
UNIVERSITY OF JYVÄSKYLÄ

Lecture 7: Recurrent Neural Networks (RNNs)
and Transformers

by:
Dr. Oleksiy Khriyenko

IT Faculty
University of Jyväskylä

TIES4911 Deep-Learning for Cognitive Computing for Developers
Spring 2024

UNIVERSITY OF JYVÄSKYLÄ

I am grateful to all the creators/owners of the images that I found from Google and have
used in this presentation.

2

Acknowledgement

07/03/2024 TIES4911 – Lecture 7

UNIVERSITY OF JYVÄSKYLÄ

3

Autocomplete feature

Google’s autocomplete feature predicts the rest of the words a user is typing…

Relevant links:
https://www.slideshare.net/Simplilearn/recurrent-neural-network-rnn-tutorial-rnn-lstm-tutorial-deep-learning-tutorial-simplilearn
https://www.youtube.com/watch?v=lWkFhVq9-nc

Large volume of most
frequently occurring
consecutive words

Recurrent Neural Network (RNN) Google Search Auto-completion

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

4

Why RNNs?..
In a Feed-Forward Neural Network:
 information flows in forward direction from input to output through the hidden layers (if any)
 decisions are based on current input with no memory about the past and future scope

Relevant links:
https://www.slideshare.net/Simplilearn/recurrent-neural-network-rnn-tutorial-rnn-lstm-tutorial-deep-learning-tutorial-simplilearn
https://www.youtube.com/watch?v=lWkFhVq9-nc

Cannot handle
sequential data

Considers only
the current input

Cannot memorize
previous inputs

Simplified presentation

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

5

Why RNNs?..

Recurrent Neural Network handles sequential data.
Introducing a loop in the hidden layer(s), RNN saves
the output of a layer and feeds this back to the input in
order to predict the next one...

Relevant links:
https://www.slideshare.net/Simplilearn/recurrent-neural-network-rnn-tutorial-rnn-lstm-tutorial-deep-learning-tutorial-simplilearn
https://www.youtube.com/watch?v=lWkFhVq9-nc

Can handle sequential data

Considers the current input and
previously received inputs

Can memorize previous inputs
due to internal memory

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

6

RNNs

RNNs have loops allowing information to persist:

TIES4911 – Lecture 7

Sequence Modeling Design Criteria:

• Handle variable-length sequences
• Track long-term dependencies
• Maintain information about order
• Share parameters across the sequence

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

7

RNNs

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://www.youtube.com/watch?v=UNmqTiOnRfg

Variety of problems related to sequential data:
 speech recognition
 language modeling, text and code generation
 (multilingual) machine translation
 handwriting generation
 question answering
 time series prediction (e.g. stock market trend prediction)
 image captioning
 control of autonomous vehicles and robots
 …

e.g. image
captioning

e.g. sentiment
classification, video

based event detection

e.g. machine translation e.g. language model
(next word prediction),

video frames
classification

Vanilla mode RNN, e.g.
image classification

Recurrent Neural Networks (RNNs) is a neural network that is used when
you deal with sequential data, where the particular order of the data-points matter (e.g.
predict event that is happening at every point in a movie based on its previous events).

TIES4911 – Lecture 709/03/2023

UNIVERSITY OF JYVÄSKYLÄ

8

RNNs

Relevant links:
https://www.youtube.com/watch?v=UNmqTiOnRfg
https://deepsystems.ai/

RNN Cell…

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

9

RNNs

Relevant links:
https://deepsystems.ai/

The most common RNN Cells…

 Vanilla
 Gated Recurrent Units (GRN)
 Long Short Term Memory (LSTM)
 LSTM with Peepholes Connections

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

10

Vanilla RNN

Relevant links:
https://deepsystems.ai/

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

11

RNNs

Relevant links:
https://deepsystems.ai/

”1” is usually omitted…

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

12

RNNs

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness

 RNN’s parameters are the three matrices W_hh, W_xh, W_hy
 hidden state self.h is initialized with the zero vector
 np.tanh function implements a non-linearity

RNN computation…
At the core, RNNs have a deceptively simple API: They accept an input vector x and output vector y. However, this
output vector is influenced not only by the input you fed in, but also by the entire history of inputs fed in previously.

x is an input vector
y is the RNN's output vector
rnn = RNN()
y = rnn.step(x)

the RNN class has some internal state (in this case a simple hidden
vector h) that it gets to update every time step is called.
…
class RNN:

...
def step(self, x):

update the hidden state
self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
compute the output vector
y = np.dot(self.W_hy, self.h)
return y

Vanilla RNN

y1 = rnn1.step(x)
y = rnn2.step(y1)

a 2-layer recurrent network

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

13

RNNs

RNN implementation in TensorFlow…

class MyRNNCell(tf.keras.layers.Layer):
def ___init___(self, rnn_units, input_dim, output_dim):

super(MyRNNCell, self).___init___()
initialize weight matrices
self.W_xh = self.add_weight([rnn_units, input_dim])
self.W_hh = self.add_weight([rnn_units, rnn_units])
self.W_hy = self.add_weight([output_dim, rnn_units])
initialize hidden state to zeros
self.h = tf.zeros([rnn_units, 1])

def call(self, x):
update the hidden state
self.h = tf.math.tanh(self.W_hh * self.h + self.W_xh * x)
compute the output
output = self.W_hy * self.h
return the current output and hidden state
return output, self.h

…
tf.keras.layers.SimpleRNN(rnn_units)

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

14

RNNs

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Pre-conditions:
 a vocabulary of four possible letters “h, e, l, o”
 a training data - the string “hello”

The goal of the training is to increase the confidence of a
desired target character (green) at every one of the 4 time
steps and decrease the confidences of all other letters (red).

toy Character-Level Language Models…(by Andrej Karpathy)
The idea is to give the RNN a huge chunk of text and ask it to model the probability distribution of the next character in
the sequence given a sequence of previous characters. This will allow generation of new text one character at a time.

Implementations:
 Minimal character-level language model (mini-char-rnn)

with a Vanilla Recurrent Neural Network (in Python/numpy):
• https://gist.github.com/karpathy/d4dee566867f8291f086
• https://www.tensorflow.org/tutorials/text/text_generation

 Caracter-level language model (char-rnn):
https://github.com/karpathy/char-rnn

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

15

RNNs

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

16

RNNs

Relevant links:
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Word-Level Language Models could be implemented similarly to a Character-Level models.
There are some papers regarding Language Modeling and Generating Text:
• http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
• http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf
• http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

17

Natural Language Processing with RNN

Relevant links:

https://github.com/Hvass-Labs/TensorFlow-
Tutorials/blob/master/20_Natural_Language_Processing.ipynb

https://www.tensorflow.org/tutorials/representation/word2vec

https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-
652d0c2060fa

https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

https://www.youtube.com/watch?v=wNBaNhvL4pg

https://www.youtube.com/watch?v=5PL0TmQhItY

https://platform.openai.com/tokenizer

arxiv.org/abs/2301.10472

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

from 8-dimensional (small datasets)

…
up to 1024-dimensions (large datasets)

cat

18

Word embeddings

Relevant links:
https://www.tensorflow.org/tutorials/text/word_embeddings
https://www.tensorflow.org/tutorials/representation/word2vec
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
https://arxiv.org/pdf/1411.2738.pdf
https://medium.com/@jonathan_hui/nlp-word-embedding-glove-5e7f523999f6
https://code.google.com/archive/p/word2vec/
https://heartbeat.fritz.ai/the-7-nlp-techniques-that-will-change-how-you-communicate-in-the-future-part-i-f0114b2f0497
https://nlp.stanford.edu/projects/glove/ , https://machinelearningmastery.com/what-are-word-embeddings/
https://towardsdatascience.com/nlp-extract-contextualized-word-embeddings-from-bert-keras-tf-67ef29f60a7b
https://www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extract-features-from-text/
https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/
http://jalammar.github.io/illustrated-bert/

Text:

Tokens:

Vector:

Have a good day vs. Have a great day

{have, a, good, great, day}
have = [1,0,0,0,0]
a = [0,1,0,0,0]
good = [0,0,1,0,0]
great = [0,0,0,1,0]
day = [0,0,0,0,1]

no projection along the other
dimensions…

‘good’ and ‘great’
are as different as

‘day’ and ‘have’

Objective: to have words with similar context occupy close
spatial positions.

Mathematically, the cosine of the angle between such vectors should be close to 1, i.e.
angle close to 0.

Word2Vec
GloVe BERT

ELMo

“He went to the prison cell with his cell phone
to extract blood cell samples from inmates”

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

19

RNNs

Relevant links:
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://deepsystems.ai/

Machine Translation is
similar to language modeling in
that our input is a sequence of
words in source language (e.g.
English), and the output is a
sequence of words in target
language (e.g. French).

It could be considered as
combination of two architectures:
many-to-one (Encoder) and one-
to-many (Decoder)…

or English to slang English…

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Relevant links:
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://deepsystems.ai/

20

RNNs

Classificaltion of the text for sentiment analysis.

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

21

Training RNNs

Relevant links:
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

Similarly to a traditional Neural Network, training a RNN is done using the backpropagation algorithm with a little

twist - Backpropagation Through Time (BPTT). Since parameters are shared among all time steps in the
network, the gradient at each output depends not only on the calculations of the current, but also the previous time
steps (in order to calculate the gradient at t=4 we would need to backpropagate 3 steps and sum up the gradients.

A naïve implementation of BPTT:
def bptt(self, x, y):

T = len(y)
Perform forward propagation
o, s = self.forward_propagation(x)
We accumulate the gradients in these variables
dLdU = np.zeros(self.U.shape)
dLdV = np.zeros(self.V.shape)
dLdW = np.zeros(self.W.shape)
delta_o = o
delta_o[np.arange(len(y)), y] -= 1.
For each output backwards...
for t in np.arange(T)[::-1]:

dLdV += np.outer(delta_o[t], s[t].T)
Initial delta calculation: dL/dz
delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
Backpropagation through time (for at most self.bptt_truncate steps)
for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:

print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
Add to gradients at each previous step
dLdW += np.outer(delta_t, s[bptt_step-1])
dLdU[:,x[bptt_step]] += delta_t
Update delta for next step dL/dz at t-1
delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)

return [dLdU, dLdV, dLdW]

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

22

What is wrong with Vanilla RNN?

 Non-linearity is bad for long term memory…
The RNN state (memory) should be protected using only ”+” or ”-” operations to write to it.

 No selectivity (reade all, overwrite all)…
It should be possible to choose what to read, write and forget.

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

23

Long-term dependencies

Relevant links:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Task to predict the last word in:

“…the clouds are in the ___ .”

sky

“I grew up in France… I speak fluent ______. ”

French

Unfortunately… in practice, ordinary RNNs are not really capable to solve such “long-term
dependencies” problem. The problem and reasons why it might be difficult were explored in depth in following works:
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf

Fortunately… Hochreiter and Schmidhuber, as well as many other researchers who refined and

popularized them, introduced Long Short Term Memory networks (LSTMs) that
show tremendously great performance on a large variety of problems..
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

24

LSTMs

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://www.youtube.com/watch?v=WCUNPb-5EYI

Long Short Term Memory networks – usually just called “LSTMs” – are a
special kind of RNN, capable of learning long-term dependencies.

RNNs have the form of a chain of repeating modules of neural network…

The repeating module in a standard RNN contains a single layer:

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

25

LSTMs

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory networks – usually just called “LSTMs” – are a
special kind of RNN, capable of learning long-term dependencies.

RNNs have the form of a chain of repeating modules of neural network…

The repeating module in an LSTM contains four interacting layers:

The LSTM does have the ability to remove or add information to the cell state, carefully regulated
by structures called gates. Gates are a way to optionally let information through. They are
composed out of a sigmoid neural net layer (describing how much of each component should be
let through) and a pointwise multiplication operation.

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

26

LSTMs
“forget gate layer” decides what information we are going
to throw away from the cell state.
e.g. when we see a new subject, we want to forget the gender of the
old subject…

… what new information we’re going to store in the cell
state? Sigmoid “input gate layer” decides which values to
update and a tanh layer creates a vector of new candidate
values that could be added to the state. Combination of
those updates the state.
e.g. add the gender of the new subject to the cell state, to replace the
old one we are forgetting…

Update the old cell state C(t-1) into the new cell state C(t):
• multiply the old state by output of “forget gate layer” forgetting the

things we decided to forget earlier.
• add the new candidate values, scaled by how much we decided to

update each state value.
e.g. drop the information about the old subject’s gender and add the
new information, as were decided in the previous steps…

…”output gate” decides what to output. It will be a filtered
version of the cell state.
• a sigmoid layer decides what parts of the cell state we’re going to

output.
• tanh pushes the values to be between [−1; 1] and multiplies it by

the output of the sigmoid gate.

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

27

What is the bottleneck of LSTMs?

Relevant links:
https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html#information-morphing-and-vanishing-and-exploding-sensitivity
http://www.bioinf.jku.at/publications/older/2604.pdf
https://deepsystems.ai/

Conceptually we loose some information since calculate our gates
based on ”filtered” output of the previous state (h), and do not
consider actual cell mamory (c).

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

28

LSTM with Peephole connections

Relevant links:
https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html#information-morphing-and-vanishing-and-exploding-sensitivity
http://ieeexplore.ieee.org/document/861302/?reload=true
https://arxiv.org/pdf/1308.0850v5.pdf
https://deepsystems.ai/

Peephole connections (introduced by Gers & Schmidhuber, 2000) let the gate layers look at the
cell state. ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

Note that each Px is an n×n matrix (a
peephole matrix), much like each Wx…

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

29

LSTM with Peephole connections

Relevant links:
https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html#information-morphing-and-vanishing-and-exploding-sensitivity
http://ieeexplore.ieee.org/document/861302/?reload=true
https://arxiv.org/pdf/1308.0850v5.pdf
https://deepsystems.ai/

Note that each Px is an n×n matrix (a
peephole matrix), much like each Wx…

Peephole connections (introduced by Gers & Schmidhuber, 2000) let the gate layers look at the
cell state. ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

30

GRU

Relevant links:
https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html#information-morphing-and-vanishing-and-exploding-sensitivity
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
https://arxiv.org/pdf/1412.3555.pdf
https://deepsystems.ai/

Gated Recurrent Unit (GRU) variation of LSTM (introduced by Cho et al., 2014):
• combines the forget and input gates into a single “update gate”
• merges the cell state and hidden state
• does some other changes
The resulting model is simpler than standard LSTM models, and has been growing increasingly popular…

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

31

Variations on LSTMs…

Relevant links:
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

LSTM variant with “peephole connections” (introduced by

Gers & Schmidhuber, 2000) lets the gate layers look at the cell
state. ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

Another variation uses coupled forget and input gates. Here
we only forget when we are going to input something in its
place, and input new values to the state only when we forget
something older.

Gated Recurrent Unit (GRU) variation (introduced by Cho et al.,
2014):
• combines the forget and input gates into a single “update gate”
• merges the cell state and hidden state
• does some other changes
The resulting model is simpler than standard LSTM models,
and has been growing increasingly popular…

Depth Gated RNNs (by Yao et al., 2015): http://arxiv.org/pdf/1508.03790v2.pdf

Clockwork RNNs (by Koutnik et al., 2014) is completely different approach to tackling long-term dependencies:
http://arxiv.org/pdf/1402.3511v1.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

BiRNNs

32

Bi-directional RNNs (BiRNNs) a special kind of RNNs that also traverse in the
reverse direction, to understand context not only from the past, but from the future as
well...

Relevant links:
https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/

This type of nets are based on the idea that
the output at time t may not only depend on
the previous elements in the sequence, but
also future elements. Therefore, to predict a
missing word in a sequence you want to look at both
the left and the right context.

BiRNNs are just two RNNs stacked on top of
each other. The output is then computed
based on the hidden state of both RNNs.

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Deep BiRNNs

33

Deep Bi-directional RNNs (Deep BiRNNs) are
similar to Bi-directional RNNs, only that it has multiple
layers per time step. In practice this gives a higher learning
capacity (but also requires a lot of training data).

Relevant links:
https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Nested LSTMs (NLSTM) a novel RNN architecture with multiple levels of memory.
(by Moniz and Krueger, submitted 2018)

Nested LSTM

34

Relevant links:
https://arxiv.org/abs/1801.10308
https://github.com/hannw/nlstm

Nested LSTMs add depth to LSTMs via nesting
as opposed to stacking. The value of a memory
cell in an NLSTM is computed by an LSTM cell,
which has its own inner memory cell. Nested
LSTMs outperform both stacked and single-layer
LSTMs with similar numbers of parameters in
author’s experiments on various character-level
language modeling tasks, and the inner
memories of an LSTM learn longer term
dependencies compared with the higher-level
units of a stacked LSTM.

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Implementations…

LSTMs

35

2-layer LSTM based Language Modeling to predict the next word (TF v1):
import time
import collections
import random
import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn

start_time = time.time()
def elapsed(sec):

if sec<60:
return str(sec)+ " sec"

elif sec<(60*60):
return str(sec/60)+ " min"

Training source file with words
training_file = 'data.txt'
def read_data(fname):

with open(fname) as f:
content = f.readlines()

content = [x.strip() for x in content]
content = [content[i].split() for i in range(len(content))]
content = np.array(content)
content = np.reshape(content, [-1,])
return content

training_data = read_data(training_file)
print("Loaded training data...")

def build_dataset(words):
count = collections.Counter(words).most_common()
dictionary = dict()
for word, _ in count:

dictionary[word] = len(dictionary)
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return dictionary, reverse_dictionary

dictionary, reverse_dictionary = build_dataset(training_data)
vocab_size = len(dictionary)

Relevant links:
https://www.youtube.com/watch?v=y7qrilE-Zlc

Parameters
learning_rate = 0.001
training_iters = 50000
display_step = 1000
n_input = 3
Number of units in RNN cell
n_hidden = 512
tf Graph input
x = tf.placeholder("float", [None, n_input, 1])
y = tf.placeholder("float", [None, vocab_size])
RNN output node weights and biases
weights = {

'out': tf.Variable(tf.random_normal([n_hidden, vocab_size]))
}
biases = {

'out': tf.Variable(tf.random_normal([vocab_size]))
}
def RNN(x, weights, biases):

reshape x for compatibility
x = tf.reshape(x, [-1, n_input])
Convert input words to sequence of inputs
e.g. [Company] [size] [is] -> [650] [30] [45]
x = tf.split(x, n_input, 1)
#2-layer LSTM, each layer contains n_hidden units
Avarage Accuracy is 95% at 50K iterations. With 1-layer LSTM, accuracy is 90%...
rnn_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(n_hidden), rnn.BasicLSTMCell(n_hidden)])
#generate prediction
outputs, states = rnn.static_rnn(rnn_cell, x, dtype=tf.float32)
there are n_inputs outputs, but we need only the last one
return tf.matmul(outputs[-1], weights['out']) + biases['out']

pred = RNN(x, weights, biases)
Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(cost)
#Evaluation of the Model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Implementations…

LSTMs

36

Variable initialization
init = tf.global_variables_initializer()
Launching the graph
with tf.Session() as session:

session.run(init)
step = 0
offset = random.randint(0, n_input+1)
end_offset = n_input + 1
acc_total = 0
loss_total = 0
while step < training_iters:

Generate a minibatch with some randomness on selection process
if offset > (len(training_data)-end_offset):

offset = random.randint(0, n_input+1)
symbols_in_keys = [[dictionary[str(training_data[i])]] for i in range(offset,

offset+n_input)]
symbols_in_keys = np.reshape(np.array(symbols_in_keys), [-1, n_input, 1])
symbols_out_onehot = np.zeros([vocab_size], dtype=float)
symbols_out_onehot[dictionary[str(training_data[offset+n_input])]] = 1.0
symbols_out_onehot = np.reshape(symbols_out_onehot, [-1, vocab_size])
_, acc, lass, onehot_pred = session.run([optimizer, accuracy, cost, pred],

feed_dict={x: symbols_in_keys, y: symbols_out_onehot})
loss_total += lass
acc_total += acc
if (step+1) % display_step == 0:

print("iter= " + str(step+1) + ", avarage loss= {:.6f}".format(loss_total/display_step)
+ ", avarage accuracy= {:.2f}".format(100*acc_total/display_step))

acc_total = 0
loss_total = 0
symbols_in = [training_data[i] for i in range(offset, offset+n_input)]
symbols_out = training_data[offset+n_input]
symbols_out_pred = reverse_dictionary[int(tf.argmax(onehot_pred, 1).eval())]
print("%s - [%s] vs [%s]" % (symbols_in, symbols_out, symbols_out_pred))

step += 1
offset += (n_input+1)

print("Optimization is finished...")
print("Elapsed time: ", elapsed(time.time() - start_time))
print("Run on command line.")

while True:
prompt = "%s words: " % n_input
sentance = input(prompt)
sentance = sentance.strip()
words= sentance.split(' ')
if len(words) != n_input:

continue
try:

symbols_in_keys = [dictionary[str(words[i])] for i in range(len(words))]
for i in range(32):

keys = np.reshape(np.array(symbols_in_keys), [-1, n_input, 1])
onehot_pred = session.run(pred, feed_dict={x: keys})
onehot_pred_index = int(tf.argmax(onehot_pred, 1).eval())
sentance = "%s %s" % (sentance, reverse_dictionary[onehot_pred_index])
symbols_in_keys = symbols_in_keys[1:]
symbols_in_keys.append(onehot_pred_index)

print(sentance)
except:

print("Word is not in dictionary")

TIES4911 – Lecture 7

2-layer LSTM based Language Modeling to predict the next word (TF v1):

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Implementations…

GRU

37TIES4911 – Lecture 7

GRU based Text Generation (TF v2): https://www.tensorflow.org/text/tutorials/text_generation

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Implementations…

LSTMs

38

Predict MNIST using an RNN with Keras:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM #, CuDNNLSTM

mnist = tf.keras.datasets.mnist # mnist is a dataset of 28x28 images of
handwritten digits and their labels
(x_train, y_train),(x_test, y_test) = mnist.load_data() # unpacks images to
x_train/x_test and labels to y_train/y_test

x_train = x_train/255.0
x_test = x_test/255.0

print(x_train.shape)
print(x_train[0].shape)

model = Sequential()

If you are running with a GPU, try out the CuDNNLSTM layer type instead
(don't pass an activation, tanh is required)
model.add(LSTM(128, input_shape=(x_train.shape[1:]), activation='relu',
return_sequences=True))
model.add(Dropout(0.2))

model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.1))

model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

Relevant links:
https://pythonprogramming.net/recurrent-neural-network-deep-learning-python-tensorflow-keras/
https://www.tensorflow.org/guide/keras/working_with_rnns

opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)

Compile model
model.compile(

loss='sparse_categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'],

)

model.fit(x_train,
y_train,
epochs=3,
verbose=1,
validation_data=(x_test, y_test))

Epoch 1/3 60000/60000 [==========] - 235s 4ms/step - loss: 0.6488 - acc: 0.7853 - val_loss: 0.1433 - val_acc: 0.9556
Epoch 2/3 60000/60000 [==========] - 228s 4ms/step - loss: 0.1672 - acc: 0.9539 - val_loss: 0.0906 - val_acc: 0.9740
Epoch 3/3 60000/60000 [==========] - 229s 4ms/step - loss: 0.1137 - acc: 0.9701 - val_loss: 0.0722 - val_acc: 0.9773

with LSTM and Relu activation function:

Epoch 1/3 60000/60000 [==========] - 233s 4ms/step - loss: 0.3888 - acc: 0.8819 - val_loss: 0.1181 - val_acc: 0.9655
Epoch 2/3 60000/60000 [==========] - 229s 4ms/step - loss: 0.1172 - acc: 0.9688 - val_loss: 0.0846 - val_acc: 0.9749
Epoch 3/3 60000/60000 [==========] - 234s 4ms/step - loss: 0.0847 - acc: 0.9772 - val_loss: 0.0676 - val_acc: 0.9809

with LSTM and Tanh activation function:

Epoch 1/3 60000/60000 [=========] - 27s 445us/step - loss: 0.3742 - acc: 0.8854 - val_loss: 0.1280 - val_acc: 0.9632
Epoch 2/3 60000/60000 [=========] - 25s 419us/step - loss: 0.1159 - acc: 0.9693 - val_loss: 0.0731 - val_acc: 0.9790
Epoch 3/3 60000/60000 [=========] - 25s 421us/step - loss: 0.0843 - acc: 0.9785 - val_loss: 0.0661 - val_acc: 0.9813
…
Epoch 10/10 60000/60000 [=======] - 25s 416us/step - loss: 0.0284 - acc: 0.9924 - val_loss: 0.0510 - val_acc: 0.9871

with CuDNNLSTM and Tanh activation function:

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

39

Image Captioning

Relevant links:
https://www.tensorflow.org/text/tutorials/image_captioning
https://arxiv.org/pdf/1412.2306v2.pdf
https://arxiv.org/pdf/1406.5679v1.pdf
https://arxiv.org/abs/1410.1090
https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1411.4389
https://arxiv.org/abs/1411.5654
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/deepimagesent/

Connecting Images and Natural Language
Andrej Karpathy
PhD Thesis, 2016
https://cs.stanford.edu/people/karpathy/main.pdf

Recurrent Neural Network

Convolutional Neural Network

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

40

Image Captioning

Relevant links:
http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf

y0

h0

x0

y1

h1

y2

h2

Image Sentence Datasets (http://cocodataset.org/)

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

41

Image Captioning

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

42

Computer Vision & NLP
Show and Tell: A Neural Image Caption Generator
(by Oriol Vinyals et al., 2015) https://arxiv.org/abs/1411.4555

A generative model based on a deep recurrent architecture that combines
recent advances in computer vision and machine translation to generate natural
sentences describing an image.

Improved model: Show and Tell: Lessons learned from the
2015 MSCOCO Image Captioning Challenge
(by Oriol Vinyals et al., 2016) https://arxiv.org/abs/1609.06647

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

43

Computer Vision & NLP
Deep Visual-Semantic Alignments for Generating Image Descriptions

In contrast to traditional CNNs (where a single label associated with each
image), the offered model has training examples that have a sentence (a
weak label, where segments of the sentence refer to unknown parts of the
image) associated with each image. Using this training data, a deep neural
network “infers the latent alignment between segments of the
sentences and the region that they describe”

Alignment The model is trained on compatible and incompatible image-
sentence pairs, by accepting an image and a sentence as input, where the
output is a score for how well they match.

Generation Having a dataset - a set of image regions (found by the
RCNN) and corresponding text (thanks to the BRNN) as an output of
Alignment step, the generation model is going to learn from that dataset in
order to generate descriptions given an image. The model takes in an
image and feeds it through a CNN. The softmax layer is disregarded as the
outputs of the fully connected layer become the inputs to another RNN that
forms probability distributions on the different words in a sentence.

(by Andrej Karpathy and Fei-Fei Li, 2015)
The paper looks into a combination of CNNs and bidirectional RNNs (Recurrent Neural Networks) to generate natural
language descriptions of different image regions…

Relevant links:
https://arxiv.org/pdf/1412.2306v2.pdf
https://arxiv.org/pdf/1406.5679v1.pdf
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/deepimagesent/

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

44

Computer Vision & NLP
Image Caption Implementation…
 NeuralTalk (Deprecated) https://github.com/karpathy/neuraltalk

 NeuralTalk2: is written in Torch and is SIGNIFICANTLY (~100x) faster because it is
batched and runs on the GPU. It also supports CNN finetuning, which helps a lot with
performance. But overall speed is slowed down because we also have to forward a
VGGNet. However, overall very good models can be trained in 2-3 days, and they
show a much better performance. https://github.com/karpathy/neuraltalk2

 Show and Tell: A Neural Image Caption Generator is a TensorFlow
implementation of the image-to-text model described in the paper
(http://arxiv.org/abs/1609.06647): https://github.com/tensorflow/models/tree/master/research/im2txt
Examples with pre-trained models: https://github.com/jmrf/im2txt-demo

https://github.com/KranthiGV/Pretrained-Show-and-Tell-model

Relevant links:
https://research.googleblog.com/2016/09/show-and-tell-image-captioning-open.html

TIES4911 – Lecture 7

 Image captioning with visual attention is a TensorFlow implementation inspired by previous architecture and
been updated to use a 2-layer Transformer-decoder. https://www.tensorflow.org/tutorials/text/image_captioning

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

45

Computer Vision & NLP
DenseCap: Fully Convolutional Localization
Networks for Dense Captioning
(by Justin Johnson, Andrej Karpathy and Fei-Fei Li, 2016)

The model efficiently identifies and captions all the things in an image with a
single forward pass of a network. It is fully differentiable and trained end-to-end
without any pipelines. The model is capable to process a 720x600 image in only
240ms, and evaluation on a large-scale dataset of 94,000 images and
4,100,000 region captions shows that it outperforms baselines based on
previous approaches. Model is successfully applied for image retrieval as well
as region search .

Relevant links:
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/densecap/
https://cs.stanford.edu/people/karpathy/densecap.pdf

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

46

Computer Vision & NLP
Visual Question Answering with deep image understanding
 VQA: Visual Question Answering (Agrawal et al.,2015)

http://arxiv.org/pdf/1505.00468v6.pdf
 Visual 7W: Grounded Question Answering in Images

(Zhu et al., 2016) https://arxiv.org/pdf/1511.03416.pdf
 Balancing and Answering Binary Visual Questions (Yin

and Yang, 2016) https://arxiv.org/pdf/1511.05099.pdf
 Making the V in VQA Matter: Elevating the Role of

Image Understanding in Visual Question Answering
(Goyal et al., 2017) https://arxiv.org/pdf/1612.00837.pdf

 …

VQA dataset , link to VQA Challenge and other related
materials could be found following the link
http://www.visualqa.org/

From global association
between QA sentences and
images towards a semantic
link between textual
descriptions and image
regions by object-level
grounding…

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Attention mechanism in RNN

47TIES4911 – Lecture 7

Relevant links:
https://www.youtube.com/watch?v=qjrad0V0uJE
https://www.youtube.com/watch?v=YAgjfMR9R_M
https://tianguoguo.fun/2019/09/15/3-Neural-Machine-Translation-by-Jointly-Learning-to-Align-and-
Translate%E8%AE%BA%E6%96%87%E5%A4%8D%E7%8E%B0%E4%BB%A3%E7%A0%81/

To improve memory in RNN, attention mechanisms
is used as a learnable memory access…

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

48

Computer Vision & NLP
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Relevant links:
https://arxiv.org/abs/1502.03044
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

(by Xu et at., 2015)

Authors apply attention mechanisms to the problem of generating image descriptions. They use a
Convolutional Neural Network to “encode” the image, and a Recurrent Neural Network with attention
mechanisms to generate a description.
RNN attends spatially to different parts of images while generating each word of the sentence:

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Generalization of Attention Mechanism

49TIES4911 – Lecture 7

Relevant links:
https://www.youtube.com/watch?v=YAgjfMR9R_M

Sequence-2-Sequence attention layer as an indicator of
relevance of their elements…

Self-attention layer (one Query per Input vector)
It is Permutation Equivariant type of network layers
that operates on sets of vectors regardless of their

order...

Multihead Self-attention layer
allows to catch several contexts in
parallel and aggregate them in the

output…

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Generalization of Attention Mechanism

50TIES4911 – Lecture 7

Relevant links:
https://www.youtube.com/watch?v=YAgjfMR9R_M
https://www.youtube.com/watch?v=dichIcUZfOw
https://arxiv.org/abs/1706.03762

Positional Embedding modifies input matrix in
a way to encode the order of the elements by adding
the position matrix of the same size as an input…

Masked Self-Attention Layer considers an order
of the elements in a sequence and does not let vectors “look
ahead”, using only information from the past…

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Relevant links:
http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
https://machinelearningmastery.com/attention-long-short-term-memory-recurrent-neural-networks/
https://distill.pub/2016/augmented-rnns/
https://www.youtube.com/watch?v=QuvRWevJMZ4

Neural Attention Mechanism

51

Attention (or neural attention) mechanism equips a neural network with the ability to
focus on a subset of its inputs (or features).

It is modeled by analogy
to the way humans focus
on a particular subset of
their sensory input, and
tune-out the rest.

Neural Machine Translation by Jointly Learning to Align and Translate. Authors conjecture that the use of a fixed-length vector is
a bottleneck in improving the performance of the basic encoder-decoder architecture, and propose to extend this by allowing a model
to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these
parts as a hard segment explicitly. (https://arxiv.org/abs/1409.0473)
Recurrent Models of Visual Attention. Authors present a novel recurrent neural network model that is capable of extracting
information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected
regions at high resolution. (https://arxiv.org/abs/1406.6247)
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Authors apply attention mechanisms to the
problem of generating image descriptions. They use a Convolutional Neural Network to “encode” the image, and a Recurrent Neural
Network with attention mechanisms to generate a description. (https://arxiv.org/abs/1502.03044)
Teaching Machines to Read and Comprehend. Authors use a RNN to read a text, read a (synthetically generated) question, and
then produce an answer. By visualizing the attention matrix we can see where the networks “looks” while it tries to find the answer to
the question. (https://arxiv.org/abs/1506.03340)
Reasoning about Entailment with Neural Attention. Authors propose a neural model that reads two sentences to determine
entailment using long short-term memory units. They extend this model with a word-by-word neural attention mechanism that
encourages reasoning over entailments of pairs of words and phrases. (https://arxiv.org/abs/1509.06664)
Attention-Based Models for Speech Recognition. Authors extend the attention-mechanism with features needed for speech
recognition (https://arxiv.org/abs/1506.07503)
A Neural Attention Model for Abstractive Sentence Summarization. Authors propose a fully data-driven approach to abstractive
sentence summarization. The method utilizes a local attention-based model that generates each word of the summary conditioned on
the input sentence. (https://arxiv.org/abs/1509.00685)

Attention in:
• Text Translation
• Image Descriptions
• Entailment (logical

consequence)
• Speech Recognition
• Text Summarization

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Machines can already outplay us in chess,
poker and other games, and now they are
becoming better readers as well.

AI programs from both Microsoft and Alibaba
outperformed humans in the beginning of
January 2018 on a reading comprehension data
set developed at Stanford - The Stanford
Question Answering Dataset (SQuAD).
“Crowdworkers” scraped more than 500
Wikipedia articles to produce more than 100,000
question-and-answer sets for the test.

Here’s a sample question: “What year did
Genghis Khan die?” (Spoiler alert: It’s 1227.)

“This is the first time that a machine has
outperformed humans on such a test,” Alibaba
said in a statement.

Microsoft and Alibaba AI programs beat humans in Stanford reading
comprehension test for 1st time

Intelligent Robots

52

Microsoft’s score of 82.6 and Alibaba’s grade of 82.4 beat out the
human standard of 82.3. Other notable AI programs participating in
the test and closing in on beating human scores come from the Allen
Institute for Artificial Intelligence, Tencent, Salesforce and others.

Relevant links:
https://www.microsoft.com/en-us/research/publication/mrc/
https://codeburst.io/understanding-r-net-microsofts-superhuman-reading-ai-23ff7ededd96
https://www.geekwire.com/2018/microsoft-alibaba-ai-programs-beat-humans-stanford-reading-test-1st-time/

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

R-NET

53

R-NET: Machine Reading Comprehension with Self-matching Networks

Relevant links:
https://www.microsoft.com/en-us/research/publication/mrc/
https://codeburst.io/understanding-r-net-microsofts-superhuman-reading-ai-23ff7ededd96
https://www.geekwire.com/2018/microsoft-alibaba-ai-programs-beat-humans-stanford-reading-test-1st-time/

Given a passage P:
“Tesla was born on 10 July [O.S. 28 June] 1856 into a Serb family in the village
of Smiljan, Austrian Empire (modern-day Croatia). His father, Milutin Tesla, was
a Serbian Orthodox priest. Tesla’s mother, Đuka Tesla (née Mandić), whose
father was also an Orthodox priest, had a talent for making home craft tools,
mechanical appliances, and the ability to memorize Serbian epic poems. Đuka
had never received a formal education. Nikola credited his eidetic memory and
creative abilities to his mother’s genetics and influence. Tesla’s progenitors

were from western Serbia, near Montenegro.”

Question Q:
“What were Tesla’s mother’s special abilities?”

Continuous ‘span’ of text as the answer A:
“making home craft tools, mechanical appliances, and the ability to memorize
Serbian epic poems”

 R-Net mainly utilizes RNNs (more specifically, Gated
Recurrent Units (GRN)) to simulate the action of ‘reading’ a
passage of text…

 R-Net utilizes Attention to highlight some part of the text,
under the context of another

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Generalization of Attention Mechanism

54TIES4911 – Lecture 7

Relevant links:
https://arxiv.org/abs/1805.08318
https://paperswithcode.com/method/sagan

CNN with self-attention…

Queries

Keys

Values

+

Residual Connection

Self-attention Module

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

Generalization of Attention Mechanism

55TIES4911 – Lecture 7

Relevant links:
https://arxiv.org/abs/1706.03762
https://www.youtube.com/watch?v=YAgjfMR9R_M
arxiv.org/abs/2012.14913

Transformer block…

07/03/2024

Communication
• process all-at-once
• capture relationships

Computation
• independently
• in parallel

UNIVERSITY OF JYVÄSKYLÄ

56

Transformer
The core idea behind the Transformer model is self-attention — the ability to attend to different
positions of the input sequence to compute a representation of that sequence. Transformer creates
stacks of self-attention layers via Scaled Dot Product Attention and Multi-Head Attention.
https://arxiv.org/abs/1706.03762

TIES4911 – Lecture 7

A transformer model handles variable-sized input using stacks of self-
attention layers instead of RNNs or CNNs. This general architecture has a
number of advantages:
• It makes no assumptions about the temporal/spatial relationships across the

data. This is ideal for processing a set of objects.
• Layer outputs can be calculated in parallel, instead of a series like an RNN.
• Distant items can affect each other's output without passing through many

RNN-steps, or convolution layers.
• It can learn long-range dependencies. This is a challenge in many sequence

tasks.
The downsides of this architecture are:
• For a time-series, the output for a time-step is calculated from the entire

history instead of only the inputs and current hidden-state. This may be less
efficient.

• If the input does have a temporal/spatial relationship, like text, some positional
encoding must be added, or the model will effectively see a bag of words.

Relevant links:
https://www.tensorflow.org/text/tutorials/transformer
https://www.youtube.com/watch?v=S27pHKBEp30 , https://www.youtube.com/watch?v=4Bdc55j80l8
https://www.youtube.com/watch?v=dichIcUZfOw , https://www.youtube.com/watch?v=J-utjBdLCTo
https://www.youtube.com/watch?v=6tzn5-XlhwU&list=PLaJCKi8Nk1hwaMUYxJMiM3jTB2o58A6WY&index=5
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
http://jalammar.github.io/illustrated-transformer/

Transformers provides thousands of pretrained models (e.g. BERT, GPT-2, GPT-3, ELMo, T5,
etc.) to perform tasks on texts such as classification, information extraction, question answering,
summarization, translation, text generation, etc. in 100+ languages. Its aim is to make cutting-edge
NLP easier to use for everyone. https://transformer.huggingface.co/ ,
https://github.com/huggingface/transformers

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

ITKS544 - Lecture 9 5707/03/2024

Transformer

Relevant links:
arxiv.org/abs/2012.14913

Encoder: learns useful representations of input

Decoder: decodes encoded representation and combines
with other input to predict output

Encoder-Only: used for learning representation (e.g. BERT)
Decoder-Only: used for generation tasks (e.g. GPT)
Encoder-Decoder: used for sequence-to-sequence

UNIVERSITY OF JYVÄSKYLÄ

58

OCR
OCR (optical character recognition or optical character reader) is
the electronic or mechanical conversion of images of typed,
handwritten or printed text into machine-encoded text, whether
from a scanned document, a photo of a document, a scene-photo
(for example the text on signs and billboards in a landscape photo)
or from subtitle text superimposed on an image.

TIES4911 – Lecture 7

Text Detection:
• Faster R-CNN, Mask R-CNN, R-FCN, SSD, YOLO, etc.

Text Recognition:
• Convolutional Recurrent Neural Network (CRNN) https://arxiv.org/abs/1507.05717
• EAST (Efficient accurate scene text detector) https://arxiv.org/pdf/1704.03155.pdf
• Transformer based approaches (e.g. TrOCR https://arxiv.org/abs/2109.10282)
• Recurrent Attention Model (RAM) and Deep Recurrent Attention Model (DRAM)
• Attention OCR (Tensorflow)
• Tesseract OCR https://github.com/tesseract-ocr/tesseract
• Variety of online platforms

Keras-OCR: https://keras-ocr.readthedocs.io/en/latest/
https://github.com/faustomorales/keras-ocr

Relevant links:
https://labelyourdata.com/articles/ocr-with-deep-learning/
https://nanonets.com/blog/deep-learning-ocr/
https://medium.com/saarthi-ai/how-to-build-your-own-ocr-a5bb91b622ba
https://nanonets.com/blog/attention-ocr-for-text-recogntion/
https://towardsdatascience.com/a-gentle-introduction-to-ocr-ee1469a201aa
https://www.pyimagesearch.com/2020/08/17/ocr-with-keras-tensorflow-and-deep-learning/
https://keras.io/examples/vision/captcha_ocr/
https://github.com/microsoft/unilm/tree/master/trocr
https://huggingface.co/docs/transformers/model_doc/trocr

07/03/2024

UNIVERSITY OF JYVÄSKYLÄ

RNNs
Implementation Use-Cases…

59

 Language Modeling:
 https://www.tensorflow.org/text/tutorials/text_generation
 https://adventuresinmachinelearning.com/keras-lstm-tutorial/

 Machine Translation:
 https://www.tensorflow.org/text/tutorials/nmt_with_attention
 https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/21_Machine_Translation.ipynb
 https://github.com/tensorflow/nmt/

 Transformer based model:

NLP:
 https://www.tensorflow.org/text/tutorials/transformer
 https://platform.openai.com/docs/guides/fine-tuning
 As an option you may search and study some particular Transformer model with practical examples

Vision (e.g. image classification or object detection / segmentation):
 https://keras.io/examples/vision/image_classification_with_vision_transformer/
 https://keras.io/examples/vision/vivit/

 Audio Recognition:
 https://www.tensorflow.org/tutorials/audio/simple_audio
 https://www.tensorflow.org/tutorials/audio/transfer_learning_audio
 https://www.tensorflow.org/tutorials/audio/music_generation

 Time Series Prediction:
 https://www.tensorflow.org/tutorials/structured_data/time_series
 https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/
 https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
 https://machinelearningmastery.com/multi-step-time-series-forecasting-long-short-term-memory-networks-python/
 https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/23_Time-Series-Prediction.ipynb

 Text Classification and Sentiment Analysis:
 https://www.tensorflow.org/tutorials/text/text_classification_rnn
 https://www.tensorflow.org/tutorials/text/classify_text_with_bert
 https://www.tensorflow.org/tfmodels/nlp/fine_tune_bert
 https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/20_Natural_Language_Processing.ipynb

 Image Captioning:
 https://www.tensorflow.org/tutorials/text/image_captioning
 https://keras.io/examples/vision/image_captioning/
 https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/22_Image_Captioning.ipynb

TIES4911 – Lecture 707/03/2024

UNIVERSITY OF JYVÄSKYLÄ

RNNs

60

Relevant materials…

 A friendly introduction to Recurrent Neural Networks:
 https://www.youtube.com/watch?v=UNmqTiOnRfg
 https://www.youtube.com/watch?v=WCUNPb-5EYI

 Collection of RNN related publications: http://people.idsia.ch/~juergen/rnn.html

 Sequence Modeling: Recurrent and Recursive Nets (Book Chapter): http://www.deeplearningbook.org/contents/rnn.html

 Text handling with TensorFlow: https://www.tensorflow.org/tutorials/load_data/text

 Word Vector Representations (embeddings) :
 https://www.youtube.com/watch?v=ERibwqs9p3
 https://www.youtube.com/watch?v=ASn7ExxLZws
 https://www.youtube.com/watch?v=QyrUentbkvw

 Image Captioning:
 https://blog.paperspace.com/image-captioning-with-tensorflow/
 https://towardsdatascience.com/image-captions-with-attention-in-tensorflow-step-by-step-927dad3569fa

 Dissecting BERT:
 https://medium.com/dissecting-bert
 https://towardsdatascience.com/bert-to-the-rescue-17671379687f
 https://medium.com/swlh/simple-transformers-multi-class-text-classification-with-bert-roberta-xlnet-xlm-and-8b585000ce3a

 Fine-tuning GPT-3:
 https://platform.openai.com/docs/guides/fine-tuning
 https://towardsdatascience.com/unleashing-the-power-of-gpt-how-to-fine-tune-your-model-da35c90766c4

TIES4911 – Lecture 707/03/2024

