
GEOMETRY

JOUNI PARKKONEN

Contents

1. Euclidean geometry 2
1.1. Metric spaces 2
1.2. Euclidean space 2
1.3. Isometries 4
2. The sphere 7
2.1. More on cosine and sine laws 10
2.2. Isometries 11
2.3. Classification of isometries 12
3. Map projections 14
3.1. The latitude-longitude map 14
3.2. Stereographic projection 14
3.3. Inversion 14
3.4. Mercator’s projection 16
3.5. Some Riemannian geometry. 18
3.6. Cylindrical projection 18
4. Triangles in the sphere 19
5. Minkowski space 21
5.1. Bilinear forms and Minkowski space 21
5.2. The orthogonal group 22
6. Hyperbolic space 24
6.1. Isometries 25
7. Models of hyperbolic space 30
7.1. Klein’s model 30
7.2. Poincaré’s ball model 30
7.3. The upper halfspace model 31
8. Some geometry and techniques 32
8.1. Triangles 32
8.2. Geodesic lines and isometries 33
8.3. Balls 35
9. Riemannian metrics, area and volume 36

Last update: December 12, 2014.

1



1. Euclidean geometry

1.1. Metric spaces. A function d : X ×X → [0,+∞[ is a metric in the nonempty
set X if it satisfies the following properties
(1) d(x, x) = 0 for all x ∈ X and d(x, y) > 0 if x 6= y,
(2) d(x, y) = d(y, x) for all x, y ∈ X, and
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (the triangle inequality).
The pair (X, d) is a metric space. Open and closed balls in a metric space, continuity
of maps between metric spaces and other “metric properties” are defined in the same
way as in Euclidean space, using the metrics of X and Y instead of the Euclidean
metric.

Example 1.1. (a) The space Rn with the Euclidean distance is a metric space, see
Section 1.2.
(b) The circle S1 with the distance between two points defined as their angle as
vectors in E2 is a metric space, see Section 2 for details and generalisations.
(c) Let X 6= ∅. The discrete metric d : X × X → [0,∞[ is defined by setting
d(x, x) = 0 for all x ∈ X and d(x, y) = 1 for all x, y ∈ X if x 6= y.
(d) It is easy to check that for any α > 1, the expression hα(st, ) = |s− t|α does not
define a metric on R as it fails to satisfy the triangle inequality:

hα(0, 2) > 2 = 1 + 1 = hα(0, 1) + hα(1, 2) .

On the other hand, it can be shown that hα is a metric if 0 < α ≤ 1.

If (X1, d1) and (X2, d2) are metric spaces, then a map i : X → Y is an isometric
embedding, if

d2(i(x), i(y)) = d1(x, y)

for all x, y ∈ X1. If the isometric embedding i is a bijection, then it is called an
isometry between X and Y . An isometry i : X → X is called an isometry of X.

The isometries of a metric space X form a group Isom(X), the isometry group of
X, with the composition of mappings as the group law.

A map i : X → Y is a locally isometric embedding if each point x ∈ X has a
neighbourhood U such that the restriction of i to U is an isometric embedding. A
(locally) isometric embedding i : I → X is
(1) a (locally) geodesic segment, if I ⊂ R is a (closed) bounded interval,
(2) a (locally) geodesic ray, if I = [0,+∞[, and
(3) a (locally) geodesic line, if I = R.

1.2. Euclidean space. Let us denote the Euclidean inner product of Rn by

(x|y) =
n∑
i=1

xiyi .

The Euclidean norm ‖x‖ =
√

(x|x) defines the Euclidean distance d(x, y) = ‖x−y‖.
The triple En = (Rn, (·|·), ‖ · ‖) is n-dimensional Euclidean space.

Proposition 1.2. The Euclidean distance is a metric.

Proof. The first two properties of a metric are clear from the expression of the metric.
It suffices to show that the triangle inequality holds. Let x, y, z ∈ En. Using the
linearity and symmetry properties of the inner product and Cauchy’s inequality, we
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get

dEn(x, y)2 = (x− y|x− y) = (x− z + z − y|x− z + z − y)

= (x− z|x− z) + 2(x− z|z − y) + (z − y|z − y)

≤ dEn(x, z)2 + 2dEn(x, z)dEn(z, y) + dEn(z, y)2

= (dEn(x, z) + dEn(z, y))2 ,

which implies the triangle inequality because all the terms in the inequality are
positive. �

Euclidean space is a geodesic metric space: For any two distinct points x, y ∈ En,
the map

t 7→ x+ t
y − x
‖y − x‖

,

is a geodesic line that passes through the points x and y. Indeed, for any x0 ∈ En and
any u ∈ Sn−1, let jx0,u : R→ En be the map

jx0,u(t) = x0 + tu .

For any s, t ∈ R, we have

dEn(jx0,u(t), jx0,v(s)) = ‖x0 + tu− (x0 + su)‖ = ‖(t− s)u‖ = |t− s|‖u‖ = dE1(t, s) .

The restriction jx,y|[0,‖x−y‖] is a geodesic segment that connects x to y: j(0) = x
and j(‖x− y‖) = y. In fact, this is the only geodesic segment that connects x to y
up to replacing the interval of definition [0, ‖x−y‖] of the geodesic by [a, a+‖x−y‖]
for some a ∈ R. More precisely: A metric space (X, d) is uniquely geodesic, if for
any x, y ∈ X there is exactly one geodesic segment j : [0, d(x, y)] → X such that
j(0) = x and j(d(x, y)) = y.

Proposition 1.3. Euclidean space is uniquely geodesic.

Proof. If g is a geodesic segment that connects x to y and z is a point in the image
of g, then, by definition, ‖x−z‖+‖z−y‖ = ‖x−y‖. But, using Cauchy’s inequality,
it is easy to see that the Euclidean triangle inequality becomes an equality if and
only if z is in the image of the linear segment j|[0,‖x−y‖]. �

Even if the proof of the above proposition appears obvious, it uses the connection
of the Euclidean metric with the inner product in an essential way. There are plenty
of examples of metric spaces arising from vector spaces endowed with a norm that
are not uniquely geodesic. For example, the expression

d∞(x, y) = max{|x1 − y1|, |x2 − y2|}

defines a metric on R2. It is easy to check that, among many others, the mappings
j1, j2 : [0, 1]→ (R2, d∞) defined by j1(t) = t(1, 0) and

j2(t) =

{
t(1, 1), if 0 ≤ t ≤ 1

2
,

(t, 1− t), if 1
2
≤ t ≤ 1

are both geodesic segments in (R2, d∞) connecting 0 to (1, 0).
If a metric space X is uniquely geodesic and x, y ∈ X, x 6= y, we denote the

(image of the) unique geodesic segment connecting x to y by [x, y].
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1.3. Isometries. We will now study the isometries of Euclidean space more closely.
The (Euclidean) orthogonal group of dimension n is

O(n) = {A ∈ GLn(R) : (Ax|Ay) = (x|x) for all x, y ∈ En}
= {A ∈ GLn(R) : ATA = In} .

Recall the following basic result from linear algebra:

Lemma 1.4. An n×n-matrix A = (a1, . . . , an) is in O(n) if and only if the vectors
a1, . . . , an form an orthonormal basis of En. �

It is easy to check that elements of O(n) give isometries on En for any n ∈ N:
Let A ∈ O(n) and let x, y ∈ En. Now

d(Ax,Ay)2 = (Ax− Ay|Ax− Ay) = (A(x− y)|A(−y))

= (ATA(x− y)|x− y) = (x− y|x− y)

= d(x− y)2 .

For any b ∈ Rn, let tb(x) = x+ b be the translation by b. Again, it is easy to see
that translations are isometries of En. The translation group is

T(n) = {tb : b ∈ Rn}
Orthogonal maps and translations generate the Euclidean group

E(n) = {x 7→ Ax+ b : A ∈ O(n), b ∈ Rn}
which consists of isometries of En.

If a group G acts on a space X, and x is a point in X, the set
G(x) = {g(x) : g ∈ g}

is the G-orbit of x. The action of a group is said to be transitive if G(x) = X for
some (and therefore for any) x ∈ X. A more elementary way to express this is that
a group G acts transitively on X if for all x, y ∈ X there is some g ∈ G such that
g(x) = y.

Proposition 1.5. E(n) acts transitively by isometries on En. In particular, Isom(En)
acts transitively on En.

Proof. The Euclidean group of En contains the group of translations T(n) as a
subgroup. This subgroup acts transitively because for any x, y ∈ Rn, we have
Ty−x(x) = y. �

An affine hyperplane of En is a subset of the form
H = H(P, u) = P + u⊥ ,

where P, u ∈ En and ‖u‖ = 1. The reflection in H is the map
rH(x) = x− 2(x− P |u)u .

Reflections are very useful isometries, the following results give some of their basic
properties. For any mapping f : X → X, the fixed point set of f is

fix f = {x ∈ X : f(x) = x} .

Proposition 1.6. Let H be an hyperplane in En. Then
(1) rH ◦ rH is the identity.
(2) rH ∈ E(n). In particular, rH is an isometry, and if 0 ∈ H, then rH ∈ O(n).
(3) d(rH(x), y) = d(x, y) for all x ∈ En and all y ∈ H.
(4) The fixed point set of rH is H.
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Proof. We will prove (3) and leave the rest as exercises. Let x ∈ En and y ∈ H. We
have rH(x) = x− 2(x− y|u)u, which implies

d(rH(x), y)2 = (rH(x)− y|rH(x)− y) = (x− y − 2(x− y|u)u|x− y − 2(x− y|u)u)

= (x− y|x− y)− 4(x− y|(x− y|u)u) + 4((x− y|u)u|(x− y|u)u)

= (x− y|x− y) = d(x, y)2 . �

The bisector of two distinct points p and q in En is the affine hyperplane

bis(p, q) = {x ∈ En : d(x, p) = d(x, q)} =
p+ q

2
+ (p− q)⊥.

Proposition 1.7. (1) If rH(x) = y and x /∈ H, then H = bis(x, y).
(2) If p, q ∈ En, p 6= q, then rbis(p,q)(p) = q.
(3) Let φ ∈ Isom(En), φ 6= id. If a ∈ En, φ(a) 6= a, then the fixed points of φ are
contained in bis(a, φ(a)).
(4) Let φ ∈ Isom(En), φ 6= id. If H is a hyperplane such that φ|H is the identity,
then φ = rH .

Proof. (1) follows from Proposition 6.10(3).
(2) From the definitions we get

rbis(p,q)(p) = p− 2(p− p+ q

2
|p− q) p− q

‖p− q‖2
= q .

(3) If φ(b) = b, then d(a, b) = d(φ(a), φ(b)) = d(φ(a), b), so that b ∈ bis(a, φ(a)).
(4) Let a /∈ H be a point that is not fixed by φ. Claim (3) implies thatH is contained
in bis(a, φ(a)) and as the dimensions agree, we have H = bis(a, φ(a)). Thus, by
Claim (2), rH(a) = φ(a). But this holds for all a /∈ H. As rH |H = φH = idH , we
have φ = rH . �

Next, we want to prove that all isometries of Euclidean space En are affine trans-
formations with an orthogonal linear part.

Theorem 1.8. Isom(En) = E(n).

The idea of the proof is to show that each isometry of En is the composition of
reflections in affine hyperplanes. In order to do this, we show that the isometry
group has a stronger transitivity property than what was noted above.

Proposition 1.9. Let p1, p2, . . . , pk, q1, q2, . . . , qk ∈ En be points that satisfy

d(pi, pj) = d(qi, qj)

for all i, j ∈ {1, 2, . . . , k}. Then, there is an isometry φ ∈ Isom(En) such that
φ(pi) = qi for all i ∈ {1, 2, . . . , k}. Furthermore, the isometry φ is the composition
of at most k reflections in affine hyperplanes.

Proof. We construct the isometry by induction. If p1 = q1, let φ1 be the identity,
otherwise, let φ1 be the reflection in the bisector of p1 and q1. Let m > 1 and assume
that there is an isometry φm such that φ(pi) = qi for all i ∈ {1, 2, . . . ,m}, which is
the composition of at most m reflections.

Assume that φm(pm+1) 6= qm+1. Now, q1, . . . qm ∈ bis(φm(pm+1), qm+1) because
for each 1 ≤ i ≤ m, we have

d(qi, φm(pm+1)) = d(φm(pi), φm(pm+1)) = d(pi, pm+1) = d(qi, qm+1) .

Thus, the map
φm+1 = rbis(φm(pm+1),qm+1) ◦ φm
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φ1(p2)

φ2 ◦ φ1(p3)

p3

q1 = φ1(p1)

bis(p1, q1)

bis(φ1(p2), q2)

p1

p2

q3

q2 = φ2 ◦ φ1(p2)

φ1(p3)

Figure 1.

satisfies φm+1(pi) = qi for all 1 ≤ i ≤ m+ 1. �

Note that Proposition 1.9 implies that if T and T ′ are two triangles in En with
equal sides, then there is an isometry φ of En such that φ(T ) = T ′.

Proof of Theorem 1.8. We already observed that elements of E(n) are isometries. It
remains to show the opposite inclusion.

Consider the set {0, e1, . . . , en} in En. Note that this set is not contained in any
affine hyperplane. Rn.

Let φ ∈ Isom(En). Proposition 1.9 implies that there is an isometry φ0 ∈ O(n)
such that φ0(φ(ei)) = ei for all 1 ≤ i ≤ m and φ0(φ(0)) = 0. Since the set of
fixed points of φ0 ◦ φ contains the points 0, e1, . . . , en, the fixed point set of φ0 is
not contained in any affine hyperplane. Proposition 6.11 implies that φ0 ◦ φ is the
identity map. Thus, φ = φ−1

0 . In particular, φ ∈ O(n), which is all we needed to
show. �

Let X be a metric space. The stabiliser of a point x ∈ X is
Stabx = {F ∈ IsomX : F (x) = x} .

Proposition 1.10. The stabiliser in Isom(En) of any point x ∈ En is isomorphic to
O(n). An isometry F of En fixes b ∈ En if and only if there is an orthogonal linear
map F0 such that F = Tb ◦ F0 ◦ T−1

b .

Proof. An element of E(n) fixes the origin if and only if it is an orthogonal linear
transformation. Thus the claim holds for 0. If b ∈ En − {0} and F ∈ Stab b, then
T−1
b ◦ F ◦ Tb ∈ O(n) and for any A ∈ O(n), Tb ◦ A ◦ T−1

b ∈ fix b �

Proposition 1.11. For each affine k-plane P , there is an isometry φ ∈ Isom(En)
such that

φ(P ) = {x ∈ En : xk+1 = xk+2 = · · · = xn = 0} .
Each affine k-plane of En is isometric with Ek.

Proof. This is a direct generalisation of Proposition 1.5. The details are left as an
exercise. �
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2. The sphere

The unit sphere in (n− 1)-dimensional Euclidean space is

Sn = {x ∈ En+1 : ‖x‖ = 1} .

Let us show that the angle distance

(1) dSn(x, y) = arccos(x|y) ∈ [0, π]

is a metric. In order to do this, we will use the analog of the Euclidean law of cosines,
but first we have to define the objects that are studied in spherical geometry.

Each 2-dimensional linear subspace T ⊂ Rn+1 intersects Sn in a great circle. If
A ∈ Sn and u ∈ Sn is orthogonal to A (u ∈ A⊥), then the path jA,u : R→ Sn,

jA,u(t) = A cos t+ u sin t ,

parametrises the great circle 〈A, u〉 ∩ Sn, where (A, u) is the linear span of A and u.
The vectors A and u are linearly independent, so 〈A, u〉 is a 2- plane.

Lemma 2.1. If dSn is a metric, then jA,u is a locally geodesic line.

Proof. Observe that as A and u are unit vectors such that (A|u) = 0, we have

(jA,u(s)|jA,u(t)) = (A cos s+ u sin s|A cos t+ u sin t)

= ‖A‖2 cos s cos t+ (cos s sin t+ sin s cos t)(A|u) + sin s sin t‖u‖2

= cos s cos t+ sin s sin t = cos(s− t) .(2)

Thus,

d(jA,u(s), jA,u(t)) = arccos(jA,u(s)|jA,u(t)) = arccos cos(s− t) = |s− t| ,

which implies that the restriction of jA,u to any segment of length less than π is an
isometric embedding. �

Note that the computation (2) applied with s = t implies that the image of the
mapping jA,u is contained in S1.

If A,B ∈ Sn such that B 6= ±A, then there is a unique plane that contains both
points. Thus, there is unique great circle that contains A and B, in the remaining
cases, there are infinitely many such planes. The great circle is parametrised by the
map jA,u, with

(3) u =
B − (B|A)A

‖B − (B|A)A‖
=

B − (A|B)A√
1− (A|B)2

.

Now j(0) = A and j(d(A,B)) = B.
If B = −A, then there are infinitely many great circles through A and B: the

map jA,u parametrises a great circle through A and B for any u ∈ A⊥.
We call the restriction of any jA,u as above to any compact interval [0, s] a spherical

segment, and u is called the direction of jA,u. Once we have proved that d is a metric,
it is immediate that a spherical segment is a geodesic segment.

Our proof showing that the expression (1) defines a metric is based on the spherical
law of cosines. In order to prepare for this approach, we return briefly to Euclidean
geometry. A triangle in Euclidean space consists of three points A,B,C ∈ En (the
vertices) and of the three sides [A,B], [B,C] and [C,A]. Let the lengths of the sides
be, in the corresponding order, c, a and b, and let the angles between the sides at
the vertices A, B and C be α, β and γ.

These quantities are connected via
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β

a

γ

α

b

c

B

C

Figure 2.

Proposition 2.2 (The Euclidean law of cosines). In Euclidean geometry, the rela-
tion

c2 = a2 + b2 − 2ab cos γ

holds for any triangle.

Proof. The proof is linear algebra:

c2 = ‖B − A‖2 = ‖B − C + C − A‖2 = b2 + 2(B − C|C − A) + a2

= b2 + 2(B − C|C − A) + a2 = b2 − 2ab cos γ + a2 . �

Proposition 2.3 (The Euclidean law of sines). In Euclidean geometry, the relation
a

sinα
=

b

sin β
=

c

sin γ

holds for any triangle.

The law of cosines can be proved without knowing that En is uniquely geodesic.
In fact, using the law of cosines, it is easy to prove that Euclidean space is uniquely
geodesic, compare with the case of the sphere treated below .

A triangle in Sn is defined as in the Euclidean case but now the sides of the
triangle are the spherical segments connecting the vertices.

Let jA,u([0, d(C,A)]) be the side between C and A, and let jA,v([0, d(C,B)])v be
the side between C and B. The angle between jA,u([0, d(C,A)]) and jA,v([0, d(C,B)])
is arccos(u|v), which is the angle at A between the sides jA,u([0, d(A,B)]) and
jA,v([0, d(A,B)]) in the ambient space En+1.

Now we can state and prove

Proposition 2.4 (The spherical law of cosines). In spherical geometry, the relation

cos c = cos a cos b+ sin a sin b cos γ

holds for any triangle.

Proof. Let u and v be the initial tangent vectors of the spherical segments jC,u from
C to A and jC,v from C to B. As u and v are orthogonal to C, we have

cos c = (A|B) = (cos(b)C + sin(b)u| cos(a)C + sin(a)v)

= cos(a) cos(b) + sin(b) sin(a)(u|v) . �

Proposition 2.5. The angle distance is a metric on Sn.
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Figure 3.

Proof. Clearly, the triangle inequality is the only property that needs to be checked
to show that the angle metric is a metric. Let A,B,C ∈ Sn be three distinct points
and use the notation introduced above for triangles. The function

γ 7→ f(γ) = cos(a) cos(b) + sin(a) sin(b) cos(γ)

is strictly decreasing on the interval [0, π], and

f(π) = cos(a) cos(b)− sin(b) sin(a) = cos(a+ b) .

Thus, the law of cosines implies that for all γ ∈ [0, π], we have

(4) cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ) ≥ cos(a+ b),

which implies c ≤ a+ b. Thus, the angle distance is a metric. �

Note that the inequality (4) is strict unless γ = π. This also implies that for
triangles that are not completely contained in a great circle,

(5) c < a+ b < 2π − c .
We return to this observation in Section 4.

Proposition 2.6. (Sn, dSn) is a geodesic metric space. If dSn(A,B) < π, then there
is a unique geodesic segment from A to B.

Proof. If x, y ∈ S with y 6= ±x, then, by Lemma 2.1, the spherical segment with
direction given by the equation (3) is a geodesic segment that connects x to y. If
the points x and y are antipodal, then it is immediate from the expression of the
spherical segment that jx,u(π) = −x. Thus, in this case there are infinitely many
geodesic segments connecting x to y.

If j is a geodesic segment connecting A to B, then any C in j([0, d(A,B)]) satisfies

dSn(A,C) + dSn(C,B) = dSn(A,B)

by definition of a geodesic segment. Equality holds in the triangle inequality if and
only if γ = π. In this case, all the points A, B and C lie on the same great circle
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and C is contained in the side connecting A to B. Thus, the spherical segments are
the only geodesic segments connecting A and B. If A 6= ±B, then there is exactly
one 2-plane containing both points. This proves the second claim. �

Note that the sphere has no geodesic lines or rays because the diameter of the
sphere is π.

2.1. More on cosine and sine laws. The law of cosines implies that a triangle
in En or Sn is uniquely determined up to an isometry of the space, if the lengths of
the three sides are known. In Euclidean space the angles are given by

cos γ =
a2 + b2 − c2

2ab

and the corresponding equations for α and β obtained by permuting the sides and
angles, and in the sphere we have

cos γ =
cos c− cos a cos b

sin a sin b
.

In Euclidean space, the three angles of a triangle do not determine the triangle
uniquely but in Sn the angles determine a triangle uniquely. This is the content of

Proposition 2.7 (The second spherical law of cosines). In spherical geometry, the
relation

cos c =
cosα cos β + cos γ

sinα sin β

holds for any triangle.

Proof. This formula follows from the first law of cosines by manipulation. The first
law of cosines implies

sin2 γ = 1− cos2 γ =
1 + 2 cos a cos b cos c− (cos2 + cos2 b+ cos2 c)

sin2 a sin2 b
=

D

sin2 a sin2 b
,

and D is symmetric in a, b and c. Thus, using the law of cosines, we get
cosα cos β + cos γ

sinα sin β
(6)

=

cos a− cos b cos c

sin b sin c

cos b− cos a cos c

sin a sin c
+

cos c− cos a cos b

sin a sin b
D

sin a sin b sin2 c

= cos c . �

Spherical geometry even has its own sine law

Proposition 2.8 (The spherical law of sines). In spherical geometry, the relation

sin a

sinα
=

sin b

sin β
=

sin c

sin γ

holds for any triangle.

Proof. In the proof of the second law of cosines we saw that he first law of cosines
implies that (

sin c

sin γ

)2

=
sin2 a sin2 b sin2 c

D
.

The claim follows because this expression is symmetric in a, b and c. �
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2.2. Isometries.

Proposition 2.9. The orthogonal group O(n+ 1) acts transitively by isometries on
Sn. In particular, Isom(Sn) acts transitively on Sn.

Proof. Let A ∈ O(n + 1) and let x ∈ En+1. By definition of orthogonal matrices,
we have ‖Ax‖2 = (Ax|Ax) = ‖x‖2. Thus, A defines a bijection of the sphere Sn
to itself. Furthermore, for any x, y ∈ Sn+1, again by the definition of orthogonal
matrices,

cosh dSn(Ax,Ay) = (Ax|Ay) = (x|y) = cosh dSn(x, y) ,

which implies that the above mapping is an isometry.
Transitivity follows from the fact that any element of Sn can be taken as the

first element of an orthogonal basis of En or, equivalently, as the first column of an
orthogonal matrix. �

We will prove the analog of Theorem 1.8 for the sphere.

Theorem 2.10. Isom(Sn) = O(n+ 1) �

The proof works as in the Euclidean case once we have defined hyperplanes and
bisectors in the appropriate, natural manner.

Let H0 be a linear hyperplane in En. The intersection H = H0∩Sn is a hyperplane
of Sn. Note that each hyperplane of Sn is isometric with Sn−1. The reflection rH in
H is the restriction of the reflection in H0 to the sphere: rH = rH0 |Sn . Note that by
Proposition 6.10(2) and Proposition 2.9, the image of rH0|Sn is contained in Sn.

Proposition 2.11. Let H be an hyperplane in Sn. Then
(1) rH ◦ rH is the identity.
(2) rH ∈ O(n). In particular, rH is an isometry.
(3) d(rH(x), y) = d(x, y) for all x ∈ Sn and all y ∈ H.
(4) The fixed point set of rH is H.

Proof. (1), (2) and (4) are direct consequences of Proposition 6.10. We leave (3) as
an exercise. �

The bisector of two distinct points p, q ∈ Sn is

bis(p, q) = {x ∈ Sn : dSn(x, p) = dSn(x, q)} .

Lemma 2.12. Let p, q ∈ Sn, p 6= q. Then bis(p, q) = (p − q)⊥ ∩ Sn. In particular,
the bisector is a hyperplane, it is the intersection of the Euclidean bisector of p and
p with the Sn.

Proof. The points p, q, x ∈ Sn satisfy dSn(x, p) = dSn(x, q) if and only if (p|x) = (q|x),
which is equivalent with (p− q|x) = 0. �

Proposition 2.13. Let x, y ∈ Sn and let H be a hyperplane of Sn.
(1) If rH(x) = y and x /∈ H, then H = bis(x, y).
(2) If p, q ∈ Sn, p 6= q, then rbis(p,q)(p) = q.
(3) Let φ ∈ Isom(Sn), φ 6= id. If a ∈ Sn, φ(a) 6= a, then the fixed points of φ are
contained in bis(a, φ(a)).
(4) Let φ ∈ Isom(Sn), φ 6= id. If H is a hyperplane such that φ|H is the identity,
then φ = rH .
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Proof. (1) follows from Proposition 2.11(3).
(2) Using the definitions and the fact that p+q

2
is in the Euclidean bisector of p and

q, we get

rbis(p,q)(p) = p− 2(p− p+ q

2
|p− q) p− q

‖p− q‖2
= q .

The proofs of (3) and (4) are formally the same as in the Euclidean case. �

We leave it as an exercise to check that the following result is proved in the same
way as their Euclidean counterparts.

Proposition 2.14. Let p1, p2, . . . , pk, q1, q2, . . . , qk ∈ Sn be points that satisfy

d(pi, pj) = d(qi, qj)

for all i, j ∈ {1, 2, . . . , k}. Then, there is an isometry φ ∈ Isom(Sn) such that
φ(pi) = qi for all i ∈ {1, 2, . . . , k}.

Corollary 2.15. Any isometry of Sn can be represented as the composition of at
most n+ 1 reflections. �

If a group G acts on a space X A is a nonempty subset of X, the stabiliser of A
in G is

StabGA = {g ∈ G : gA = A} .
Clearly, stabilisers are subgroups of G.

Proposition 2.16. The stabiliser in Isom(Sn) of any point x ∈ Sn is isomorphic to
O(n).

Proof. The north pole en+1 is stabilized by the subgroup of O(n) that consists of
block diagonal matrices diag(1, A), where A ∈ O(n). Proposition 2.9 implies the
claim as in the Euclidean case, see Proposition 1.10. �

The proof of the following result is similar to that of its Euclidean analog, Propo-
sition 1.11.

Proposition 2.17. Each k-plane of Sn is isometric with Sk. For each k-plane P ,
there is an isometry φ ∈ Isom(Sn) such that

φ(P ) = {x ∈ Sn : xk+2 = xk+3 = · · · = xn+1 = 0} . �

2.3. Classification of isometries. The special orthogonal group of dimension n is

SO(n) = {A ∈ O(n) : detA = 1} .
Let A ∈ O(2). The columns of A form an orthonormal basis of E2. If we write the

first column as
(

cos θ
sin θ

)
, then orthogonality implies that the second column is either(

− sin θ
cos θ

)
or
(

sin θ
− cos θ

)
. Therefore, there are exactly two kinds of orthogonal maps

of the plane: the rotation by θ,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2)

and the reflection in the line L = (− cos θ
2
, sin θ

2
)⊥,

Sθ =

(
cos θ sin θ
sin θ − cos θ

)
∈ O(2)− SO(2) .

The rotations form the normal subgroup SO(2) of O(2).
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Remark 2.18. (1) It is easy to check that Sθ = RθS0.
(2) Using complex numbers, Rθ is multiplication by eiθ and the reflection Sθ is the
mapping Sθ(z) = eiθz̄.

As in the 2-dimensional case, SO(n) is a normal subgroup of O(n) of index 2. The
following property simplifies the treatment of SO(3):

Proposition 2.19. The nonidentity elements of SO(3) are rotations Rv,θ by θ ∈
]0, 2π[ about an axis given by a unit vector v ∈ S2.

Proof. Let A ∈ SO(3). Let us show that 1 is an eigenvalue of A by considering
the characteristic polynomial χA. Now, using the facts that A is orthogonal, the
determinant is multiplicative and detA = 1, the determinant of a matrix and its
transpose agree, and that we work with 3× 3-matrices, we have

χA(1) = det(A− I3) = − det(A(I3 − AT )) = det(I3 − AT )

= det(I3 − A) = − det(A− I3) = −χA(1) .

Thus, χA(1) = 0. This implies that A is conjugate in SO(3) with a block diagonal
matrix diag(A0, 1) with A ∈ SO(2), and the claim follows from the above classifica-
tion of the elements of SO(2) �
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3. Map projections

3.1. The latitude-longitude map. Let x ∈ S2. The latitude of x is

θ(x) =
π

2
− dS2(x, e3) =

π

2
− arccos(x|e3) =

π

2
− arccos(x3) ∈ [−π

2
,
π

2
],

which is the oriented angle of x from the equator {x ∈ S2 : x3 = 0}. The longitude of
x ∈ S2 − {±e3} is

φ(x) = sign(x2) arccos(
(x1, x2, 0)|e1)

‖(x1, x2, 0)‖
) = sign(x2) arccos(

x1√
x2

1 + x2
2

) ∈]− π, π]

where sign(t) = t
|t| for nonzero t and we set sign(0) = 1. The longitude is the

oriented angle between x and the geodesic segment from the north pole e3 to the
south pole −e3, called the 0-meridian (or the Greenwich meridian if we consider the
Earth). Here we have chosen the value π for the longitude on the international date
line which is the geodesic segment between the poles that passes through −e1. More
generally, the geodesic line between the poles determined by an equation φ = c is a
meridian and the circle determined by an equation θ = c is a parallel.

The longitude and latitude of a point determine a bijection L : S2 − {±e3} →
]− π, π]×]π

2
, π

2
[,

L(x) = (φ(x), θ(x)) .

The inverse of this map is given by

L−1(φ, θ) = (cosφ cos θ, sinφ cos θ, sin θ) .

This map is good close to the equator but distances, areas and angles are badly
distorted close to the poles.

3.2. Stereographic projection. Let a ∈ R−{0} and consider the projection plane
Pa = {x ∈ E3 : x3 = a}. For any x ∈ S2, let Sa0 : S2 → Pa be the map

Sa0 (x) = (1− a)
x− e3

1− x3

+ e3

that associates to x the unique point on Pa that lies on the affine line through e3 and
x. The stereographic projection Sa : S2−{e3} → E2 is pr3 ◦Sa0 , where pr3(y) = (y1, y2)
is the orthogonal projection of E3 to E2 identified with the hyperplane E2 × {0}.
More explicitly,

Sa(x) = (1− a)(
x1

1− x3

,
x2

1− x3

) .

Most often, one uses a = 0, which is the case where the projection plane passes
through the origin, or a = −1, which is the case where the projection plane is
tangent to the sphere at the south pole.

3.3. Inversion. Let c ∈ En and let α ∈ R − {0}. The mapping ιc,α : En − {c} →
En − {c} defined by setting

ιc,α(x) = α
x− c
‖x− c‖2

+ c

is the (α-)inversion with pole c. The number α is the power of the inversion ιc,α.

Lemma 3.1. Sa0 = ιe3,2(1−a)|S2−{e3}.

Proof. It suffices to note that for x ∈ S2, we have

‖x− e3‖2 = ‖x‖2 − 2(x|e3) + ‖e3‖2 = 2(1− x3) . �
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The above Lemma means that we can deduce many basic properties of the stere-
ographic projection from those of inversions. Accordingly, we will now look at in-
versions more closely. The first technical properties are easy to check using directly
the definitions.

Lemma 3.2. (1) (x− c|ιc,α(x)− c) = α for all x ∈ En − {c}.
(2) ιc,α ◦ ιc,β = α

β
(x− c) + c.

(3) ιc,α ◦ ιc,α = id, in particular, ιc,α is a diffeomorphism.
(4) If α > 0, then fix ιc,α = S(c,

√
α).

Proof. Exercise. �

If r > 0, then ιc,r2 is also called inversion in the sphere S(c, r), which is reasonable
considering Lemma 3.2(4). This is the case we will mainly be interested in.

The following proposition collects a number of important mapping properties
of inversions. A generalized hyperplane or a generalized sphere in En is either a
hyperplane or a sphere. If U and V are open subsets of En or Sn, a mapping
F : U → V is (locally) conformal if it preserves angles. This happens exactly when
at every point in U , the differential DF (x) is a multiple of an orthogonal matrix by
a nonzero real number.

Proposition 3.3. Let c ∈ En and let α ∈ R− {0}. The inversion ιc,α
(1) stabilizes the hyperplanes containing c,
(2) maps the spheres containing c to hyperplanes not containing c and conversely.
(3) maps spheres not containing c to spheres not containing c.
(4) is conformal.

Proof. (1) is clear from the expression of the inversion.
(2) It suffices to consider the case c = 0. The sphere consists of the points that
satisfy the equation ‖x‖2 = 2(x|a) for some a ∈ En − {0}. Thus, ι0,α(x) = α x

2(x|a)
,

and we have (ι0,α|a) = α
2
, which is the equation of a hyperplane.

(3) Again assume c = 0. Consider x1, x2 ∈ S(a, r), points that are not necessarily
distinct, that lie on the same line L . The orthogonal projection of a to L is x1+x2

2
.

The Pythagorean theorem gives the two equations

‖x1 + x2‖2 + ‖x1 + x2 − 2a‖2 = 4‖a‖2

and
‖x1 − x2‖2 + ‖x1 + x2 − 2a‖2 = 4r2 ,

that imply (x1|x2) = ‖a‖2 − r2. Thus, x2 = ι0,‖a‖2−r2(x1). As this holds for all such
pairs of points, we have ι0,‖a‖2−r2(S(a, r)) = S(a, r). Using Lemma 3.2, we have

ι0,α =
α

‖a‖2 − r2
ι0,‖a‖2−r2 ,

which implies

ι0,α(S(a, r)) =
α

‖a‖2 − r2
S(a, r) .

(4) Observe that ιc,α = Tc ◦ ι0,α ◦ T−c. Translations and dilation by α are clearly
conformal mappings so it suffices to prove the claim for the standard inversion ι0,1.
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Note that

Dι0,1(x) =
1

‖x‖4

−x2
1 + x2

2 + x2
3 −2x1x2 −2x1x3

−2x1x2 x2
1 − x2

2 + x2
3 −2x2x3

−2x1x3 −2x2x3 x2
1 + x2

2 − x2
3


=

1

‖x‖2
I3 −

2

‖x‖4

 x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3


=

1

‖x‖2
I3 −

2

‖x‖4
xxT ,

where xT is the transpose of x as a matrix. Observe that Dι0,1(x)T = Dι0,1(x) and
that

Dι0,1(x)2 =
1

‖x‖2
I3 −

4

‖x‖6
xxT +

4

‖x‖8
xxTxxT =

1

‖x‖2
I3 .

Thus, Dι0,1(x) is a multiple of an orthogonal matrix. �

Corollary 3.4. The stereographic projection is a conformal map. It maps circles on
the sphere not passing through the north pole to circles. It maps the (complements
of the north pole in) circles passing through the north pole to lines. �

3.4. Mercator’s projection. The latitude-longitude map of the sphere to a square
in the plane is a standard method to determine the location of a point on the
surface of the Earth. However, it is not well suited for navigation because it is not
conformal. This can be seen as follows: Let P = (0, sin θ, cos θ) be a point in the
Eastern hemisphere. The tangent directions at P , that is, the unit sphere of P⊥
consists of the vectors

v(t) = (sin t,− cos t sin θ, cos t cos θ) ,

where t is the angle with the direction from the North, measured in the clockwise
direction. Let L be the longitude-latitude map. The derivative vector of the path
L ◦ jP,v(t) at P is

DL ◦ jP,v(t)(0) = (− sec θ sin t, cos t)

Thus, the angle that DL ◦ jP,v(t)(0) makes with the direction (0, 1) that points to
the North on the map can be computed to be

arccos(
cos t√

sec2 θ sin2 t+ sin2 θ
) .

The distortion of the angle increases rapidly as we approach the north pole.
One way to solve this problem is to stretch the north-south direction by a factor

that increases close to the poles in order to define a conformal map. We will follow
a different route to achieve the same goal. Let us identify the plane E2 with the
complex plane in the usual way, identifying the point (x, y) with the complex number
z = x + iy. The complex logarithm function is defined as the local inverse of the
complex exponential map. More precisely, let log : C− {0} → C,

log(z) = log |z|+ i arg z ,

where
|z| = ‖(x, y)‖

is the module of z and
arg z = arccos(

x

|z|
) ∈]− π, π]

is the argument of z. It is a standard fact of complex analysis, that we take as given,
that log is a conformal map, see [?].
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Figure 4. The blue curve shows the sine of the angle on the sphere
and red curve shows the sine of the corresponding angle in the
longitude-latitude map at longitude 0.5.
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Figure 5. The blue curve shows the sine of the angle on the sphere
and red curve shows the sine of the corresponding angle in the
longitude-latitude map at longitude 1.5.

Lemma 3.5. The complex logarithm is a bijection that is continuous outside the
negative ray ]−∞, 0[. It maps circles centered at the origin to vertical segments and
rays of constant argument to horizontal affine lines. �

The Mercator projection is the map M = −i log ◦S0 : S2 − {±e3} → E2,

M(x) = (φ(x),
1

2
log(x2

1 + x2
2)− log(1− x3))

= (φ(x), log cot θ(x)) .

Proposition 3.6. The Mercator projection is a bijection that is continuous away
from the international date line. It maps parallels to horizontal segments and merid-
ians to vertical affine lines. �
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We saw above that the Mercator projection is obtained from the longitude-latitude
map by stretching in the North-South direction by a factor that grows towards the
poles. The great advantage of using the Mercator projection is that a straight
line on the map intersects the meridians at a constant angle. This is convenient for
navigation purposes because it corresponds to keeping a constant compass direction.
The straight lines in a Mercator map are called loxodromes. A loxodrome segment
is almost never the shortest path between its endpoints, it coincides with a segment
of a great circle only if it is a segment of the Equator.

3.5. Some Riemannian geometry. The (differential geometric) length of a piece-
wise continuously differentiable path τ : I → S2 is

`(τ) =

∫
I

‖τ̇‖ ,

where τ̇(t) is the tangent (derivative) vector of the path for each t ∈ I.

Proposition 3.7. Let A,B ∈ S2, A 6= B. Let j be a spherical segment that connects
A and B. Then `(j) ≤ `(τ) for all piecewise continuously differentiable paths τ .

Proof. Using an isometry of S2, we can assume that A and B are contained in the
0-meridian. Using longitude-latitude coordinates, consider the continuous map proj
defined by proj(φ, θ) = (0, θ) whose image is contained in the 0-meridian. Clearly,
`(j) ≤ `(proj ◦τ) ≤ `(τ). �

In the computation of the length of a path τ , the norm of the tangent vector
τ̇(t) is computed in the tangent plane τ(t)⊥ at τ(t). Using the coordinate maps, we
get

The inner product of the tangent spaces can be used to define the area of a subset
of the sphere. This gives the expressions

AreaA =

∫
L(A)

cos θdθdφ

in the longitude-latitude coordinates and

AreaA =

∫
S0(A)

4 dx1dx2

(1 + ‖x‖2)2

in the coordinates given by the stereographic projection.

Proposition 3.8. The area of S2 is 4π.

3.6. Cylindrical projection. The mapping C : S2 − {±e3} → S1×]− 1, 1[⊂ E3,

C(x) =

(
x1√
x2

1 + x2
2

,
x2√
x2

1 + x2
2

, x3

)
maps the complement of the poles to a cylinder bijectively. As x3 = cos θ, this
projection preserves area. On the other hand, the distortion of angles is even worse
than in the longitude-latitude map.
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4. Triangles in the sphere

Let 0 < α < π. The area of the (spherical) sector Sα = {x ∈ S2 : 0 ≤ φ(x) ≤ α}
and any of its isometric images is easily seen to be α

2π
4π = 2α.

Proposition 4.1 (Girard). The area of a triangle with angles α, β and γ is α +
β + γ − π.
Proof. Let A, B and C be the vertices of the triangle. The antipodal points −A,
−B and −C determine a triangle (−A)(−B)(−C) that is isomorphic with ABC.
The three great circles 〈A,B〉∩S2, 〈B,C〉∩S2 and 〈C,A〉∩S2 determine six sectors
with angles α, α, β, β, γ, γ that cover the sphere. In the complement of the great
circles, the triangles ABC and (−A)(−B)(−C) are both covered by three sectors,
other points are contained in one sector. Thus,
4π = AreaS2 = 2(AreaSα + AreaSβ + AreaSγ)− 4 AreaABC = 4α− 4 AreaABC ,

which gives the claim. �

We know that the sum of the angles of a triangle in E2 is π. (Prove this!) On the
sphere, the situation is different:

Proposition 4.2. The sum of the angles of a triangle in S2 is greater than π.

Girard’s result implies the claim but we give a proof that avoids the use of ar-
guments involving area or integration. In order to do this, we introduce a useful
construction.

Let ABC be a triangle in S2 such that the vertices do not all lie on the same great
circle. Let A∗, B∗, C∗ ∈ S2 be the unique points that satisfy the conditions

(A∗|B) =0 = (A∗|C), (A∗|A) > 0

(B∗|C) =0 = (B∗|A), (B∗|B) > 0(7)
(C∗|A) =0 = (C∗|B), (C∗|C) > 0 ,

that is, for each vertex of the triangle, we pick the intersection point of the line
orhogonal to the plane that contains the other two vertices, on the same side of
the plane as the original vertex. We call A∗, B∗ and C∗ the polar vertices and
(ABC)∗ = A∗B∗C∗ the polar triangle of ABC. Let a∗, b∗ and c∗ be the side lengths
and α∗, β∗ and γ∗ be the angles of (ABC)∗.

Lemma 4.3. The polar vertices are linearly independent and ((ABC)∗)∗ = ABC.

Proposition 4.4. Let ABC be a triangle in S2 such that the vertices do not all lie
on the same great circle. Then

a+ α∗ = b+ β∗ = c+ γ∗ = a∗ + α = b∗ + β = c∗ + γ = π .

Proof. The situation is completely symmetric so it suffices to prove a + α∗ = π.
Let u, v ∈ A⊥ = 〈B∗, C∗〉 be the directions of the edges AB and AC, respectively.
Recall that (u|v) = cosα and (B∗|C∗) = cos a∗.

Now, u ∈ 〈A,B〉 implies that (u|C∗) = 0 and similarly we have (v|B∗) = 0.
Furthermore,

(u|B∗) = (
B − (B|A)A

‖B − (B|A)A‖
|B∗) =

(B|B∗)
‖B − (B|A)A‖

> 0

and similarly (v|C∗) > 0. Thus, we have either the points u, B∗, C∗ and v on
the circle 〈B∗, C∗〉 in this order or in the order B∗, u, v and C∗ with the right
angles between u and B∗ and v and C∗ overlapping in both cases. The claim follows
easily. �
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Lemma 4.5. The perimeter of a spherical triangle is at most 2π. If the perimeter
is 2π, then the vertices are all contained in the same great circle.

Proof. This follows from the inequality (5) and the fact that this inequality is an
equality if and only if γ = π. �

We can now give a second proof of Proposition 4.2: Proposition 4.4 implies that
α+ β + γ + a∗+ b∗+ c∗ = 3π. As a∗+ b∗+ c∗ < 2π by Lemma 4.5, we get the claim
of Proposition 4.2. �

The following converse of Lemma 4.5 holds

Proposition 4.6. Let 0 < a, b, c < π. If a + b > c, b + c > a, c + a > b and
a + b + c < 2π, then there is a triangle in S2 with side lengths a, b and c. All such
triangles are isometric.

Proof. We use the law of cosines in the construction: Note that if such a triangle
exists, then the angle at C satisfies the cosine law. Therefore, we can compute it if
we know that

(8)
∣∣cos c− cos a cos b

sin a sin b

∣∣ < 1 ,

because then cos c−cos a cos b
sin a sin b

is in the range of cos, and we can proceed with the con-
struction. The pair of inequalities c < a+ b < 2π − c implies

cos c > cos(a+ b) = cos a cos b− sin a sin b .

The inequalities b+ c > a and c+ a > b give |a− b| < c, which implies
cos c < cos(a− b) = cos a cos b+ sin a sin b .

These two inequalities give
− sin a sin b < cos c− cos a cos b < sin a sin b ,

which implies the inequality (8). Now we can place the sides of length a and b
starting at C in the correct angle γ. The cosine law implies that the lengths of the
side opposite to C is indeed c.

The triangles are isometric by Proposition 2.14 �
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5. Minkowski space

5.1. Bilinear forms and Minkowski space. Let V and W be real vector spaces.
A map Φ: V ×W → R is a bilinear form, if the maps v 7→ Φ(v, w0) and v 7→ Φ(v0, w)
are linear for all w0 ∈ W and all v0 ∈ V . A bilinear form Φ is nondegenerate if
• Φ(x, y) = 0 for all y ∈ W only if x = 0, and
• Φ(x, y) = 0 for all x ∈ V only if y = 0.
If W = V , then Φ is symmetric if Φ(x, y) = Φ(y, x) for all x, y ∈ V . It is
• positive semidefinite if Φ(x, x) ≥ 0 for all x ∈ V ,
• positive definite if Φ(x, x) > 0 for all x ∈ V − {0},
• negative (semi)definite if −Π is positive (semi)definite, and
• indefinite otherwise.
The quadratic form corresponding to a bilinear form Φ: V × V → R is the function
q : V → R, q(x) = Φ(x, x). A positive definite symmetric bilinear form is often
called an inner product or a scalar product.

If V is a vector space with a symmetric bilinear form Φ, we say that two vectors
u, v ∈ V are orthogonal if Φ(u, v) = 0, and this is denoted as usual by u ⊥ v. The
orthogonal complement of u ∈ V is

u⊥ = {v ∈ V : u ⊥ v}.

Let us consider the indefinite nondegenerate symmetric bilinear form 〈·|·〉 on Rn+1

given by

〈x|y〉 = −x0y0 +
n∑
i=1

xiyi = −x0y0 + (x̄|ȳ) = xTJy,

where J1,n = diag(−1, 1, . . . , 1) and x = (x0, x1, . . . , xn) = (x0, x̄). We call 〈·|·〉 the
Minkowski bilinear form, and the pair

M1,n =
(
Rn+1, 〈·|·〉

)
is the n+ 1-dimensional Minkowski space.

We say that a vector is
• lightlike if 〈x|x〉 = 0,
• timelike if 〈x|x〉 < 0, and
• spacelike if 〈x|x〉 > 0.
The names come from Einstein’s special theory of relativity, which lives in M1,3.
Minkowski space has a number of geometrically significant subsets: The subset of
null-vectors is the light cone

L n = {x ∈M1,n : 〈x|x〉 = 0} .

The variety
H n
− = {x ∈M1,n : 〈x|x〉 = −1}

is a two-sheeted hyperboloid, and its upper sheet is

Hn = {x ∈M1,:〈x|x〉 = −1, v0 > 0}.

The variety
H n

+ = {x ∈M1,n : 〈x|x〉 = 1}
is a one-sheeted hyperboloid.

The following is an important observation on time-like vectors.

Lemma 5.1. If u, v ∈ Hn, then 〈u|v〉 ≤ −1 with equality only if u = v.
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Proof. Using the Cauchy inequality for the Euclidean inner product in Rn for the
first inequality and a simple calculation for the second, we have

〈u|v〉 = −u0v0 +
n∑
i=1

uivi ≤ −u0v0 +

√√√√ n∑
i=1

u2
i

√√√√ n∑
i=1

v2
i

= −u0v0 +
√
u2

0 − 1
√
v2

0 − 1 ≤ −1 .

Cauchy’s inequality is an equality if and only if u and v are parallel, and the final
inequality is an equality if and only if u0 = v0. This implies the claim on equality. �

Proposition 5.2. Let v1, v2 ∈M1,n.
(1) If v1 and v2 are timelike, then 〈v1, v2〉 6= 0.
(2) if v1 lightlike and v2 is timelike, then 〈v1|v2〉 6= 0.

Proof. (1) is a direct consequence of Lemma 5.1. We leave (2) as an exercise. �

Corollary 5.3. The restriction of the Minkowski bilinear form to the orthogonal
complement of a timelike vector is positive definite. �

5.2. The orthogonal group. The orthogonal group of the Minkowski bilinear form
is

O(1, n) = {A ∈ GLn(R) : 〈Ax|Ay〉 = 〈x|y〉 for all x, y ∈M1,n}
= {A ∈ GLn(R) : TAJ1,nA = J1,n} .

Clearly, the linear action of O(1, n) on M1,n preserves the light cone and the two-
sheeted hyperboloid H n.

Let us write an (n + 1) × (n + 1)-matrix A in terms of its column vectors A =
(a0, a1, . . . , an). If A ∈ O(1, n), then a0 = A(x0) for (x0 = 1, 0, . . . , 0) ∈ Hn. Thus
A(x0) ∈ Hn if and only if A00 > 0, and therefore the stabiliser in O(1, n) of the
upper sheet Hn is

O+(1, n) = {A ∈ O(1, n) : AHn = Hn}
= {A ∈ GLn(R) : A00 > 0, 〈Ax|Ay〉 = 〈x|y〉 for all x, y ∈M1,n}
= {A ∈ GLn(R) : A00 > 0, TAJ1,nA = J1,n} ,

which is the identity component of O(1, n).
A basis {v0, v1, . . . , vn} of M1,n is orthonormal if the basis elements are pairwise

orthogonal and if 〈v0|v0〉 = −1 and 〈vi|vi〉 = 1 for all i ∈ {1, 2, . . . , n}. The following
observation is proved in the same way as its Euclidean analog:

Lemma 5.4. An (n + 1) × (n + 1)-matrix A = (a0, a1, . . . , an) is in O(1, n) if and
only if the vectors a0, a1, . . . , an form an orthonormal basis of M1,n. Furthermore,
A ∈ O+(1, n) if and only if A ∈ O(1, n) and a0 ∈ Hn. �

Example 5.5. (1) Let t ∈ R. The matrix

Lt =

cosh t sinh t 0
sinh t cosh t 0

0 0 1

 ∈ SO(1, 2)

stabilises any affine hyperplane

Hc = {x ∈M1,2 : x2 = c} .
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(2) For any θ ∈ R, let R̂θ =

(
cos θ − sin θ
sin θ cos θ

)
∈ O(2), and let

Rθ = diag(1, R̂θ) =

(
1 0

0 R̂(θ)

)
=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ∈ O+(1, 2) .

This mapping is a Euclidean rotation around the vertical axis by the angle θ. The
rotation Rθ stabilizes each affine hyperplane

Er = {x ∈M1,2 : x0 = r} .
Another important mapping that comes by extension from O(2) is given by the
matrix diag(1, 1,−1), which is a reflection in the hyperplane H0 defined above.
(3) For each v ∈ L 2 and c < 0, the affine hyperplane

Pv,t = {x ∈ H2 : 〈v|x〉 = t}
The mapping given by the matrix

Ns =

1 + s2

2
− s2

2
s

s2

2
1− s2

2
s

s −s 1

 ∈ O(1, 2)

maps each horosphere based at (1, 1, 0) ∈ L 2 to itself.
(4) All of the above examples can be generalised to higher dimensions:
• Lt is extended as the identity on the last coordinates to diag(Lt, In−2) ∈ O(1, n).
• Any Euclidean orthogonal matrix A ∈ O(n) gives an isometry diag(1, A) ∈

O(1, n).
• Ns is extended as the identity on the last coordinates to diag(Ns, In−2) ∈ O(1, n).

A modification of the proof of Proposition 1.5 gives the following result.

Proposition 5.6. The identity component of the orthogonal group of Minkowski
space acts transitively on Hn.

Proof. We use the notation of Example 5.5. If x ∈ Hn, then x = (
√
‖x̄‖2 − 1, x̄).

There is some R̂θ ∈ O(n) such thatRθx̄ = ‖x̄‖e1, and thus, Rθ(x) = (
√
‖x̄‖2 − 1, ‖x̄‖e1).

Furthermore,
Larsinh ‖x̄‖e0 = (

√
‖x̄‖2 − 1, ‖x‖e1) .

This implies that Hn is contained in the O+(1, n)-orbit of e0. �

23 12/12/2014



6. Hyperbolic space

The metric space (Hn, d), where

d(x, y) = arcosh(−〈x|y〉) ∈ [0,∞[ ,

is the hyperboloid model of n-dimensional (real) hyperbolic space. The metric d is
the hyperbolic metric.

We still need to show that the hyperbolic metric is a metric. The proof follows
the same idea that was used to treat the angle metric for the sphere Sn.

Let a ∈ Hn, and let u ∈ a⊥ such that 〈u|u〉 = 1. Recall that the restriction of the
Minkowski bilinear form to a⊥ is positive definite by Corollary 5.3. The mapping
ja,u : R→ Hn,

ja,u(t) = a cosh(t) + u sinh(t) ,

is the hyperbolic line through a in direction u. It is easy to check that, indeed, the
image of ja,u is contained in Hn and that for all s, t ∈ R, we have

(9) d(ja,u(t), ja,u(s)) = |s− t| .
As in section 2 for the sphere, if we show that d is a metric, then ja,u is a geodesic
line. We define hyperbolic segments and rays as the appropriate restrictions of the
geodesic line.

Lemma 6.1. For any a ∈ Hn and any u ∈ a⊥, ja,u(R) = Hn ∩ 〈a, u〉. If a 2-plane
T intersects Hn, then T ∩Hn is the image of a hyperbolic line.

Proof. Clearly, the image of ja,u is contained in the 2-plane 〈a, u〉.
On the other hand, if a plane T = 〈u, v〉 intersects Hn at two distinct points p

and q, the geodesic line jp,u with

u =
q + 〈p|q〉p
|q + 〈p|q〉p|

passes through p and q. If we fix p ∈ Hn, there are exactly two unit tangent vectors
v and −v in TpHn∩T , and the hyperbolic lines jp,v and jp,−v defined by these vectors
have the same image. Therefore, all points in Hn ∩ T are contained in jp,v(R) for
any p ∈ Hn. �

Lemma 6.2. For any a ∈ Hn, the tangent space TaHn of Hn at a coincides with
a⊥.

Proof. The orthogonal complement a⊥ has dimension n because the Minkowski bi-
linear form is nondegenerate. Each vector in a⊥ is the tangent vector at a of a
smooth curve contained in Hn. �

We define the angle ](u, v) of any two vectors u, v ∈ TaHn = a⊥−{0}, using the
inner product induced from the Minkowski bilinear form:

](u, v) = arccos(〈u|v〉)
The inner product induces a norm

|u| =
√
〈u|u〉

on a⊥ for all a ∈ Hn.

Proposition 6.3 (The first hyperbolic law of cosines).

cosh c = cosh a cosh b− sinh a sinh b cos γ .
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Proof. Let u and v be the initial tangent vectors of the hyperbolic segments from C
to A and from C to B. As u and v are orthogonal to C, we have as in the spherical
case,

cosh c = −〈A|B〉 = −〈cosh(b)C + sinh(b)u| cosh(a)C + sinh(a)v〉
= cosh(a) cosh(b)− sinh(b) sinh(a)〈u|v〉 . �

Theorem 6.4. Hyperbolic space is a uniquely geodesic metric space. Hyperbolic
lines, rays and segments are geodesic lines, rays and segments.

Proof. The fact that the hyperbolic metric is indeed a metric is proved in the same
way as Proposition 2.5 in the spherical case. Now we consider the increasing function

γ 7→ cosh a cosh b− sinh a sinh b cos γ,

which attains its maximum value cosh(a+ b) when γ = π. The claim on hyperbolic
lines, rays and segments follows from equation (9).

If p and q are distinct points in Hn, there is a unique 2-plane through them. Thus,
there is exactly one hyperbolic line through these points. As in the spherical case,
we see that the triangle inequality in hyperbolic geometry is an equality if and only
if the third point z lies in the hyperbolic segment between x and y. �

The law of cosines implies that a triangle in En, Sn or Hn is uniquely deter-
mined up to an isometry of the space, if the lengths of the three sides are known.
In Euclidean space, the three angles of a triangle do not determine the triangle
uniquely. In Sn and Hn the angles determine a triangle uniquely.

For Hn, this is the content of

Proposition 6.5 (The second hyperbolic law of cosines).

cosh c =
cosα cos β + cos γ

sinα sin β
.

Proof. This formula follows from the first law of cosines by a lengthy manipulation
analogous to the proof of Proposition 2.7. �

Proposition 6.6 (The hyperbolic law of sines).
sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
.

Proof. The first law of cosines implies that(
sinh c

sin γ

)2

=
sinh2 a sinh2 b sinh2 c

2 cosh a cosh b cosh c− cosh2 a− cosh2 b− cosh2 c+ 1
.

The claim follows because this expression is symmetric in a, b and c. �

6.1. Isometries.

Proposition 6.7. O+(1, n) acts transitively by isometries on Hn. In particular,
Isom(Hn) acts transitively on Hn.

Proof. Let g ∈ O+(1, n), and let x, y ∈ Hn. By the definition of the hyperbolic
metric and of O+(1, n), we have

d(g(x), g(y)) = arcosh(−〈g(x)|g(y)〉 = arcosh(−〈x|y〉 = d(x, y) .

Transitivity follows from the fact that any orthonormal basis of M1,n whose first
vector is in Hn can be mapped to any other similar one by a transformation in
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O+(1, n): If p ∈ Hn, and the vectors v1, v2, . . . , vn form an orthogonal basis of
p⊥ = TpHn, then the matrix A = (p, v1, . . . , vn) ∈ O(1, n) gives an isometry which
maps (1, 0, . . . , 0) to p. �

Example 6.8. (1) Let t ∈ R. The matrix

Lt =

cosh t sinh t 0
sinh t cosh t 0

0 0 1

 ∈ O+(1, 2)

acts on H2 as an isometry that preserves the intersection of H2 with any 2-plane
{x ∈M1,2 : x2 = c}, in particular, it stabilises the geodesic line

` = {x ∈ H3 : x2 = 0} .
For any point p = (a, b, 0) ∈ `, we have

d(Lt(p), p) = arcosh(−〈Ltp|p〉) = arcosh((−a2 + b2) cosh(t)) = |t| .

(2) For any θ ∈ R, let R̂θ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2), and let

Rθ = diag(1, R̂θ) =

(
1 0

0 R̂(θ)

)
=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ∈ O+(1, 2) .

This mapping rotates the hyperboloid around the vertical axis by the angle θ.
(3) For each v ∈ L 2 and c < 0, the set

{x ∈ H2 : 〈v|x〉 = c}
is called a horosphere based at v. The mapping given by the matrix

Ns =

1 + s2

2
− s2

2
s

s2

2
1− s2

2
s

s −s 1

 ∈ O(1, 2)

maps each horosphere based at (1, 1, 0) ∈ L 2 to itself.
(4) Composing some number of the above mappings we obtain further examples of
isometries of the hyperbolic plane. For example, if p ∈ H2, then there is some θ ∈ R
such that Rθ(p) ∈ `. Now, L−1

d(o,p)(Rθ(p)) = L−d(o,p)(Rθ(p)) = (1, 0, 0), and for any
φ ∈ R, the mapping S = R−θ ◦ Ld(o,p) ◦ Rφ ◦ L−1

d(o,p) ◦ Rθ is an isometry that fixes p
and maps each sphere centered at p to itself. The mapping S is conjugate to Rφ in
Isom(Hn).

The isometries introduced above are classified according to the conic sections
they correspond to. The mapping Lt and any of its conjugates in Isom(Hn) is
called hyperbolic because Lt maps each affine plane parallel to the (x0, x1)-plane
in M1,2 to itself, and these planes intersect the lightcone in hyperbola, which is
degenerate for the (x0, x1)-plane itself.

The mapping R(θ) and any of its conjugates is called elliptic because it pre-
serves all horizontal hyperplanes in M1,2 and their intersections with L 2, which
are circles centered at (1, 0, 0).

The mapping Ns and any of its conjugates is called parabolic because it pre-
serves all affine hyperplanes {x ∈ M1,2 : 〈v|x〉 = c}, which intersect L 2 in a
parabola when c < 0.
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As in the Euclidean and spherical geometries, we wil now study a fundamental
class of isometries, reflections in a hyperplane. If T is an (m+ 1)-dimensional linear
subspace of Rn+1 that intersects Hn, then T ∩ Hn is an m-dimensional hyperbolic
subspace of Hn. If m = n − 1, then T is a hyperplane. A modification of the proof
of Proposition 1.5 gives

Proposition 6.9. Any two hyperbolic subspaces of Hn can be mapped to each other
by isometries of Hn. In particular, a k-dimensional hyperbolic subspace of Hn is
isometric to Hk. �

Any hyperplane T in M1,n is of the form T = u⊥ for some u ∈M1,n−{0} because
the Minkowski bilinear form is nondegenerate. Let H = u⊥ ∩ Hn be a hyperbolic
hyperplane. Since H intersects Hn, it contains a vector v for which 〈v|v〉 = −1.
Proposition 5.2 implies that 〈u|u〉 > 0, and after normalising, we may assume that
u is a unit vector. The reflection in H is the map

(10) rH(x) = x− 2〈x|u〉u .
The proofs of the basic properties of reflections are natural modifications of those
in the spherical case. Note that the expression (10) defines a mapping in Minkowski
space, fixing the hyperplane T . The reflection in hyperbolic space is, in fact, the
restriction of a reflection of Minkowski space.

Proposition 6.10. Let H be a hyperbolic hyperplane. Then
(0) rH imaps Hn into itself.
(1) rH ◦ rH is the identity.
(2) rH ∈ O+(1, n).
(3) d(rH(x), y) = d(x, y) for all x ∈ Hn and all y ∈ H.
(4) The fixed point set of rH is H

Proof. (0) Let x ∈ Hn. Using bilinearity and symmetry of the Minkowski form and
the fact that u is a unit vector, we get

〈rH(x)|rH(x)〉 = 〈x− 2〈x|u〉u|x− 2〈x|u〉u〉
= 〈x|x〉 − 2〈x|u〉〈x|u〉 − 2〈x|u〉〈u|x〉+ 4〈x|u〉〈x|u〉〈u|u〉
= 〈x|x〉 = −1 .

Thus, rH(x) ∈H n
− . Furthermore, for any v ∈ H,

rH(v) = v − 2〈v|u〉u = v,

so there are points in Hn which are mapped to Hn. Since rH is continuous and
preserves the Minkowski form, rH(Hn) ⊂ Hn.
(1) This easy computation is left as an exercise.
(2) Clearly, rH is a linear mapping, and it is a bijection by (1). Again, using
bilinearity and symmetry of the Minkowski form and the fact that u is a unit vector,
we get

〈rH(x)|rH(y)〉 = 〈x− 2〈x|u〉u|y − 2〈y|u〉u〉
= 〈x|y〉 − 2〈y|u〉〈x|u〉 − 2〈x|u〉〈u|y〉+ 4〈x|u〉〈y|u〉〈u|u〉
= 〈x|y〉 .

Thus, rH ∈ O(1, n). Claim (0) gives rH ∈ O+(1, n).
(3) For any x ∈ Hn and all y ∈ H, we have

〈rH(x)|y〉 = 〈x− 2〈x|u〉u|y〉 = 〈x|y〉 − 2〈x|u〉〈u|y〉 = 〈x|y〉,
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where the final equality follows from the assumption u ∈ H⊥.
(4) This follows immediately from (3) by taking x = y ∈ H. �

The bisector of two distinct points p and q in Hn is the hyperplane

bis(p, q) = {x ∈ Hn : d(x, p) = d(x, q)} = (p− q)⊥ ∩Hn.

Proposition 6.11. (1) For any p, q ∈ Hn, the bisector bis(p, q) is a hyperbolic
hyperplane.
(2) If rH(x) = y and x /∈ H, then H = bis(x, y).
(3) If p, q ∈ Hn, p 6= q, then rbis(p,q)(p) = q.
(4) Let φ ∈ Isom(Hn), φ 6= id. If a ∈ Hn, φ(a) 6= a, then the fixed points of φ are
contained in bis(a, φ(a)).
(5) Let φ ∈ Isom(Hn), φ 6= id. If H is a hyperplane such that φ|H is the identity,
then φ = rH .

Proof. (1) Lemma 5.1 implies that

〈p− q|p− q〉 = −2− 2〈p|q〉 > 0 .

Thus, (p− q)⊥ contains a vector v for which 〈v|v〉 < 0, and therefore the hyperplane
(p− q)⊥ of M1,n intersects Hn.
(2) follows from Proposition 6.10(3).
(3) Now, 2〈p|p− q〉 = 2(〈p|p〉 − 〈p|q〉) = −2− 2〈p|q〉 = |p− q|2. Thus,

rbis(p,q)(p) = p− 2〈p|p− q〉 p− q
|p− q|2

= q . �

(4) If φ(b) = b, then d(a, b) = d(φ(a), φ(b)) = d(φ(a), b), so that b ∈ bis(a, φ(a)).
(5) is an instructive exercise.

Next, we prove that all isometries of hyperbolic space are restrictions to Hn of
linear automorphisms of M1,n:

Theorem 6.12. Isom(Hn) = O+(1, n).

The idea of the proof is to show that each isometry of Hn is the composition of
reflections in hyperbolic hyperplanes. Again, the proof follows the same ideas as in
the Euclidean and spherical cases.

Proposition 6.13. Let p1, p2, . . . , pk, q1, q2, . . . , qk ∈ Hn be points that satisfy

d(pi, pj) = d(qi, qj)

for all i, j ∈ {1, 2, . . . , k}. Then, there is an isometry φ ∈ Isom(Hn) such that
φ(pi) = qi for all i ∈ {1, 2, . . . , k}. Furthermore, the isometry φ is the composition
of at most k reflections in hyperplanes.

Proof. The proof is formally exactly the same as that of Proposition 1.9. �

Note that Proposition 1.9 implies that if T and T ′ are two triangles in Hn with
equal angles or equal sides, then there is an isometry φ of Hn such that φ(T ) = T ′.

Proof of Theorem 6.12. Let {a0, a1, . . . , an} be a set of points in Hn which is not
contained in any proper hyperbolic subspace. This is achieved by choosing them so
that they generate M1,n as a vector space. Proposition 6.13 implies that there is an
isometry φ0 ∈ O+(1, n) such that φ0(φ(a1)) = ai for all 1 ≤ i ≤ m + 1. Since the
set of fixed points of φ0 ◦φ contains the points a0, a1, . . . , an+1, the fixed point set of
φ0 is not contained in a proper hyperbolic subspace. Proposition 6.11 implies that
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φ0 ◦ φ is the identity map. Thus, φ = φ−1
0 . In particular, φ ∈ O+(1, n), which is all

we needed to show. �

Corollary 6.14. Any isometry of Hn can be represented as the composition of at
most n+ 1 reflections.

Proposition 6.15. The stabiliser of any point x ∈ Hn is isomorphic to O(n).

Proof. Again, we follow the proof of the spherical case. The details are left as an
exercise. �
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7. Models of hyperbolic space

In this section we consider a number of other models for hyperbolic space, that
is, metric spaces (X, dX) for which there is an isometry h : (X, dX) → (Hn, d).
Hyperbolic space is the class of all metric spaces isometric with the hyperboloid
model (Hn, d), and we can use any model that is best suited for the geometric
problem at hand. After this section we will often talk about the “upper half plane
model of Hn” etc.

7.1. Klein’s model. Each line in M1,n through the origin which intersects Hn,
intersects it in exactly one point, and it also intersects the embedded copy {1}×Bn
in M1,n of the Euclidean n-dimensional unit ball Bn(0, 1) in exactly one point. This
correspondence determines a bijection K : B(0, 1) → Hn, which has the explicit
expression

K(x) =
(1, x)√
1− ‖x‖2

.

The map K becomes an isometry when we define a metric on B(0, 1) by setting

dK(x, y) = d(K(x), K(y)) = arcosh
1− (x|y)√

1− ‖x‖2
√

1− ‖y‖2
.

The metric space (B(0, 1), dK) is the Klein model of n-dimensional hyperbolic space.

Proposition 7.1. As sets, the geodesic lines of the Klein model are Euclidean seg-
ments connecting two points in the Euclidean unit sphere.

Proof. A geodesic line in Hn is the intersection of Hn with a 2-plane in M1,n. The
intersection of this plane with Bn(0, 1)×{1} is the preimage under K of the geodesic
line. �

The above observation makes it easy to show that the parallel axiom does not
hold in Hn.

7.2. Poincaré’s ball model. Each affine line that passes through the point (−1, 0) ∈
R × Rn = M1,n which intersects Hn, intersects it in exactly one point, and it also
intersects the n-dimensional ball {0} × Bn(0, 1) embedded in M1,n in exactly one
point. This correspondence determines a bijection P : B(0, 1)→ Hn,

P (x) =
(1 + ‖x‖2

1− ‖x‖2
,

2x

1− ‖x‖2

)
.

This expression is found by computing for any x ∈ B(0, 1) that the point yt =
(0, x) + t(1, x) on the line through the points (0, x) and (−1, 0) of R×Rn = M1,n is
in Hn if and only if t = 1+‖x‖2

1−‖x‖2 .
The map P becomes an isometry when we define a metric on B(0, 1) by setting

dP (x, y) = d(P (x), P (y)) = arcosh
(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
.

The metric space (B(0, 1), dP ) is the Poincaré model of n-dimensional hyperbolic
space.

Proposition 7.2. (1) The mapping P is conformal.
(2) As sets, the geodesic lines of the Poincaré model are the intersections of the
Euclidean unit ball with Euclidean circles which are orthogonal to the unit sphere.
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Proof. (1) A computation shows that for all tangent vectors u, v in TxB(0, 1), we
have

〈DP (x)u|DP (x)v〉 =
4(u|v)

(1− ‖x‖2)2
.

(2) The map h = K−1 ◦ P is an isometry between the Poincaré and Klein models.
A computation shows that

h(x) =
2x

1 + ‖x‖2
.

(This can be done by observing that h is a radial map and then solving the equation
(1, y)√
1− y2

=
(1 + x2

1− x2
,

2x

1− x2

)
with 0 ≤ x, y < 1.) On the other hand, the inversion ι(−1,0),2 in the sphere centered
at (−1, 0) of radius

√
2 has the expression

ι(−1,0),2(x) =
(1− ‖x‖2

1 + ‖x‖2
,

2x

1 + ‖x‖2

)
,

so that if pr : En+1 → En is the Euclidean orthogonal projection, we have
h = pr ◦ι(−1,0),2 .

Note that {0} × S(0, 1) is contained in the fixed sphere of ι(−1,0),2. The inversion
ι(−1,0),2 maps any circle orthogonal to {0} × S(0, 1) to a circle on the unit sphere
in En+1 orthogonal to {0} × S(0, 1). These circles are the intersections of the unit
sphere with 2-planes parallel to the x0-axis, and thus, pr maps them to the geodesic
lines of the Klein model. As h is an isometry, the result follows. �

Recall that the restriction to {0}×B(0, 1) of the mapping ι(−1,0),2 in the proof of
the above result is (the inverse) of the stereographic projection.

7.3. The upper halfspace model. Let
Un = {x ∈ Rn : xn > 0}

be the n-dimensional upper halfspace. Let ι(0,−1),2 be the inversion in the sphere of
center (0,−1) ∈ Rn−1 × R = En of radius

√
2. Now, the map

F = ι(−1,0),2|B(0,1) : B(0, 1)→ Un

is a bijection, which becomes an isometry if we use the metric

(11) dU(x, y) = dP (F−1(x), F−1(y)) = arcosh
(
1 +
‖x− y‖2

2xnyn

)
in Un. The metric space (Un, dU) is the upper halfspace model of n-dimensional
hyperbolic space.

Proposition 7.3. As sets, the geodesic lines of the upper halfspace model are the
intersections of Un with Euclidean circles and lines which are orthogonal to En−1 ×
{0}.

Proof. The inversion used in the definition of the upper halfspace model maps lines
and circles to lines or circles and preserves angles. �

In practical applications, it is good to remember that a circle is perpendicular to
E× {0} ⊂ E2 if and only if its center is in E× {0}.
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8. Some geometry and techniques

In this section, we investigate a number of geometric properties of hyperbolic
space using the various models according to the needs of the situation.

8.1. Triangles. The mappings used to define the Poincaré model and the upper
haplspace model are conformal is very useful. In particular, the angle between two
tangent vectors is in these models is the same as the Euclidean angle. This allows us
to prove the following facts on triangles in hyperbolic space. We say that a triangle
is degenerate if it is contained in a geodesic segment.

Proposition 8.1. (1) The sum of the angles of a nondegenerate triangle in hyper-
bolic space is strictly less than π.
(2) For any 0 < a, b, ci for which a + b > c, b + c > a and c + a > b, there is a
triangle with side lengths a, b and c. Any two such triangles are isometric.
(3) For any 0 < α, β, γ < π for which α+ β + γ < π, there is a triangle with angles
α, β and γ. Any two such triangles are isometric.

Proof. Any three points in the hyperboloid model Hn are contained in the intersec-
tion of Hn with a 3-dimensional linear subspace of M1,n, which is an isometrically
embedded copy of the hyperbolic plane. Furthermore, the geodesic arc between any
two of these points in is contained in the same 2-plane. Thus, any triangle is always
contained in an isometrically embedded copy of H2 in Hn, so in the proof below, it
suffices to consider the hyperbolic plane. We may assume that one of the vertices A
is the origin in the Poincaré disk model. Thus, two sides of the triangle are contained
in two radii of the ball and the third one is contained in a circle which is orthogonal
to the boundary of B(0, 1).
(1) Consider the Euclidean triangle with the same vertices as T . The angles β and
γ are strictly smaller than the corresponding angles in the Euclidean triangle. This
implies the result as the angles of an Euclidean triangle sum to π.
(2) The proof is analogous with that of Proposition 4.6 without the upper bound on
the lengths. We use the hyperbolic law of cosines in the construction. If a triangle
with the asserted properties exists, then the angle at C satisfies the cosine law.
Therefore, we can compute what this angle needs to be if we know that

(12)
∣∣cosh a cosh b− cosh c

sinh a sinh b

∣∣ < 1 .

The inequality c < a+ b implies

cosh c < cos(a+ b) = cosh a cosh b+ sinh a sinh b ,

which gives

−1 <
cosh a cosh b− cosh c

sinh a sinh b
.

The inequalities b+ c > a and c+ a > b give |a− b| < c, which implies

cosh c > cosh(a− b) = cosh a cosh b+ sinh a sinh b ,

and we get
cosh a cosh b− cosh c

sinh a sinh b
< 1 .

Now we can place the sides of length a and b starting at C in the correct angle γ.
The cosine law implies that the length of the side opposite to C is indeed c.

The triangles are isometric by Proposition 2.14
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(3) Sketch: Fix the side containing A and B to be contained in the positive real
line. Then consider the family of circles Cs, s ∈ [0, 1[ that are orthogonal to the
Euclidean unit circle and form an angle β with the segment [0, 1[ at the point of
intersection s. When s is small, the side from B to C is very close (in the underlying
Euclidean space) to the euclidean segment connecting B and C. When s increases,
there is a unique parameter 0 < t < 1 for which the circle Ct is tangent to the ray
that forms an angle α with the positive real line. Continuity implies that all angles
0 < γ < π − α− β are realised for some parameter in ]0, t[. �

In the proof of the above result we made the following observation which is im-
portant in itself:

If the sides of a triangle in hyperbolic space are all short, then the angle sum
is almost π.

A related observation that uses the hyperbolic law of cosines, equality of angles
and the second order Taylor polynomials of the hyperbolic functions is

If the sides of a triangle in hyperbolic space are all short, then the sides satisfy
the Euclidean law of cosines up to a small error.

8.2. Geodesic lines and isometries. We already know that the geodesic lines of
the upper halfspace model are, as sets, the intersections with Hn with Euclidean
circles and lines that are orthogonal to En−1 = E× {0}. The following easy lemma
records the expressions of the geodesics as mappings:

Lemma 8.2. Let x ∈ Rn−1 and y > 0. The mapping γ : R→ Hn,

γ(t) = (x, yet)

is a geodesic line in the upper halfspace model. For any isometry g ∈ IsomHn, the
mapping g ◦ γ is a geodesic line. �

In the upper halfspace model, it is often convenient to move a geodesic line by an
isometry such that the endpoints of the geodesic in the model are 0 and ∞. The
following results on isometries allow to do that and a bit more.

Lemma 8.3. Let a ∈ En−1 × {0}, and let r > 0.

(1) The inversion in the sphere Sn−1(a, r) preserves the upper halfspace and its re-
striction to the upper halfspace model is an isometry.

(2) The Euclidean reflection in a hyperplane orthogonal to En−1×{0} preserves the
upper halfplane and its restriction to the upper halfspace model is an isometry.

Proof. Let us prove (1): The first claim is clear. To prove the second, it is enough
to show that the expression ‖x−y‖

2

xnyn
is invariant under the inversion. Now if ι is the

inversion, we have

ι(x)− ι(y)

r2
=

x− a
‖x− a‖2

− y − a
‖y − a‖2

=
(x− a)‖y − a‖2 − (y − a)‖x− a‖2

‖x− a‖2‖y − a‖2
,
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which gives

‖f(x)− f(y)‖2

f(x)nf(y)n
=

‖x− a‖2‖y − a‖4 − 2(x− a|y − a)‖x− a‖2‖y − a‖2 + ‖x− a‖4‖y − a‖2

‖x− a‖4‖y − a‖4

xnyn
‖x− a‖2‖y − a‖2

=

‖x− y‖2

xnyn
.

The proof of (2) is an exercise. �

Proposition 8.4. The maps

• Tb(x) = x+ b for any b ∈ Rn−1 = Rn × {0} ⊂ Rn+1, (horizontal translations)
• ι(x) = x/‖x‖2, (inversion in the Euclidean unit sphere)
• Lλ(x) = λx for any λ > 0 (dilation fixing 0), and
• Q(x̄, xn) = (Q0(x̄), xn) for any Q0 ∈ O(n− 1)

are isometries of the upper halfspace model.

Proof. Exercise, compute directly or use Proposition 8.3. �

Corollary 8.5. The subgroup of Isom(Hn) generated by dilations fixing 0 and hor-
izontal translations acts transitively on the upper half plane model of Hn.

Proof. If x is in the upper half plane,

T−(x1,x2,...xn−1,0)(x) = (0, . . . , xn) = Lxn(0, . . . , 0, 1) .

Thus,

x = T(x1,x2,...xn−1,0) ◦ Lxn(0, . . . , 0, 1) . �

Proposition 8.6. Let x1, x2, x3 and y1, y2, y3 be two triples of distinct points in
Rn−1 ∪ {∞}. There is an isometry of the upper halfspace model of Hn which is the
restriction of a continuous map g : Rn ∪ {∞} → Rn ∪ {∞} such that g(xi) = yi for
all i ∈ {1, 2, 3}.

Proof. The mappings given in Proposition 8.4 are clearly continuous mappings of
the one point compactification of Rn to itself.

It suffices to show that we can use a combination of these isometries to map
x1, x2, x3 to ∞, 0, (1, 0, . . . , 0). The claim then follows by composing such a map
with the inverse of another one. If all points x1, x2, x3 are finite, map x1 by a
translation T−x1 to 0 and then by the inversion ι to ∞. Rename ι ◦ T−x1(x2) and
ι ◦ T−x1(x3) to x2 and x3. Map x2 to 0 by a translation. This map keeps ∞ fixed.
Map x3 (again renamed) to the unit sphere by a dilation and then to (1, 0, . . . , 0)
by the extension of an orthogonal map of En−1. These two maps fix ∞ and 0. �

Corollary 8.7. Let x1, x2, x3 and y1, y2, y3 be two triples of distinct points in Sn−1∪
{∞}. There is an isometry of the ball model of Hn which is the restriction of a
continuous map of the closed unit ball of En+1 to itself such that g(xi) = yi for all
i ∈ {1, 2, 3}. �

34 12/12/2014



8.3. Balls. In this section, we observe that hyperbolic balls in the upper halfspace
model and in the Poincaré ball model are balls in the Euclidean metric.

Proposition 8.8. Balls in the upper halfspace model and in the Poincaré ball model
are Euclidean balls in the model space.

Proof. By symmetry, balls centered at the origin of the ball model are Euclidean
balls. The inversion that maps the ball model to the upper halfspace model is
an isometry, and on the other hand it preserves generalized spheres. Thus, the
images of the balls centered at the origin are hyperbolic and Euclidean balls. The
hyperbolic center of these balls can be mapped to any other point in Hn by one
of the isometries of Proposition 8.4. These mappings preserve generalized spheres,
which implies that all balls in the upper halfspace model are Euclidean balls. The
rest of the claim follows by one more application of the inversion that maps the ball
model to the upper halfspace model. �

Note that the Euclidean radii and centers of the balls hardly ever coincide
with the hyperbolic ones.
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9. Riemannian metrics, area and volume

The restriction of the Minkowski bilinear form 〈·|·〉 to the tangent space TpHn = p⊥

of any point in the hyperboloid model is positive definite, and it defines a Riemannian
metric on the hyperboloid.

The Riemannian length of a piecewise smooth path γ : [a, b]→ Hn is

`(γ) =

∫ b

a

√
〈γ̇(t)|γ̇(t)〉 dt .

The length metric of the Riemannian metric of Hn is

dRiem(x, y) = inf `(γ),

where the infimum is taken over all piecewise smooth paths that connect x to y.
By definition of the Riemannian metric as the restriction of the Minkowski bilinear

form to each tangent space, the group O(1, n) acts by Riemannian isometries on the
hyperboloid. Thus, it is not surprising that the following result holds:

Proposition 9.1. The length metric of the Riemannian metric of hyperbolic space
is the hyperbolic metric.

Proposition 9.1 allows us to use the Riemannian structure of hyperbolic space in
any of the models introduced above. The expressions in the Poincaré and upper
halfspace models are particularly useful.

The Riemannian structure defines a natural volume form and a volume measure
on hyperbolic space: If V is for example an open subset of n-dimensional hyperbolic
space, and λn is the n-dimensional Lebesgue measure, the volume of V is

Vol(V ) =

∫
V

2n dλn(x)

(1− ‖x‖2)n

in the Poincaré ball model and

Vol(V ) =

∫
V

dλn(x)

xnn

in the upper halfspace model.

Proposition 9.2. The volume of a ball in hyperbolic space is

vol(B(x, r)) = Vol(Sn−1)

∫ r

0

sinhn−1 t dt.

In the hyperbolic plane, we have

Vol(B2(0, r)) = 4π sinh2 r

2
.

Proof. As the isometry group acts transitively, the volume of each ball of a fixed
radius is the same. Thus, it suffices to consider one ball that has a convenient center.
The Euclidean radius of a ball of hyperbolic radius r centered at 0 in the Poincaré
model is obtained by solving for R in the equation

r = d(0, (R, 0)) =

∫ R

0

2s

1− s2
= log

1 +R

1−R
.

This shows that the Euclidean radius of a hyperbolic ball centered at the origin of
the Poincaré model is tanh r

2
. In order to compute the volume of the ball of radius

r, recall that the Lebesgue measure is given in the spherical coordinates (x↔ (r, u))
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by dλn(x) = rn−1dVolSn−1(u), and thus, using a change of variables s↔ tanh t
2
, we

get

Vol(B(x, r)) = Vol(B(0, r)) = Vol(Sn−1)

∫ tanh r
2

0

2nsn−1

(1 + s2)n
ds

= 2n−1 Vol(Sn−1)

∫ r

0

sinhn−1 t

2
coshn−1 t

2
dt

= Vol(Sn−1)

∫ r

0

sinhn−1 t dt. �

It is clear from the expression of the volume, that for all x ∈ Hn, we have

Vol(Bn(x, r)) ∼ Vol(Sn)

2n−1
e(n−1)r ,

as r →∞. Thus, the volume of balls in hyperbolic space grows exponentially with
the radius, much faster than in Euclidean space.

In the proof of the previous result, we obtained the following useful observation

Lemma 9.3. The Euclidean radius of a hyperbolic ball centered at the origin of the
Poincaré model is tanh r

2
. �

Proposition 9.4. The area of a triangle is π − (α + β + γ).

B

β

α

β

α

A

Figure 6.

Proof. Any triangle T can be described as the difference of two "triangles with one
vertex at infinity" by which we mean subsets of the hyperbolic plane as in Figure 6
and their isometric images. By the additivity of area and angles in the hyperbolic
plane, we may restrict to this special case. Using Proposition 8.6, we can assume
that that A and B are on the Euclidean unit circle and that the vertex C has been
moved to infinity. Now, the area of T is∫

T

dλ2(x)

x2
2

=

∫ cosβ

− cos(α)

∫ ∞
√

1−x21

dx1dx2

x2
2

=

∫ cosβ

cos(π−α)

dx1√
1− x2

1

= π − α− β . �

Proposition 9.4 gives a new proof of Proposition 8.1(1).
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