
UNIVERSITY OF JYVÄSKYLÄ

Lecture 4: Computer Vision (part 1)
Network Architectures and Transfer Learning

by:

Dr. Oleksiy Khriyenko
IT Faculty

University of Jyväskylä

TIES4911 Deep-Learning for Cognitive Computing for Developers

Spring 2024

UNIVERSITY OF JYVÄSKYLÄ

I am grateful to all the creators/owners of the images that I found from Google and have
used in this presentation.

2

Acknowledgement

15/02/2024 TIES4911 – Lecture 4

UNIVERSITY OF JYVÄSKYLÄ

3

Image Recognition
Deep convolutional neural network can achieve reasonable performance on hard visual

recognition tasks, matching or exceeding human performance in some domains.

Imagenet is a project started by Stanford professor Fei Fei Li. It is a large visual database

designed for use in visual object recognition software research that contains more than 14 M images

from more than 21K different categories. Database organized according to the WordNet hierarchy

(currently only the nouns), in which each node of the hierarchy is depicted by hundreds and

thousands of images (an average of over five hundred images per node).
Since 2010, Imagenet runs ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (http://image-net.org/) - an

annual competition in visual recognition where participants are provided with 1.2 million images belonging to 1000

different classes from Imagenet data-set. Competition no longer hold after 2017.

Relevant links:
https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Detection Competitions:
▪ Pascal VOC (http://host.robots.ox.ac.uk/pascal/VOC/)

project is finished in 2012

▪ COCO (http://cocodataset.org/#home)

▪ ImageNet ILSVRC (http://image-net.org)(2010-2017)

▪ Kaggle (https://www.kaggle.com/competitions)

VOC: 20 classes

COCO: 200 classes

All the projects manage large-scale object detection,

segmentation, and captioning datasets.

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

4

Image Recognition

Relevant links:
https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848

https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8

https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf

http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Successive models constantly continue to

show improvements

(a top-5 error rate):

▪ AlexNet (15.3%, 2012) by Alex Krizhevsky

▪ VGG (7.7%, 2014) by a reasearch group at Oxford

▪ Inception (GoogLeNet) (6.67%, 2014) by

Google

▪ Inception-v2 (4.9%)

▪ ResNet (3.57%, 2015) by Microsoft

▪ Inception-v3 (3.57%, 2015)

▪ Inception-v4(+Residual) (3.08%)

▪ SqueezeNet (~15%) is remarkable for how less

computation does it need (pre-trained model on Imagenet has a

size of less than 5MB)

▪ ResNeXt (3.03%)

▪ SENet (2.25%) 2017

▪ Andrej Karpathy (5.1%) – attempted to compete

against a ConvNet

https://paperswithcode.com/sota/image-classification-on-imagenet

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

5

LeNet

TIES4911 – Lecture 4

Relevant links:
https://ieeexplore.ieee.org/abstract/document/726791

https://machinelearningmastery.com/review-of-architectural-innovations-for-convolutional-neural-networks-for-image-classification/

1998

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

6TIES4911 – Lecture 4

AlexNet

Relevant links:
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

https://machinelearningmastery.com/review-of-architectural-innovations-for-convolutional-neural-networks-for-image-classification/

2012

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

7

VGG VGG 16

TIES4911 – Lecture 4

VGG 19

Deeper Networks with Regular Design… 2015

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

8

GoogLeNet

TIES4911 – Lecture 4

Efficiency…
- aggressively downsamples input to reduce the computation…

- Inception module with different kernel sized in parallel, and 1x1 convolutions

- Global Average Pooling instead of FC layers in the end to reduce amount of

parameters

- Auxiliary classifiers, as a kind of normalization trick to help network to

converge

2015

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

9

Inception v2, v3

Inception was the first architecture which improved results by

design, not by simply going deep!!!

TIES4911 – Lecture 4

Relevant links:
https://www.analyticsvidhya.com/blog/2018/10/understanding-inception-network-from-scratch/?utm_source=blog&utm_medium=top4_pre-

trained_image_classification_models

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

10

ResNet
Revolution of depth by ResNet
Thanks to the discovered Batch Normalization, we may go much deeper!!!

But, on practice, more shallow networks show better results than much deeper

networks…

From 8 layers (AlexNet, 2012), 19 layers (VGG, 2014) and 22 layers (GoogLeNet,

2014) to 152 layers in year 2015.

• Introduces Residual Module (skip or shortcut connection) helps to

learn identity function within deeper networks… Basic block is for

ResNet18 and ResNet34; and bottleneck block for ResNet50, ResNet101 and

ResNet152.

• Also uses the aggressive stem in the beginning, and global average

pooling in the end as GoogLeNet

TIES4911 – Lecture 4

”Basic” ”Bottleneck” ” multiple parallel pathways”

ResNeXt

2016

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

11

Inception v4

A more uniform simplified architecture and more inception modules than Inception-v3

Relevant links:
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

12

Inception - ResNet

Combine Inception and Residual Modules

Inception-ResNet-v1

Inception-ResNet-v2

Relevant links:
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

MobileNets with the depthwise separable convolutions process,

which consists of depthwise convolution and pointwise

convolution. The batch normalization layer and the rectified linear

unit are added at the end of every convolutional layer.

13

Tiny networks (MobileNet, ShuffleNet)

TIES4911 – Lecture 4

Relevant links:
https://arxiv.org/abs/1704.04861

https://www.programmersought.com/article/7227832762/

https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5

These networks have not that high

accuracy, but are computationally

efficient to be used on mobile and

embedded devices…

ShuffleNet also uses the

depthwise convolution,

grouped convolution and

channel shuffle.

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

NASNet

DenseNet

Relevant links:
https://arxiv.org/abs/1608.06993v5

https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a

https://arxiv.org/pdf/1707.07012.pdf

https://sh-tsang.medium.com/review-nasnet-neural-architecture-search-network-image-classification-23139ea0425d

https://towardsdatascience.com/review-senet-squeeze-and-excitation-network-winner-of-ilsvrc-2017-image-classification-a887b98b2883

https://arxiv.org/pdf/1709.01507.pdf

https://towardsdatascience.com/squeeze-and-excitation-networks-9ef5e71eacd7

https://arxiv.org/pdf/1905.11946.pdf

14

And many other in the future…

EfficientNet

TIES4911 – Lecture 4

SENet

Learns relevance of feature maps depending on the content… Extra trainable

module allows rescaling of channels depending on input.

Concatenations with information

from the earlier stages…
Neural Search Architecture (NAS) -

automates network architecture

engineering.…

Applies Stochastic Depth and uses scaling method that

uniformly scales all dimensions of depth/width/resolution

using a compound coefficient..…

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

15

Network Architectures

Relevant links:
https://tariq-hasan.github.io/concepts/computer-vision-cnn-architectures/

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

16

Network Architectures

Relevant links:
https://paperswithcode.com/sota/image-classification-on-imagenet

https://arxiv.org/ftp/arxiv/papers/1901/1901.06032.pdf

https://arxiv.org/pdf/1810.00736.pdf

https://arxiv.org/pdf/1905.11946.pdf

2017

2019

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

17

Relevant links:
https://arxiv.org/ftp/arxiv/papers/1901/1901.06032.pdf

https://arxiv.org/pdf/1810.00736.pdf

https://paperswithcode.com/sota/image-classification-on-imagenet

Network Architectures

Taxonomy and evolutionary

history of Deep CNNs

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

18

Network Architectures

TIES4911 – Lecture 4

Short summary:

• 1x1 filters to reduce number of parameters and add regularization

• Inception layers

• Residual connections

• Learnable architectures

• Rise of deeper models from 5 layers to more than 1000

• However, a smaller net is often sufficient. There is still competition deep vs. wide

layers, and dependence on the amount of training data.

• ImageNet results for classification are typically <5% in most of the latest

submissions. Therefore, to show significant improvement we need another dataset.

• There is a need for new general datasets, as well as for particular specific problem

domains. Some are already generated: MS COCO (http://cocodataset.org), Visual

Genome Dataset (https://visualgenome.org)

• Additional research directions are aimed on improvement of speed and size of

networks on mobile platforms.

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

19

Vision Transformer (ViT)
for Image Classification

Relevant links:
https://arxiv.org/abs/2010.11929

https://arxiv.org/abs/2012.12877v2

TIES4911 – Lecture 4

Data-Efficient Image Transformer (DeiT)
is a type of Vision Transformer for image classification tasks. It is like

“ViT but trained with a procedure (initialization, optimization, data-

augmentation, regularization and distillation) more adapted to a data

starving regime.” The model is trained using a teacher-student

strategy specific to transformers. It relies on a distillation token

ensuring that the student learns from the teacher through attention.

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

Swin Transformer (Swin-T)
Swin Transformer - Hierarchical Vision Transformer using Shifted Windows (Shifted Windows base Self-Attention)

20

Relevant links:
https://arxiv.org/pdf/2103.14030v2.pdf

https://paperswithcode.com/paper/swin-transformer-hierarchical-vision

It is a vision Transformer that capably serves as a general-purpose backbone

for computer vision. Challenges in adapting Transformer from language to

vision arise from differences between the two domains, such as large variations

in the scale of visual entities and the high resolution of pixels in images

compared to words in text. To address these differences, authors propose a

hierarchical Transformer whose representation is computed with Shifted

windows. The shifted windowing scheme brings greater efficiency by limiting

self-attention computation to non-overlapping local windows while also allowing

for cross-window connection.

TIES4911 – Lecture 515/02/2024

UNIVERSITY OF JYVÄSKYLÄ

ConvNeXt and ConvNeXt v2
ConvNeXt is a pure ConvNet model that was proposed in the paper “A ConvNet for the 2020s”. It is constructed entirely from

standard ConvNet modules, and it can be used for image classification, object detection, and segmentation tasks. ConvNeXt is similar

to other ConvNet models in the sense that no new design is implemented, but it has better accuracy, performance, and scalability than

Vision Transformers.

21

Relevant links:
https://arxiv.org/abs/2201.03545v2

https://arxiv.org/abs/2301.00808v1

https://www.tensorflow.org/api_docs/python/tf/keras/applications/convnext

TIES4911 – Lecture 5

ConvNeXt is a pure ConvNet model that

incorporates concepts from Vision Transformers

(VITs) but does not directly use transformers. It

focuses on using depth-wise convolution, Layer

Normalization and the ResNext family of

Convolutional Neural Networks for efficient image

processing, while VIT relies on transformers and self-

attention mechanisms for visual understanding.

ConvNeXt V2 is a purely convolutional architecture

that, after pretraining and fine-tuning, achieved state-

of-the-art performance on ImageNet. ConvNeXt V2

improves upon ConvNeXt, which updated the classic

ResNet.

The Design Journey Of ConvNeXt

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

InceptionNeXt
InceptionNeXt
To speed up ConvNeXt, authors build InceptionNeXt by decomposing the large kernel

depthwise convolution into four parallel branches along the channel dimension (with

Inception style). Thus, InceptionNeXt-T enjoys both ResNet-50’s speed and ConvNeXt-T’s

accuracy.

22

Relevant links:
https://arxiv.org/pdf/2303.16900v1.pdf

TIES4911 – Lecture 515/02/2024

UNIVERSITY OF JYVÄSKYLÄ

23

Image Recognition

Keras Applications - are deep learning models that are made available alongside pre-trained

weights. These models can be used for prediction, feature extraction, and fine-tuning.
(https://keras.io/api/applications/) on the ImageNet validation dataset.

Weights are downloaded automatically when

instantiating a model. They are stored at

~/.keras/models/.

Models for image classification with weights trained on

ImageNet:
▪ Xception

▪ VGG16

▪ VGG19

▪ ResNet50

▪ InceptionV3

▪ InceptionResNetV2

▪ MobileNet

▪ DenseNet

▪ NASNet

▪ EfficientNet

▪ EfficientNetV2

▪ ConvNeXt

The top-1 and top-5 accuracy refers to the model's performance

on the ImageNet validation dataset.

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

24

Image Recognition
Classify ImageNet classes with ResNet50 model…

Import tensorflow as tf

from tf.keras.applications.resnet50 import ResNet50

from tf.keras.preprocessing import image

from tf.keras.applications.resnet50 import preprocess_input, decode_predictions

import numpy as np

model = ResNet50(weights='imagenet')

img_path = 'elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

preds = model.predict(x)

decode the results into a list of tuples (class, description, probability)

(one such list for each sample in the batch)

print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker',

0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]

In case of reading from URL…

…

import cv2

import urllib

…

img_path = 'http://www.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg'

x = urllib.request.urlopen(img_path)

x = np.asarray(bytearray(x.read()), dtype="uint8")

x = cv2.imdecode(x, cv2.IMREAD_COLOR)

x = cv2.resize(x, (224, 224))

x = np.expand_dims(x, axis=0).astype(np.float32)

x = preprocess_input(x)

…

or

…

img_path = 'el_01.jpg'

img_file = drive.CreateFile({'id':’file ID from the sharable link of

the file on your Google Drive'})

img_file.GetContentFile(img_path)

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

…

!pip install -U -q PyDrive ## you will have install for every

colab session

from pydrive.auth import GoogleAuth

from pydrive.drive import GoogleDrive

from google.colab import auth

from oauth2client.client import GoogleCredentials

Authenticate and create the PyDrive client to access gDrive.

auth.authenticate_user()

gauth = GoogleAuth()

gauth.credentials =

GoogleCredentials.get_application_default()

drive = GoogleDrive(gauth)

In case of reading from gDrive in Google Colaboratory…

from google.colab import drive

import os

drive.mount('/content/gdrive')

data_dir = '/content/gdrive/MyDrive/…/'

os.makedirs(data_dir, exist_ok=True)

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

25

Transfer Learning
Been pre-trained based on a large training set, the model (with the weights and parameters of a

network) that is capable to recognize basic features can be further “fine-tuned” for specific task based

on customized dataset.

▪ Using the pre-trained model as a feature extractor, the idea is to train

the model by replacing the last layer of the network with customized

classifier. It is important to freeze (not change) the weights of all the

other layers during gradient descent/optimization.

▪ If task specific dataset is quite different from the dataset used for the

original model, then more high layers suppose to be trained and only a

couple of the low layers will be frozen.

Relevant links:
https://en.wikipedia.org/wiki/Transfer_learning and http://cs231n.github.io/transfer-learning/

https://medium.com/owkin/transfer-learning-and-the-rise-of-collaborative-artificial-intelligence-41f9e2950657

https://arxiv.org/pdf/1411.1792v1.pdf and http://arxiv.org/pdf/1403.6382.pdf and https://arxiv.org/pdf/1310.1531.pdf

https://arxiv.org/pdf/1705.07706.pdf and https://arxiv.org/pdf/1707.09872.pdf

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

26

Image Recognition

model = applications.VGG16(weights = "imagenet",

include_top=False, input_shape = (img_width, img_height, 3))

Freeze the layers which you don't want to train. Here the first 5 layers are

frosen.

for layer in model.layers[:5]:

layer.trainable = False

#Adding custom Layers

x = model.output

x = Flatten()(x)

x = Dense(1024, activation="relu")(x)

x = Dropout(0.5)(x)

x = Dense(1024, activation="relu")(x)

predictions = Dense(2, activation="softmax")(x)

creating the final model

model_final = Model(inputs = model.input, outputs = predictions)

compile the model

model_final.compile(loss = "categorical_crossentropy", optimizer =

optimizers.SGD(learning_rate=0.0001, momentum=0.9),

metrics=["accuracy"])

Import tensorflow as tf

from tf.keras import applications, optimizers

from tf.keras.preprocessing.image import ImageDataGenerator

from tf.keras.models import Sequential, Model, load_model

from tf.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D

from tf.keras import backend as k

from tf.keras.callbacks import ModelCheckpoint, LearningRateScheduler,

TensorBoard, EarlyStopping

import cv2

from io import BytesIO

import numpy as np

import urllib

from PIL import Image

img_width, img_height = 224, 224

train_data_dir = "train"

validation_data_dir = "validation"

nb_train_samples = 120

nb_validation_samples = 40

batch_size = 16

epochs = 20

Transfer Learning…

Build a classifier on top of the pre-trained VGG16 network for two similar classes of

flowers (Daffodil and Galanthus Nivalis) from flower17 dataset. It is a 17 category

flower dataset with 80 images for each class. Due to limited images quantity, we

need to do image data augmentation to abstract all the elements of any species.

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

27

Image Recognition

Save the model according to the conditions

callbacks = [EarlyStopping(monitor='val_accuracy', min_delta=0,

patience=10, verbose=1, mode='auto'),

ModelCheckpoint(os.path.join(data_dir,'DL-L4_02_model.h5’),

monitor='val_loss', save_best_only=True)

]# Fit the new final layers for the model

model_final.fit(

train_generator,

steps_per_epoch = nb_train_samples//batch_size,

epochs = epochs,

validation_data = validation_generator,

validation_steps = nb_validation_samples //batch_size,

callbacks = callbacks)

test

im = cv2.resize(cv2.imread('test/galan.jpg'), (img_width, img_height))

im = np.expand_dims(im, axis=0).astype(np.float32)

im=preprocess_input(im)

print (im.shape)

out = model_final.predict(im)

model_classes=["Daffodil","Galanthus Nivalis"]

print (model_classes[np.argmax(out)])

print (out)

print ("Probability: ", out[0][np.argmax(out)])

Initiate the train and test generators with data Augmentation

train_datagen = ImageDataGenerator(

rescale = 1./255,

horizontal_flip = True,

fill_mode = "nearest",

zoom_range = 0.3,

width_shift_range = 0.3,

height_shift_range=0.3,

rotation_range=30)

test_datagen = ImageDataGenerator(

 rescale = 1./255,

 horizontal_flip = True,

 fill_mode = "nearest",

 zoom_range = 0.3,

 width_shift_range = 0.3,

 height_shift_range=0.3,

 rotation_range=30)

train_generator = train_datagen.flow_from_directory(

train_data_dir,

target_size = (img_height, img_width),

batch_size = batch_size,

class_mode = "categorical")

validation_generator = test_datagen.flow_from_directory(

validation_data_dir,

target_size = (img_height, img_width),

class_mode = "categorical")

Transfer Learning…

(1, 224, 224, 3)

Galanthus Nivalis

[[7.9571405e-38 1.0000000e+00]]

Probability: 1.0

Create the image data augmentation object for the training and

testing dataset (Daffodil and Galanthus Nivalis).

https://s3.amazonaws.com/italia18/transfer_learning_dataset.zip

TIES4911 – Lecture 415/02/2024

https://s3.amazonaws.com/italia18/transfer_learning_dataset.zip

UNIVERSITY OF JYVÄSKYLÄ

28

Image Recognition

def show_result(im):

im = cv2.resize(im, (img_width, img_height))

im = np.expand_dims(im, axis=0).astype(np.float32)

im=preprocess_input(im)

out = model_final.predict(im)

model_classes=["Daffodil","Galanthus Nivalis"]

print (model_classes[np.argmax(out)])

print (out)

print ("Probability: ", out[0][np.argmax(out)])

def run_visualization(url):

try:

resp = urllib.request.urlopen(url)

image = np.asarray(bytearray(resp.read()), dtype="uint8")

orignal_im = cv2.imdecode(image, cv2.IMREAD_COLOR)

except IOError:

print('Cannot retrieve image. Please check url: ' + url)

return

print('running model on image %s...' % url)

show_result(orignal_im)

test

image_url = 'http://www.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg'

run_visualization(image_url)

Transfer Learning…

running model on image

http://www.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg...

Daffodil

[[1. 0.]]

Probability: 1.0

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

29

Transfer Learning & Fine-tune

from tensorflow.keras.applications.inception_v3 import InceptionV3

from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D

create the base pre-trained model

base_model = InceptionV3(weights='imagenet', include_top=False)

add a global spatial average pooling layer

x = base_model.output

x = GlobalAveragePooling2D()(x)

let's add a fully-connected layer

x = Dense(1024, activation='relu')(x)

and a logistic layer -- let's say we have 200 classes

predictions = Dense(200, activation='softmax')(x)

this is the model we will train

model = Model(inputs=base_model.input, outputs=predictions)

first: train only the top layers (which were randomly initialized)

i.e. freeze all convolutional InceptionV3 layers

for layer in base_model.layers:

 layer.trainable = False

compile the model (should be done *after* setting layers to non-

trainable)

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

train the model on the new data for a few epochs

model.fit(...)

TIES4911 – Lecture 4

at this point, the top layers are well trained, and we can start fine

tuning convolutional layers from inception V3. We will freeze the

bottom N layers and train the remaining top layers.

let's visualize layer names and layer indices to see how many layers

we should freeze:

for i, layer in enumerate(base_model.layers):

 print(i, layer.name)

we chose to train the top 2 inception blocks, i.e. we will freeze

the first 249 layers and unfreeze the rest:

for layer in model.layers[:249]:

 layer.trainable = False

for layer in model.layers[249:]:

 layer.trainable = True

we need to recompile the model for these modifications to take

effect we use SGD with a low learning rate

from tensorflow.keras.optimizers import SGD

model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),

 loss='categorical_crossentropy')

we train our model again (this time fine-tuning the top 2 inception

blocks alongside the top Dense layers

model.fit(...)

Relevant links:
https://keras.io/api/applications/

15/02/2024

UNIVERSITY OF JYVÄSKYLÄ

30

Image Recognition

Transfer Learning with Keras…

https://www.tensorflow.org/tutorials/images/transfer_learning

Build a classifier on top of the pre-trained MobileNet network for

recognize dogs and cats.

Transfer Learning with TensorFlow Hub…

https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub

https://tfhub.dev/

Pre-trained model (e.g. MobileNet or Inception) doesn't

know how to tell a tulip from a daisy. We can retrain existing

model based on image collection of 5 different

types/classes of flowers (daisy, sunflowers, dandelion,

tulips and roses)

Relevant links:
https://www.tensorflow.org/guide/keras/transfer_learning

Customization of image classifier via retraining pre-trained model…

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

31

Image Recognition
Wrap classification into Restful service using Flask framework (https://www.fullstackpython.com/flask.html):

Take an initial template for your restful service and

modify it by adding classification functionality from

label_image_ws.py and corresponding handling of HTTP

POST request and response (webapp.py)

import label_image_ws as cl

from flask import Flask, request

from flask_restful import Api, Resource

app = Flask(__name__)

api = Api(app)

class Classification(Resource):

 def post(self):

 try:

 data = request.get_json()

 except:

 return {'errorMessage': 'Wrong request...'}, 500

 if(len(data)>0):

 response, err = cl.classify(data['imageURL'])

 else:

 return {'errorMessage': 'Please, provide a fileName...'}, 500

 if response:

 return response, 200

 else:

 return {'errorMessage': err}, 404

api.add_resource(Classification, '/classify')

if __name__ == "__main__":

 app.run()

Implement classification functionality in

label_image_ws.py

Install Flask ...

Run you web service (webapp.py)

pip install flask

python webapp.py

pip install flask_restful

TIES4911 – Lecture 415/02/2024

UNIVERSITY OF JYVÄSKYLÄ

32

Image Recognition
Wrap classification into Restful service using Flask framework:

After you run the service, system will tell

you the address to access it…

▪ Prepare a HTTP POST request with

corresponding input in the body and

execute it (e.g. http://127.0.0.1:5000/classify)

▪ You may use Postman as a restful service

client

(https://www.getpostman.com/downloads).

TIES4911 – Lecture 415/02/2024

	Slide 1
	Slide 2: Acknowledgement
	Slide 3: Image Recognition
	Slide 4: Image Recognition
	Slide 5: LeNet
	Slide 6: AlexNet
	Slide 7: VGG
	Slide 8: GoogLeNet
	Slide 9: Inception v2, v3
	Slide 10: ResNet
	Slide 11: Inception v4
	Slide 12: Inception - ResNet
	Slide 13: Tiny networks (MobileNet, ShuffleNet)
	Slide 14: And many other in the future…
	Slide 15: Network Architectures
	Slide 16: Network Architectures
	Slide 17: Network Architectures
	Slide 18: Network Architectures
	Slide 19: Vision Transformer (ViT) for Image Classification
	Slide 20: Swin Transformer (Swin-T)
	Slide 21: ConvNeXt and ConvNeXt v2
	Slide 22: InceptionNeXt
	Slide 23: Image Recognition
	Slide 24: Image Recognition
	Slide 25: Transfer Learning
	Slide 26: Image Recognition
	Slide 27: Image Recognition
	Slide 28: Image Recognition
	Slide 29: Transfer Learning & Fine-tune
	Slide 30: Image Recognition
	Slide 31: Image Recognition
	Slide 32: Image Recognition

