Differential geometry 2023

Exercises 12

1. (1) Let

w = dr® € Q'(S?),
n = 2?2 da’ + x'adda® + rlatda® € QNS?)

and let v: [—1,1] — S,
y(t) = (\/1 — t2cos(t), V1 — t2sin(t), t) .
Determine the values of the integrals f7 w and f7 7.

3

Solution. By the fundamental theorem for integration on curves, since z° is a smooth

function on S?, we have
[w=[d® =2 () - (-1 = 1= (-1 =2.
Y Yy

We notice that n = d(z'zz?), hence we can once again use the fundamental theorem on
the curve v and obtain

/77 = / d(z'2?2?) = 2'2?2*(y(1)) — 2'2?2*(y(~1)) =0 -0 = 0.
v gl
2. Give an example of an oriented atlas of S"][f]

Solution. We begin with the atlas {(U,, S4), (U-,S_)} given by two stereographic pro-
jections: Uy =S™ — {(0,...,0,4+1)} and

Sufa) = (Dt
Their inverse is given on R"! by
D Y )
1+ ly|]?
We compute, for y # 0,
S 087 (y) = HZQUIP —S_o087'(y).

Their Jacobian matrix is then given by Jac(SyoS%z) : y — ‘;”2]” — ”;“4 (viy;)1<i j<n- From

linear algebra we know that, for any rank 1 matrix A, we have

det(l, + A) =1+ tr(A).

!The stereographic projections from the north and south poles form a smooth atlas that consists of
two charts.



Here it gives, for all y # 0,

1 2 1 1
det(Jac, (S+0S+)) = det(L,—— (Viy;)1<ij<n) = = —
! Byl (77— \MWA HMPX:) ly[>
Thus the atlas {(Uy, S+)} is not oriented. However, since it only consists of 2 charts, we
can use the following trick: define a linear map ¢ : E* — E" by ¢(y) = (—y1,92,- -, Yn)-
Then the atlas {(U,,S;), (U_,¢ o0 S_)} is an oriented atlas. Indeed, for every y # 0, we
have

det(Jac(¢p o S_ o0 Sy)(y)) = det(¢) det(Jac(S_ o Sy)(y)) = —det(Jac(S_ o S1)(y)) > 0.

Remark. Instead of computing the determinant of Jac,(Sy o Sy) for all y € E* — {0}, it
would have been sufficient to do it for only one such point y, for example y = (1,0, ...,0)
(giving a diagonal matrix), and then to use the connectedness of E" — {0} to argue that
this (non vanishing anywhere) determinant has constant sign.

3. (1) Prove that the mapping —id: E® — E" preserves orientation if and only if n is
even.

(2) Prove that the mapping —id: S — S™ preserves orientation if and only if n is odd.ﬂ

Solution. (1) We use the trivial atlas (E",id). The map id o(—id) oid™" = —id is linear
(hence equal to its Jacobian matrix) and has determinant (—1)". Thus7 it preserves
orientation iff n is even.

(2) We use the oriented atlas {(U, S), (U-,¢ o S_)} from Exercise 2. Since the map
—id is a (global but local would be sufficient) diffeomorphism, we know (continuity of
determinant) that it is sufficient to check that —id is order preserving in only one of these
two charts. We choose (U,, S, ) and compute, for all y € E",

- 2y, |lyl* — 1) y

S, o(—id)o ST (y) =S _ e lyl”=1) = — .

ro i) o820 =54 (= ) T T

Hence we have the formula for its Jacobian matrix: Jac(Sy o (—id) o S7') = — Jac(y

Hij) Using the computation of the Jacobian of y — W from Exercise 2, we obtain, for
all y € E™,

det(Jac(Sy o (—id) 0 S71)(y)) = (~1)" det(y = —2—(y)) = (~1)"*".

1|7

The result follows.
4. Prove that the n-torus T" = E"/Z" is orientableﬁ

Solution. The standard atlas on T" is given by

1
{<7T(Boo(xv§))7 (W\Bm(x,%)>_1) rz e E"}
where 7 : E” — T" is the canonical projection, which is locally invertible. Let x,y €
E". We see that, for all z € 7~ }(m(B(z,3))) N By, 3), there exists k € Z" such that
(T5@,2)) " © ((Mp(,1)) 7)) 7 (2) = 2z + k. Since the latter composed map is smooth, the
integer k does not depend on z. Hence, the Jacobian of (7, 1))7" o ((mp(,1))7") 7" is
constant equal to 1, and the standard atlas on T" is already oriented.

2Use the oriented atlas from Problem 2| .
3Recall that local inverses of the quotient mapping 7: E® — T™ form a smooth atlas.



5. The mapping G: T2 — E3 induced by the mapping G: E? — E3,
G(z) = ((2 + cos(27mat)) cos(2mz?), (2 + cos(2mx')) sin(27ma?), sin(27mc1)) ,
is a smooth embedding of the 2-torus T? into E3. Compute

/ G*(x3dzt A dz?).
T2

Solution.

Solution 1.

In this solution, we find an explicit formula for the form G*(z3dz' A dz?), and then we
integrate it. We denote by ds' A ds? the usual orientation form on T?, obtained by the
charts in Exercise 4. We compute

A
G*(23dzt A da?) =23 (G(s)) ( > %il dsi> A (Z %GQd J)
i=1 j=1

:sin(27rsl)( — 27 sin(2ms') cos

(2ms?)ds' — (2 + cos(2ms'))27 sin(27s?)ds>
A ( — 2 sin(2ns!) sin(27s?)ds' + (2 + cos(2ms)) 27 cos(27s?)ds®
= — 4n?sin(27s")?(2 + cos(2ms')) ds* A ds®.
Thus we have

1
/2 G*(xdzt A da?) = —47r2/ / sin(2ms1)?(2 + cos(27sy)) dsids,
T 0 Jo

1 1
= —47‘(‘2/ sin(27s;)? ds; x / (2 4 cos(2ms2)) dss
0 0

1
= — 472 5 X 2 = —472.

Solution 2 (with Stokes’s theorem).

The torus G(T?) is the usual embedded torus in E? or radii 2 and 1. Let us denote by

T the associated solid torus. The Stokes orientation on the torus G(T?) is given by the

one on E3 and outward normal vectors based on 9T = G(T?). Using this orientation

on G(T?) and the orientation on T? defined in Exercise 4 (hence G preserves orientation

if Gor =G does), we check the preserving/reversing of orientation of G at the point
= (0,0), thus G(x) = (3,0,0) and an associated outward pointing vector is (1,0,0). We

get
1 0 0
det ((1,0,0), dG4(1,0), dG.(0,1)) = |0 0 37| = —67> < 0.
021 0

Thus G is orientation reversing. Then, by the pullback (or "change of variable') formula
for integration of forms on manifold applied to the embedding G, we obtain

/ G*(23dzt A dz?) = —/ vdzt A da®.
T2 G(T2)
By Stokes’s Theorem, we get

/ dx' A da® = / dz® A dz' A dz® = / dz' A daz® A da® = / dxydxedrs = vol(T).
G(T?) T T T

where T has volume (27 x 2) X (7 x 1?) = 472 (to find the general formula for the volume
of a torus, you may use a polar change of variable twice, first from (z1,x2) to (r,8), then
from (r,z3) to (p,w)). In the end, we obtain

/ G*(x3da' A da?) = —4n?.
T2

)
)



