Differential geometry 2023

Exercises 9

Let V be a vector space. Let $k \geq 1$. Let $A \in T^{(0,k)}(V)$ and let $\sigma \in S_k$. The tensor $\sigma \cdot A$ is defined by setting

$$(\sigma \cdot A)(v_1, \dots, v_k) = A(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$

for all $v_1, \ldots, v_k \in V$.

If $\sigma \cdot A = A$ for all $\sigma \in S_k$, then A is symmetric. The space of symmetric (0, k)-tensors on V is

$$S^{k}(V) = \left\{ \alpha \in T^{(0,k)}(V) : \forall \sigma \in S_{k}, \ \sigma \cdot \alpha = \alpha \right\}.$$

If $\sigma \cdot A = \operatorname{sign}(\sigma)A$ for all $\sigma \in S_k$, then A is alternating. The space of alternating (0,k)-tensors of V is

$$A^{k}(V) = \left\{ \alpha \in T^{(0,k)}(V) : \forall \sigma \in S_{k}, \ \sigma \cdot \alpha = \operatorname{sign}(\sigma)\alpha \right\}.$$

1. Let det: $(\mathbb{R}^n)^n \to \mathbb{R}$,

$$\det(v_1, v_2, \dots, v_n) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) v_{\sigma(1)}^1 v_{\sigma(2)}^2 \cdots v_{\sigma(n)}^n,$$

where $v_j = \sum_{k=1}^n v_j^k \mathbf{e}_k \in \mathbb{R}^n$ for all $1 \leq j \leq n$.

- (1) Prove that det is an alternating (0, n)-tensor.
- (2) Prove that

$$\det(v_1, v_2, \dots, v_n) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) v_1^{\sigma(1)} v_2^{\sigma(2)} \cdots v_n^{\sigma(n)}.$$

Solution. (1) Let $\tau \in S_n$ and $v_1, \ldots, v_n \in \mathbb{R}^n$. With the change of index $\sigma' = \sigma \tau$ (bijective from S_n to S_n), we compute

$$(\tau \cdot \det)(v_1, \dots, v_n) = \det(v_{\tau(1)}, \dots, v_{\tau}(n)) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) v_{\sigma(\tau(1))}^1 \cdots v_{\sigma(\tau(n))}^n$$
$$= \sum_{\sigma' \in S_n} \operatorname{sign}(\sigma' \tau^{-1}) v_{\sigma'(1)}^1 \cdots v_{\sigma'(n)}^n$$
$$= \operatorname{sign}(\tau^{-1}) \det(v_1, \dots, v_n) = \operatorname{sign}(\tau) \det(v_1, \dots, v_n).$$

(2) Noticing the rearrangement of product $v_{\sigma(1)}^1 \cdots v_{\sigma(n)}^n = v_1^{\sigma^{-1}(1)} \cdots v_n^{\sigma^{-1}(n)}$ and using this time the change of index $\sigma' = \sigma^{-1}$, we compute

$$\det(v_1, \dots, v_n) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) v_1^{\sigma^{-1}(1)} \cdots v_n^{\sigma^{-1}(n)} = \sum_{\sigma' \in S_n} \operatorname{sign}(\sigma'^{-1}) v_1^{\sigma'(1)} \cdots v_n^{\sigma'(n)}$$
$$= \sum_{\sigma' \in S_n} \operatorname{sign}(\sigma') v_1^{\sigma'(1)} \cdots v_n^{\sigma'(n)}.$$

- **2.** Let V be a vector space. Let $A \in T^{(0,k)}(V)$. Prove that
- (1) A is symmetric if and only if $\tau \cdot A = A$ for all transpositions $\tau \in S_k$ and
- (2) A is alternating if and only if $\tau \cdot A = -A$ for all transpositions $\tau \in S_k$.

Solution. (1) The direct implication is trivial. For the converse, recall that the transpositions generate the whole symmetric group S_k and notice that we have the formula $(\sigma' \cdot \sigma) \cdot A = \sigma' \cdot (\sigma \cdot A)$ (in more elaborate words, the application $(\sigma, A) \mapsto \sigma \cdot A$ is an action of the group S_k on the set of tensors $T^{(0,k)}(V)$). Let $\sigma \in S_n$ and decompose it into a product of transpositions $\sigma = \tau_1 \cdots \tau_n$. Then applying recursively the latter formula and the invariance $\tau \cdot A = A$ for transpositions, we obtain

$$\sigma \cdot A = (\tau_1 \cdots \tau_n) \cdot A = (\tau_1 \cdots \tau_{n-1}) \cdot (\tau_n \cdot A) = (\tau_1 \cdots \tau_{n-1}) \cdot A = \dots = A.$$

(2) The proof is similar, using in addition the fact that sign : $S_k \to \{0,1\}$ is a group morphism.

Let V be a finite-dimensional vector space. The mapping Sym: $T^{(0,k)}(V) \to T^{(0,k)}(V)$,

$$\operatorname{Sym} A = \frac{1}{k!} \sum_{\sigma \in S_k} \sigma \cdot A$$

is symmetrization. The mapping Alt: $T^{(0,k)}(V) \to T^{(0,k)}(V)$,

Alt
$$A = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) \ \sigma \cdot A$$

is alternation.

- 3. (1) Prove that Alt and Sym are linear mappings
- (2) Let $\alpha \in T^{(0,k)}(V)$. Prove that Sym A = A if and only if $A \in S^k(V)$.
- (3) Let $A \in T^{(0,k)}(V)$. Prove that Alt A = A if and only if $A \in A^k(V)$.

Solution. (1) The map Sym (resp. Alt) is a linear combinations of mappings of the form $A \mapsto \sigma \cdot A$ (with $\sigma \in S_k$). The latter mappings are all linear, hence so is Sym (resp. Alt).

(2) First notice that the image of Sym is included in $S^k(V)$ (in fact, it is equal to $S^k(V)$ as shown by the converse) since, for all $\tau \in S_k$, using the change of index $\sigma' = \tau \sigma$ we have

$$\tau \cdot \operatorname{Sym} A = \frac{1}{k!} \sum_{\sigma \in S_k} (\tau \sigma) \cdot A = \frac{1}{k!} \sum_{\sigma' \in S_k} \sigma' \cdot A = \operatorname{Sym} A.$$

In particular, if Sym A = A, then A is symmetric. For the converse, we assume that A is symmetric and compute

$$\operatorname{Sym} A = \frac{1}{k!} \sum_{\sigma \in S_k} \sigma \cdot A = \frac{|S_k|}{k!} A = A.$$

- (3) Similarly, the image of the mapping Alt is included in (in fact equal to) $A^k(V)$ giving us the first implication, and using the formula $sign(\sigma)^2 = 1$ we obtain the converse.
- **4.** Prove that the tensor $\mathbf{e}^1 \otimes \mathbf{e}^2 \otimes \mathbf{e}^3 \in T^{(0,3)}(\mathbb{R}^3)$ is not the sum of a symmetric and an alternating tensor.

Solution. By definition, we have the formula $e^1 \otimes e^2 \otimes e^3(x, y, z) = x_1y_2z_3$ for all vectors $x, y, z \in \mathbb{R}^3$. Denote this tensor product by u. By contradiction, assume that we can write u = A + B where $A \in S^k(V)$ and $B \in A^k(V)$. Using Exercise 3, we obtain

$$\operatorname{Sym}(u) = \operatorname{Sym}(A) + \operatorname{Sym}(B) = A + \operatorname{Sym}(B) \text{ and } \operatorname{Alt}(u) = \operatorname{Alt}(A) + \operatorname{Alt}(B) = \operatorname{Alt}(A) + B.$$

Using the formula $|\{\sigma \in S_3 : \operatorname{sign}(\sigma) = 1\}| = |\operatorname{Ker}\operatorname{sign}| = \frac{3!}{2} = 3$ and hence $|\{\sigma \in S_3 : \operatorname{sign}(\sigma) = -1\}| = 3$ too, we obtain the equalities $\operatorname{Sym}(B) = 0$ and $\operatorname{Alt}(A) = 0$. All in all, we can explicitly compute A and B as follows: for all vectors $x, y, z \in \mathbb{R}^3$,

$$A(x, y, z) = \text{Sym}(u) = \frac{1}{3!} \sum_{\sigma \in S_3} x_{\sigma(1)} y_{\sigma(2)} z_{\sigma(3)},$$

and $B(x, y, z) = \text{Alt}(u) = \frac{1}{3!} \sum_{\sigma \in S_3} \text{sign}(\sigma) x_{\sigma(1)} y_{\sigma(2)} z_{\sigma(3)}.$

Thus

$$u(x, y, z) = \frac{2}{3!}(x_1y_2z_3 + x_2y_3z_1 + x_3y_1z_2).$$

This is clearly not equal to $u = e^1 \otimes e^2 \otimes e^3(x, y, z)$ (for instance, they differ at the point x = (0, 1, 0), y = (0, 0, 1) and z = (1, 0, 0)).

Let M be a smooth manifold. The space of smooth (r, s)-tensor fields on M is denoted by $\Gamma(T^{(r,s)}M)$.

5. Let M and N be smooth manifolds and let $F: M \to N$ be a smooth mapping. Let $A \in \Gamma(T^{(0,k)}N)$ and $B \in \Gamma(T^{(0,m)}N)$. Prove that

- (1) if k = m, then $F^*(A + B) = F^*(A) + F^*(B)$
- $(2) F^*(A \otimes B) = F^*(A) \otimes F^*(B).$

Solution. (1) Let $p \in M$ and let $v_1, \ldots, v_k \in T_pM$. Then

$$F^*(A+B)(v_1, ..., v_k) = (A+B)(dF_p v_1, ..., dF_p v_k)$$

$$= A(dF_p v_1, ..., dF_p v_k) + B(dF_p v_1, ..., dF_p v_k)$$

$$= F^*A(v_1, ..., v_k) + F^*B(v_1, ..., v_k)$$

$$= (F^*(A) + F^*(B))(v_1, ..., v_k).$$

(2) Let $p \in M$ and let $v_1, \ldots, v_{k+m} \in T_pM$. Then

$$F^{*}(A \otimes B)(v_{1}, \dots, v_{k+m}) = (A \otimes B)(dF_{p}v_{1}, \dots, dF_{p}v_{k+m})$$

$$= A(dF_{p}v_{1}, \dots, dF_{p}v_{k}) B(dF_{p}v_{k+1}, \dots, dF_{p}v_{k+m})$$

$$= F^{*}A(v_{1}, \dots, v_{k}) F^{*}B(v_{k+1}, \dots, v_{k+m})$$

$$= (F^{*}(A) \otimes F^{*}(B))(v_{1}, \dots, v_{k+m}).$$

6. Let M be a smooth manifold. Let $A \in \Gamma(T^{(r,s)}M)$ and $B \in \Gamma(T^{(t,u)}M)$. Prove that $A \otimes B \in \Gamma(T^{(r+t,s+u)}M)$.

Solution. Set $n = \dim M$. We have already seen the purely algebraic part of this result: for every point $p \in M$, we have indeed $A_p \otimes B_p \in T^{(r+s,t+u)}(T_pM)$. It remains to check the smoothness of $A \otimes B : p \mapsto A_p \otimes B_p$.

Fix a chart (U, ϕ) of M and write the associated local coordinates $\frac{\partial}{\partial x^i}$ (vector fields) and dx^j (1-forms). Then we know there exists smooth real valued functions $A^{i_1,\dots,i_r}_{j_1,\dots,j_u'}$ and $B^{i'_1,\dots,i'_t}_{j'_1,\dots,j'_u}$ defined on U and such that, for all $p \in U$,

$$A_{p} = \sum_{1 \leq i_{1}, \dots, i_{r} \leq n} \sum_{1 \leq j_{1}, \dots, j_{s} \leq n} A_{j_{1}, \dots, j_{s}}^{i_{1}, \dots, i_{r}}(p) \frac{\partial}{\partial x^{i_{1}}} |_{p} \otimes \dots \otimes \frac{\partial}{\partial x^{i_{r}}} |_{p} \otimes dx_{p}^{j_{1}} \otimes \dots \otimes dx_{p}^{j_{s}}$$
and
$$B_{p} = \sum_{1 \leq i'_{1}, \dots, i'_{t} \leq n} \sum_{1 \leq j'_{1}, \dots, j'_{u} \leq n} B_{j'_{1}, \dots, j'_{u}}^{i'_{1}, \dots, i'_{t}}(p) \frac{\partial}{\partial x^{i'_{1}}} |_{p} \otimes \dots \otimes \frac{\partial}{\partial x^{i'_{t}}} |_{p} \otimes dx_{p}^{j'_{1}} \otimes \dots \otimes dx_{p}^{j'_{u}}.$$

Then, in the local coordinates associated to (U,ϕ) , the map $A\otimes B$ is described by the functions $p\mapsto A^{i_1,\dots,i_r}_{j_1,\dots,j_s}(p)B^{i'_1,\dots,i'_t}_{j'_1,\dots,j'_u}(p)$ which are smooth (as a pointwise product of smooth real functions). By Proposition 8.3, the map $A\otimes B$ is smooth, and hence is a tensor field.