Differential geometry 2023

Exercises 9

Let V be a vector space. Let k> 1. Let A € TO® (V) and let ¢ € Sj. The tensor o - A
is defined by setting

(O’ : A)(Ul, e ,Uk) = A(Ug(l), e ,?}U(k))
for all vq,...,v, € V.

If 0 - A= Aforall o0 € Sk, then A is symmetric.. The space of symmetric (0,k)-tensors
on V is
V) ={aeTM(V):Voe S, 0-a=a}.

If o- A = sign(o)A for all ¢ € Sy, then A is alternating. The space of alternating
(0, k)-tensors of V is

ANV = {a € T(O’k)(V) Vo €Sy, 0-a= sign(a)a} )

1. Let det: (R")" — R,

det(vy,ve,...,0,) = Zg sign(a)v;(l)vg@ S U s
[fSTeln)
where v; = >7) vfek eR"forall1 <j<n.
(1) Prove that det is an alternating (0, n)-tensor.
(2) Prove that

det(vi,va, ..., v,) = > sign(a)vf(l)vgm EARE
oESH

Solution. (1) Let 7 € S, and vy,...,v, € R". With the change of index o' = o7
(bijective from S, to S,), we compute

(7 - det)(v1,...,v,) = det(vrqay, ..., v:(n)) = > sign(o)vi(T(l)) U (n))
g€Sy,

= > Sign(a’T_l)w;,(l) C Ugi(n)
o’'€Sn
= sign(77 1) det(vy, ..., v,) = sign(7) det(vy, ..., v,).

1) o I(

(2) Noticing the rearrangement of product Uiu) C Uy = vy RRE 4 ") and using this

n)
time the change of index ¢/ = 0!, we compute

n
oc€ESh o’'eSy

=Y Sign(a’)vf/(l) p? ™),

o'€Sp

2. Let V be a vector space. Let A € T®*) (V). Prove that
(1) A is symmetric if and only if 7- A = A for all transpositions 7 € Sy, and

(2) A is alternating if and only if 7- A = —A for all transpositions 7 € Sk.



Solution. (1) The direct implication is trivial. For the converse, recall that the trans-
positions generate the whole symmetric group Sy and notice that we have the formula
(¢/-0)-A=0"-(c-A) (in more elaborate words, the application (o0, A) — o - A is an
action of the group Sy on the set of tensors T(®*(V)). Let ¢ € S,, and decompose it into
a product of transpositions ¢ = 71 ---7,. Then applying recursively the latter formula
and the invariance 7 - A = A for transpositions, we obtain

o-A=(r- 1) A= (11 Tpo1)  (Tw-A) = (11 Ty1) A= ... = A

(2) The proof is similar, using in addition the fact that sign : Sy — {0,1} is a group
morphism.

Let V be a finite-dimensional vector space. The mapping Sym: T©*) (V') — TOF (V)

1
SymA:g ZO‘-A

to€ESk

is symmetrization. The mapping Alt: TOF) (V) — TOR (),

Alt A = i‘ > sign(o)o- A
k! €S}

is alternation.

3. (1) Prove that Alt and Sym are linear mappings
(2) Let o € TO*) (V). Prove that Sym A = A if and only if A € S¥(V).
(3) Let A € TO®(V). Prove that Alt A = A if and only if A € A*(V).

Solution. (1) The map Sym (resp. Alt) is a linear combinations of mappings of the form
A oA (with 0 € Sg). The latter mappings are all linear, hence so is Sym (resp. Alt).

(2) First notice that the image of Sym is included in S*(V) (in fact, it is equal to S*(V)
as shown by the converse) since, for all 7 € Sy, using the change of index ¢’ = 70 we have

1 /
T-SymA:—Z(TU)~A:H Y o -A=SymA.

* oESk o’ €Sy

In particular, if Sym A = A, then A is symmetric. For the converse, we assume that A is
symmetric and compute

1 | S|
SymA:H ZJ-A:—A:A.

|
€Sy, k

(3) Similarly, the image of the mapping Alt is included in (in fact equal to) A*(V) giving
us the first implication, and using the formula sign(c)?* = 1 we obtain the converse.

4. Prove that the tensor e’ ® e? ® € € T®3)(R?) is not the sum of a symmetric and an
alternating tensor.



Solution. By definition, we have the formula e! ® e ® €3(z, y, 2) = 11223 for all vectors
x,y,2 € R3. Denote this tensor product by u. By contradiction, assume that we can
write u = A+ B where A € S¥(V) and B € A¥(V). Using Exercise 3, we obtain

Sym(u) = Sym(A)+Sym(B) = A+Sym(B) and Alt(u) = Alt(A)+Alt(B) = Alt(A)+ B.

Using the formula [{o € S3 : sign(o) = 1}| = | Kersign| = 2 = 3 and hence |{o € S5 :
sign(o) = —1}| = 3 too, we obtain the equalities Sym(B) = 0 and Alt(A) = 0. All in all,

we can explicitly compute A and B as follows: for all vectors z,y, z € R?,

1
A($7 Y, Z) = Sym(u) = ? Z To1)Yo(2)%a(3)s

oc€Ss3

1 :
and B(z,y,z) = Alt(u) = 3l > Sign(0)Zo(1)Yo(2) 20 (3)-

' 0ES3

Thus

u(x,y, 2) (21Y223 + To2ysz1 + T3y122).

E]l
This is clearly not equal to u = €' ® €? ® €3(x,y, ) (for instance, they differ at the point
z=1(0,1,0), y =(0,0,1) and z = (1,0,0)).

Let M be a smooth manifold. The space of smooth (r,s)-tensor fields on M is denoted
by T(T™=)M).

5. Let M and N be smooth manifolds and let F': M — N be a smooth mapping. Let
AeT(TOYN) and B € T(T®“™N). Prove that

(1) if kK = m, then F*(A+ B) = F*(A) + F*(B)
(2) F*(A® B) = F*(A) ® F*(B).

Solution. (1) Let p € M and let vy, ..., v, € T,M. Then

F*(A+ B)(v1,...,v) = (A+ B)(dFyv, ..., dEyvy)
= A(dF,v1, ..., dEy) + B(dF,vy, ..., dF,uy)
=" A(vy,...,up) + F*B(vy, ..., v)
= (F"(A)+ F*(B))(v1,...,vx) .

(2) Let p € M and let vy, ..., Vgym € T,M. Then

F*(A® B)(v1,...,Uktm) = (A® B)(dF,v1, . ..,dF,vkim)
= A(dF,vy, ..., dEy) B(dFyvgsq, . ., dFyUk4m)
= F*"A(vy,...,v) F*B(Uks1, -+, Uktm)
= (F"(A)® F*(B)))(v1, .., Vktm) -

6. Let M be a smooth manifold. Let A € F(T(”S)M) and B € F(T(t’“)M). Prove that
A®Bemﬂ”WWM)

Solution. Set n = dim M. We have already seen the purely algebraic part of this result:
for every point p € M, we have indeed A, ® B, € T+ (T, M). It remains to check
the smoothness of A® B :p+— A, ® B,,.



Fix a chart (U, ¢) of M and write the associated local coordinates ;% (vector fields)

and dx’ (1-forms). Then we know there exists smooth real valued functions Aﬁ;; and
BZ,/l""’;.’,i defined on U and such that, for all p € U,

]17"'7 u
ityein () O 0 i j
A= > > AV (p) 1 ®...® |, ®dr}! ® ... @dzy
1<, ir <n 1<1,.0js <00 Oz dx'r
and B, = ) > By )i\ ®...® i\ Rdrl @ ... @ dxd
P 3dl, P T A W p < p-

1< e S 1G]l <

Then, in the local coordinates associated to (U, ¢), the map A ® B is described by the

functions p +— A;ll’,'.'.'j; (p)B;/i;,; (p) which are smooth (as a pointwise product of smooth

real functions). By Proposition 8.3, the map A® B is smooth, and hence is a tensor field.



