi-
rected edges that has two loops.

Let pX, λq be a metric graph and let πX :
š

ePEX Ie Ñ |X| be the canonical projection.
A continuous mapping c : r0, 1s Ñ |X| is a piecewise linear path if there is a subdivision
0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 of r0, 1s, a collection of edges e1, . . . , en P EX and affine
mappings ci : rti´1, tis Ñ Iei

such that c|rti´1,tis “ πX ˝ ci. The length of c is

ℓλpcq “

n
ÿ

i“1
|ciptiq ´ cipti´1q|λpeiq .

If x, y P |X|, let

PLpx, yq “
␣

c : r0, 1s Ñ |X| : c piecewise linear, cp0q “ x, cp1q “ y
(

.

We will now study a useful method to construct geodesic metric spaces from metric
graphs. In some cases, this construction would not produce a metric space. Such problems
do not arise if, for example, the edge length map has a positive lower bound as in the
following result. In Exercise 1.2, we see there are examples of metric graphs that define
metric spaces even if the edge lengths have no positive lower bound.

Proposition 1.12. Let pX, λq be a metric graph such that any two points in |X| can be
connected by a piecewise linear path and λ has a positive lower bound. The expression

dλpx, yq “ inf
cPPLpx,yq

ℓλpcq (1.1)

defines a metric on the topological realization of X.

Proof. Exercise 1.3.

Let pX, λq be a metric graph such that dλ is a metric.a The geometric realisation of pX, λq

is the metric space p|X|, dλq.
aSee equation 1.1.

From now on, we usually assume that the edge length map of a metric graph has a positive
lower bound.
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1.6. Triangles 11

Figure 1.3 — Part of the geometric realization of a regular infinite simplicial tree such
that the degree of each vertex is 4. Imagine all the branches extending indefinitely with
the same branching at every vertex.

The metric space X determines pX, λq up to subdivisions of edges, hence we will often
not make a strict distinction between X and pX, λq. In particular, we identify V X with
its image in X and we will refer to convex subsets of pX, λq as convex subsets of X, etc.

A uniquely arcwise connected geodesic metric space is an R-tree.

Example 1.13. (1) For any x, y P R, let

dSNCFpx, yq “

#

}x ´ y} if x and y are linearly dependent,
}x} ` }y} otherwise.

The French railroad space pR2, dSNCFq is an R-tree.7 The closed unit ball Bp0, 1q of this
space is a geometric realisation of the simplicial hedgehog space of Example 1.11(2).
(2) Figure 1.3 shows a simplicial tree.

1.6 Triangles
The definitions of negatively curved spaces in Chapters 6 and ?? are based on the prop-
erties of triangles and we will also treat classical properties of triangles in the Euclidean,
spherical and hyperbolic spaces. A precise definition of this fundamental object is there-
fore in order:

7SNCF=Société nationale des chemins de fer français is the French national railroad company.
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12 Geodesic metric spaces

Let X be a metric space. A triangle in X is a triple ∆ “ tj1, j2, j3u of geodesic segments
such that the terminus of ji is the origin of ji`1 with the index i considered cyclically
mod 3.
The geodesic segments j1, j2 and j3 are the sides of ∆.
A triangle ∆ is degenerate if it is contained in the image of one of its sides.
The endpoints of the geodesic arcs j1, j2 and j3 are the vertices of ∆.

A triangle ∆ in a uniquely geodesic metric space is determined by its vertices but in
general,8 one has to specify the sides.

If X is a uniquely geodesic metric space and x, y, z P X, then

∆px, y, zq “
␣

rx, ys, ry, xs, rz, xs
(

is the triangle with vertices x, y and z.

A

β

a

γ

α

b

c

B

C

Figure 1.4 — A triangle in the Euclidean plane with a standard notation for the vertices,
the lengths of the edges and the angles.

If X is a geodesic metric space and three points A, B, C P X are the vertices of a triangle,
we denote the lengths of the sides with endpoints A and B, B and C and C and A, in the
corresponding order, by c, a and b. If the angles at the vertices are defined,a the angles
between the sides at the vertices A, B and C be α, β and γ. See Figure 1.4.

afor example in Chapters 2, 3 and 4

8See Example 1.9
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1.6. Triangles 13

Exercises
1.1. Prove Propositions 1.3 and 1.4.
1.2. Give examples of metric graphs pX1, λ1q and pX2, λ2q such that
(1) the edge length maps λ1 and λ2 do not have a positive lower bound.
(2) the geometric realization of pX1, λ1q is isometric with E1, and
(3) the geometric realization of pX2, λ2q is isometric with a bounded half-open interval.
1.3. Prove Proposition 1.12. Why do we assume that the length function has a positive
lower bound?
1.4. Prove that pR2, dSNCFq is not a proper metric space.9 Describe the isometry group
of pR2, dSNCFq.
1.5. For any x, y P R2, let

dpx, yq “

#

|x2| ` |x1 ´ y1| ` |y2| , if x1 ‰ y1,
|x2 ´ y2| , if x1 “ y1,

(a) Prove that pR2, dq is an R-tree.
(b) Draw the sphere BBp0, 1q of pR2, dq. Is it compact or connected?

Let ra, bs Ă R be a compact interval. An ordered finite sequence

σ “ pa “ σ0 ă σ1 ă ¨ ¨ ¨ ă σn “ bq

is a partition of ra, bs. Let Pa,b be the set of partitions of ra, bs.

Let X be a metric space and let γ : ra, bs Ñ X be a path. The variation of γ with respect
to a partition σ “ pa “ σ0 ă σ1 ă ¨ ¨ ¨ ă σn “ bq is

V b
a pγ, σq “

n
ÿ

i“1
dpγpσiq, γpσi´1qq .

The length of γ is its total variation

ℓpγq “ V b
a pγq “ sup

σPPa,b

V b
a pγ, σq .

1.6. Let X be a metric space and let γ : r0, bs Ñ X be a geodesic segment.
(a) Compute the length of γ.
(b) Prove that γ is a shortest path from γp0q to γpbq.
1.7. Fill in the details in Example 1.7.

9See Example 1.13 for the definition.
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Chapter 2

Euclidean geometry

This chapter collects background information on Euclidean spaces. Most of this should
be known in some form from linear algebra and elementary geometry.

2.1 Euclidean space
As we use various different structures on the space Rn, it is convenient to have a fixed
notation for the situation where we use the standard Euclidean structure. The notation
Rn therefore does not carry the Euclidean structure, it is just the n-fold Cartesian product
of Rn, and we usually consider it with the standard structure of a vector space over R.

Let us denote the Euclidean inner product of Rn by

px | yq “

n
ÿ

i“1
xiyi .

The Euclidean norm }x} “
a

px|xq defines the Euclidean distance dpx, yq “ }x ´ y}. The
triple En “ pRn, p¨ | ¨q, } ¨ }q is n-dimensional Euclidean space.

Proposition 2.1. Euclidean space is a uniquely geodesic metric space.

Proof. See Proposition 1.8

2.2 Euclidean triangles
The first two results are classical formulae that connect the side lengths and angles of
triangles in Euclidean space.

Proposition 2.2 (The Euclidean law of cosines). The relation

c2
“ a2

` b2
´ 2ab cos γ

November 5, 2024 15



16 Euclidean geometry

holds for all triangles in En.

Proof. The proof is linear algebra:

c2
“ }B ´ A}

2
“ }B ´ C ` C ´ A}

2
“ b2

` 2pB ´ C | C ´ Aq ` a2

“ b2
` 2pB ´ C | C ´ Aq ` a2

“ b2
´ 2ab cos γ ` a2 .

Proposition 2.3 (The Euclidean law of sines). The relation

a

sin α
“

b

sin β
“

c

sin γ

holds for all triangles in En.

Proof. Exercise.

The following result will be useful in Chapter ?? when we discuss comparison geometry
and CATp´1q spaces. The content is this: Given any three positive numbers that satisfy
the conditions arising from the triangle inequality to be the sides of a triangle in a geodesic
metric space, there is a triangle in E2 with precisely these side lengths.

Proposition 2.4. Let a, b, c ą 0 and assume that a ` b ě c, a ` c ě b and b ` c ě a.
There is a triangle in E2 with side lengths a, b and c.

Proof. The inequality a` b ě c implies a2`b2´c2

2ab
ě ´1 and the inequality a` c ě b implies

a2`b2´c2

2ab
ď 1. Thus, we can solve the equation c2 “ a2 ` b2 ´ 2ab cos γ to find γ P r0, πs.

Placing two segments of lengths a and b starting at 0 with the angle γ at the vertex 0
determines a triangle in E2. The Euclidean law of cosines implies that the length of the
third edge is c.

Proposition 2.5. The sum of the angles of a triangle in E2 is π.

Proof. There are many different proofs, here is one that uses complex numbers: Note that

C ´ A

B ´ A
“

›

›

›

C ´ A

B ´ A

›

›

›
eiα ,

A ´ B

C ´ B
“

›

›

›

A ´ B

C ´ B

›

›

›
eiβ ,

B ´ C

A ´ C
“

›

›

›

B ´ C

A ´ C

›

›

›
eiγ .

The product of the left sides of these equations is ´1, and therefore, eipα`β`γq “ ´1.
Thus, α ` β ` γ “ π ` k 2π for some k P Z. As 0 ď α, β, γ ď π and at most one of them
can be π, we get the claim.

2.3 Isometries of En

We will now study the isometries of Euclidean space more closely.

The (Euclidean) orthogonal group of dimension n is

Opnq “ tA P GLnpRq : pAx | Ayq “ px | yq for all x, y P En
u

“ tA P GLnpRq : AT A “ Inu .
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2.3. Isometries of En 17

Recall the following basic result from linear algebra:

Lemma 2.6. An n ˆ n-matrix A “ pa1, . . . , anq is in Opnq if and only if the vectors
a1, . . . , an form an orthonormal basis of En.

It is easy to check that elements of Opnq give isometries on En for any n P N: Let
A P Opnq and let x, y P En. Now

dpAx, Ayq
2

“ pAx ´ Ay | Ax ´ Ayq “ pApx ´ yq | Apx ´ yqq

“ pAT Apx ´ yq | x ´ yq “ px ´ y | x ´ yq

“ dpx ´ yq
2 .

For any b P Rn, let tbpxq “ x ` b be the translation by b. Again, it is easy to see that
translations are isometries of En. The translation group is

Tpnq “ ttb : b P Rn
u .

Orthogonal maps and translations generate the Euclidean group

Epnq “ tx ÞÑ Ax ` b : A P Opnq, b P Rn
u “ T pnqOpnq

which consists of isometries of En.

Proposition 2.7. Epnq acts transitively by isometries on En. In particular, IsompEnq

acts transitively on En.

Proof. The Euclidean group of En contains the group of translations Tpnq as a subgroup.
This subgroup acts transitively because for any x, y P Rn, we have Ty´xpxq “ y.

Next, we want to prove that all isometries of Euclidean space En are elements of the
Euclidean group.

Theorem 2.8. IsompEnq “ Epnq.

The proof of this theorem and the introduction of the tools needed in the proof takes
up the rest of this section.

An affine hyperplane of En is a subset of the form

H “ HpP, uq “ P ` uK ,

where P, u P En and }u} “ 1. The reflection in H is the map

rHpxq “ x ´ 2px ´ P | uqu .

Lemma 2.9. The definition of rH is independent of the choice of P P H.

Proof. If P, Q P H, then P ´ Q P uK. Thus,

x ´ 2px ´ P | uqu “ x ´ 2px ´ P | uqu ´ 2pP ´ Q | uqu “ x ´ 2px ´ Q | uqu . (2.1)
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18 Euclidean geometry

Reflections are very useful isometries, the following results give some of their basic
properties.

Proposition 2.10. Let H be an hyperplane in En. Then
(1) rH ˝ rH is the identity.
(2) rH P Epnq. In particular, rH is an isometry, and if 0 P H, then rH P Opnq.
(3) dprHpxq, yq “ dpx, yq for all x P En and all y P H.
(4) The fixed point set of rH is H.

Proof. We will prove (3) and leave the rest as exercises. Let x P En and y P H. We have
rHpxq “ x ´ 2px ´ y | uqu, which implies

dprHpxq, yq
2

“ prHpxq ´ y | rHpxq ´ yq “ px ´ y ´ 2px ´ y | uqu | x ´ y ´ 2px ´ y | uquq

“ px ´ y | x ´ yq ´ 4px ´ y | px ´ y | uquq ` 4
`

px ´ y | uqu
ˇ

ˇ px ´ y | uqu
˘

“ px ´ y | x ´ yq “ dpx, yq
2 .

The bisector of two distinct points p and q in En is the affine hyperplane

bispp, qq “ tx P En : dpx, pq “ dpx, qqu .

Lemma 2.11. If p, q P En, p ‰ q, then

bispp, qq “
p ` q

2 ` pp ´ qq
K.

Proof. Exercise.

Proposition 2.12. (1) If rHpxq “ y and x R H, then H “ bispx, yq.
(2) If p, q P En, p ‰ q, then rbispp,qqppq “ q.
(3) Let ϕ P IsompEnq, ϕ ‰ id. If a P En, ϕpaq ‰ a, then the fixed points of ϕ are contained
in bispa, ϕpaqq.
(4) Let ϕ P IsompEnq, ϕ ‰ id. If H is a hyperplane such that ϕ|H is the identity, then
ϕ “ rH .

Proof. (1) follows from Proposition 2.10(3).
(2) From the definitions we get

rbispp,qqppq “ p ´ 2
`

p ´
p ` q

2
ˇ

ˇ p ´ q
˘ p ´ q

}p ´ q}2 “ q .

(3) If ϕpbq “ b, then dpa, bq “ dpϕpaq, ϕpbqq “ dpϕpaq, bq, so that b P bispa, ϕpaqq.
(4) Let a R H be a point that is not fixed by ϕ. Claim (3) implies that H is contained
in bispa, ϕpaqq. As H and bispa, ϕpaqq are both hyperplanes, we have H “ bispa, ϕpaqq.
Thus, by Claim (2), rHpaq “ ϕpaq. But this holds for all a R H. As rH |H “ ϕH “ idH , we
have ϕ “ rH .

The idea of the proof of Theorem 2.8 is to show that each isometry of En is the
composition of reflections in affine hyperplanes. In order to do this, we show that the
isometry group has a stronger transitivity property than what was noted above.
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2.3. Isometries of En 19

Proposition 2.13. Let p1, p2, . . . , pk, q1, q2, . . . , qk P En be points that satisfy

dppi, pjq “ dpqi, qjq

for all i, j P t1, 2, . . . , ku. Then, there is an isometry ϕ P Epnq ď IsompEnq such that
ϕppiq “ qi for all i P t1, 2, . . . , ku. Furthermore, the isometry ϕ is the composition of at
most k reflections in affine hyperplanes.

ϕ1pp2q

ϕ2pp3q

p3

q1 “ ϕ1pp1q

bispp1, q1q

bispϕ1pp2q, q2q

p1

p2

q3

q2 “ ϕ2pp2q

ϕ1pp3q

Figure 2.1 —

Proof. We construct the isometry by induction. If p1 “ q1, let ϕ1 be the identity, other-
wise, let ϕ1 be the reflection in the bisector of p1 and q1. Let m ą 1 and assume that there
is an isometry ϕm such that ϕmppiq “ qi for all i P t1, 2, . . . , mu, which is the composition
of at most m reflections. The mapping ϕ is in Epnq by Proposition 2.10.

Assume that ϕmppm`1q ‰ qm`1. Now, q1, . . . qm P bispϕmppm`1q, qm`1q because for each
1 ď i ď m, we have

dpqi, ϕmppm`1qq “ dpϕmppiq, ϕmppm`1qq “ dppi, pm`1q “ dpqi, qm`1q .

Thus, the map
ϕm`1 “ rbispϕmppm`1q,qm`1q ˝ ϕm

satisfies ϕm`1ppiq “ qi for all 1 ď i ď m ` 1.

Corollary 2.14. If T and T 1 are two triangles in En with equal side lengths, then there
is an isometry ϕ of En such that ϕpT q “ T 1.

Corollary 2.15. Any isometry of En can be represented as the composition of at most
n ` 1 reflections.
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20 Euclidean geometry

Proof. Let ϕ P IsompEnq. Proposition 2.13 implies that there is an isometry ϕ0 P Epnq

such that ϕ0pϕpeiqq “ ei for all 1 ď i ď n and ϕ0pϕp0qq “ 0. The set of fixed points of
ϕ0 ˝ ϕ contains the points 0, e1, . . . , en. In particular, the fixed point set of ϕ0 ˝ ϕ is not
contained in any affine hyperplane. Proposition 2.12(3) implies that ϕ0 ˝ ϕ “ id. Thus,
ϕ “ ϕ´1

0 .

Proof of Theorem 2.8. The elements of Epnq are isometries by Proposition 2.7. The op-
posite inclusion follows from Corollary 2.15 and Proposition 2.10(2).

Proposition 2.16. The stabiliser in IsompEnq of any point x P En is isomorphic to Opnq.
An isometry F of En fixes b P En if and only if there is an orthogonal linear map F0 such
that F “ Tb ˝ F0 ˝ T ´1

b .

Proof. An element of Epnq fixes the origin if and only if it is an orthogonal linear transfor-
mation. Thus the claim holds for 0. If b P En´t0u and F P Stab b, then T ´1

b ˝F ˝Tb P Opnq

and for any A P Opnq, Tb ˝ A ˝ T ´1
b P fix b

Proposition 2.17. For each affine k-plane P , there is an isometry ϕ P IsompEnq such
that

ϕpP q “ tx P En : xk`1
“ xk`2

“ ¨ ¨ ¨ “ xn
“ 0u .

Each affine k-plane of En is isometric with Ek.

Proof. This is a direct generalisation of Proposition 2.7. The details are left as an exercise.

Exercises
2.1. Prove Proposition 2.3.
2.2. Let x0 P En and let u, v P Sn. Let F : En Ñ En be an isometry.

(1) Show that F ˝ jx0,u and F ˝ jx0,v are geodesic lines.

(2) Show that F ˝ jx0,u and F ˝ jx0,v intersect and that the angle of intersection is the
same as for jx0,u and jx0,v.

2.3. Find an isometry F of E2 such that F p0q “ p1, 0q, F p1, 0q “ p1, 1q and F p0, 1q “

p2, 0q.
2.4. Let Hp0, uq be a line in E2 that forms an angle ϕ

2 with the positiv x1-axis. Let ru be
the reflection in Hp0, uq.

(1) Compute the matrix of ru in the standard basis.

(2) Let u1, u2 P S1. Compute the matrix of ru2 ˝ ru1 in the standard basis.

(3) Write the rotation by π
2 as the composition of two reflections.

2.5. Prove the remaining parts of Proposition 2.10.
2.6. Prove Lemma 2.11.
2.7. Prove Proposition 2.17.
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Chapter 3

Spherical geometry

3.1 The sphere
The unit sphere in pn ´ 1q-dimensional Euclidean space is

Sn
“ tx P En`1 : }x} “ 1u .

Let us show that the angle distance

dSnpx, yq “ arccospx | yq P r0, πs (3.1)

is a metric. In order to do this, we will use the analog of the Euclidean law of cosines,
but first we have to define the objects that are studied in spherical geometry.

Each 2-dimensional linear subspace T Ă Rn`1 intersects Sn in a great circle. If A P

Sn and u P Sn is orthogonal to A (u P AK), then the path jA,u : R Ñ Sn,

jA,uptq “ A cos t ` u sin t ,

parametrises the great circle xA, uy X Sn, where xA, uy is the linear span of A and u. The
vectors A and u are linearly independent, so xA, uy is a 2- plane.

Lemma 3.1. If dSn is a metric, then jA,u is a locally geodesic line.

Proof. Observe that as A and u are unit vectors such that pA|uq “ 0, we have

pjA,upsq | jA,uptqq “ pA cos s ` u sin s | A cos t ` u sin tq

“ }A}
2 cos s cos t ` pcos s sin t ` sin s cos tqpA | uq ` sin s sin t}u}

2

“ cos s cos t ` sin s sin t “ cosps ´ tq . (3.2)

Thus, if ||s ´ t| ď π, we have

dpjA,upsq, jA,uptqq “ arccospjA,upsq | jA,uptqq “ arccos cosps ´ tq “ |s ´ t| ,

which implies that the restriction of jA,u to any segment of length less than π is an
isometric embedding.

November 5, 2024 21



22 Spherical geometry

Note that the computation (3.2) applied with s “ t implies that the image of the
mapping jA,u is contained in S1.

If A, B P Sn such that B ‰ ˘A, then there is a unique plane that contains both points.
Thus, there is unique great circle that contains A and B, in the remaining cases, there
are infinitely many such planes. The great circle is parametrised by the map jA,u, with

u “
B ´ pB | AqA

}B ´ pB | AqA}
“

B ´ pA | BqA
a

1 ´ pA | Bq2
. (3.3)

Now jp0q “ A and jpdpA, Bqq “ B.
If B “ ´A, then there are infinitely many great circles through A and B: the map

jA,u parametrises a great circle through A and B for any u P AK.
We call the restriction of any jA,u as above to any compact interval r0, ss a spherical

segment, and u is called the direction of jA,u. Once we have proved that d is a metric, it
is immediate that a spherical segment is a geodesic segment.

Our proof showing that the expression (3.1) defines a metric is based on the spherical
law of cosines.

A triangle in Sn is defined as in the Euclidean case but now the sides of the triangle
are the spherical segments connecting the vertices.

A

C

a

b

c

α

β

B

γ

Figure 3.1 — A triangle in S2.

Let jC,upr0, dpC, Aqsq be the side between C and A, and let jC,vpr0, dpC, Bqsqv be the
side between C and B. The angle between the sides jC,upr0, dpC, Aqsq and jC,vpr0, dpC, Bqsq

is arccospu | vq, which is the angle at A between the segments jC,upr0, dpC, Aqsq and
jC,vpr0, dpC, Bqsq in the ambient space En`1.

Now we can state and prove
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Proposition 3.2 (The spherical law of cosines). In spherical geometry, the relation
cos c “ cos a cos b ` sin a sin b cos γ

holds for any triangle.

Proof. Let u and v be the initial tangent vectors of the spherical segments jC,u from C to
A and jC,v from C to B. As u and v are orthogonal to C, we have

cos c “ pA | Bq “ pcospbqC ` sinpbqu | cospaqC ` sinpaqvq

“ cospaq cospbq ` sinpbq sinpaqpu | vq .

Proposition 3.3. The angle distance is a metric on Sn.

Proof. Clearly, the triangle inequality is the only property that needs to be checked to
show that the angle metric is a metric. Let A, B, C P Sn be three distinct points and use
the notation introduced above for triangles. The function

γ ÞÑ fpγq “ cospaq cospbq ` sinpaq sinpbq cospγq

is strictly decreasing on the interval r0, πs, and
fpπq “ cospaq cospbq ´ sinpbq sinpaq “ cospa ` bq .

Thus, the law of cosines implies that for all γ P r0, πs, we have
cospcq “ cospaq cospbq ` sinpaq sinpbq cospγq ě cospa ` bq, (3.4)

which implies c ď a ` b. Thus, the angle distance is a metric.

Note that the inequality (3.4) is strict unless γ “ π. This also implies that for triangles
that are not completely contained in a great circle,

c ă a ` b ă 2π ´ c . (3.5)
We return to this observation in Section 3.4.

Theorem 3.4. pSn, dSnq is a geodesic metric space. If 0 ă dSnpA, Bq ă π,1 then there is
a unique geodesic segment from A to B.

Proof. If x, y P S with y ‰ ˘x, then, by Lemma 3.1, the spherical segment with direction
given by the equation (3.3) is a geodesic segment that connects x to y. If the points x and
y are antipodal, then it is immediate from the expression of the spherical segment that
jx,upπq “ ´x for all u P xK with }u} “ 1. Thus, in this case there are infinitely many
geodesic segments connecting x to y.

If j is a geodesic segment connecting A to B, then any C in jpr0, dpA, Bqsq satisfies
dSnpA, Cq ` dSnpC, Bq “ dSnpA, Bq

by definition of a geodesic segment. In the proof of Proposition 3.3, we saw that equality
holds in the triangle inequality if and only if γ “ π. In this case, all the points A, B and
C lie on the same great circle and C is contained in the side connecting A to B. Thus, the
spherical segments are the only geodesic segments connecting A and B. If A ‰ ˘B, then
there is exactly one 2-plane containing both points. This proves the second claim.

Note that the sphere has no geodesic lines or rays because the diameter of the sphere
is π.

1This condition is equivalent with B ‰ ˘A.
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24 Spherical geometry

3.2 More on cosine and sine laws
The law of cosines implies that a triangle in En or Sn is uniquely determined up to an
isometry of the space, if the lengths of the three sides are known. In Euclidean space the
angles are given by

cos γ “
a2 ` b2 ´ c2

2ab

and the corresponding equations for α and β obtained by permuting the sides and angles,
and in the sphere we have

cos γ “
cos c ´ cos a cos b

sin a sin b
.

In Euclidean space, the three angles of a triangle do not determine the triangle uniquely
because dilations of En preserve angles. In Sn the angles determine a triangle uniquely
up to isomorphism. This is the content of

Proposition 3.5 (The second spherical law of cosines). In spherical geometry, the relation

cos c “
cos α cos β ` cos γ

sin α sin β

holds for any triangle.

Proof. This formula follows from the first law of cosines by manipulation. The first law
of cosines implies

sin2 γ “ 1 ´ cos2 γ “
1 ` 2 cos a cos b cos c ´ pcos2 ` cos2 b ` cos2 cq

sin2 a sin2 b
“

D

sin2 a sin2 b
,

and D is symmetric in a, b and c. Thus, using the law of cosines, we get

cos α cos β ` cos γ

sin α sin β
“

cos a ´ cos b cos c

sin b sin c

cos b ´ cos a cos c

sin a sin c
`

cos c ´ cos a cos b

sin a sin b
D

sin a sin b sin2 c

“ cos c .

Spherical geometry even has its own sine law

Proposition 3.6 (The spherical law of sines). In spherical geometry, the relation

sin a

sin α
“

sin b

sin β
“

sin c

sin γ

holds for any triangle.

Proof. In the proof of the second law of cosines we saw that he first law of cosines implies
that

ˆ

sin c

sin γ

˙2

“
sin2 a sin2 b sin2 c

D
.

The claim follows because this expression is symmetric in a, b and c.
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3.3 Isometries of Sn

Proposition 3.7. The orthogonal group Opn ` 1q acts transitively by isometries on Sn.
In particular, IsompSnq acts transitively on Sn.

Proof. Let A P Opn ` 1q and let x P En`1. By definition of orthogonal matrices, we
have }Ax}2 “ pAx | Axq “ }x}2. Thus, A defines a bijection of the sphere Sn to itself.
Furthermore, for any x, y P Sn`1, again by the definition of orthogonal matrices,

cos dSnpAx, Ayq “ pAx | Ayq “ px | yq “ cos dSnpx, yq ,

which implies that the above mapping is an isometry.
Transitivity follows from the fact that any element of Sn can be taken as the first

element of an orthonormal basis of En or, equivalently, as the first column of an orthogonal
matrix.

Theorem 3.8. IsompSnq “ Opn ` 1q

Proof. The claim follows from Proposition 3.7 and Corollary 3.13 and Proposition 3.9
below in the same way as its Euclidean analog, Theorem 2.8, was proven.

Let H0 be a linear hyperplane in En. The intersection H “ H0 X Sn is a hyperplane of
Sn.
The reflection rH in H is the restriction of the reflection in H0 to the sphere: rH “ rH0 |Sn .

Note that each hyperplane of Sn is isometric with Sn´1 and that, by Propositions
2.10(2) and 3.7, the image of rH0 |Sn is contained in Sn.

Proposition 3.9. Let H be an hyperplane in Sn. Then
(1) rH ˝ rH is the identity.
(2) rH P Opn ` 1q. In particular, rH is an isometry of Sn.
(3) dSnprHpxq, yq “ dSnpx, yq for all x P Sn and all y P H.
(4) The fixed point set of rH is H.

Proof. Claims (1), (2) and (4) are direct consequences of Proposition 2.10. Claim (3) is
Exercise 3.1.

The bisector of two distinct points p, q P Sn is

bispp, qq “ tx P Sn : dSnpx, pq “ dSnpx, qqu .

Lemma 3.10. Let p, q P Sn, p ‰ q. Then bispp, qq “ pp ´ qqK X Sn. In particular, the
bisector is a hyperplane, it is the intersection of the Euclidean bisector of p and p with
the Sn.

Proof. The points p, q, x P Sn satisfy dSnpx, pq “ dSnpx, qq if and only if pp | xq “ pq | xq,
which is equivalent with pp ´ q | xq “ 0.
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Proposition 3.11. Let x, y P Sn and let H be a hyperplane of Sn.
(1) If rHpxq “ y and x R H, then H “ bispx, yq.
(2) If p, q P Sn, p ‰ q, then rbispp,qqppq “ q.
(3) Let ϕ P IsompSnq, ϕ ‰ id. If a P Sn, ϕpaq ‰ a, then the fixed points of ϕ are contained
in bispa, ϕpaqq.
(4) Let ϕ P IsompSnq, ϕ ‰ id. If H is a hyperplane such that ϕ|H is the identity, then
ϕ “ rH .

Proof. (1) follows from Proposition 3.9(3).
(2) Using the definitions and the fact that p`q

2 is in the Euclidean bisector of p and q, we
get

rbispp,qqppq “ p ´ 2
`

p ´
p ` q

2
ˇ

ˇ p ´ q
˘ p ´ q

}p ´ q}2 “ q .

The proofs of (3) and (4) are formally the same as in the Euclidean case.

We leave it as an exercise to check that the following result is proved in the same way
as their Euclidean counterparts.

Proposition 3.12. Let p1, p2, . . . , pk, q1, q2, . . . , qk P Sn be points that satisfy

dppi, pjq “ dpqi, qjq

for all i, j P t1, 2, . . . , ku. Then, there is an isometry ϕ P IsompSnq such that ϕppiq “ qi

for all i P t1, 2, . . . , ku.

Corollary 3.13. Any isometry of Sn can be represented as the composition of at most
n ` 1 reflections.

Proposition 3.14. The stabilizer in IsompSnq of any point x P Sn is isomorphic to Opnq.

Proof. The north pole en`1 is stabilized by the subgroup of Opnq that consists of block
diagonal matrices diagpA, 1q, where A P Opnq. Proposition 3.7 implies the claim as in the
Euclidean case, see Proposition 2.16.

Proposition 3.15. Each k-plane of Sn is isometric with Sk. For each k-plane P , there
is an isometry ϕ P IsompSnq such that

ϕpP q “ tx P Sn : xk`2
“ xk`3

“ ¨ ¨ ¨ “ xn`1
“ 0u .

Proof. The proof is similar to that of the Euclidean analog, Proposition 2.17, Exercise
3.6

3.4 Triangles in the sphere
In this section, we prove among other results that the sum of the angles of a nondegenerate
triangle in S2 is greater than π. In order to do this, we introduce the polar triangle of a
spherical triangle.
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Let A, B, C P S2 be points that do not all lie on the same great circle, and let ∆ be the
triangle with vertices A, B and C. The polar points A˚, B˚, C˚ P S2 of A, B and C are
the unique points that satisfy the conditions

pA˚
| Bq “0 “ pA˚

| Cq, pA˚
| Aq ą 0

pB˚
| Cq “0 “ pB˚

| Aq, pB˚
| Bq ą 0 (3.6)

pC˚
| Aq “0 “ pC˚

| Bq, pC˚
| Cq ą 0 .

The triangle ∆˚ with vertices A˚, B˚ and C˚ is the polar triangle of ∆. Let a˚, b˚ and
c˚ be the side lengths and let α˚, β˚ and γ˚ be the angles of pABCq˚.

Geometrically, for each vertex of the triangle, the dual vertex is the intersection point
of the line orhogonal to the plane that contains the other two vertices, on the same side
of the plane as the original vertex.

Lemma 3.16. The polar points of the vertices of a nondegenerate triangle ∆ in S2 are
linearly independent and p∆˚q˚ “ ∆.

Proof. Exercise 3.7.

Proposition 3.17. Let ABC be a triangle in S2 such that the vertices do not all lie on
the same great circle. Then

a ` α˚
“ b ` β˚

“ c ` γ˚
“ a˚

` α “ b˚
` β “ c˚

` γ “ π .

Proof. The situation is completely symmetric so it suffices to prove a ` α˚ “ π. Let
u, v P AK “ xB˚, C˚y be the directions of the edges AB and AC, respectively. Recall that
pu | vq “ cos α and pB˚ | C˚q “ cos a˚.

Now, u P xA, By implies that pu | C˚q “ 0 and similarly we have pv | B˚q “ 0. Further-
more,

pu | B˚
q “

ˆ

B ´ pB | AqA

}B ´ pB | AqA}

ˇ

ˇB˚

˙

“
pB | B˚q

}B ´ pB | AqA}
ą 0

and similarly pv | C˚q ą 0. Thus, we have either the points u, B˚, C˚ and v on the circle
xB˚, C˚y in this order or in the order B˚, u, v and C˚ with the right angles between u
and C˚ and v and B˚ overlapping in both cases. The claim follows easily.

Lemma 3.18. The perimeter of a spherical triangle is at most 2π. If the perimeter is
2π, then the vertices are all contained in the same great circle.

Proof. This follows from the inequality (3.5) and the fact that this inequality is an equality
if and only if γ “ π.

Proposition 3.19. The sum of the angles of a nondegenerate triangle in S2 is greater
than π.

Proof. Proposition 3.17 implies that α ` β ` γ ` a˚ ` b˚ ` c˚ “ 3π. As a˚ ` b˚ ` c˚ ă 2π
by Lemma 3.18, we get the claim of Proposition 3.19.

The following is the spherical analog of Proposition 2.4.
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B˚

A “ A˚

C˚

a

b

c

α

β

B

γ

C

Figure 3.2 — If A is the north pole and B and C are on the equator, then A “ A˚.

Proposition 3.20. Let 0 ă a, b, c ă π. If a`b ą c, b`c ą a, c`a ą b and a`b`c ă 2π,
then there is a triangle in S2 with side lengths a, b and c. All such triangles are isometric.

Proof. We use the law of cosines in the construction: Note that if such a triangle exists,
then the angle at C satisfies the cosine law. Therefore, we can compute it if we know that

ˇ

ˇ

ˇ

ˇ

cos c ´ cos a cos b

sin a sin b

ˇ

ˇ

ˇ

ˇ

ă 1 , (3.7)

because then cos c´cos a cos b
sin a sin b

is in the range of cos, and we can proceed with the construction.
The pair of inequalities c ă a ` b ă 2π ´ c implies

cos c ą cospa ` bq “ cos a cos b ´ sin a sin b .

The inequalities b ` c ą a and c ` a ą b give |a ´ b| ă c, which implies

cos c ă cospa ´ bq “ cos a cos b ` sin a sin b .

These two inequalities give

´ sin a sin b ă cos c ´ cos a cos b ă sin a sin b ,

which implies the inequality (3.7). Now we can place the sides of length a and b starting
at C in the correct angle γ. The cosine law implies that the lengths of the side opposite
to C is indeed c.

The triangles are isometric by Proposition 3.12
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3.5. Some elementary Riemannian geometry on S2. 29

3.5 Some elementary Riemannian geometry on S2.

Let x P S2. The latitude of x is

θpxq “
π

2 ´ dS2px, e3q “
π

2 ´ arccospx | e3q “
π

2 ´ arccospx3q P r´
π

2 ,
π

2 s,

which is the oriented angle of x from the equator tx P S2 : x3 “ 0u. The longitude of
x P S2 ´ t˘e3u is

ϕpxq “ signpx2q arccos
ˆ

px1, x2, 0q | e1q

}px1, x2, 0q}

˙

“ signpx2q arccos
ˆ

x1
a

x2
1 ` x2

2

˙

P s´π, πs ,

where signptq “ t
|t|

for nonzero t and we set signp0q “ 1.

The longitude is the oriented angle between x and the geodesic segment from the north
pole e3 to the south pole ´e3, called the 0-meridian.2 Here we have chosen the value π
for the longitude on the international date line which is the geodesic segment between
the poles that passes through ´e1. More generally, the geodesic line between the poles
determined by an equation ϕ “ c is a meridian and the circle determined by an equation
θ “ c is a parallel.

The longitude and latitude of a point define a bijection L : S2 ´ t˘e3u Ñ s´π, πs ˆ

sπ
2 , π

2 r,
Lpxq “ pϕpxq, θpxqq .

The inverse of this map is given by

L´1
pϕ, θq “ pcos ϕ cos θ, sin ϕ cos θ, sin θq .

This map is good close to the equator but distances, areas and angles are badly distorted
close to the poles.

Let a P R´ t0u and consider the projection plane Pa “ tx P E3 : x3 “ au. For any x P S2,
let Sa

0 : S2 Ñ Pa be the map

Sa
0 pxq “ p1 ´ aq

x ´ e3

1 ´ x3
` e3

that associates to x the unique point on Pa that lies on the affine line through e3 and x.
The stereographic projection Sa : S2 ´ te3u Ñ E2 is pr3 ˝Sa

0 , where pr3pyq “ py1, y2q is the
orthogonal projection of E3 to E2 identified with the hyperplane E2 ˆ t0u:

Sa
pxq “ p1 ´ aq

` x1

1 ´ x3
,

x2

1 ´ x3

˘

.

Most often, one uses a “ 0, which is the case where the projection plane passes through
the origin, or a “ ´1, which is the case where the projection plane is tangent to the
sphere at the south pole.

2This is the Greenwich meridian if we consider the Earth with its standard coordinates.
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Length and area
The (differential geometric) length of a piecewise continuously differentiable path τ : I Ñ

S2 is
ℓpτq “

ż

I

} 9τ} ,

where 9τptq is the tangent (derivative) vector of the path for each t P I.

Proposition 3.21. Let A, B P S2, A ‰ B. Let j be a spherical segment that connects A
and B. Then ℓpjq ď ℓpτq for all piecewise continuously differentiable paths τ .

Proof. Using an isometry of S2, we can assume that A and B are contained in the 0-
meridian. Using longitude-latitude coordinates, consider the continuous map proj de-
fined by projpϕ, θq “ p0, θq whose image is contained in the 0-meridian. Clearly, ℓpjq ď

ℓpproj ˝τq ď ℓpτq.

In the computation of the length of a path τ , the norm of the tangent vector 9τptq is
computed in the tangent plane τptqK at τptq. Using the coordinate maps, we get

The inner product of the tangent spaces can be used to define the area of a subset of
the sphere. This gives the expressions

Area A “

ż

LpAq

cos θdθdϕ

in the longitude-latitude coordinates and

Area A “

ż

S0pAq

4 dx1dx2

p1 ` }x}2q2

in the coordinates given by the stereographic projection.

Proposition 3.22. The area of S2 is 4π.

Let 0 ă α ă π. The area of the (spherical) sector Sα “ tx P S2 : 0 ď ϕpxq ď αu and
any of its isometric images is easily seen to be α

2π
4π “ 2α.

Proposition 3.23 (Girard). The area of a triangle with angles α, β and γ is α`β`γ´π.

Proof. Let A, B and C be the vertices of the triangle. The antipodal points ´A, ´B
and ´C determine a triangle p´Aqp´Bqp´Cq that is isomorphic with ABC. The three
great circles xA, By X S2, xB, Cy X S2 and xC, Ay X S2 determine six sectors with angles
α, α, β, β, γ, γ that cover the sphere. In the complement of the great circles, the triangles
ABC and p´Aqp´Bqp´Cq are both covered by three sectors, other points are contained
in one sector. Thus,

4π “ Area S2
“ 2pArea Sα ` Area Sβ ` Area Sγq ´ 4 Area ABC

“ 2p2α ` 2β ` 2γq ´ 4 Area ABC ,

which gives the claim.
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Exercises
3.1. Prove Proposition 3.9(3).
3.2. Let H be a hyperplane in Sn. Prove that dprHpxq, yq “ dpx, yq for all x P Sn and
y P H.
3.3. Let ϕ P IsompSnq ´ tidu. Let H be a hyperplane such that ϕ|H “ id |H . Prove that
ϕ “ rH .
3.4. Prove Corollary 3.12 for n “ 2.
3.5. Prove Corollary 3.13.
3.6. Prove Proposition 3.15.
3.7. Prove Lemma 3.16.
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Chapter 4

Hyperbolic space

In this chapter, we define hyperbolic space as a submanifold of Minkowski space with a
metric that is analogous with the angle metric on the sphere. We will show that hyperbolic
space is a uniquely geodesic metric space and that the orthogonal group of the Minkowski
bilinear form is the group of isometries of hyperbolic space. The proof uses the hyperbolic
law of cosines.

4.1 Minkowski space
In this section we introduce the indefinite Minkowski bilinear form in Rn`1 and, in par-
ticular, the associated subset Hn that is used to define hyperbolic n-space in Section
4.3.

Let V and W be real vector spaces. A map Φ: V ˆ W Ñ R is a bilinear form, if the maps
v ÞÑ Φpv, w0q and v ÞÑ Φpv0, wq are linear for all w0 P W and all v0 P V .
A bilinear form Φ is nondegenerate if

• Φpx, yq “ 0 for all y P W only if x “ 0, and

• Φpx, yq “ 0 for all x P V only if y “ 0.

If W “ V , then Φ is symmetric if Φpx, yq “ Φpy, xq for all x, y P V . It is

• positive semidefinite if Φpx, xq ě 0 for all x P V ,

• positive definite if Φpx, xq ą 0 for all x P V ´ t0u,

• negative (semi)definite if ´Φ is positive (semi)definite, and

• indefinite otherwise.

The function q : V Ñ R, qpxq “ Φpx, xq is the quadratic form corresponding to a bilinear
form Φ: V ˆ V Ñ R.
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34 Hyperbolic space

A positive definite symmetric bilinear form is often called an inner product or a scalar
product.

If V is a real vector space with a symmetric bilinear form Φ, two vectors u, v P V are
orthogonal, u K v, if Φpu, vq “ 0. The orthogonal complement of u P V is

uK
“ tv P V : u K vu.

Let us consider the indefinite nondegenerate symmetric bilinear form x¨ | ¨y on Rn`1

given by

xx | yy “ ´x0y0 `

n
ÿ

i“1
xiyi “ ´x0y0 ` px̄ | ȳq “ xT Jy,

where
J “ J1,n “ diagp´1, 1, . . . , 1q

and x “ px0, x1, . . . , xnq “ px0, x̄q.

The bilinear form x¨ | ¨y is the Minkowski bilinear form, and the pair

M1,n
“
`

Rn`1, x¨ | ¨y
˘

is the n ` 1-dimensional Minkowski space.
A vector x P M1,n ´ t0u is

• lightlikea if xx | xy “ 0,

• timelike if xx | xy ă 0, and

• spacelike if xx | xy ą 0.
aLight-like vectors are also called null-vectors

The names for the three different types of vectors in Minkowski space come from
Einstein’s special theory of relativity, which lives in M1,3. Minkowski space has a number
of geometrically significant subsets: The subset of null-vectors is the light cone

L n
“ tx P M1,n : xx | xy “ 0u .

The smooth submanifold

L n
´ “ tx P M1,n : xx | xy “ ´1u

is a two-sheeted hyperboloid, and its upper sheet is

Hn
“ tx P M1,n : xx | xy “ ´1, x0 ą 0u.

The smooth submanifold
L n

` “ tx P M1,n : xx | xy “ 1u

is a one-sheeted hyperboloid.
The following is an important observation on time-like vectors.
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4.2. The orthogonal group of Minkowski space 35

Figure 4.1 — The upper sheet of the two-sheeted hyperboloid with the lightcone and
the one-sheeted hyperboloid.

Lemma 4.1. If u, v P Hn, then xu | vy ď ´1 with equality only if u “ v.

Proof. Using the Cauchy inequality for the Euclidean inner product in Rn for the first
inequality and a simple calculation1 for the second, we have

xu | vy “ ´u0v0 `

n
ÿ

i“1
uivi ď ´u0v0 `

d

n
ÿ

i“1
u2

i

d

n
ÿ

i“1
v2

i

“ ´u0v0 `
a

u2
0 ´ 1

a

v2
0 ´ 1 ď ´1 .

Cauchy’s inequality is an equality if and only if u and v are parallel, and the final inequality
is an equality if and only if u0 “ v0. This implies the claim on equality.

4.2 The orthogonal group of Minkowski space

The orthogonal group of the Minkowski bilinear form is

Op1, nq “ tA P GLn`1pRq : xAx | Ayy “ xx | yy for all x, y P M1,n
u

“ tA P GLn`1pRq : TAJ1,nA “ J1,nu .

An element of Op1, nq is an orthogonal transformation.
1Manipulate the given inequality to remove the square roots etc.
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Clearly, the linear action of Op1, nq on M1,n preserves the light cone and the two-
sheeted hyperboloid L n.

Let A “ pa0, a1, . . . , anq be an pn`1qˆpn`1q-matrix A in terms of its column vectors
a0, a1, . . . , an P Rn`1. If A P Op1, nq, then a0 “ Ape0q for e0 “ p1, 0, . . . , 0q P Hn. Thus
Ape0q P Hn if and only if A00 ą 0, and therefore the stabiliser in Op1, nq of the upper
sheet Hn is

O`
p1, nq “ tA P Op1, nq : AHn

“ Hn
u

“ tA P GLn`1pRq : A00 ą 0, xAx | Ayy “ xx | yy for all x, y P M1,n
u (4.1)

“ tA P GLn`1pRq : A00 ą 0, TAJ1,nA “ J1,nu .

Let us check that the second of the three equalities in (4.1) holds: Let A P GLn`1pRq

with A00 ą 0 and xAx | Ayy “ xx | yy for all x, y P M1,n. The first and third properties
are equivalent with A P Op1, nq so it remains to check that AHn “ Hn. We know that
Ae0 P Hn. Linear automorphisms of En`1 are continuous mappings and the image of a
connected set under a continuous map is connected, so Hn is mapped into Hn. Similarly,
the lower half of the hyperboloid L n is mapped into itself. Furthermore, the elements of
GLn`1pRq are linear bijections, so the restriction to Hn is a bijection of Hn.

A basis tv0, v1, . . . , vnu of M1,n is orthonormal if the basis elements are pairwise orthogonal
and if xv0 | v0y “ ´1 and xvi | viy “ 1 for all i P t1, 2, . . . , nu.

The following observation is proved in the same way as its Euclidean analog:

Lemma 4.2. An pn ` 1q ˆ pn ` 1q-matrix A “ pa0, a1, . . . , anq is in Op1, nq if and only if
the vectors a0, a1, . . . , an form an orthonormal basis of M1,n. Furthermore, A P O`

p1, nq

if and only if A P Op1, nq and a0 P Hn.

Proof. Exercise.

Example 4.3. (1) Let t P R. The matrix

Lt “

¨

˝

cosh t sinh t 0
sinh t cosh t 0

0 0 1

˛

‚P O`
p1, 2q

stabilizes any affine hyperplane

Hc “ tx P M1,2 : x2 “ cu . (4.2)

In particular, the path t ÞÑ Lte0 “ pcosh t, sinh t, 0q parametrizes the hyperbola

tx P H2 : x2 “ 0u “ H2
X tx P M1,2 : x2 “ 0u .

(2) For any θ P R, let pRθ “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

P Op2q, and let

Rθ “ diagp1, pRθq “

ˆ

1 0
0 pRpθq

˙

“

¨

˝

1 0 0
0 cos θ ´ sin θ
0 sin θ cos θ

˛

‚P O`
p1, 2q .
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The mapping Rθ is a Euclidean rotation around the vertical axis by the angle θ. The
rotation Rθ stabilizes each affine hyperplane

Er “ tx P M1,2 : x0 “ ru

for any r P R. Another important mapping that comes by extension from Op2q is given by
the matrix diagp1, 1, ´1q, which is a reflection in the hyperplane H0 defined in equation
(4.2).
(3) The above examples can be generalized to higher dimensions:

• Lt is extended as the identity on the last coordinates to diagpLt, In´2q P O`
p1, nq.

• Any Euclidean orthogonal matrix A P Opnq gives an isometry diagp1, Aq P O`
p1, nq.

Proposition 4.4. The group O`
p1, nq acts transitively on Hn and on the one-sheeted

hyperboloid L n
` .

Proof. We use the notation of Example 4.3. If x P Hn, then x “ p
a

}x̄}2 ` 1, x̄q. There is
some pRθ P Opnq such that pRθx̄ “ }x̄}e1, and thus, Rθpxq “ p

a

}x̄}2 ` 1, }x̄}e1q. Further-
more,

Larsinh }x̄}e0 “ p
a

}x̄}2 ` 1, }x̄}e1q ,

and we have x “ R´1
θ Larsinh }x̄}e0. This implies that Hn is the O`

p1, nq-orbit of e0.
A similar proof shows that L n

` is the O`
p1, nq-orbit of e1 P M1,n, see Exercise 4.2.

Figure 4.2 — The idea of the proof of Proposition 4.4 : Rθ moves the point x along
the red circle to the blue curve and Lt moves the point along the blue curve to e0. The
hyperboloid is seen from the side and from the top.

The proofs of the following propositions demonstrate the use of a transitive group of
transformations:

Proposition 4.5. The restriction of the Minkowski bilinear form to the orthogonal com-
plement of a timelike vector is positive definite.2

2Naturally, the orthogonal complement is defined with respect to the Minkowski bilinear form.
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Proof. Let v P M1,n be a timelike vector. We may assume that v P Hn. Proposition
4.4 implies the existence of an element A P O`

p1, nq such that Av “ e0. The orthogonal
complement of e0 is the subspace tx P M1,n : x0 “ 0u. The restriction of the Minkowski
bilinear form to this subspace is the standard Euclidean inner product. By definition,
xA´1u | A´1uy “ xu | uy ą 0 for all u P eK

0 .

Proposition 4.6. For any a P Hn, the tangent space TaHn of Hn at a coincides with aK.

Proof. Let p P Hn. As the group O`
p1, nq acts transitively on Hn there is some A P

O`
p1, nq such that Ae0 “ p. As in Proposition 4.5, AeK

0 “ pK. Considering the linear
map A as a differentiable mapping of Rn`1 to itself, its differential that coincides with A
maps the tangent space at e0 to the tangent spaces at p. Clearly,

Te0Hn
“ tx P M1,n : x0 “ 0u “ eK

and the same holds at p by the observations we just made.

Figure 4.3 — The orthogonal complement pK of a point p P H2 coincides with the tangent
space TppH2q as a vector subspace of R3. The figure also shows the affine tangent plane
p ` pK that is tangent to H2 at p. If we consider the standard Euclidean inner product in
R3, the tangent plane coincides with the orthogonal complement only at e0.

Propositions 4.5 and 4.6 imply that the restriction of the Minkowski bilinear form to
each tangent space defines a Riemannian metric.
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The Riemannian metric of Hn associates the inner product x¨ | ¨y|aK to all points a P Hn.
The norm in aK is

|u| “
a

xu | uy

for all u P aK.
The angle >pu, vq of any two vectors u, v P TaHn “ aK ´ t0u is

>pu, vq “ arccos
´

xu | vy

|u| |v|

¯

.

We will not discuss Riemannian geometry in a formal manner. Hyperbolic space is
an important example of a Riemannian manifold, and sometimes3 hyperbolic metric is
defined as a Riemannian metric. In that approach, hyperbolic metric appears as the path
metric of the Riemannian metric.

The Riemannian length of a piecewise smooth path γ : ra, bs Ñ Hn is

ℓpγq “

ż b

a

a

x 9γptq | 9γptqy dt .

The length metric of the Riemannian metric of Hn is

dRiempx, yq “ inf ℓpγq,

where the infimum is taken over all piecewise smooth paths that connect x to y.

In section 5.3, we will show that the Riemannian approach leads to the same hyperbolic
metric as the one we will define in section 4.3. Riemannian geometry also provides a
natural concept of volume in hyperbolic space, and we will discuss this in section 5.9.

4.3 Hyperbolic space
In this section, we define a metric on the upper sheet Hn using the Minkowski bilinear
form analogously with the definition of the spherical metric in section 3.1.

The metric space pHn, dq, where

dpx, yq “ arcoshp´xx | yyq P r0, 8r ,

is the hyperboloid model of n-dimensional (real) hyperbolic space. The metric d is the
hyperbolic metric.

We still need to show that the hyperbolic metric is a metric. The proof follows the
same idea that was used to treat the angle metric for the sphere Sn.

3See [And] or [Bea].
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Let a P Hn, and let u P aK such that xu | uy “ 1. a The mapping ja,u : R Ñ Hn,

ja,uptq “ a coshptq ` u sinhptq ,

is the hyperbolic line through a in direction u. For any T ą 0, the restriction ja,u|r0,T s is
a hyperbolic segment.

aRecall that the restriction of the Minkowski bilinear form to aK is positive definite by Corollary 4.5.

Lemma 4.7. Let a P Hn and u P aK.
(1) The image of ja,u is contained in Hn.
(2) For all s, t P R, we have

dpja,uptq, ja,upsqq “ |s ´ t| . (4.3)

(3) A ˝ ja,u “ jAa,Au for all A P O`
p1, nq.

Proof. Exercise 4.3.

As in section 3.1 for the sphere, if we show that d is a metric, then Lemma 4.7 implies
that ja,u is a geodesic line.

Lemma 4.8. Let p, q P Hn be two distinct points. Let

u “
q ` xp | qyp
a

xp | qy2 ´ 1
.

Then jp,up0q “ p and jp,uparcoshp´xp | qyqq “ q.

Proof. Observe that Lemma 4.1 implies
@

q ` xp | qy p
ˇ

ˇ q ` xp | qy p
D

“ xp | qy
2

´ 1 ą 0 .

Thus, u is a unit tangent vector to the hyperboloid. The fact that jp,up0q “ p is immediate,
and the other claim follows by noting that sinhparcoshp´xp | qyqq “

a

xp | qy2 ´ 1.

Lemma 4.9. For any a P Hn and any u P aK, ja,upRq “ Hn X xa, uy. If a 2-plane T
intersects Hn, then T X Hn is the image of a hyperbolic line.

Proof. Clearly, the image of ja,u is contained in the 2-plane xa, uy. The fact the image of
ja,u coincides with xa, uy X Hn follows from the second statement of the Lemma that we
prove below.

If T “ xe0, e1y, then Hn X T is a copy of the upper half of the hyperbola

tx P R2 : ´x2
0 ´ x2

1 “ ´1u ,

and this intersection is parametrized by je0,e1 . If T “ xe0, vy for any v P eK
0 , then there is

an element B P Opnq such that Be1 “ v and, consequently, an element B1 “ diagp1, Bq P

O`
p1, nq such that Be0 “ e0 and Be1 “ v. Thus, Hn X T “ B1pHn X xe0, e1yq coincides

with the image of the hyperbolic line B1 ˝ je0,e1 “ jB1e0,B1e1 “ je0,v, see Lemma 4.7.
If the plane T does not pass through e0 but intersects Hn, then Proposition 4.4 provides

an element A P O`
p1, nq such that T “ ApT0q for some plane T0 that intersects Hn at e0.

We saw above that this intersection is parametrized by a hyperbolic line je0,v for some
v P eK

0 . As above, we see that Hn X T is parametrized by A ˝ je0,v “ jAe0,A,v.
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Figure 4.4 — A linear plane that intersects H2 seen from two different angles.

The fact that the hyperbolic metric is indeed a metric is proved in the same way as
Proposition 3.3 in the spherical case. First we prove the law of cosines for triangles in
hyperbolic space. As we cannot use a metric yet, we consider triangles whose sides are
hyperbolic segments. The angles at the vertices are defined using the Riemannian metric
of Hn. We use the notation for triangles introduced in section 1.6.

Figure 4.5 — A triangle in H2 with a vertice at e0.

Proposition 4.10 (The first hyperbolic law of cosines).

cosh c “ cosh a cosh b ´ sinh a sinh b cos γ .
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Proof. Let u and v be the initial tangent vectors of the hyperbolic segments from C to A
and from C to B. As u and v are orthogonal to C, we have as in the spherical case,

cosh c “ ´xA | By “ ´xcoshpbqC ` sinhpbqu | coshpaqC ` sinhpaqvy

“ coshpaq coshpbq ´ sinhpbq sinhpaqxu | vy .

Theorem 4.11. Hyperbolic space is a uniquely geodesic metric space. Hyperbolic lines
are geodesic lines.

Proof. To show that the hyperbolic metric is a metric, let A, B, C P Hn. Using the
fixed notation for the hyperbolic triangle with vertices A, B and C, consider the strictly
increasing function f : r0, πs Ñ R,

fpγq “ cosh a cosh b ´ sinh a sinh b cos γ,

that has a unique maximum at γ “ π with

γpπq “ cosh a cosh b ` sinh a sinh b “ coshpa ` bq .

The first law of cosines implies that cosh c ď coshpa ` bq, which yields the triangle in-
equality.

Now that we know that hyperbolic space is a metric space, hyperbolic lines are geodesic
lines by Lemma 4.7(2). If A and B are distinct points in Hn, there is a unique 2-plane T
through them. Thus, there is exactly one image of a hyperbolic line through these points.
Assume that there is a geodesic segment k : r0, dpA, Bqs Ñ Hn such that kp0q “ A,
kpdpA, Bqq “ B and the image of k is not contained in T . Let C P kpr0, dpA, Bqsq ´T and
consider the triangle with vertices A, B and C and sides the unique hyperbolic segments
connecting A to B, B to C and C to A. As the function f is strictly increasing, equality
is possible in the triangle inequality only when γ “ π. This implies that the segments
from B to C and from C to A are contained in a hyperbolic line. This hyperbolic line
contains A and B and, therefore, the sides from B to C and from C to A are contained
in the side from A to B, but this is a contradiction. Thus, Hn is uniquely geodesic.

We will postpone the proof of the following important result until Section 5.3 where
the details are simplified by a smart choice of coordinates.

Theorem 4.12. Hyperbolic metric is the length metric of the Riemannian metric of
hyperbolic space.

4.4 Isometries of Hn

Proposition 4.13. O`
p1, nq acts transitively by isometries on Hn. In particular, IsompHnq

acts transitively on Hn.

Proof. Transitivity of the action was proved in Proposition 4.4 so it remains to show that
the elements of O`

p1, nq act as isometries. Let g P O`
p1, nq, and let x, y P Hn. By the

definition of the hyperbolic metric and of O`
p1, nq, we have

dpgpxq, gpyqq “ arcoshp´xgpxq | gpyqyq “ arcoshp´xx | yyq “ dpx, yq .
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Example 4.14. (1) Let t P R. The matrix Lt of Example 4.3 acts on H2 as an isometry
that preserves the intersection of H2 with any affine 2-plane tx P M1,2 : x2 “ cu. In
particular, it stabilizes the geodesic line

ℓ “ tx P H3 : x2 “ 0u .

For any point p “ pa, b, 0q P ℓ, we have

dpLtppq, pq “ arcoshp´xLtp | pyq “ arcoshpp´a2
` b2

q coshptqq “ |t| .

In chapter 5, we will see that all other points are moved a longer distance than |t|.
(2) If r ą 0, then the set

Hn
X tpcosh r, x̄q : x̄ P Rn

u “ tpcosh r, x̄q : x̄ P Rn , }x̄} “ sinh ru

is the sphere of radius r centered at the point e0 P Hn. If A P Opnq, the isome-
try diagp1, Aq P O`

p1, nq maps each sphere centered at e0 to itself, and the subgroup
tdiagp1, Aq P O`

p1, nq : A P Opnqu “ Stab e0 ă IsomHn acts transitively on each such
sphere.
(3) For each v P L 2 and c ă 0, the set

tx P H2 : xv | xy “ cu

is called a horosphere based at v. The mapping given by the matrix

Ns “

¨

˚

˝

1 ` s2

2 ´ s2

2 s
s2

2 1 ´ s2

2 s

s ´s 1

˛

‹

‚

P O`
p1, 2q

maps each horosphere based at p1, 1, 0q P L 2 to itself.
(4) Composing some number of the above mappings we obtain further examples of isome-
tries of the hyperbolic plane. For example, if p P H2, then there is some θ P R such that
Rθppq P ℓ. Now, L´1

dpe0,pq
pRθppqq “ L´dpe0,pqpRθppqq “ e0, and for any ϕ P R, the mapping

S “ R´θ ˝ Ldpe0,pq ˝ Rϕ ˝ L´1
dpe0,pq

˝ Rθ is an isometry that fixes p and maps each sphere
centered at p to itself. The mapping S is conjugate4 to Rϕ in IsompHnq.

The isometries introduced above are classified according to the conic sections they
correspond to. The mapping Lt and any of its conjugates in IsompHnq is called hyperbolic
because Lt maps each affine plane parallel to the px0, x1q-plane in M1,2 to itself, and
these planes intersect the light cone in hyperbola, except for the px0, x1q-plane itself that
intersects the lightcone in a pair of lines.

The mapping Rθ and any of its conjugates is called elliptic because Rθ preserves all
horizontal hyperplanes in M1,2 and their intersections with L 2, which are circles centered
at points of the 0:th coordinate axis.

The mapping Ns and any of its conjugates is called parabolic because it preserves all
affine hyperplanes tx P M1,2 : xv | xy “ cu, which intersect L 2 in a parabola when c ă 0.

As in the Euclidean and spherical geometries, we will now study a fundamental class
of isometries, reflections in a hyperplane.

4If G is a group and g, h P G, then the elements g and hgh´1 are conjugate elements in G.
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If T is an pm ` 1q-dimensional linear subspace of Rn`1 that intersects Hn, then T XHn is
an m-dimensional hyperbolic subspace of Hn. If m “ n ´ 1, then T is a hyperplane.

Proposition 4.15. Let 1 ď m ă n. Any two hyperbolic m-dimensional subspaces of Hn

can be mapped to each other by isometries of Hn.

Proof. Exercise 4.4.

Corollary 4.16. If 2 ď k ď n, then any k-dimensional hyperbolic subspace of Hn is
isometric to Hk.

Proof. The hyperplane tx P Hn : xk`1 “ xk`2 “ ¨ ¨ ¨ “ xn “ 0u is clearly isometric to Hk.
The claim follows from Proposition 4.15.

Any hyperplane T in M1,n is of the form T “ uK for some u P M1,n ´ t0u because the
Minkowski bilinear form is nondegenerate. Let H “ uK XHn be a hyperbolic hyperplane.
Since H intersects Hn, it contains a vector v for which xv | vy “ ´1. Proposition 4.5
implies that xu | uy ą 0, and after normalising, we may assume that u is a unit vector.

Let u P L n
` . The reflection in H “ uK X Hn is the map

rHpxq “ x ´ 2xx | uy u . (4.4)

Example 4.17. If u0 “ 0, then xx | uy “ px | uq for all x P M1,n. This implies that the
reflection in uK coincides with the Euclidean reflection in the hyperplane uK that contains
e0.

The proofs of the basic properties of reflections are natural modifications of those in
the spherical case. Note that the expression (4.4) defines a mapping in Minkowski space,
fixing the hyperplane uK. The reflection in hyperbolic space is, in fact, the restriction of
a reflection of Minkowski space.

Proposition 4.18. Let H be a hyperbolic hyperplane. Then
(0) rH maps Hn into itself.
(1) rH ˝ rH is the identity.
(2) rH P O`p1, nq.
(3) dprHpxq, yq “ dpx, yq for all x P Hn and all y P H.
(4) The fixed point set of rH is H

Proof. (0) Let x P Hn. Using bilinearity and symmetry of the Minkowski form and the
fact that u is a unit vector, we get

xrHpxq | rHpxqy “
@

x ´ 2xx | uyu
ˇ

ˇx ´ 2xx | uyu
D

“ xx | xy ´ 2xx | uyxx | uy ´ 2xx | uyxu | xy ` 4xx | uyxx | uyxu | uy

“ xx | xy “ ´1 .

Thus, rHpxq P L n
´ . Furthermore, for any v P H,

rHpvq “ v ´ 2xv | uyu “ v,
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so there are points in Hn which are mapped to Hn. Since rH is continuous and preserves
the Minkowski form, rHpHnq Ă Hn.
(1) This easy computation is left as an exercise.
(2) Clearly, rH is a linear mapping, and it is a bijection by (1). As in (0), we get

xrHpxq | rHpyqy “
@

x ´ 2xx | uyu
ˇ

ˇ y ´ 2xy | uyu
D

“ xx | yy .

Thus, rH P Op1, nq. Claim (0) gives rH P O`
p1, nq.

(3) For any x P Hn and all y P H, we have

xrHpxq | yy “ xx ´ 2xx | uyu | yy “ xx | yy ´ 2xx | uyxu | yy “ xx | yy,

where the final equality follows from the assumption u P HK.
(4) This follows immediately from (3) by taking x “ y P H.

The bisector of two distinct points p and q in Hn is the hyperplane

bispp, qq “ tx P Hn : dpx, pq “ dpx, qqu .

Lemma 4.19. If p, q P Hn, p ‰ q, then bispp, qq “ pp ´ qqK X Hn.

Proof. Exercise 4.5.

Proposition 4.20. (1) For any p, q P Hn, the bisector bispp, qq is a hyperbolic hyperplane.
(2) If H is a hyperplane in Hn and x, y P Hn ´ H with rHpxq “ y, then H “ bispx, yq.
(3) If p, q P Hn, p ‰ q, then rbispp,qqppq “ q.
(4) Let ϕ P IsompHnq, ϕ ‰ id. If a P Hn with ϕpaq ‰ a, then the fixed points of ϕ are
contained in bispa, ϕpaqq.
(5) Let ϕ P IsompHnq, ϕ ‰ id. If H is a hyperplane such that ϕ|H is the identity, then
ϕ “ rH .

Proof. (1) Lemma 4.1 implies that

xp ´ q | p ´ qy “ ´2 ´ 2xp | qy ą 0 .

Let λ ą 0 and u P L n
` such that p ´ q “ λv. Obviously, pp ´ qqK “ vK. The second part

of Proposition 4.4 implies that there is an element A P O`
p1, nq such that Av “ e1. The

orthogonal complement of e1 is the hyperplane tx P M1,n : x1 “ 0u that contains e0. The
claim follows as A maps Hn to itself and pAvqK “ ApvKq.
(2) follows from Proposition 4.18(3).
(3) Using the computation from (1) above, we have

2xp | p ´ qy “ 2pxp | py ´ xp | qyq “ ´2 ´ 2xp | qy “ |p ´ q|
2 .

Thus,
rbispp,qqppq “ p ´ 2xp | p ´ qy

p ´ q

|p ´ q|2
“ q .

(4) If ϕpbq “ b, then dpa, bq “ dpϕpaq, ϕpbqq “ dpϕpaq, bq, so that b P bispa, ϕpaqq.
(5) is an instructive exercise.
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Proposition 4.21. Any two reflections in hyperbolic hyperplanes of Hn are conjugate in
IsomHn.

Proof. Exercise 4.7.

Next, we prove that all isometries of hyperbolic space are restrictions to Hn of linear
automorphisms of M1,n:

Theorem 4.22. IsompHnq “ O`
p1, nq.

The idea of the proof is to show that each isometry of Hn is the composition of
reflections in hyperbolic hyperplanes. Again, the proof follows the same ideas as in the
Euclidean and spherical cases.

Proposition 4.23. Let p1, p2, . . . , pk, q1, q2, . . . , qk P Hn be points that satisfy

dppi, pjq “ dpqi, qjq

for all i, j P t1, 2, . . . , ku. Then, there is an isometry ϕ P IsompHnq such that ϕppiq “ qi

for all i P t1, 2, . . . , ku. Furthermore, the isometry ϕ is the composition of at most k
reflections in hyperplanes.

Proof. Exercise 4.8.

Note that Proposition 4.23 implies that if T and T 1 are two triangles in Hn with equal
sides, then there is an isometry ϕ of Hn such that ϕpT q “ T 1.

Proof of Theorem 4.22. Let ϕ P IsompHnq. Let ta0, a1, . . . , anu be a set of points in Hn

which is not contained in any proper hyperbolic subspace. This is achieved by choosing
them so that they generate M1,n as a vector space. Proposition 4.23 implies that there
is an isometry ϕ0 P O`

p1, nq such that ϕ0pϕpaiqq “ ai for all 0 ď i ď n. Since the set
of fixed points of ϕ0 ˝ ϕ contains the points a0, a1, . . . , an, the fixed point set of ϕ0 ˝ ϕ is
not contained in a proper hyperbolic subspace. Proposition 4.20(4) implies that ϕ0 ˝ ϕ is
the identity map. Thus, ϕ “ ϕ´1

0 . In particular, ϕ P O`
p1, nq, which is all we needed to

show.

Corollary 4.24. Any isometry of Hn can be represented as the composition of at most
n ` 1 reflections.

Proposition 4.25. The stabilizer of any point x P Hn is isomorphic to Opnq.

Proof. Exercise 4.9.

4.5 Triangles in Hn

The law of cosines implies that a triangle in En, Sn or Hn is uniquely determined up to
an isometry of the space, if the lengths of the three sides are known. In Euclidean space,
the three angles of a triangle do not determine the triangle uniquely. In Sn and Hn the
angles determine a triangle uniquely. For Hn, this is the content of
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Proposition 4.26 (The second hyperbolic law of cosines).

cosh c “
cos α cos β ` cos γ

sin α sin β
.

Proof. This formula follows from the first law of cosines by a lengthy manipulation anal-
ogous to the proof of Proposition 3.5. See for example [Bea, p. 148–150].

The second law of cosines and Proposition 4.23 imply that if T and T 1 are two triangles
in Hn with equal sides, then there is an isometry ϕ of Hn such that ϕpT q “ T 1.

Proposition 4.27 (The hyperbolic law of sines).

sinh a

sin α
“

sinh b

sin β
“

sinh c

sin γ
.

Proof. The first law of cosines implies that
ˆ

sinh c

sin γ

˙2

“
sinh2 a sinh2 b sinh2 c

2 cosh a cosh b cosh c ´ cosh2 a ´ cosh2 b ´ cosh2 c ` 1
.

The claim follows because this expression is symmetric in a, b and c.

The following two results on triangles will be useful later.

Proposition 4.28. For any 0 ă a, b, c for which a ` b ą c, b ` c ą a and c ` a ą b, there
is a triangle with side lengths a, b and c. Any two such triangles are isometric.

Proof. The proof is analogous with that of Proposition 3.20 without the upper bound on
the lengths. We use the hyperbolic law of cosines in the construction. If a triangle with
the asserted properties exists, then the angle at C satisfies the cosine law. Therefore, we
can compute what this angle needs to be if we know that

ˇ

ˇ

ˇ

cosh a cosh b ´ cosh c

sinh a sinh b

ˇ

ˇ

ˇ
ă 1 . (4.5)

The inequality c ă a ` b implies

cosh c ă coshpa ` bq “ cosh a cosh b ` sinh a sinh b ,

which gives
´1 ă

cosh a cosh b ´ cosh c

sinh a sinh b
.

The inequalities b ` c ą a and c ` a ą b give |a ´ b| ă c, which implies

cosh c ą coshpa ´ bq “ cosh a cosh b ` sinh a sinh b ,

and we get
cosh a cosh b ´ cosh c

sinh a sinh b
ă 1 .

Now we can place the sides of length a and b starting at C in the correct angle γ. The
cosine law implies that the distance of the endpoints points A and B of these segments
is c. There geodesic arc from A to B is therefore the side opposite to C of the desired
length c.

The triangles are isometric by Proposition 4.23.
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Proposition 4.29. Any triangle in Hn is contained in an isometrically embedded copy of
H2 in Hn.

Proof. Any three points in the hyperboloid model Hn are contained in the intersection of
Hn with a 3-dimensional linear subspace of M1,n, which is an isometrically embedded copy
of the hyperbolic plane. The geodesic arc through any two of these points in is contained
in the same hyperbolic 2-plane by Lemma 4.9.

Using the hyperbolic law of cosines and the Taylor polynomials of hyperbolic functions
at 0, cosh t “ 1 ` t2

2 ` opt2q and sinh t “ t ` optq, we see that if the sides of a triangle
in hyperbolic space are short, then the sides satisfy the Euclidean law of cosines up to a
small error.

Exercises
4.1. Prove Lemma 4.2.
4.2. Prove that L 2

` is the O`
p1, 2q-orbit of e1 P M1,2.5

4.3. Prove Lemma 4.7.
4.4. Prove Proposition 4.15.
4.5. Prove Lemma 4.19.
4.6. Prove Proposition 4.20(5).
4.7. Prove Proposition 4.21.6

4.8. Prove Proposition 4.23.7

4.9. Prove Proposition 4.25.8

5See Proposition 4.4.
6Use Proposition 4.15.
7The proof is formally exactly the same as that of Proposition 2.13.
8Follow the proof of Proposition 3.14. Assume that we know IsomHn “ O`

p1, nq and use transitivity.
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Chapter 5

Models of hyperbolic space

The hyperboloid model of hyperbolic space introduced in chapter 4 model is used in
many arithmetical applications and the closely related projective model has important
generalizations to complex and quaternionic hyperbolic spaces.

In this chapter, we consider a number of other models for hyperbolic space. Hyperbolic
space of dimension n is the class of all metric spaces isometric with the hyperboloid model
pHn, dq, and we can use any model that is best suited for the geometric problem at hand.
After this section we will often talk about the “upper halfplane model of H2” etc.

The underlying set of the Klein model and the Poincaré model is the unit ball in
Euclidean space. Therefore, we introduce a special notation for this set:

Bn is the unit ball in En.

In sections 5.2, 5.3 and 5.4, we use the geometric properties of inversions in spheres.
We refer to Appendix A for details on inversions.

5.1 Klein’s model
Each line in M1,n through the origin which intersects the hyperboloid model Hn, intersects
it in exactly one point, and it also intersects the embedded copy t1u ˆBn in M1,n of Bn in
exactly one point. This correspondence determines a bijection K : Bn Ñ Hn, which has
the explicit expression

Kpxq “
p1, xq

a

1 ´ }x}2
.

The map K becomes an isometry when we define a metric on Bn by setting

dKpx, yq “ dpKpxq, Kpyqq “ arcosh 1 ´ px | yq
a

1 ´ }x}2
a

1 ´ }y}2
.

The metric space pBn, dKq is the Klein model of n-dimensional hyperbolic space.
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p1, xq

Kpxq

‚

‚

Figure 5.1 — The map K used in the construction of the Klein model.

Proposition 5.1. The images of geodesic lines of the Klein model are the Euclidean open
segments connecting two points in the Euclidean unit sphere.

Proof. Geodesic lines in Hn are the intersections of Hn with 2-planes in M1,n by Lemma
4.9. The intersection of such a plane with t1uˆBn is the preimage under K of the geodesic
line. Conversely, any line in t1u ˆRn is the intersection of a 2-plane with t1u ˆRn. Such
a plane intersects Hn in the image of a geodesic line if and only if the 2-plane intersects
the Klein model.

Corollary 5.2. (1) For any two distinct points a, b P Sn´1 “ BBn, there is a unique image
of a geodesic line sa, br in the Klein model.
(2) If x0 P Bn and b P BBn, there is a unique geodesic ray ρx0,b : r0, 8r Ñ Bn in the Klein
model of Hn such that ρx0,bp0q “ x0 and such that the Euclidean closure of the image
ρx0,bpr0, 8rq “ rx0, br is the Euclidean closed segment rx0, bs.

We call sa, br the geodesic line with endpoints a and b in the Klein model of Hn.

If γ : R Ñ Hn is a geodesic line and T P R, then the mapping t
γT
ÞÑ γpt ´ T q defined on

R is a geodesic line such that γpRq “ γT pRq.
Recall that in Euclidean plane geometry, two (geodesic) lines are parallel if they do

not intersect. The parallel axiom states that through any point P in the Euclidean plane
that is not contained in a line L, there is exactly one line that is parallel with L. It easy
to see using the Klein model that the parallel axiom does not hold in H2, see Figure 5.2

5.2 Poincaré’s ball model
Each affine line that passes through the point p´1, 0q P RˆRn “ M1,n which intersects Hn,
intersects it in exactly one point, and it also intersects the n-dimensional ball t0u ˆ Bn

embedded in M1,n in exactly one point. This correspondence determines a bijection
P : Bn Ñ Hn,

P pxq “
p1 ` }x}2, 2xq

1 ´ }x}2 .
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Figure 5.2 — Three red lines through the origin that are parallel in the Klein model
with the line whose endpoints are p0, 1q and p1, 0q.

This expression is found by computing for any x P Bn that the point yt “ p0, xq ` tp1, xq

on the line through the points p0, xq and p´1, 0q of R ˆ Rn “ M1,n is in Hn if and only if
t “

1`}x}2

1´}x}2 .

-2 -1 1 2

-1.0

-0.5

0.5

1.0

1.5

2.0

p0, xq

P pxq

‚

‚

Figure 5.3 — The map P used in the construction of the Poincaré model.

The map P becomes an isometry when we define a metric on Bn by setting

dP px, yq “ dpP pxq, P pyqq “ arcosh
´

1 ` 2 }x ´ y}2

p1 ´ }x}2qp1 ´ }y}2q

¯

.

The metric space pBn, dP q is the Poincaré model of n-dimensional hyperbolic space.
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Lemma 5.3. The hyperbolic ball of radius r ą 0 centered at 0 in the Poincaré model
coincides with the Euclidean ball of radius tanh r

2 centered at 0. The Euclidean ball of
radius 0 ă R ă 1 centered at 0 coincides with the hyperbolic ball of radius log 1`R

1´R
centered

at 0 in the Poincaré model.

Proof. If x P Bn, we have

dP px, 0q “ arcosh
´

1 ` 2 }x}2

1 ´ }x}2

¯

“ log 1 ` }x}

1 ´ }x}
.

Both claims follow from this equation.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

p0, xq

p1, yq

P pxq “ Kpyq

‚

‚

‚

Figure 5.4 — The construction of the map h from the Poincaré model to the Klein
model.

Proposition 5.4. The images of geodesic lines of the Poincaré model are the intersections
of the Euclidean unit ball with Euclidean circles and lines that are orthogonal to the unit
sphere.

Proof. The map h “ K´1 ˝ P is an isometry between the Poincaré and Klein models. A
computation1 shows that

hpxq “
2x

1 ` }x}2 .

1This can be done by observing that h is a radial map and then solving the equation

p1, yq
a

1 ´ y2
“

´1 ` x2

1 ´ x2 ,
2x

1 ´ x2

¯

with 0 ď x, y ă 1.
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The inversion ιp´1,0q,2 in the sphere centered at p´1, 0q P E1 ˆ En of radius
?

2 maps
t0u ˆ En Y t8u to Sn. It maps t0u ˆ Bn Y t8u to the upper hemisphere of Sn, fixing
t0u ˆ Sn´1. In coordinates,

ιp´1,0q,2pxq “

´1 ´ }x}2

1 ` }x}2 ,
2x

1 ` }x}2

¯

,

so that if pr : En`1 “ E1 ˆEn Ñ En is the Euclidean orthogonal projection on the second
component of the product, we have

h “ pr ˝ιp´1,0q,2 .

The inversion ιp´1,0q,2 maps any circle in t0u ˆ Bn orthogonal to t0u ˆ Sn´1 to a circle
on the unit sphere in En`1 orthogonal to t0u ˆ Sn´1. These circles are orthogonal to
t0u ˆ En, and they are exactly the intersections of the unit sphere with 2-planes parallel
to the x0-axis, and thus, pr maps them to the geodesic lines of the Klein model. As h is
an isometry, the result follows.

Figure 5.5 — Some geodesic lines and a ball in the Poincaré disk model of H2.

Note that the mapping h from the Klein model to the Poincaré model is the restriction
of a homeomorphism of the Euclidean closure of Bn to itself. This extended mapping is
the identity in the boundary of Bn.

Corollary 5.5. (1) For any two distinct points a, b P Sn´1 “ BBn, there is geodesic line
sa, br in the Poincaré model that we call the geodesic line with endpoints a and b in the
Poincaré model of Hn.
(2) If x0 P Bn and b P BBn, there is a unique geodesic ray ρx0,b : r0, 8r Ñ Bn in the
Poincaré model of Hn such that ρx0,bp0q “ x0 and such that the Euclidean closure of the
image ρx0,bpr0, 8rq “ rx0, br is a closed Euclidean segment or a closed circular segment
with one endpoint at b.
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Figure 5.6 — Geodesic rays starting at 0 and at p1
2 , 0q with circles centered at the same

points in the Poincaré disk model of H2.

Proposition 5.6. The Riemannian metric of the ball model is 4p¨ | ¨q

p1´}x}2q2 .

Proof. For all tangent vector u P TxBp0, 1q, we have

DP pxqu “

ˆ

4px | uq

p1 ´ }x}2q2 ,
2u

1 ´ }x}2 `
4 px | uqx

p1 ´ }x}2q2

˙

P M1,n .

Using this, for u, v P TxBn, we compute

xDP pxqu | DP pxqvy “ ´
16px | uqpx | vq

p1 ´ }x}2q4 `
4pu | vq

p1 ´ }x}2q2 `
16px | uqpx | vq

p1 ´ }x}2q3 `
16px | uqpx | vq}x}2

p1 ´ }x}2q4

“
4pu | vq

p1 ´ }x}2q2 .

Proposition 5.6 implies that the angles between tangent vectors of paths in the Poincaré
model are the same as the angles measured in the ambient Euclidean space. The Klein
model does not have this useful property. This is illustrated in Figure 5.7

5.3 The upper halfspace model
Let

Rn
` “ tx P Rn : xn ą 0u

be the n-dimensional upper halfspace. Let ι´en,2 be the inversion in the sphere of center
´en P En of radius

?
2. The map

F “ pι´en,2q|Bn : Bn
Ñ Rn

` (5.1)

is a bijection, which becomes an isometry if we use the metric

dRn
`

px, yq “ dP pF ´1
pxq, F ´1

pyqq “ arcosh
´

1 `
}x ´ y}2

2 xnyn

¯

(5.2)

in Rn
`.
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Figure 5.7 — The blue geodesic lines of the Poincaré model in this figure are the images
of the red geodesic lines of the Klein model. The angles at the points of intersection are
the same in hyperbolic plane but the angle in the ambient Euclidean space of the red lines
is not the same as that of the blue circular segments.

´1

1

8

0

Figure 5.8 — The mapping F corresponds to the reflection in the red circle when pE2 is
identified with S2 by the stereographic projection. See section 3.3 and Appendix A.

The metric space pRn
`, dRn

`
q is the upper halfspace model of n-dimensional hyperbolic

space.

Example 5.7. An elementary computation shows that if x “ pa, xnq and y “ pa, ynq for
any a P Rn´1, then

dRn
`

px, yq “

ˇ

ˇ

ˇ
log xn

yn

ˇ

ˇ

ˇ
.
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It is very common to identify the upper halfplane model of H2 with the upper halfplane
in C, and we will often do this, as in Example 5.8(2) below.
Example 5.8. (1) Let n ě 3. The subspace tx P Rn

` : x2 “ ¨ ¨ ¨ “ xn´1 “ 0u with
the metric induced from the upper halfplane model is an isometrically embedded copy of
H2 in the upper halfspace model of Hn.
(2) Let 0 ă ϕ ă π. Then the distance of the points i and eiϕ in the upper halfplane model
is

dR2
`

pi, eiϕ
q “ arcosh

´

1 `
cos2 ϕ ` p1 ´ sin ϕq2

2 sin ϕ

¯

“ arcosh 1
sin ϕ

.

Proposition 5.9. The images of the geodesic lines of the upper halfspace model are the
intersections of the upper halfspace with Euclidean circles and lines that are orthogonal to
En´1 ˆ t0u.

Proof. The inversion used in the definition of the upper halfspace model maps lines and
circles to lines or circles and preserves angles. The claim follows from Proposition 5.4.

x2 “ 0

H2

Figure 5.9 — Some geodesic lines in the upper halfplane model of H2.

Geodesic lines in the upper halfspace model are images under F of geodesic lines of
the Poincaré model. If one of the endpoints of a geodesic line in the Poincaré model is
´en, then F maps this geodesic line to a halfline orthogonal to En´1 ˆ t0u at one end,
and the other endpoint is mapped to 8 P pEn.

Corollary 5.10. For any two distinct points a, b P En´1 ˆ t0u Y t8u, there is geodesic
line sa, br in the upper halfspace model with endpoints a and b.

We have seen that the unit sphere in the Klein and Poincaré ball models and the set
En´1 ˆ t0u Y t8u Ă xEn in the upper halfspace model have a geometric meaning, and that
there is a natural homeomorphism between these sets. In chapter ??, we will see that
these sets appear naturally as a geometrically defined boundary at infinity of Hn, and we
will use the notation B8Hn for this set from now on.
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In practical applications, it is good to remember that a circle is perpendicular to
Eˆ t0u Ă E2 if and only if its center is in Eˆ t0u. In higher dimensions, this is no longer
true.

The following lemma records the expressions of the geodesics in the upper halfspace.

Lemma 5.11. Let x P Rn´1 and y ą 0. The mapping γx,y : R Ñ Rn
`,

γx,yptq “ px, yet
q

is a geodesic line in the upper halfspace model of Hn such that γx,yp0q “ px, yq and with
endpoints x an 8. For any isometry g of the upper halfspace model, the mapping g ˝ γx,y

is a geodesic line.

Proof. The mapping γx,y : R Ñ Rn
` is a geodesic line by Example 5.7.

Proposition 5.12. The Riemannian metric of the upper halfspace model is p¨ | ¨q

x2
n

.

Proof. The proof is similar to that of Proposition 5.6, using (the inverse of) the map F
defined in equation (5.1) to transfer the Riemannian metric from the ball to the upper
halfspace. Note that F ˝ F “ id. As in the proof of Proposition 5.4, we compute

DF pxqu “ ´
4px ` enqpx ` en | uq

}x ` en}4 `
2u

}x ` en}2 .

The claim follows because

p1 ´ }F pxq}
2
q

2
“

x2
n

p1 ´ }x}2q2

and

pDF pxqu | DF pxqvq

“
16}x ` en}2px ` en | uqpx ` en | vq

}x ` en}6 ´
16px ` en | uqpx ` en | vq

}x ` en}4 `
4pu | vq

}x ` en}4

“
4pu | vq

}x ` en}4 .

Proposition 5.12 implies that the angles between tangent vectors of paths in the upper
halfspace model are the same as the angles measured in the ambient Euclidean space.

Proof of Theorem 4.12. We will use the upper halfspace model to prove the result. Both
quantities are invariant under isometries of hyperbolic space. Therefore, it is sufficient to
show that the geodesic segment rp0, 1q, p0, T qs is the Riemannian geodesic segment from
p0, 1q to p0, T q for any T ą 0.

Let ϕ : r0, 1s Ñ Hn be a piecewise smooth path such that ϕp0q “ p0, 1q and ϕp1q “

p0, T q. 2 Let p : Hn Ñ r0, 1s,
ppx, sq “ p0, sq

2We can assume that all paths are defined on r0, 1s because smooth reparametrization does not change
the Riemannian length of a path, see for example [Pet, Section 5.3].
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for all x P Rn´1 and s ą 0, be the horospherical projection to the geodesic line s0, 8r that
contains the points p0, 1q to p0, T q. Note that Dppx, squ “ un for all px, sq P Hn and all
u P Rn. This implies that

ˇ

ˇ
9pp ˝ ϕqpτq

ˇ

ˇ ď | 9ϕpτq| for all τ P r0, 1s.3 This gives the inequality
we want:

ℓpϕq “

ż 1

0

| 9ϕpτq|

ϕnpτq
dτ ě

ż 1

0

| 9pp ˝ ϕqpτq|

pp ˝ ϕqnpτq
dτ ě logpp ˝ ϕp1qq “ log T “ dpp0, 1q, p0, T qq .

Note that the second inequality is strict if the mapping t ÞÑ ϕnptq is not monotonous.
If γ0,1 is the geodesic line of Lemma 5.11, γ0,1p0q “ p0, 1q, γ0,1plog T q “ p0, T q and

ℓpγ0,1|r0,log T sq “

ż log T

0

| 9γptq|

γnptq
dt “

ż log T

0

yet

yet
dt “ log T .

This completes the proof.

5.4 Isometries of the upper halfspace model
In the upper halfspace model, it is often convenient to move a geodesic line by an isometry
such that the endpoints of the geodesic in the model are 0 and 8. The following results
on isometries allow to do that and a bit more. We illustrate the utility of the transitivity
properties of the group of isometries in Proposition 5.16 and its corollaries, and in Lemma
5.22.

Let b P Rn´1 ˆ t0u Ă Rn. The mapping Tb : Rn
` Ñ Rn

`,

Tbpxq “ x ` b ,

is a horizontal translation by b.
Let λ ą 0. The mapping Lλ : Rn

` Ñ Rn
`,

Lλpxq “ λx ,

is a dilation by factor λ.
Let Q0 P Opn ´ 1q and let us use the notation x “ px̄, xnq. The mapping Q : Rn

` Ñ Rn
`,

Qpx̄, xnq “ pQ0px̄q, xnq ,

is an orthogonal mapping around the geodesic line s0, 8r.

Lemma 5.13. Let a, b P Rn´1 ˆ t0u Ă Rn and let λ ą 0.
(1) Tb ˝ ιa,r2 ˝ T´b “ ιa`b,r2.
(2) Lλ ˝ ι0,r2 ˝ L 1

λ
“ ι0,pλrq2.

Proof. Exercise 5.5.

Proposition 5.14. The maps
3 9f is the notation we use for the derivative vector of a path f .
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• Tb for any b P Rn´1 ˆ t0u Ă Rn,

• ιa,r2, for any a P Rn´1 ˆ t0u Ă Rn and any r ą 0 ,

• Lλ for any λ ą 0, and

• Q for any Q0 P Opn ´ 1q

are isometries of the upper halfspace model.

Proof. Let us consider the inversion in the Euclidean unit sphere. It preserves all affine
rays from a, so it preserves the upper halfspace. To prove that its restriction to Hn is
an isometry, equation (5.2) implies that it is enough to show that the expression }x´y}2

xnyn
is

invariant under the inversion. Let us compute:

ι0,1pxq ´ ι0,1pyq

r2 “
x

}x}2 ´
y

}y}2 “
x}y}2 ´ y}x}2

}x}2}y}2 ,

which gives

}ι0,1pxq ´ ι0,1pyq}2

ι0,1pxqnι0,1pyqn

“

}x}2}y}4 ´ 2px | yq}x}2}y}2 ` }x}4}y}2

}x}4}y}4

xnyn

}x}2}y}2

“
}x ´ y}2

xnyn

.

The rest of the computations is done in Exercise 5.6.

Corollary 5.15. The subgroup of IsompHnq generated by dilations fixing 0 and horizontal
translations acts transitively on the upper halfspace model of Hn.

Proof. If x is in the upper half plane,

T´px1,x2,...xn´1,0qpxq “ p0, . . . , xnq “ Lxnen .

Thus,
x “ Tpx1,x2,...xn´1,0q ˝ Lxnen .

We will now apply the transitivity of the action of the group of isometries and of
suitable subgroups to geometric and topological questions.

Proposition 5.16. Balls in the upper halfspace model and in the Poincaré ball model are
Euclidean balls in the Euclidean space that contains the model.

Proof. By Lemma 5.3, balls centered at the origin of the Poincaré ball model are Euclidean
balls. The inversion that maps the ball model to the upper halfspace model is an isometry,
and on the other hand it preserves generalized spheres. Thus, the images of the balls
centered at the origin are hyperbolic and Euclidean balls. The hyperbolic center of these
balls can be mapped to any other point in Hn by one of the isometries of Corollary 5.15.
These mappings preserve spheres, which implies that all balls in the upper halfspace model
are Euclidean balls. The rest of the claim follows by one more application of the inversion
that maps the ball model to the upper halfspace model.

Corollary 5.17. Hyperbolic space Hn is homeomorphic with the open unit ball of En.

November 5, 2024



60 Models of hyperbolic space

Proof. The identity map from the Poincaré model to Bn Ă En with the induced metric is
a homeomorphism by Proposition 5.16.

Corollary 5.18. Hyperbolic space Hn is a proper metric space.

Our study of the Klein, Poincaré and upper halfspace models of hyperbolic space
suggest that it makes sense to compactify hyperbolic space by adding the boundary at
infinity.

We will now consider Hn Y B8Hn with the topology induced by the embedding of the
Poincaré model and its boundary in Euclidean space.

We will see in Example ?? that this choice of topology is mathematically natural.

Proposition 5.19. Let x1, x2, x3 and y1, y2, y3 be two triples of distinct points in the
boundary at infinity of Hn. There is an isometry of Hn which is the restriction of a
homeomorphism g of Hn Y B8Hn to itself such that gpxiq “ yi for all i P t1, 2, 3u.

Proof. Let us consider the question in the upper halfspace model. The mappings given
in Proposition 5.14 are clearly continuous mappings of pEn to itself.

It suffices to show that we can use a combination of these isometries to map x1, x2, x3
to 8, 0, p1, 0, . . . , 0q. If all points x1, x2, x3 are finite, map x1 by a translation T´x1 to 0
and then by the inversion ι to 8. Relabel ι ˝ T´x1px2q and ι ˝ T´x1px3q to x2 and x3. Map
x2 to 0 by a translation. This map keeps 8 fixed. Map x3 (again relabeled) to the unit
sphere by a dilation and then to p1, 0, . . . , 0q by the extension of an orthogonal map of
En´1. These two maps fix 8 and 0.

Proposition 5.20. Let x, y P Hn and a, b P B8Hn. There is an isometry of Hn which
is the restriction of a homeomorphism g of Hn Y B8Hn to itself such that gpxq “ y and
gpaq “ b.

Proof. Exercise 5.7.

In the proofs of Propositions 5.19 and 5.20, we used explicit isomorphisms of the upper
half plane model that are restrictions of homeomorphic self-maps of Hn Y B8Hn. In fact,
there is a result that generalizes this observation to all isometries:

Theorem 5.21. The isometries of Hn are restrictions of homeomorphic self-maps of
Hn Y B8Hn.

Proof. We could prove this by showing that all reflections in hyperbolic hyperplanes have
this property, and then using the fact that reflections generate IsomHn. The proof relies
on showing that in the upper halfplane model, reflections in hyperbolic hyperplanes are
either conjugates of the map Q of Proposition 5.14 with Q0 a hyperplane reflection in
En´1, or inversions.

For any r ą 0, the r-neighbourhood of any nonempty subset A Ă Hn is

NrpAq “ tx P Hn : dpx, Aq ă ru .
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Figure 5.10 — Neighbourhoods of geodesic lines in the upper halfplane model and in
the Poincaré ball model of H2.

Lemma 5.22. Let L “ s0, 8r in the upper halfspace model of Hn.
(1) p0, }x}q P Rn´1 ˆ R` is the unique closest point to x P Rn

` in L.
(2) The r-neighbourhood of L is the Euclidean infinite cone4

NrpLq “
␣

x P Rn
` : cos >0pL, xq ą

1
cosh r

(

.

Proof. (1) The function

t ÞÑ cosh dpx, γ0,}x}ptqq “ 1 `
x2

1 ` x2
2 ` ¨ ¨ ¨ ` x2

n´1 ` pxn ´ }x}etq2

2xn}x}et

“
2xn}x}et ` x2

1 ` x2
2 ` ¨ ¨ ¨ ` x2

n´1 ` x2
n ´ 2xn}x}et ` }x}2e2t

2xn}x}et

“
}x}2p1 ` e2tq

2xn}x}et
“

}x}

xn

cosh t

has a unique minimum at 0, and γ0,}x}p0q “ }x}en.
(2) Exercise 5.8.

If L1 is a geodesic line in the upper halfspace model, we can map it to L by a com-
position of the isometries used in Proposition 5.19. These isometries are conformal maps
which map the set of spheres and hyperplanes in pEn to itself. It is easy to see that
the neighbourhoods NrpL1q are infinite cones over Euclidean pn ´ 1q-balls or shaped like
n-dimensional bananas with opening angles at the endpoints given by Lemma 5.22, see
Figure 5.10. As the isometry used to map the ball model to the upper halfspace model is
an inversion, the r-neighbourhoods of geodesic lines in the ball model are bananas.

5.5 Möbius transformations and isometries of H2

The isometries of the upper halfplane model and the ball model of H2 can be described
using 2 ˆ 2- matrices and Möbius transformations.

4>0pL, xq is the angle between the Euclidean ray L and the Euclidean ray from 0 through x.
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We can use complex Möbius transformations to describe isometries of the hyperbolic
plane and hyperbolic 3-space.

The special linear group with real and complex coefficients are

SL2pRq “ tA P GL2pRq : det A “ 1u

and
SL2pCq “ tA P GL2pCq : det A “ 1u ,

and the special unitary group of signature p1, 1q is

SUp1, 1q “ tA P SL2pCq : A˚JA “ Ju “

"ˆ

a b

b̄ ā

˙

: |a|
2

´ |b|
2

“ 1
*

,

where J “ diagp´1.1q and A˚ “ T Ā.

Recall from complex analysis5 that any matrix A “

ˆ

a b
c d

˙

with a, b, c, d P C and

det A ‰ 0 determines a Möbius transformation Möb A : pC Ñ pC,

Möb Az “
az ` b

cz ` d
, (5.3)

and that the mapping Möb: SL2pCq Ñ HomeoppCq is an action by homeomorphisms with
ker Möb “ t˘I2u.

Proposition 5.23. Let K P tR,Cu. The group SL2pKq is generated by the elements

J “

ˆ

0 ´1
1 0

˙

and Tb “

ˆ

1 β
0 1

˙

,

with β P K.

Proof. Let
ˆ

α β
γ δ

˙

P SL2pKq. Assume α, β, γ, δ P K with γ ‰ 0. Then, since αδ´βγ “ 1,

we have the following equation in SL2pKq:
ˆ

α β
γ δ

˙

“

ˆ

1 αγ´1

0 1

˙ˆ

0 ´1
1 0

˙ˆ

γ 0
0 γ´1

˙ˆ

1 γ´1δ
0 1

˙

.

The claim now follows from the observation that
ˆ

α 0
0 α´1

˙

“

ˆ

1 ´α
0 1

˙ˆ

0 ´1
1 0

˙ˆ

1 ´α´1

0 1

˙ˆ

0 ´1
1 0

˙ˆ

1 ´α
0 1

˙ˆ

0 ´1
1 0

˙

.

The remaining case γ “ 0 is easier.
5See for example [Ahl, Section 3.3].
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Let f P MöbppE1q, fpxq “ ax`b
cx`d

be a Möbius transformation. The Poincaré extension of
f to H2 is f : H2 Ñ H2, fpzq “ az`b

cz`d
. This can be seen, for example, using the Proposition

5.23 and observing that the reflections in the Euclidean unit circle and the imaginary axis
have simple expressions using complex numbers

ι0,1pzq “
z

|z|2
“

1
z̄

and
RiRpzq “ z ´ 2 Re z “ ´z̄ .

Similarly, the Poincaré extension of any element of SUp1, 1q to the ball model is given by
equation (5.3).

Proposition 5.24. (1) PSL2pRq “ SL2pRq{t˘ idu is the subgroup of index 2 in the isom-
etry group of the upper halfplane model of H2 that consists of the orientation-preserving
isometries.
(2) PUp1, 1q “ SUp1, 1q{t˘ idu is the subgroup of index 2 in the isometry group of the
Poincaré disk model of H2 that consists of the orientation-preserving isometries.

Proof. The Möbius transformations that are defined by elements of SL2pRq are analytic
functions, thus they are orientation-preserving.
(1) It is easy to check that Möb J and Möb Tβ for any β P R are compositions of two
reflections of the upper halfplane. Proposition 5.23 implies that Möb SL2pRq is a subgroup
of the group of isometries.

See for example [And, Theorem 2.26] for the remaining parts of the claim.
(2) The isometry ι´i,2 between the Poincaré disk model and the upper halfplane model
has the expression

ι´i,2pzq “
´iz ` 1

z ´ i
,

and the reflection in the geodesic line s0, 8r is z ÞÑ ´z. Their composition is the Möbius
transformation g : z ÞÑ ´iz´1

z`i
, and a computation shows that g gives a conjugacy between

SL2pRq and SUp1, 1q.

Note that, in fact, we found all orientation-preserving isometries of H2 and H3 in our
proof of Proposition 5.19.
Remarks 5.25. (1) The trace of a matrix is invariant under conjugation:

trpBAB´1
q “ tr A

for all A, B P SL2pCq. Since the kernel of the map from SL2pCq to IsompHnq is ˘I2,
the traces of the two matrices associates with an orientarion-preserving isometry differ
by a sign, we can define a map tr2 : Isom`pH3q Ñ R`. This map is invariant under
conjugation, and it classifies the elements of PSL2pRq and PSL2pCq in three types. Items
(2) to (4) below elaborate on the classification of PSL2pRq.
(2) Using the representation of orientation-preserving isometries of H2 by Möbius trans-
formations, it is straightforward to check that an orientation-preserving isometry A of H2
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which is not the identity has one or two fixed points in H2 Y B8H2. More precisely, the
fixed points of the transformation

ˆ

a b
c d

˙

are

a ´ d

2c
˘

?
tr2 A ´ 4

2c
.

From this formula, we see that an isometry A P PSL2pRq has

• no fixed points in H2 and two fixed points in B8H2 if tr2 A ą 4,

• one fixed point in H2 and no fixed points in B8H2 if tr2 A P r0, 4r, and

• no fixed points in H2 and one fixed point in B8H2 if tr2 A “ 4.

(3) Using the above results, one can show that any two Möbius transformations A, B P

SL2pRq with tr2 A “ tr2 B are conjugate in IsompH2q. For example, if A P SL2pRq with
tr2 A ą 4, then A has two fixed points, which we may assume are 0 and 8. Now, the
equations for fixed points and the determinant imply that A “ diagpλ, λ´1q, which implies
that tr2 A “ pλ`1{λq2. Conjugating with the map z ÞÑ ´1{z, we may assume that λ ą 1.
Similarly, B is conjugate with diagpλ, λ´1q. The other cases are proved in a similar way.

5.6 Triangles in Hn (part 2)
The Poincaré model and the upper halfspace model are very useful in many proofs for
example because the angle between two tangent vectors is in these models is the same
as the Euclidean angle. We use this property to prove the following facts on triangles in
hyperbolic space.

Proposition 5.26. (1) The sum of the angles of a nondegenerate triangle in hyperbolic
space is strictly less than π.
(2) For any 0 ă α, β, γ ă π for which α ` β ` γ ă π, there is a triangle with angles
α, β and γ. Any two such triangles are isometric.

Proof. By Proposition 4.29, it suffices to consider the hyperbolic plane.
(1) Let T be a triangle with vertices A, B and C. We may assume that one of the vertices
A is the origin in the Poincaré disk model. Thus, two sides of the triangle are contained
in two radii of the ball and the third one is contained in a circle which is orthogonal to the
boundary of Bn. Consider the Euclidean triangle with the same vertices as T . The angles
β and γ are strictly smaller than the corresponding angles in the Euclidean triangle. This
implies the result as the angles of an Euclidean triangle sum to π.
(2) The second hyperbolic law of cosines6 implies that the angles of a triangle determine
it up to isometry.

Let us consider the upper halfplane model of H2. Let 0 ă r ă 1. At most one of
the angles can be greater than or equal to π

2 , and we may assume that 0 ă α, β ă π
2 .

The geodesic line contained in the Euclidean circle with center cos α ą 0 and radius 1
intersects the geodesic line s0, 8r at an angle α, and the geodesic line contained in the

6Proposition4.26
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Euclidean circle with center ´r cos β ă 0 and radius r intersects s0, 8r at an angle β.
When 1´cos α

1`cos β
ă r ă sin α

sin β
, there are subsegments of these three geodesic lines that make

up a triangle where the third angle grows from 0 to π ´ α ´ β.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

r “ 1´cos α
1`cos β

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1´cos α
1`cos β

ă r ă 1

β α

-2 -1 0 1 2

r « sin α
sin β

Figure 5.11 — The idea of the proof of Proposition 5.26(2). Here α “ π
4 and β “ π

6 .

5.7 Generalized triangles in Hn.
We now extend the definition of triangles and allow some of the vertices to be points at
infinity of Hn:

A (generalized) triangle consists of three distinct points A, B, C P Hn Y B8Hn, called the
vertices, and of the geodesic arcs, rays or lines, called the sides, connecting the vertices.
If all vertices of a triangle ∆ are in B8Hn, then ∆ is an ideal triangle.
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Proposition 5.27. (1) Any generalized triangle in Hn is contained in an isometrically
embedded copy of H2 in Hn.
(2) If ∆ and ∆1 are ideal triangles in Hn, there is an isometry γ P IsomHn such that
γp∆q “ ∆1.

Proof. Exercise 5.9.

Next, we prove an analog of the second law of cosines for a special kind of generalized
triangles. Note that the first law of cosines cannot be generalized to this setting as the
triangle in question has two infinitely long sides.

Proposition 5.28. Let A, B P Hn and let C P B8Hn. Then

cosh c “
1 ` cos α cos β

sin α sin β
. (5.4)

B

β

α

β

α

A

Figure 5.12 —

Proof. By proposition 5.27, it is enough to consider the hyperbolic plane. We use the
upper halfplane model and normalize, using Proposition 5.19 with x1 “ C, x2 and x3 the
endpoints of the geodesic line through A and B, and y1 “ 8, y2 “ ´1 and y3 “ 1, so that
A and B are on the Euclidean unit circle and C “ 8.

Now, A “ p´ cos α, sin αq and B “ pcos β, sin βq. The result follows from equation
(5.2), as

1 `
}A ´ B}2

2A2B2
“ 1 `

pcos α ` cos βq2 ` psin α ´ sin βq2

2 sin α sin β
“

1 ` cos α cos β

sin α sin β
.

The special case of equation (5.4) with β “ π
2 :

cosh c “
1

sin α
(5.5)

is known as the angle of parallelism. Another useful form of equation (5.5) is

c “ log cot α

2 . (5.6)
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Note that equation (5.4) agrees with the second law of cosines if we define that

the angle at a vertex at infinity is 0.

From now on, we will use this convention.

5.8 Halfspaces and polytopes
Proposition 4.20 implies that hyperbolic hyperplanes are bisectors of two distinct points
in Hn. Using this, we can prove

Proposition 5.29. Hyperplanes in the upper halfspace model are Euclidean hyperplanes
orthogonal to the boundary at infinity or intersections with the upper halfspace of Euclidean
spheres whose center is in the boundary at infinity.

Proof. Let x, y be points in the upper halfplane model. Using equation 5.2, we see that
the bisector of x and y consists of the solutions z in the upper halfspace of the equation

}x ´ z}

xn

“
}y ´ z}

yn

. (5.7)

If xn “ yn, then equation 5.7 defines an affine plane in En that is orthogonal to the
boundary at infinity because it is a translate of the orthogonal complement of the x ´ y
whose nth coordinate is 0.

If xn ‰ yn, then equation 5.7 defines a sphere centered at yn

xn´yn
x ` xn

yn´xn
y, which is

in the boundary at infinity.

The two connected components of the complement of a hyperplane P Hn are open hyper-
bolic halfspaces. Their closures in Hn are closed hyperbolic halfspaces.

Lemma 5.30. Closed and open halfspaces are convex in Hn.

Proof. Exercise 5.10.

If I is a finite or countable index set and pHiqiPI is a collection of closed halfplanes in Hn

with nonempty intersection P “
Ş

iPI Hi such that pBHiqiPI is a locally finite collection of
hyperplanes,a then P is a locally finite polytope in Hn.
In dimension n “ 2, polytopes are polygons and in dimension n “ 3, polyhedra.

aThis means that for any compact K Ă Hn, the set ti P I : K X BHi ‰ Hu is finite.

Lemma 5.31. Let X be a uniquely geodesic metric space. Let Kα Ă X be convex sets for
all α P A. Then

Ş

αPA Kα is convex or empty.

Proof. Exercise 5.11.

Proposition 5.32. Polytopes in Hn are convex.
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Figure 5.13 — Three polygons in the upper halfplane model of the hyperbolic plane.

5.9 Riemannian metrics, area and volume
The Riemannian metrics of the ball and upper halfspace models are conformal metrics:
their expressions are a positive function times the Euclidean Riemannian metric of the
underlying subset of En.

The Riemannian structure defines a natural volume form and a volume measure on
hyperbolic space: If V is for example an open subset of n-dimensional hyperbolic space,
and λn is the n-dimensional Lebesgue measure, the volume of V is

VolpV q “

ż

V

2n dλnpxq

p1 ´ }x}2qn

in the Poincaré ball model and

VolpV q “

ż

V

dλnpxq

xn
n

in the upper halfspace model.

Proposition 5.33. The volume of a ball in hyperbolic space is

VolpBpx, rqq “ VolpSn´1
q

ż r

0
sinhn´1 t dt.

In the hyperbolic plane, we have

VolpB2
px, rqq “ 4π sinh2 r

2

for all x P H2.
The length of a circle of radius r in H2 is 2π sinh r.

Proof. As the isometry group acts transitively, the volume of each ball of a fixed radius
is the same. Thus, it suffices to consider balls centered at the origoin in the Poincaré
ball model. Recall that the Euclidean radius of a ball of hyperbolic radius r centered at
0 in the Poincaré model is tanh r

2 . In order to compute the volume of the ball of radius
r, recall that the Lebesgue measure is given in the spherical coordinates (x Ø pr, uq) by
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dλnpxq “ rn´1d VolSn´1puq, and thus, using a change of variables s Ø tanh t
2 , we get

VolpBpx, rqq “ VolpBp0, rqq “ VolpSn´1
q

ż tanh r
2

0

2nsn´1

p1 ´ s2qn
ds

“ 2n´1 VolpSn´1
q

ż r

0
sinhn´1 t

2 coshn´1 t

2 dt

“ VolpSn´1
q

ż r

0
sinhn´1 t dt.

The computation of the length of a circle is left as an execise.

It is clear from the expression of the volume, that for all x P Hn, we have

VolpBn
px, rqq „

VolpSnq

2n´1 epn´1qr ,

as r Ñ 8. Thus, the volume of balls in hyperbolic space grows exponentially with the
radius, much faster than in Euclidean space.

Proposition 5.34. The area of the polygon in H2 bounded by a generalized triangle with
angles α, β and γ is π ´ pα ` β ` γq.

Proof. Any triangle T can be described as the difference of two triangles with one vertex
at infinity. By the additivity of area and angles in the hyperbolic plane, we may restrict
to this special case. Using Proposition 5.19, we can assume that that A and B are on the
Euclidean unit circle and that the vertex C has been moved to infinity. Now, the area of
T is

ż

T

dλ2pxq

x2
2

“

ż cos β

´ cospαq

ż 8

?
1´x2

1

dx1dx2

x2
2

“

ż cos β

cospπ´αq

dx1
a

1 ´ x2
1

“ π ´ α ´ β .

Exercises
5.1. Fill in the details of the proof of Proposition 5.6.
5.2. Compute the radius of the red ball in Figure 5.5.
5.3. Prove that a ball in hyperbolic space has a unique center.
5.4. Compute the hyperbolic radius and center of the ball tz P H2 : |z ´ ci| ď 1u for all
c ą 1 in the upper halfplane model of H2.7

5.5. Prove Lemma 5.13.
5.6. Complete the proof of Proposition 5.14.8

5.7. Prove Proposition 5.20.
5.8. Prove Lemma 5.22(2).
5.9. Prove Proposition 5.27.
5.10. Prove Lemma 5.30.

7We identify the upper halfplane model of H2 with the upper halfplane in C.
8Use Lemma 5.13 for inversions.
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5.11. Prove Lemma 5.31.
5.12. Prove that the length of a circle of radius r in H2 is 2π sinh r.

November 5, 2024



Appendix A

Inversive geometry

A.1 One-point compactification
Lemma A.1. Let pX, τq be a topological space and let 8 be a point that is not an element
of X. Let pX “ X Y t8u and let

τ8 “ tU Ă pX : 8 P U and pX ´ U Ă X is closed and compactu.

Then pτ “ τ Y τ8 is a topology in pX.

Proof. See the basic course in topology.

Let X be a topological space that is not compact. The topological space pX is the one
point compactification or the Aleksandroff compactification of X.

Theorem A.2. Let pX, τq be a topological space that is not compact. The one point
compactification of X is compact and pXq

pτ “ pX. The topology of pX induces the original
topology of X on X.

Proof. Let pUαqαPJ be an open cover of pX. There is an index α8 P J such that 8 P Uα8
.

The sets Uα XX form an open cover of X ´Uα8
in X. As X ´Uα8

is compact in X, there
is some finite J0 Ă J such that pX ´ Uα8

Ă
Ť

αPJ0
Uα. The finite collection pUαqαPJ0Ytα8u

is a cover of pX.
The subset X is dense in pX because, by definition, every open neighbourhood of

8 intersects X. The topology pτ induces the topology τ in X because τ consists, by
definition of elements of τ and of sets formed as the union of an element of τ and t8u.

Example A.3. The stereographic projection S : Sn ´ te3u Ñ En “ En ˆ t0u Ă En`11is
the mapping

S pxq “
px1, x2, . . . , xnq

1 ´ xn`1
.

1from the north pole to the level of the equator
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It is a homeomorphism that maps each point x P Sn ´ ten`1u to the unique point in En

(thought of as the hyperplane E2 ˆt0u in E3)on the affine line through en`1 and x. Setting
S pen`1q “ 8 we obtain a homeomorphism S : Sn Ñ xEn.

The one-point compactification of the Euclidean plane appears in complex analysis
as the Riemann sphere C Y t8u. For example, the mapping z ÞÑ 1

z
becomes a self-

homeomorphism of the Riemann sphere if we set 0 ÞÑ 8 and 8 ÞÑ 0.

A.2 Inversions
In this short section, we review some basic material on inversions.

Let c P En and let α P R ´ t0u. The mapping ιc,α : En ´ tcu Ñ En ´ tcu,

ιc,αpxq “ c ` α
x ´ c

}x ´ c}2 ,

is an α-inversion with a pole at c. The number α is called the power of the inversion.

Example A.4. In the complex plane,

ι0,1pzq “
z

|z|2
“

1
z̄

.

Clearly, for all x P En ´ tcu, we have

px ´ c | ιc,αpxq ´ cq “ α

and ιc,α ˝ ιc,α “ id |En´t0u. If α ą 0, then the restriction of ιc,α to the sphere of center c
and radius

?
α is the identity. The points x and ιpxq are on the same ray starting at c,

and they satisfy
}x ´ c}}ιc,r2pxq ´ c} “ r2 .

Let c P En and r ą 0. The mapping ιc,r2 is the inversion in the sphere of radius r centered
at c.

We extend the definition of an inversion ιc,r to the one-point compactification pEn of
En by setting ιc,αpcq “ 8 and ιc,αp8q “ c.

Example A.5. ιen`1,2|Sn “ S : Sn Ñ pEn.

Spheres and hyperplanes in En are generalized hyperplanes.

Proposition A.6. Let c P En and let α P R ´ t0u. The inversion ιc,α maps
(1) the affine subspaces that contain c to themselves,
(2) spheres passing through c to affine hyperplanes that do not contain c,
(3) affine hyperplanes that do not contain c to spheres passing through c, and
(4) spheres that do not pass through c to spheres that do not pass through c.
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S pyq

e3

x

S pxq

y

Figure A.1 — Stereographic projection is the restriction to the sphere of an inversion
whose center is the north pole.

Proof. (1) is clear from the expression of the inversion.
(2) Clearly, it is enough to consider the case c “ 0. For any a P En ´ t0u, the sphere
BBpa, }a}q passes through 0 and

BBpa, }a}q “ tx P En : }x}
2

“ 2px | aqu .

This implies that for any x P BBpa, }a}q, we have i0,αpxq “ αx
2px | aq

, and this gives pipxq | aq “
α
2 . Thus,

i0,αpBBpa, }a}qq “

!

y P En : py | aq “
α

2

)

,

which is a hyperplane.
(3) follows from (2) and the fact that i2

0,α “ id |En´t0u.
(4) Consider the sphere BBpa, ρq with ρ ‰ }a}. If x1, x2 P BBpa, ρq are on a line L (through
0), then x1`x2

2 is the orthogonal projection of a on L, and we have

}x1 ` x2}
2

` }x1 ` x2 ´ 2a}
2

“ 4}a}
2

and
}x1 ´ x2}

2
` }x1 ` x2 ´ 2a}

2
“ 4}ρ2

}
2 .

Thus,
px1 | x2q “ }a}

2
´ ρ2 ,

and therefore x2 “ ι0,}a}2´ρ2px1q, and we have “ ι0,}a}2´ρ2pBBpa, ρqq “ BBpa, ρq. A simple
computation shows that for any α, β P R ´ t0u, we have ια ˝ ιβpxq “ α

β
x for all x ‰ 0, so

November 5, 2024



74 Inversive geometry

we get
ι0,α “

α

}a}2 ´ ρ2 ι0,}a}2´ρ2 ,

which implies ι0,αpBBpa, ρqq “ pBBpa, ρqq.

Let D be an open subset of En. A mapping F : D Ñ En is locally conformal, if it
preserves the angles between tangent vectors. Clearly, any mapping whose differential
at any point is the composition of an orthogonal transformation and a dilation is locally
conformal. A homeomorphism which is a locally conformal map is called a conformal
mapping. Sometimes one wants to be more precise and say that mappings which preserve
angles and orientation are (directly) conformal and those that preserve angles but reverse
the orientation are indirectly conformal.

Proposition A.7. Let c P En and let α P R ´ t0u. The inversion ιc,α is conformal.

Proof. Observe that ιc,α “ Tc ˝ ι0,α ˝ T´c. Translations and dilation by α are clearly
conformal mappings so it suffices to prove the claim for the standard inversion ι0,1. Note
that

Dι0,1pxq “
1

}x}2 In ´
2

}x}4 xTx ,

where Tx is the transpose of x when x is a column vector. Observe that TDι0,1pxq “ Dι0,1pxq

and that
Dι0,1pxq

2
“

1
}x}2 I3 ´

4
}x}6 xTx `

4
}x}8 xTxxTx “

1
}x}2 In .

Thus, Dι0,1pxq is a multiple of an orthogonal matrix.

Exercises
A.1. Fill in the details Example A.5.
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Chapter 6

Gromov-hyperbolic spaces

Gromov-hyperbolic spaces form a class of geodesic metric spaces1where some geomet-
ric features are similar to hyperbolic space. There are several equivalent definitions of
Gromov-hyperbolicity in the literature, most of which formalize the idea that triangles
are thin or slim in these spaces in a controlled way. In this chapter, we introduce Gromov-
hyperbolic spaces in the same way as they are defined in [BH] and the introduction of
[GdlH]. We will also discuss the definition used by [BS], and we will show that these
definitions give the same class of Gromov hyperbolic spaces.

6.1 The Rips condition and δ-hyperbolic spaces
The first definition captures a feature of triangles in hyperbolic space.

Let X be a geodesic metric space and let δ ą 0. A triangle ∆ satisfies the Rips conditiona

with constant δ if any side of ∆ is contained in the union of the closed δ-neighbourhoods
of the other two.

aor is δ-slim as in [BH]

Proposition 6.1. All triangles in Hn satisfy the Rips condition with constant logp1`
?

2q.

Proof. By Proposition 4.29, it suffices to consider H2. Let x, y and z be the vertices of
a nondegenerate triangle in the upper halfplane model of the hyperbolic plane. Using
the transitivity properties of the isometry group,2 we may assume that the geodesic line
containing the edge rx, ys is s´1, 1r, which is the intersection of the Euclidean unit circle
with the upper halfplane. Furthermore, using reflections in the imaginary axis and the
Euclidean unit circle, we may assume that Re x ă Re y and that the Euclidean distance
of z from 0 is greater than 1. Using an isometry ι´1,2 ˝Lt ˝ ι´1,2 with an appropriate t P R,
we may assume that z is in the imaginary axis as in Figure 6.1.

1See [Väi] for a treatment of the theory with weaker assumptions.
2See Proposition 5.19.
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π
4

logp1 `
?

2qx

z

y

Figure 6.1 — The ideas of Example 6.2.

Let us show that rx, ys Ă N logp1`
?

2qprx, zsqYN logp1`
?

2qpry, zsq, using the ideal triangle
with vertices at ´1, 1 and 8. If p P rx, ys Ă H2, then the shortest geodesic segment from
s´1, 8r to p passes through rx, zs Y rz, ys, and similarly for the shortest geodesic segment
from s´1, 8r to p. It is easy to check with the help of Lemma 5.22 that s´1, 1r is contained
in the union of the closed logp1 `

?
2q-neighbourhoods3 of the geodesic lines s´1, 8r and

s´1, 8r. Thus, the distance from p to rx, zs Y rz, ys is at most logp1 `
?

2q.

Let X be a geodesic metric space. If all triangles in X satisfy the Rips condition with
constant δ, then X is a δ-hyperbolic space.
If X is δ-hyperbolic for some δ ą 0, then X is A Gromov hyperbolic space.

Example 6.2. (1) We showed in Proposition 6.1 that Hn is logp1 `
?

2q-hyperbolic.

(2) En is not a hyperbolic space if n ě 2. If ∆ is a non-degenerate triangle in En, the
midpoint of any one of the sides is at a positive finite distance s from the union of the
two others. If k ą 0, the image of ∆ under the homothety (stretch map) x ÞÑ kx is a
triangle where the corresponding distance is ks. Letting k grow to 8 proves the claim.

(3) If X is a a geodesic metric space such that the diameter diam X of X is finite, then
X is diam X-hyperbolic. We are not interested in spaces like this.

(4) Any R-tree is 0-hyperbolic: Let X be an R-tree and let x, y, z P X. If rx, ys X rx, zs “

txu, then rx, ys Y rx, zs is an arc with endpoints y and z. Thus, it is the unique arc that
joins y to z, in particular, rx, ys Y rx, zs “ ry, zs. If rx, ys X rx, zs “ rx, ws for some w ‰ x,
then rw, ys X rw, zs “ twu and ry, zs “ ry, ws X rw, zs Ă rx, ys Y rx, zs.

In particular, E1 is Gromov-hyperbolic.

(5) The bi-infinite simplicial4 ladder is Gromov-hyperbolic. See Figure 6.3.

3arcosh 1
cos π

4
“ logp1 `

?
2q.

4Recall from section 1.5 that this means we have a metric graph with constant edge length 1.
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x

y

z

w

‚

‚

‚

Figure 6.2 — A triangle with vertices x, y and z in a tree.

Figure 6.3 — The bi-infinite simplicial ladder.

6.2 The Gromov product and thin triangles
Let X be a metric space and let x, y, z P X. There is a unique triple of positive numbers
rx, ry, rz ą 0 such that

$

’

&

’

%

rx ` ry “ dpx, yq

rx ` rz “ dpx, zq

ry ` rz “ dpy, zq .

(6.1)

Let X be a metric space and let x, y, z P X. The Gromov product of y and z with respect
to x is

py | zqx “
1
2
`

dpx, yq ` dpx, zq ´ dpy, zq
˘

.

It is easy to check that the triple prx, ry, rzq “ ppy | zqx, px | zqy, px | yqzq is a solution
of the linear system (6.1). The triangle inequality implies that the Gromov product is
nonnegative.
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x

y

z

py | zqx

px | zqy

px | yqz

Figure 6.4 — The geometric meaning of the solution of the system (6.1) in the Euclidean
plane. The green circle is the incircle of the triangle with endpoints x, y and z. It is the
unique circle inside the triangle that is tangent to all the sides. The points of tangency
are exactly the internal points of the triangle.

A metric tree with three sides and four vertices such that one vertex has degree 3 and
three vertices have degree 1 is a tripod.

3 1

2

Figure 6.5 — The tripod T∆ of a triangle ∆ with side lengths 3, 4 and 5.

Lemma 6.3. Let X be a geodesic metric space and let x, y, y1, z, z1 P X such that y1 P rx, ys

and z1 P rx, zs. Then
py1

| z1
qx ď py | zqx .

Proof. Exercise 6.1.
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Lemma 6.4. Let X be a geodesic metric space and let ∆ be a triangle with vertices x, y, z.
Let T∆ be the tripod with side lengths py | zqx, px | zqy and px | yqz. There is mapping
f∆ : ∆ Ñ T∆ such that the restriction of f∆ to any side of ∆ is an isometry.

Proof. This is clear because the Gromov products of the vertices give the solution of the
system of equations (6.1).

In many statements and proofs starting from Lemma 6.5, the notation ra, bs means some
or any geodesic segment with endpoints a and b in places where the actual choice of the
possible geodesic segments is not important.

Lemma 6.5. Let X be a geodesic metric space. Let ∆ be a triangle with vertices x, y, z P

X. Then
py | zqx ď dpx, ry, zsq .

Proof. Let w P ry, zs be a closest point to x. By Lemma 6.4, there is a point rw P

rx, ys Y rx, zs such that f∆pwq “ f∆p rwq. We may assume that rw P rx, ys. Note that
dpy, rwq “ dpy, wq and, as w P ry, zs, py | zqx ď dpx, rwq. Thus,

py | zqx ď dpx, rwq “ dpx, yq ´ dpy, rwq “ dpx, yq ´ dpy, wq ď dpx, wq “ dpx, ry, zsq .

Let X be a geodesic metric space and let δ ą 0. A triangle ∆ in X is δ-thin if dpa, bq ď δ
for all b P f´1

∆ pf∆paqq and all a P ∆.

Lemma 6.6. Let X be a geodesic metric space. If ∆ is a δ-thin triangle with vertices
x, y, z P X. Then

py | zqx ď dpx, ry, zsq ď py | zqx ` δ .

Proof. The first inequality holds by Lemma 6.5. To prove the second, let v0 be the central
vertex of T∆, and let a P f´1

∆ pv0q X rx, ys and b P f´1
∆ pv0q X ry, zs. By assumption, we get

dpx, ry, zsq ď dpx, aq ` dpa, bq ď py | zqx ` δ .

Proposition 6.7. A δ-thin triangle satisfies the Rips condition with constant δ.

Proof. Exercise 6.2.

Proposition 6.8. Let X be a δ-hyperbolic space. Then all triangles in X are 4δ-thin.

Proof. Assume that there is a triangle ∆ with vertices x, y, z P X that is not 4δ-thin. Then
(changing the names of the vertices if necessary) there are points u P rx, ys and v P rx, zs

such that f∆puq “ f∆pvq and dpu, vq ą 4δ. By continuity and as we are assuming a strict
inequality dpu, vq ą 4δ, we may choose the points u and v such that

dpx, uq “ dpx, vq ă py | zqx . (6.2)

Lemma 6.5 applied to triangles with vertices x, u and v, and with vertices y, u and v
implies that

dpv, rx, ysq “ min
`

d
`

v, rx, us
˘

, d
`

v, ru, ys
˘˘

ě min
`

px | uqv, py | uqv

˘

. (6.3)
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x

y

z

u

vp

δ

f∆pxq f∆pzq

f∆pyq

f∆puq “ f∆pvq

Figure 6.6 — The choice of u and v.

Furthermore, using the assumption that dpx, uq “ dpx, vq,

2px | uqv “ dpx, vq ` dpu, vq ´ dpx, uq “ dpu, vq

and

2py | uqv “ dpy, vq ` dpu, vq ´ dpy, uq

“ dpy, vq ` dpu, vq ´ pdpy, xq ´ dpx, uqq

“ dpu, vq ` pdpy, vq ` dpx, vq ´ dpy, xqq

“ dpu, vq ` 2px | yqv ě dpu, vq

Combining these observations with the inequality (6.3), we get

dpv, rx, ysq ě
1
2dpu, vq ą 2δ.

In particular, dpx, vq ą 2δ and there is a unique point p P rx, vs with dpp, vq “ δ and

dpp, rx, ysq ą δ . (6.4)

It remains to estimate the distance from p to ry, zs: Lemma 6.5 and the inequality (6.2)
imply

dpp, ry, zsq ě dpx, ry, zsq ´ dpp, xq ě py | zqx ´ dpp, xq

ą dpx, vq ´ dpx, pq “ dpp, vq “ δ .
(6.5)

The inequalities (6.4) and (6.5) show that the triangle ∆ does not satisfy the Rips condi-
tion with constant δ.

6.3 The 4-point condition

A metric space X satisfies the 4-point condition with parameter δ, if

px | zqw ě min
`

px | yqw, py | zqw

˘

´ δ

for all x, y, z, w P X.
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Lemma 6.9. A metric space X satisfies the 4-point condition with parameter δ if and
only if

dpx, zq ` dpy, wq ď max
`

dpx, yq ` dpz, wq , dpx, wq ` dpz, yq
˘

` 2δ

for all x, y, z, w P X.

Proof. Exercise 6.4

Example 6.10. If x “ 0, y “ pr, 0q, z “ pr, rq and w “ p0, rq for r ą 0 in the Euclidean
plane, then dpx, zq ` dpy, wq “ 2

?
2r and dpx, yq ` dpz, wq “ dpx, wq ` dpz, yq “ 2r, and

there is no δ ą 0 such that the 4-point condition would hold for all r.

Proposition 6.11. If X satisfies the 4-point condition with constant δ, then all triangles
in X are 4δ-thin.

Proof. Let ∆ be a triangle with vertices x, y, z P X. Let u P rx, ys and v P rx, zs such that
f∆puq “ f∆pvq. By assumption, we have dpx, yq ď py | zqx, and pu | yqx “ pv | zqx “ dpx, uq.

The 4-point condition gives

pu | vqx ě minppu | zqx, pz | vqxq ´ δ “ minppu | zqx, dpx, uqq ´ δ

and
pu | zqx ě minppu | yqx, py | zqxq ´ δ .

Combining these two inequalities, we have

pu | vqx ě dpx, uq ´ 2δ. (6.6)

On the other hand,

pu | vqx “
dpu, xq ` dpv, xq ´ dpu, vq

2 “ dpu, xq ´
dpu, vq

2 . (6.7)

Combining inequality (6.6) and equation (6.7), we have the claim

Proposition 6.12. If all triangles in X are δ-thin, then X satisfies the 4-point condition
with constant 2δ.

Proof. Let x, y, z, w P X, and let us prove that the 4-point condition with parameter
δ holds for these points. There is nothing to prove unless

min
`

px | yqw, py | zqw

˘

ą px | zqw , (6.8)

so we will assume that inequality (6.8) holds.
Let x1 P rw, xs, y1 P rw, ys, z1 P rw, zs such that

dpw, x1
q “ dpw, y1

q “ dpw, z1
q “ min

`

px | yqw, py | zqw

˘

.

As the triangles ∆xy with vertices w, x, y and ∆yz with vertices w, y, z are δ-thin, we have
dpx1, y1q, dpy1, z1q ď δ, so that

dpx1, z1
q ď 2δ . (6.9)
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By inequality 6.8, there are points px, pz P rx, zs such that f∆xz ppxq “ f∆xz px1q and
f∆xz ppzq “ f∆xz pz1q. In particular, dppx, x1q, dppz, z1q ď δ. Note that using the definitions
of the various points, we have

dpx, pxq “ dpx, x1
q “ dpx, wq ´ dpw, x1

q “ dpx, wq ´ min
`

px | yqw, py | zqw

˘

,

and

dpz, pzq “ dpz, z1
q “ dpz, wq ´ dpw, z1

q “ dpz, wq ´ min
`

px | yqw, py | zqw

˘

.

Thus,

dppx, pzq “ dpx, zq ´ dpx, pxq ´ dppz, zq

“ dpx, zq ´ dpx, wq ´ dpz, wq ` 2 min
`

px | yqw, py | zqw

˘

“ 2pmin
`

px | yqw, py | zqw

˘

´ px | zqwq

Therefore, using the triangle inequality in the beginning,

dpx1, z1
q ě dppx, pzq ´ 2δ

“ 2
`

min
`

px | yqw, py | zqw

˘

´ px | zqw ´ δ
˘

Combining this with inequality (6.9) gives the claim.

6.4 Approximation of paths by geodesics
In this section, we prove a technical result that is useful in section ??. The proof makes
strong use of δ-hyperbolicity.

Proposition 6.13. Let X be a δ-hyperbolic space. Let γ : r0, 1s Ñ X be a rectifiable
path5 and let j : r0, dpγp0q, γp1qs Ñ X be a geodesic segment such that jp0q “ γp0q and
jp1q “ γp1q. For any t P r0, dpγp0q, γp1qqs,

dpjptq, γpr0, 1sqq ď δ log2 ℓpγq ` 1 . (6.10)

Proof. The inequality (6.10) is satisfied trivially if ℓpγq ď 1. We assume that ℓpγq ě 1
and that γ is parametrized proportional to arclength.6

Let N P N such that ℓpγq

2 ď 2N ď ℓpγq. Let t P r0, dpγp0q, γp1qqs. Let ∆1 be a triangle
with vertices γp0q, γp1q and γp1

2q such that one of the sides is the image of the geodesic
segment j. As X is δ-hyperbolic,

γptq P N δ

`

rγp0q, γp
1
2qs

˘

Y N δ

`

rγp
1
2q, γp1qs

˘

.

Thus, there is a point y1 P
“

γp0q, γp1
2q
‰

Y
“

γp1
2q, γp1q

‰

such that dpjptq, y1q ď δ. If y1 P
“

γp0q, γp1
2q
‰

, let ∆2 be a triangle with vertices γp0q, γp1
4q and γp1

2q. Otherwise, let ∆2 be
the triangle with vertices γp1

2q, γp3
4q and γp1q.

5A path γ is rectifiable if ℓpγq ă 8.
6See [BH, Proposition I.1.20] and the remarks after it for a proof that we can make the second

assumption without loss of generality.
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yN

γp1q

γp1
2q

γp0q jptq

γp1
4q

y2

y1

Figure 6.7 — The idea of the proof of Proposition 6.13.

Assume that we are in the first case. Then, using δ-hyperbolicity as above, there is
a point y2 P

“

γp0q, γp1
4q
‰

Y
“

γp1
4q, γp1

2q
‰

such that dpy1, y2q ď δ. We continue inductively,
and construct a finite sequence of points y1, y2, . . . , yN such that dpyk, yk`1q ď δ for all
1 ď k ď N ´1. Note that, by construction, yN P

“

γp k
2N q, γpk`1

2N q
‰

for some 0 ď k ď 2N ´1,
and therefore, dpyN , γpr0, 1sqq ď

ℓpγq

2N`1 ď 1. The triangle inequality gives the estimate

d
`

jptq, γpr0, 1s
˘

q ď Nδ ` 1 ď log2 ℓpγq ` 1 .

Example 6.14. In the Euclidean plane, the distance from the center of a half-circle
to the half-circle grows linearly with the radius. Therefore, the inequality (6.10) cannot
be satisfied for the geodesic segment r´r, rs and a parametrization γptq “ reiπt of the
half-circle.

Exercises
6.1. Prove Lemma 6.3.
6.2. Prove Proposition 6.7.
6.3. Let ∆ be a triangle in a geodesic space X and let δ ě 0. Prove that ∆ is δ-thin if
and only if

dpu, vq ď d
`

f∆puq, f∆pvq
˘

` δ

for all u, v P ∆.
6.4. Prove Lemma 6.9.
6.5. Let T be a simplicial tree. Let x0 P T and let ρ1, ρ2 : r0, 8r Ñ T be geodesic rays
such that ρ1p0q “ ρ2p0q “ x0 and ρ1 ‰ ρ2. Prove that the limit limtÑ8pρ1ptq | ρ2ptqqx0 ex-
ists.7

6.6. Let ρ1, ρ2 : r0, 8r Ñ H2 be geodesic rays such that ρ1p0q “ ρ1p0q “ 0 in the Poincaré
disk model and ρ1 ‰ ρ2. Prove that pρ1ptq | ρ2ptqq0 is bounded.8

6.7. Let ρ1, ρ2 : r0, 8r Ñ E2 be geodesic rays such that ρ1p0q “ ρ1p0q “ 0 and ρ1 ‰ ´ρ2.
Prove that pρ1ptq | ρ2ptqq0 is not bounded.

7Prove that the function t ÞÑ pρ1ptq | ρ2ptqqx0 is constant for large t.
8Lemma 6.6 and Proposition 4.26 can be useful.
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