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Abstract

Grain is a data analysis system developed to be used with the novel Total Data
Readout data acquisition system. In Total Data Readout all the electronics chan-
nels are read out asynchronously in singles mode and each data item is timestamped.
Event building and analysis has to be done entirely in the software post-processing
the data stream. A flexible and efficient event parser and the accompanying soft-
ware system have been written entirely in Java. The design and implementation of
the software are discussed along with experiences gained in running real-life exper-
iments.

Key words: Data Analysis, Total Data Readout, Recoil Decay Tagging, Java
PACS: 29.85.4c, 07.05.Kf, 07.05.Rm

1 Introduction

Nuclear physics experiments are usually instrumented using conventional com-
mon dead time data acquisition systems which are triggered by an event
in a pre-defined detector. In decay spectroscopy and Recoil Decay Tagging
(RDT) [1-3] experiments (in which decay spectroscopy is combined with in-
beam spectroscopy) these systems inherently suffer from dead time losses since
rather wide common gates have to be used in order to collect all the required
information. These problems grow worse if either the focal plane count rate or
the common gate width is increased. The former condition often arises from
the fact that the reaction channel under study may form only a minor frac-
tion of the total counting rate of the implantation detector. In the latter case
one is usually either studying isomeric decays with half-lives of the order of
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tens of microseconds or using them as a “tag” in Recoil Isomer Tagging (RIT)
experiments. To overcome these problems a novel Total Data Readout (TDR)
method [4] was developed by the GREAT collaboration as part of a project
to build a highly sensitive tagging spectrometer [5] .

TDR is a triggerless data acquisition system in which all the electronics chan-
nels operate individually in free running singles mode. All the information
is read out asynchronously by the front-end electronics consisting of gated
analog-to-digital converters (ADCs) and bit-pattern registers. Data items are
time-stamped with 10ns precision using a 100 MHz clock signal, which is dis-
tributed throughout the whole system. The data are subsequently ordered
within the TDR DAQ in a collate and merge software layer, after which the
data forms a single time-ordered stream ready to be processed by the analy-
sis programs. Unlike the data emerging from a conventional data acquisition
system, the data from the TDR collate and merge layer is not structured or
filtered in any way, apart from the time ordering. Temporal and spatial corre-
lations required to form events out of the raw data stream and the filtering to
remove unwanted or irrelevant data have to be done entirely in the software
which processes the data stream.

Grain was developed to provide a complete, self-contained, cross platform data
analysis system which could be used to analyse the raw TDR data stream.
The core of the system lies in three functions: in the ability to form physically
meaningful events from the data stream, in providing a relatively simple way
for the experimentalist to run a physics based ”sorting code” to extract the re-
sults for each experiment from these events and in allowing the user to visualise
and analyse the data using histograms and n-tuples through a simple graph-
ical user interface. A schematic of the Grain functionality is shown in figure
1. The main purpose of the software is to provide a tool for the online analy-
sis at the RITU separator at the Accelerator Laboratory of the University of
Jyvaskyla (JYFL), where the TDR system along with the GREAT spectrom-
eter are currently located, and to facilitate the subsequent offline analysis of
the experimental data. The TDR DAQ currently consists of 480 independent
spectroscopy channels each capable of running at 10kHz. The analysis system
should thus be able to process data up to the theoretical maximum counting
rate of 4.8MHz (corresponding to about 38MB/s data rate as 64bit data words
are used) over the whole duration of an experiment, which can span up to a
month of runtime. The GREAT TDR system also includes an event builder
software, TDREB [6]. In normal online running conditions TDREB is used
to filter data before it is passed on to Grain for online analysis and to the
tape server for storage. Grain is used in offline analysis as a completely stand-
alone system, regardless whether data under analysis has been filtered by the
TDREB or not, and can be used online as stand-alone solution if required.

Grain has been implemented entirely in Java. The portability, object-oriented
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Fig. 1. Schematic of the data processing in Grain. Each data processing sub-task
(thick boxes) runs on a separate thread which are interconnected by FIFOs (thick
arrows) and supervised by the master thread running the GUL

programming language and the incorporated, extensive user interface and net-
working libraries were the main motives behind the decision. Java has had a
reputation of being too slow for calculation intensive tasks, such as data anal-
ysis, but in the recent years the arrival of just-in-time (JIT) compilers have
lifted the performance to the same level as native, compiled languages (see
e.g. [7]). Previous reports on the usage of Java in similar tasks [8,9] were also
found to be mostly positive. The Grain executable is available for download
at the development web page [10].

2 Stream filtering and event parsing

2.1 Stream filtering

Prior to building the events the TDR data stream must be filtered against
unwanted data, which usually consists of vetoed and piled up signals. In tra-
ditional systems the vetoing and pile-up detection was incorporated into the
front-end electronics and the data acquisition system would normally never



see these data. In the TDR system the data analysis software is required to
perform these tasks, though the TDR ADCs have a limited hardware-veto
capability. For example, in the current JYFL TDR setup events from the
Compton suppression shields of the target array are read out as bit-pattern
data. Thus, the data from the target array germanium detectors and their
BGO shields must be correlated pairwise in software in order to perform the
suppression.

Pile-up rejection is based on the TDR ADCs capability to detect gates arriving
at the ADC during the processing of the previous gate. These data are included
in the stream as separate special data items and thus each channel needs to
be self-correlated in time to find the piled-up data. Vetoed or pile-up data can
be either discarded or marked and included in the events.

2.2 FEvent parsing
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Fig. 2. Schematic illustration of a typical RDT setup and the time structure of a
typical RDT experiment data stream with respect to any signal in the implanta-
tion detector. Panels a),b) and ¢) represent the typical response of some individual
detector groups. Panel d) shows the summed structure and the main event builder
timing parameters.

Two types of event parsers have been developed so far. Decay spectroscopy
and tagging experiments require a parser which constructs events in which
the trigger is any signal from the implantation detector. Stand-alone in-beam
experiments require a trigger based on the multiplicity of hits in the detector
array. In both cases time domain correlations were selected as the first stage
of the event builder strategy. This was mainly done in order to maximise the
input capacity of the system as the conditions used in the first stage of event
parsing require only a single dynamic parameter, the time stamp, and a static
definition of which data acquisition channels constitute the triggering detector

group.



The decay/RDT event parser is almost entirely based on the time structure
of the stream. A typical time structure of the stream, with respect to any
signal in the implantation detector, taken from a tagging experiment at RITU
is presented in figure 2. The individual components forming the structure can
be roughly divided into three groups depending on the placement and role of
the detector groups: a) preceding, b) prompt and c¢) delayed events. Typical
examples of these are presented in the upper panels of figure 2. In panel a) the
time spectra of the germanium array at the target position is shown. Flight
time of the recoils through the separator is ~1us. Panel b) shows the timing
of the transmission detector (a multiwire proportional counter) placed 240
mm upstream from the implantation detector. Panel c¢) shows time structure
of events in the planar germanium detector placed next to the implantation
detector exhibiting prompt and delayed components.

In decay or RDT experiments events can be simply defined at the first stage as
a time slice of the stream, which is triggered by any datum from a predefined
group of ADC channels. As the data is buffered in time order, it is possible
to easily extend the slice to cover also data in the past and in the future with
respect to the triggering data. The parameters needed to construct the slice
are the address of the triggering channel, offset of the slice (delay) and the
extent of the slice (width). By varying these parameters the parser can be con-
figured for different types of requirements of RDT, RIT or decay spectroscopy
experiments.

Pure in-beam experiments usually use a hit-multiplicity trigger where a certain
number of coincident hits is required in a defined time window. In the case of
TDR the event parsing is rather straight forward. As the data is already time
ordered and filtered, and can be easily buffered in memory, one can simply
count the number of hits over a given period after each individual hit. The
input parameters required are the width of the coincidence window, the set of
channels over which the multiplicity is calculated and the minimum required
multiplicity. Figure 3 shows a typical time structure of the TDR data stream
in a stand-alone ~-ray experiment.

Both event parsers have been implemented around a ring-buffer, which holds
the data objects. Access to the data preceding and following a certain data
item can be done by iterations in the buffer. On insertion and removal the data
item is checked whether it is a triggering item, a vetoing item or a piling-up
item. In any of these cases corresponding data is searched in the buffer and
flagged if found. All the data is checked on removal whether it is flagged as
triggered and if so, dispatched to the next level of event parser. Data is also
gainmatched at this stage using user provided gainmatching coefficients.

Once the group of data forming an event has been identified, the internal event
structure needs to be assigned. At the second stage of event building the data



Fig. 3. Time structure of the TDR stream from a stand-alone «y-ray experiment. Data
is histogrammed if more than one hit is registered in 1us window. In normal running
conditions a 70 ns window would be used, as indicated in the figure. Oscillations
in the background are caused by the structure of the beam produced by the JYFL
K130 cyclotron.

Fig. 4. Event search is performed in a {irr‘rl%—buﬁ"er, which provides efficient access to
data preceding and following=adsmechorer s, —

the future on removal the past on insertion
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Fig. 5. Data is routed to the detector objects within the event object based on the
origin of the data.

defined in the sub-detector objects at the implementation time. A schematic
drawing of the routing is shown in figure 5. Several different event types have
been predefined and users select the type which is appropriate for their analysis
from the user interface.

3 System Implementation

The general design of the analysis system is shown in figure 1. In order to bene-
fit from modern computer hardware with multiple processor cores available on
most machines, the data processing system was designed to be multithreaded.
Each individual main subsystem thread is indicated in the figure with a thick
border. Users interact with the graphical user interface (GUI) running the
master thread and providing interactive analysis functions as well as serving
as the control thread for data sorting jobs. The sort layer consists of an input
handler thread reading raw TDR data from a disk, tape or network source,
an event builder thread which filters and gainmatches the data and constructs



the events and a sort engine thread which uses the user code to extract the
relevant data from the events. The data is relayed in the sorting layer from
thread to thread using first-in, first-out buffers (FIFOs) which are indicated
in the figure by thick arrows. The GUI thread starts the worker threads at the
beginning of each data sorting job.

3.1 Sort Engine

The sort engine uses the Java dynamical class loading capability. Grain pro-
vides abstract (skeleton) sorter classes which the user needs to implement and
which provide access to the event data. Users can thus write their own data
reduction routines in Java using all the features of the language as long as
this inheritance relationship is fulfilled. Compiled classes can be loaded into
the Java Virtual Machine (JVM) dynamically at runtime. Histogramming and
other basic analysis services are provided via JAIDA [11], the Java implemen-
tation of the AIDA (Abstract Interfaces for Data Analysis) definition [12]. A
new binner had to be added to the JAIDA histogrammer since rather large
multidimensional histograms are required in nuclear physics analysis. The his-
tograms and n-tuples created in the sort engine are available through the GUI
at runtime.

3.2 Correlation Framework

During the last decade the RDT technique [1-3] has been widely used in the
studies of the structure of neutron deficient nuclei and super-heavy nuclei (see
e.g. review articles [13,14]). In RDT the identification is based on spatial and
temporal correlations of the recoiling reaction product and the subsequent,
often discrete, decay events. Similar correlation tasks are used also in pure
decay spectroscopy.

A large amount of information per event needs to be stored in a concerted
manner often for several hours and over several event generations in order to
perform these correlations. The Grain correlation framework is based on the
discrete position sensitivity provided by the double-sided silicon strip detec-
tors used in GREAT and the fact that all the event information is already
encapsulated in the event object. The framework consists of a container ob-
ject which provides a time ordered, time constrained stack of event objects
per implantation detector pixel and routines to insert an event into the con-
tainer and to retrieve the history of any given pixel based on the current event.
The framework is presented to the user as a class library which is available
to be used in the sort code. This framework simplifies correlation analysis
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Fig. 6. Screenshot of the Grain GUI. Main window displaying two- and one-dimen-
sional histograms, histogram tree and logger window along with the sort control
window are shown.

greatly as the user does not need to implement event accounting and memory
management and they are handled in a consistent manner for all the users.

3.8 User Interface and Analysis Functions

The Grain graphical user interface has been implemented using the standard
Java Swing toolkit and Java2D graphics (see fig. 6). A standard GUI de-
sign, with menus and toolbars, was selected as it is already familiar to most
users. Histograms can be browsed with a tree widget and displayed on the
main panel, several at a time if required. Information about the progress of
the analysis jobs and the results for the interactive analysis are displayed in
the logger window. Standard zooming and scrolling functions are provided for
both one- and two-dimensional histograms. Peak-area integration and fitting
of gaussian peak-shapes and exponential decay-curves are provided for one-
dimensional histograms. Two-dimensional histograms (matrices) can be sliced
either on the standard GUI or on a separate widget geared towards coinci-
dence analysis. N-tuples can also be used in the interactive analysis through
AIDA evaluators and filters. Histograms can be exported to ASCII and Rad-
ware [15] formats. The ASCII format can also be imported along with ROOT
histograms through the hep.io.root package [16]. The spectrum view can be



printed using the printing system provided by the operating system or ex-
ported to a variety of formats. The AIDA XML data format used by Grain
through JAIDA libraries to store histograms and n-tuples is an open standard.
Several other AIDA-compliant tools [9,17-19] can be used to read, view and
analyse the files instead of Grain if so required.

4 Performance and Usage

4.1  Performance

The data sorting performance of the whole analysis system has been analysed
in two ways. First, only simple through-put tests were run on a modern com-
puter with a dual-core AMD processor running 64-bit Linux operating system
and 64-bit Java version 1.6 from Sun Microsystems. Later, the performance of
different parts of the data sorting chain have been analysed using the Netbeans
Java Profiler [20].

To demonstrate the performance of the sorting a typical RDT experiment
was selected as a test case. Actual data from an experiment using a heavy
ion fusion evaporation reaction 3Ar + *4Sm — 80Hg* to produce light Hg
isotopes was used. In optimum operating conditions the total counting rate
of the detectors was about 400 kHz, mainly originating from the target array
germanium detectors, corresponding to a data rate of about 3.2 MB/s from
the TDR. Data was written to disk without any TDREB prefiltering, and later
analysed offline. The throughput was derived from the time it took to analyse
a 10GB portion of the data using different triggering schemes. The results are
shown in Table 1. It should be noted that the RDT triggering would be used
to extract data from reaction channels produced with very low cross sections
whereas the gamma-multiplicity triggering would be used for different reaction
channels with higher cross sections, making comparison between the trigger
types somewhat meaningless. In early experiments the histogramming of raw
data was noticed to have a serious impact on the sorting performance on-line.
This is clearly reflected in the current results and is likely to be caused by
the high memory bandwidth required to constantly update the histograms. A
buffering histogramming subsystem is used to alleviate the problem somewhat.
Online histogramming of the raw data is also performed in the TDR DAQ), so
it can be safely turned off if the performance degradation is too high.

The current implementation of the system can effectively use two processor
cores per sort, while in uniprocessor systems the threading model causes higher
overheads and the performance is degraded. An upgrade to allow the use of
several parallel sorting pipelines to utilise new multicore chips is in planning.
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Apart from the threading issues the performance scales rather linearly with the
integer operation performance of the processor core in question. As especially
the correlation analysis can be quite memory-intensive, high bandwith memory
architecture and large CPU cache can result in substantial increases in the
performance.

As can be seen, the throughput without raw histogramming is over an order
of magnitude higher than a typical RDT experiment currently requires and
close to that for stand-alone experiments. In decay experiments data rates
are always much lower as the target area detectors are not used. In the case
the input rate would exceed the rate Grain can process data real-time, a
safety feature which starts skipping input data buffers is implemented in the
input handler receiving data over the network in the online configuration.
The complete data stream can thus still be written to storage by the TDR
acquisition system at the expense of loss of statistics in the online analysis.

Table 1
Maximum throughput of the Grain sorter in different configurations. See text for
details.

Trigger with raw W.0. raw

histogramming histogramming

RDT 19 MB/s 44 MB/s
vy 13 MB/s 22 MB/s
Yy 17 MB/s 28 MB/s

The event parser has been found to be the bottleneck in the sorting perfor-
mance by using the Java profiler. About 65% of the execution time is spent
in the event parser thread, out of which about a half is spent in the actual
event search in the ring-buffer. This bottleneck is partly alleviated by the mul-
tithreading as the parser utilises a single processor core and the other parts
of the system run in the other available cores.

4.2 Usage

Grain has been used as an on-line analysis tool in over 50 experiments since
2002, catering for very different experiments ranging from decay spectroscopy
of very heavy elements [21] to RDT studies in the A~100 region [22]and the
development of the novel (-tagging technique [23]. In vast majority of cases
Grain has also been the main tool in offline analysis. In total 23 peer-reviewed
papers using Grain were published 2004-2007.
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5 Conclusions

Analysis of the triggerless, TDR generated data has been implemented in a
flexible, efficient manner. The use of Java language and platform has been a
major contributor to the success of the system. Platform independence has
granted simple installation and operation on the three current major per-
sonal computer operation systems, making it easy for users to deploy the soft-
ware where required. Java language and the use of object oriented techniques
has not only simplified development of the system itself, but has simplified
the users task of sort code writing, especially when complicated correlation
schemes have to be used. The amount and variety of users and experiments
utilising the system as well as the amount of publications for which the data
analysis has been mostly conducted using Grain also demonstrates the success
of the system.
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