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Image Recognition

Deep convolutional neural networlk can achieve reasonable performance on hard visual
recognition tasks, matching or exceeding human performance in some domains.

imagenet is a project started by Stanford professor Fei Fei Li. It is a large visual database
designed for use in visual object recognition software research that contains more than 14 M images
from more than 21K different categories. Database organized according to the WordNet hierarchy
(currently only the nouns), in which each node of the hierarchy is depicted by hundreds and
thousands of images (an average of over five hundred images per node).

Since 2010, Imagenet runs ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (http://image-net.org/) - an

annual competition in visual recognition where participants are provided with 1.2 million images belonging to 1000
different classes from Imagenet data-set. Competition no longer hold after 2017.

Detection Competitions:
Pascal VOC (http://host.robots.ox.ac.uk/pascal/VOC/)
project is finished in 2012
COCO (http://cocodataset.org/#home )

ImageNet ILSVRC (http://image-net.org)(2010-2017)
KaggVe (https:/www.kaggle.com/competitions

=

—a ] -

; ; 2 i 2 All the projects manage large-scale object detection,
|y » D2 P macgl8  segmentation, and captioning datasets.
Relevant links:
https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Successive models constantly continue to
show improvements

(a top-5 error rate).

= AlexNet (15.3%, 2012) by Alex Krizhevsky

= VGG (7.7%, 2014) by a reasearch group at Oxford

Image Recognition

. mit ntainer mot cooter
= Inception (GooglLeNet) (6.67%, 2014) by S e contalner ship|_ motbr scooter
black widow lifeboat go-kart jaguar
Google — = =
- In C eptl On'V2 ( 49% ) starfish drilling platform golfcart Egyptian cat
Classification: ImageNet Challenge top-5 error 22 Top-5 error rate
= ResNet (3.57%, 2015) by Microsoft - 18006
= |[nception-v3 (3.57%, 2015) e
« nception-v4(+Residual) (3.08%) e I
= SqueezeNet (~15%) is remarkable for how less II bl | || e 2ov 0
. . . | H--N--NH_N M T e e e e e e e
Computa'[lon doeS It need (pl’e-tl’alned mOdel on Imagenet has a ILSVRC'IS  IISVRC14  ILSVRC'14  ISVRC13  ILSVRCA2  IISVRCI1  ILSVRC'ID & & & & & & &
. ResNet  GoogleNet VGG AlexNet o 0@’ w@’
size of less than 5MB)
1t Leaderboard O Dataset
u Reswext (3-03%) https://paperswithcode.com/sota/image-classification-on-imagenet
« SENet (2.25%) 2017
Relevant links: C

2016 2017 2018 2019

https://medium.com/@ RaghavPrabhu/cnn-architectures—Ienet—alexnet—vgg—googIecrfé”[—and?fesnéf37081&‘017b8ﬂ8
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5 ™
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8
https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://slazebni.cs.illinois.edu/spring17/lecO1_cnn_architectures.pdf
http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
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LeNet 5

C3:1. maps 16@10x10
C1:feature maps S4:1. maps 16@5x5

6@28x28 S e —
N . layer .
6@14x14 y v-g layer %JTPUT

I
Fullcomlnection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Bl == ] == -

J2=3d=1

Relevant links:
https://ieeexplore.ieee.org/abstract/document/726791
https://machinelearningmastery.com/review-of-architectural-innovations-for-convolutional-neural-networks-for-image-classification/
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AlexNet
2012

dense

'V\‘." — —
pooling 2043 2048

Input size Layer Output size

Layer C H / W filters kernel stride pad C H / W memory (KB) params (k) flop (M)
convl 3 227 64 it 64 56 784 23 73
pooll 64 56 64 27 182 0

conv2 64 27 192 27 547 307

pool2 192 27 192 13 127 0

conv3 192 13 384 13 254

conv4 384 13 256 13 169

convs 256 13 256 13 169

pool5 256 13 256 6 36

flatten 256 6 9216 36

fc6 9216 4096 4096 16

f7 409 4096 4096 16

Relevant links: N S————— ¢

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://machinelearningmastery.com/review-of-architectural-innovations-for-convolutional-neural-networks-for-image-classification/
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VGG 16 VGG

224 x224x3 224 x224x64

Deeper Networks with Regular Design... 2015
Softrmax FC 4096

FC 1000 FC 4008

FC 4096 Poot

FC 4096

7x7x512

1x1x4096 1x1x1000

Pool

|

|

|

|

]

]

=9 convolution+RelLU |
) max pooling i
fully nected+RelLU Pool ]
softmax . ‘ |
]

]

]

]

]

|

J

)

|

]

)

|

3t

FC 1000
FC 4096
FC 4096

Pogl

56x56x256

: '—7]‘ 28x28x512
T < ‘ 14x14x512 TxIx512
|
B ) = ﬂ@ ===

4 I i maxpool | maxpool§: maxpool | maxpool |

| Maapoa | depth=256 depth=512  depth=512 cize=4096

depth=64 depth=128 3x3conv  3x3conv 3x3 conv _.zeFCalo_ I riexiNet b ves
3x3 conv 3x3cony conv3_1 conv4_1 conv5_1 FC2

convi 1 conv2. 1 conv3_2  conv4_2 conv5_2 size=1000

convl 2 conv2 2 conv3_3 convd_3 conv5_3
N com3_4  convd_4 convs_4
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GoogLeNet
2015

(S)IT+TIXT
AUOD

(S)Z+EXE
(SIT+TIXT
(S)T+EXE

JesuoDyidag

(SIT+IXT
(S)T+5X%S

w =
x = "
W g =
+ -
|—-§ =
L= —
n < L
T S

Inception module

Eﬁvcvency...

aggressively downsamples input to reduce the computation...

Inception module with different kernel sized in parallel, and 1x1 convolutions
Global Average Pooling instead of FC layers in the end to reduce amount of
parameters

Auxiliary classifiers, as a kind of normalization trick to help network to
converge
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Inception v2, v3

i
Convolution
AvgPool
MaxPool
Concat

L mcepﬁon was the first architecture which improved results by

8 Softmax

Another view of GoogleNet’s architecture. deSIQn’ not by Slmply gOIng deep!!!

Filter Concat

Filter Concat

Filter Concat

3x3
e Q\ stride 2
v s I 1
S W ]

== | 3x3 | | 3x3 | | 1x1 | 3x3

o s o s stride 1
[ - Y I !

i i
I=====1NI1 lTl [Bed] |59 | Pod

—— ey stride 2

Base

Relevant links:
https://www.analyticsvidhya.com/blog/2018/10/understanding-inception-network-from-scratch/?utm_source=blog&utm_medium=top4_pre-
trained_image_classification_models

15/02/2024 TIES4911 — Lecture 4




UNIVERSITY OF JYVASKYLA

Revolution of depth by ResNef 2016

Thanks to the discovered Batch Normalization, we may go much deeper!!!
But, on practice, more shallow networks show better results than much deeper
networks...

From 8 layers (AlexNet, 2012), 19 layers (VGG, 2014) and 22 layers (GoogLeNet,
2014) to 152 layers in year 2015.

* Introduces Residual Module (skip or shortcut connection) helps to

learn identity function within deeper networks... Basic block is for
ResNetl8 and ResNet34; and bottleneck block for ResNet50, ResNetl01 and
ResNet152.

”Bottleneck”

256-d i 256-d out

ssedn REesNeXt

» Also uses the aggressive stem in the beginning, and global average
pooling in the end as GoogLeNet
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ResNet

34-layer plain

34-layer residual

image

7x7 conv, 64, /2

poal, /2

3x3 conv, 64

313 conv, 64

3x3 conv, 64

¥
3x3 con, 64

3x3 conw, 64

33 cony, 64

3x3 conv, 128, /2

[ aacnv 128 |

[ 3aconv,128 |

[ axaconv, 128 |

[ 3aconv,128 |

[ aaconv,128 |

”multiple parallel pathways” ...

3x3 conv, 128

[ 33conv128 |

[ 3xaconv, 128

[ 3aconv, 128 |

3x3 conw, 256, /2

¥
33 con, 128
[ Mmm,lZ!J
[ 3acmwi1m |
¥
i
x3 conv, 256,
¥

[ 3acn2s6 |

[ 33 conv. 256 |

[ aconv,256 |

¥
[ 33 conv, 256
¥

33 conv, 256

33 conv, 256

33 conv, 256

33 conv, 256

33 conv, 256

33 conv, 256

3x3 conv, 256

¥
33 conv, 256

[ 3adconv,256 |

| 3x3 conv, 256 J

|__3x3 conv, 512, /2

| 3x3 conv, 512,

[ 3acovsi2 |

33 conv, 512

[z |

3x3 conv, 512

[ 33conv512 |

3x3 conw, 512

33 conv, 512

D3 conv, 512
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Inception v4

A more uniform simplified architecture and more inception modules than Inception-v3

Softmax
Dropout (keep 0.8) | ows 15
¥
Avarage Pooling
3 x Inception-C

Reduction-8

7 x Inception-B

Reduction-A
4 x Inception-A
Stem

Input (299x299x3)

Relevant links:
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc
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Combine Inception and Residual Modules

Inception-ResNet-v1 —

Dropout (keep 0.8)
f

Avarage Pooling

5 x Inception-resnet1-C "
Y
Reduction-8
10x W'-
B8
Y

Reduction-A

Input (299x299:3)

Inception-ResNet-v2

Relu activation

x1 Conv
(384 Linear)

1x1 Conv
@2) 3x3 Conv
(32)

t

1x1 Conv
(32)

Relu activation

Relevant links:

3x3 Conv
(256 stride 2 V)
§

3x3 Conv
(192 V)

1x1 Conv
(80)

3x3 MaxPool
(stride 2 V)

3x3 Conv
(64)
¥
3x3 Conv
(32V)

3x3 Conv
(32 stride 2 V)

Input
(299x299x3)

Inception - ResNet

Relu activation

LT\
(

Relu activation

e

.1“‘\«___
1x1 Conv
(1154 Linear)
7x1 Conv
(192)

.

1x1 Conv 1x7 Conv
(192) (160)

N B

1x1 Conv
(128)

| Relu activation

1x1 oam
(1792 Linear)
3x1 Conv
(192)
1

1x1 Conv 1x3 Conv
(192) (192)
4 f

1x1 Conv
(192)

Relu activation

Relu activation

+*

~——
~

1x1 Conv
(2048 Linear)
e ———
3x1 Conv
‘ (256)
R
1x1 Conv 1x3 Conv
(192) (224)
R B
1x1 Conv
(192)

Relu activation

https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc
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Tiny networks (MobileNet, ShuffleNet)

MobileNets with the depthwise separable convolutions process,
which consists of depthwise convolution and pointwise
convolution. The batch normalization layer and the rectified linear
unit are added at the end of every convolutional layer.

@ 5| | 3x3 Depthwise Convolution RSEE LY Depthwise Convolutional Filters Pointwise Convolutional Filters

3
§L E Batch Normalization
=]
e e RelLU
. g 1x1 Pointwise Convolution Depthwise —
£%2 Batch Normalization Convolution Convolution
E E TR
5 G EUTITTEE
a o RelLU T

n T A
+ Depthwise Separable Convolution

These networks have not that high
accuracy, but are computationally
efficient to be used on mobile and
embedded devices...

ShuffleNet also uses the
depthwise  convolution,
grouped convolution and
channel shuffle.

1x1 Conv
BN RelLU

Channel Shuffie

3x3 DWConv - crannel v = chamet . = — o
o tve e 5k 5k 4
— e ™

1x1 GConv

BN RelLU

A

3x3 DWConv

BN RelU

3x3 AVG Pool
(siride =2)

GConv1
’ Feature ‘ ‘\ ,lk_‘: 1
7&” olL GConv2 Y TR v CITIITITT1] m::l
Relevant links: g
https://arxiv.org/abs/1704.04861 @ ®) @ ouput |

https://www.programmersought.com/article/7227832762/
https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5

15/02/2024 TIES4911 — Lecture 4 13




UNIVERSITY OF JYVASKYLA

pensenet And many other in the future...

Concatenations with information Neural Search Architecture (NAS) -
from the earlier stages... automates network architecture

engineering. ... NASNet

Normal Cell Reduction Cell

H' Fycaie ()

EfficientNet

o a
Learns relevance of feature maps depending on the content... Extra trainable
module allows rescaling of channels depending on input.

l

L radzaans
12412x32
NZx12e16
28x28x40

MBConvi, 5x5
y Mxtax12
MEConvE, 5x5
) 1dx14x112
MBConvi, x5
T¥Tx192

y ETx192

| T2l

y 28ZBnaD
| MEBEConve, 3x3 l

MBConv, Sx5
1 282850
+ 28260
1 Adataxtiz

Convixd
MEConv1, 3x3
MBCan_vE, 3x3
MEConve, 3x3
MEConvi, 5x5
MECanvE, 3x3
MBCo_nin I3
MEConve, 3x3
MBConvE, 525
MBConvE, 5x5
MBConvE, 5x5

v
MBConvi, 5x5

. Applies Stochastic Depth and uses scaling method that
Relevant links: uniformly scales all dimensions of depth/width/resolution
httpS//arX|Vorg/abS/160806993V5 using a Compound Coefﬁcient“ .
https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a
https://arxiv.org/pdf/1707.07012.pdf
https://sh-tsang.medium.com/review-nasnet-neural-architecture-search-network-image-classification-23139ea0425d
https://towardsdatascience.com/review-senet-squeeze-and-excitation-network-winner-of-ilsvrc-2017-image-classification-a887b98b2883
https://arxiv.org/pdf/1709.01507.pdf
https://towardsdatascience.com/squeeze-and-excitation-networks-9ef5e7l1leacd?7
https://arxiv.org/pdf/1905.11946.pdf
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Network Architectures

Inception-v3

ResNet-SO‘

ResNet-18
00’

GooglLeNet
ENet

© Bn-NIN

Top-1 accuracy [%]

60 1

BN-AlexNet
55 AlexNet

N 3
P\e*“;\@t“‘ \0‘\ ‘\e ::\e"\’
0%

Relevant links:

ResNet-101
° ResNet-34

Inception-v4

© ResNet-152
VGG-16

35M 65M 95M 125M

155M

0 5

https://tarig-hasan.github.io/concepts/computer-vision-cnn-architectures/
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SE-ResNeXt-101(32x4d)
Inception-ResNet-v2
SE-ResNeXt-50(32x4d) V4

) Xception IPathNet

SE-ResNet- 'i’;-,. esNet-152

SE-ResNet§0,_ Inception-v3 .Es’:"%(?b @ esNet-152
DenseNet-201@) PenseNet-161 et- ResNet-152

@ resnetso @RMCaffe-Reset-101
DenseNet-169

sNeXt-101(64x4d)

[} VGG-19_BN
DualPathNet-68
DenseNet-121
® NASNet-A-Mobile

BN-Incabtion @ Reshet-34

VGG-16_BN

VGG-13_BN

® MobileNet-v2 VGG-11_BN

ResNet-18
[+

MobileNet-v1

@
P
>
[}
o
o |
Q
(8]
©
=
1
&
|_

® ShuffieNet

.GoogLeNel

v,

1M 5M 10M 50M 75M  100M

SqueezeNet-v1.1
‘o SqueezeNet-v1.0

. AlexNet

NASNet-A-Large

150M

10 15
Operations [G-FLOPSs]

Relevant links:

https://paperswithcode.com/sota/image-classification-on-imagenet

https://arxiv.org/ftp/arxiv/ipapers/1901/1901.06032.pdf
https://arxiv.org/pdf/1810.00736.pdf
https://arxiv.org/pdf/1905.11946.pdf
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Network Architectures

2017

Top-5 accuracy [%]

SE-ResNeXt-101(32x4d)
SE-ResNeX{-50(32xdd)
SE-ResNet-{0f) Beeption
SE-ResNet-§0) il &NeXHM(S
DenseNet-201@ DenseNel-161 Net-101
@resnet-50

DualPathNet-68
DenseNet-121

@ NASNet-A-Mobile
@ ResNet-34

enseNet-169
Caffe-ResNet-101

BN-Inception

@ MobileNet-v2 VGG-11_BN

ResNet-18
MobileNet-v1

GooglLeNet
P g

VGG-13 BN

NASNet-A-Large

Inception-ResNet-v2

tion-va 2

et IPathNet-131 SENet-154
et g@mxt-wum«i)

FB-ResNet-152

VGG-16_BN

QShufﬂeNet

SqueezeNet-v1.1
e

SqueezeNet-v1.0

.NexNe(

o0
261

@

-~

)

Imagenet Top 1 Accuracy (%)
- ;
[=+]

PN
“ Xception

-
ResNet-34

EfficientNet-B7

—
AmoebaNg

” e
#” NASNet-A ..-*" SENet

*" ResNeXt-101

Lot
*" Inception-ResNet-v2

2019

oResNet-152

s
-DenseNet-201

L]
ResNet-50

t-C

20 40

60 &0 100 120
Number of Parameters (Millions)

140 160
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Network Architectures

2018

Spata Wil based Channe e -l
paua Depth based || Multi-Path based ! . Feature-Map (Channel,...) el Altention CHN

Exploilation based CNNs CNNs Multi-Connection Exploitation based CNNs Exploitation based based CNNs )
CNNs Attention

CNNs CNNs

: : : ; : L :
Squeeze and Residual Attention -

. . . . 5

LeNet Ilighway Nets Ilighway Ncts WidcResNet Excitation Channel l:’:oostcd Neural Network 2018 :IL‘MFE-SE
o — CNN using TL o =

Competitive Squeeze Convolutional Block

and Excitation Attention Feature Map

Concurrent Squecze Exploitation
and Excitation | Pyvramidal MNet |
g - ¢ i i
VGG Inception-ResNet h:;::f::u“ [ PohMed ]
. l—-{ WideResMNet
GoogleNet ResNext Exploitation
M ulti-Puth 2017 -
(ST apr— 2016
2015

Sk

Diepth Conmeclions
=i [ Highwoy Net_]
2014 Effective Receptive Field =
O S mall iz Filters) [ vae |
Factorization
BotleMeck _]m‘epliun-\."3
S T——
Spatial  Parallelism  Inception

Exploiiation Block
2012

AlexNet ResNet ResNet Pyramidal Net

ZfNet Inception-V3, V4 DenseNet Xception

H
3
A
=%

Visualizaion

Taxonomy and evolutionary
history of Deep CNNSs

ameter
mization

Par:

Early 2004
MM Stagnation

[f _

Spatial
Exploitation

Eaprloitiation

{2006 )
(2007
2010

AldexMet

G
NVIDLA
et

Max Pooling (2006}
L

Imag

Relevant links:
https://arxiv.org/ftp/arxiv/papers/1901/1901.06032.pdf
https://arxiv.org/pdf/1810.00736.pdf
https://paperswithcode.com/sota/image-classification-on-imagenet
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Network Architectures

Short summary:

1x1 filters to reduce number of parameters and add regularization

Inception layers

Residual connections

Learnable architectures

Rise of deeper models from 5 layers to more than 1000

However, a smaller net is often sufficient. There is still competition deep vs. wide
layers, and dependence on the amount of training data.

ImageNet results for classification are typically <5% in most of the latest
submissions. Therefore, to show significant improvement we need another dataset.
There is a need for new general datasets, as well as for particular specific problem
domains. Some are already generated: MS COCO (http://cocodataset.org), Visual
Genome Dataset (https://visualgenome.org)

Additional research directions are aimed on improvement of speed and size of
networks on mobile platforms.
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Transformer Encoder

st - @) 6 ) 8]

# Extra learnable

[class] embedding [ Linear Projection of Flattened Patches

.; ml

300+ million images 1.2 million images (ImageNet)

SOTA on ImageNet competitive on ImageNet

Data-Efficient Image Transformer (DeiT)

is a type of Vision Transformer for image classification tasks. It is like
“ViT but trained with a procedure (initialization, optimization, data-
augmentation, regularization and distillation) more adapted to a data
starving regime.” The model is trained using a teacher-student
strategy specific to transformers. It relies on a distillation token
ensuring that the student learns from the teacher through attention.

Relevant links:
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2012.12877v2
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self-attention

\
[
\
\
o
{eoooooooos}

class
token

patch distillation
tokens token

Lecture 4

= Vision Transformer (ViT)

for Image Classification

How do we "label" positions?
Hand-crafted position embeddings:

PE(pos, 2i) = sin(m)

PE(pos,2i+ 1) = cos(m?ﬁ)

Alternative (used in ViT): learn
the embeddings from scratch

._HD_EiT- BR1384

-

T~ gDeiT-B
—
s
s
* .
S e DeiT-52

o]
i)

EfficientNet
= VT
—4— QOurs
—4— Ours?

top-1 accuracy (%)
(1]
(=]

VIT-B

~J
o]

.ViT—L BO

50 100 200 500 1000 2500
images/s
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Swin Transformer (Swin-T)

Swin Transformer - Hierarchical Vision Transformer using Shifted Windows (Shifted Windows base Self-Attention)

segmentation
classification  detection ...
%

It is a vision Transformer that capably serves as a general-purpose backbone
for computer vision. Challenges in adapting Transformer from language to
vision arise from differences between the two domains, such as large variations
in the scale of visual entities and the high resolution of pixels in images
compared to words in text. To address these differences, authors propose a
hierarchical Transformer whose representation is computed with Shifted
windows. The shifted windowing scheme brings greater efficiency by limiting
self-attention computation to non-overlapping local windows while also allowing

for cross-window connection.

Layer |

HxW=x3

Images

Patch Partition

(a) Architecture

Figure 3. (a) The architecture of a Swin Transformer (Swin-T): (b) two successive Swin Transformer Blocks (notation presented with
Eqg. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Relevant links:
https://arxiv.org/pdf/2103.14030v2.pdf
https://paperswithcode.com/paper/swin-transformer-hierarchical-vision

7

S

A
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(a) Swin Transformer (ours)

Lo e ey 1|
Z7 7

A local window o
perform self-attention
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Patch Merging
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ConvNeXt and ConvNeXt v2

COV’NNGX’!‘ is a pure ConvNet model that was proposed in the paper “A ConvNet for the 2020s”. It is constructed entirely from

standard ConvNet modules, and it can be used for image classification, object detection, and segmentation tasks. ConvNeXt is similar
to other ConvNet models in the sense that no new design is implemented, but it has better accuracy, performance, and scalability than
Vision Transformers.

ConvNeXt is a pure ConvNet model that ImageNet-1K Acc.
incorporates concepts from Vision Transformers ResNet-50/200 [JEX a5 90
(VITs) but does not directly use transformers. It
focuses on using depth-wise convolution, Layer Macml: stage ratio e
. . . 2 onviNe,
Normalization ~and the ResNext family of = Desion | . rie-cem 44 o Swin Transformer
. . . (2021) ConvNeXt
Convolutional Neural Networks for efficient image . 84 s i Transfomer
processing, while VIT relies on transformers and self- depin conv g <2 (2020)

X . K R ResNeXt 82 ® ViT
attention mechanisms for visual understanding. width 1 ; 53 (2020)

88

ResNet
Inverted . . y (2015)
o Bottleneck inverting dims .6 4 .

#l
B e - —move 1d. conv
f Depthwise Pointwise

kemelsz. - 5 ImageNet-1K Trained ImageNet-22K Pre-trained

kemel sz. » 7 o

— RelLU—-GELU

e

fewer activations

e

Micro
Design fewer norms

O e Sh O

BN = LN

ConvNeXt V2 is a purely convolutional architecture T —
that, after pretraining and fine-tuning, achieved state- ConvNeXt-T/B
of-the-art performance on ImageNet. ConvNeXt V2

improves upon ConvNeXt, which updated the classic ! 5 - ' Cormeit W1 Sup

Suasim T 813 % 45 37M ConviNeX1 V2 Sel-Sup
ResNet. Swin-T/B ConvHeXt V1 Selt-Sup

ImageNet Top-1 Accuracy (%)

Relevant links: ng??g:%o) 78 740 Afto Femto Pico Mano Tiny Base Large Huge

https://arxiv.org/abs/2201.03545v2 Figure 1. ConvNeXt V2 model scaling. The ConvNeXt V2
https://arxiv.org/abs/2301.00808vl model, which has been pre-trained using our fully convolutional
https://www.tensorflow.org/api_docs/python/tf/keras/applications/convnext masked autoencoder ramewark, performs significantly betier than

the previous version across a wide range of model sizes.
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InceptionNeXt
InceptionNeXt e P

To speed up ConvNeXt, authors build InceptionNeXt by decomposing the large kernel A
depthwise convolution into four parallel branches along the channel dimension (with

Inception style). Thus, InceptionNeXt-T enjoys both ResNet-50’s speed and ConvNeXt-T’s
accuracy.

w
=]
=

FLOPs (CHW)
-
=3
g

=
=

9
Kernel size

Figure 3: Comparison of FLOPs between depthwise con-
volution and Inception depthwise convolution. Inception
depthwise convolution is much more efficient than depth-
wise convolution as kernel size increases.

Inception
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1.6x |speedup @)

]
M
in

@
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] GonvNe)(‘t—Tfk?O ConviNeXtHkS

O ConvNeXt-TH3

O swin-T

MetaNeXt InceptionNeXt
block block

ImageNet Top-1 Accuracy (%)
[

Reshet50 @

Figure 2: Block illustration of MetaFormer, MetaNext, ConvNeXt and InceptionNeXt. Similar to MetaFormer block P 700 800 a00 1000

[74]. MetaNeXt is a general block abstracted from ConvNeXt [%]. MetaNeXt can be regarded as a simpler version obtained Training throughput (image/s)

from MetaFormer by merging two residual sub-blocks into one. It is worth noting that the token mixer used in MetaNeXt Fi ) ) .
. . . . . e . . igure 1: Trade-off between accuracy and training

cannot bv.'t too comple:j; (e.g. Sclf—f-.ltlﬁl'lllon [6 -I]) or it may fall.m. train tf)convcrge. By specifying lh? token mixer as depthwise throughput. All models are trained under the DeiT train-

convolution or Inception depthwise convolution, the model is instantiated as ConvNeXt or InceptionNeXt block. Compared ing hyperparameters [61, 37, 38, 69]. The training through-

with ConvNeXt, InceptionNeXt is more efficient because it decomposes expensive large-kernel depthwise convolution into put is measured on an A100 GPU with batch size of 128.

four efficient parallel branches. ConvNeXt-T/kn means variants with depthwise convolu-
: . tion kernel size of n x n. InceptionNeXt-T enjoys both
Relevant links: nxmn P joy

. ResNet-50"s speed and ConvNeXt-T"s accuracy.
https://arxiv.org/pdf/2303.16900v1.pdf
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Image Recognition

Keras Applications - are deep learning models that are made available alongside pre-trained

weights. These models can be used for prediction, feature extraction, and fine-tuning.
(https://keras.io/api/applications/) on the ImageNet validation dataset.

Model Top-1 Accuracy Top-5 Accuracy Parameters

Xception 0.790 22,910,480

Weights are downloaded automatically when [vseis 0713 128,357,544

instantiating a model. They are stored at |vesi 0713 143,667,240

~/ keras/models/. ResNets0 0749 25,636,712

ResMet101 0.764 44,707,176

ResMet152 0.768 60,419,944

Models for image classification with weights trained on
ImageNet:

ResMet50V2 0.760 25,613,800

ResMet101V2 0772 44,675,560

Xception
VGG16

ResMet152V2 0.780 60,380,648

InceptionV3 0.779 23,851,784

VGG19
ResNet50

InceptionResNetv2 0.803 55,873,738

EfficientMetV2B0 29 78.7% | MobileNet 0.704 4,253,864

InceptionV3

EfficientNetV2B1 34 79.8% | MobileNetv2 0713 3,535,984

InceptionResNetV2

i EfficientNety 252 a2 80.5% | DenseNet121 0.750 5,062,500
MobileNet icientie

DenSGNet EfficientNety2E3 50 22,09 | DenseMet169 0.762 14,307,880

NASNet EfficientNetv2s 88 3.0y | DenseNet201 0.773 20,242,984

EfficientNet EfficientNetV2M 220 g5.3y | NASNetMobile 0.744 5,326,716

EfficientNetV2 EfficientNetval 479 g5.7y | MASNetlarge 0.823 B2949.818

EfficientMet80 - - 5,330,571
ConvNeXt ConvNeXtTiny 109.42 81.3%

EfficientNetB1 - - 7,856,239
ConvNeXtSmall 192,29 82.39

EfficientMNetB2 - - 9,177,569

ConviNeXiBase 338.58 85.39%
EfficientNetB3 - - 12,320,535

ConvNextLarge 755.07 86.39
EfficienthetB4 - - 10,466,823

ConvMNeXt¥Large 1310 86,79
EfficientMNetB5 - - 30,562,527

The top-1 and top-5 accuracy refers to the model's performance EfficientNetB6 - - 43,265,143

on the ImageNet validation dataset. EfficientNats? - - 66,658,687
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Classify ImageNet classes with ResNet50 model...

Import tensorflow as tf
from tf.keras.applications.resnet50 import ResNet50
from tf.keras.preprocessing import image

from tf.keras.applications.resnet50 import preprocess_input, decode_predictions

import numpy as np

model = ResNet50(weights='imagenet’)

img_path = 'elephant.jpg’

img = image.load_img(img_path, target_size=(224, 224))

X = image.img_to_array(img)

X = np.expand_dims(x, axis=0)

X = preprocess_input(x)

preds = model.predict(x)

# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)

print(‘Predicted:', decode_predictions(preds, top=3)[0])

# Predicted: [(u'n02504013', u'lndian_elephant’, 0.82658225), (u'n01871265', u'tusker’,

0.1122357), (u'n02504458', u'African_elephant’, 0.061040461)]

In case of reading from URL...

import cv2
import urllib

img_path = 'http://www.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg’
x = urllib.request.urlopen(img_path)

X = np.asarray(bytearray(x.read()), dtype="uint8")

X = cv2.imdecode(X, cv2.IMREAD_COLOR)

X = cv2.resize(X, (224, 224))

x = np.expand_dims(x, axis=0).astype(np.float32)

X = preprocess_input(x)

15/02/2024

Image Recognition

In case of reading from gDrive in Google Colaboratory...

from google.colab import drive
import 0s

drive.mount(‘/content/gdrive")
data_dir = '/content/gdrive/MyDrive/.../"
os.makedirs(data_dir, exist_ok=True)

Ipip install -U -q PyDrive ## you will have install for every
colab session

from pydrive.auth import GoogleAuth

from pydrive.drive import GoogleDrive

from google.colab import auth

from oauth2client.client import GoogleCredentials

# Authenticate and create the PyDrive client to access gDrive.
auth.authenticate _user()

gauth = GoogleAuth()

gauth.credentials =
GoogleCredentials.get_application_default()

drive = GoogleDrive(gauth)

img_path ="'el_01.jpg’
img_file = drive.CreateFile({'id"’
b
img_file.GetContentFile(img_path)
img = image.load_img(img_path, target_size=(224, 224))
X = image.img_to_array(img)
X = np.expand_dims(x, axis=0)
X = preprocess_input(x)
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Transfer Learning

Been pre-trained based on a large training set, the model (with the weights and parameters of a
network) that is capable to recognize basic features can be further “fine-tuned” for specific task based
on customized dataset.

SEET  NOES -
N

BRONA.EEE .
dRLNT=Inan

ImageNet Your data

N Y

TRAINING L.~ FINE TUNING

Random neural Neural network Trained neural

network « pre-trained » network
on ImageNet

Using the pre-trained model as a feature extractor, the idea is to train

the model by replacing the last layer of the network with customized

classifier. It is important to freeze (not change) the weights of all the

other layers during gradient descent/optimization.

If task specific dataset is quite different from the dataset used for the Transter " .
original model, then more high layers suppose to be trained and only a Amenwefg w
couple of the low layers will be frozen. i

Relevant links: y! W
https://en.wikipedia.org/wiki/Transfer_learning and http:/cs231n.github.io/transfer-learning/ ——
https://medium.com/owkin/transfer-learning-and-the-rise-of-collaborative-artificial-intelligence-41f9e2950657
https://arxiv.org/pdf/1411.1792v1.pdf and http://arxiv.org/pdf/1403.6382.pdf and https://arxiv.org/pdf/1310.1531.pdf
https://arxiv.org/pdf/1705.07706.pdf and https://arxiv.org/pdf/1707.09872.pdf
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Transfer Learning...

Image Recognition

Build a classifier on top of the pre-trained VGG16 network for two similar classes of
flowers (Daffodil and Galanthus Nivalis) from flowerl7 dataset. It is a 17 category
flower dataset with 80 images for each class. Due to limited images quantity, we
need to do image data augmentation to abstract all the elements of any species.

Import tensorflow as tf

from tf.keras import applications, optimizers

from tf.keras.preprocessing.image import ImageDataGenerator

from tf.keras.models import Sequential, Model, load_model

from tf.keras.layers import Dropout, Flatten, Dense,
GlobalAveragePooling2D

from tf.keras import backend as k

from tf.keras.callbacks import ModelCheckpoint, LearningRateScheduler,

TensorBoard, EarlyStopping

import cv2

from io import Bytes|O

import numpy as np

import urllib

from PIL import Image

img_width, img_height = 224, 224
train_data_dir = "train"
validation_data_dir = "validation"
nb_train_samples = 120
nb_validation_samples = 40
batch_size = 16

epochs = 20

15/02/2024

model = applications.VGG16(weights = "imagenet",
include_top=False, input_shape = (img_width, img_height, 3))

# Freeze the layers which you don't want to train. Here the first 5 layers are
frosen.

for layer in model.layers[:5]:
layer.trainable = False

#Adding custom Layers

X = model.output

x = Flatten()(x)

x = Dense(1024, activation="relu")(x)

x = Dropout(0.5)(x)

x = Dense(1024, activation="relu")(x)
predictions = Dense(2, activation="softmax")(x)

# creating the final model
model_final = Model(inputs = model.input, outputs = predictions)

# compile the model

model_final.compile(loss = "categorical_crossentropy”, optimizer =
optimizers.SGD(learning_rate=0.0001, momentum=0.9),
metrics=["accuracy"])
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Transfer Learning...

Create the image data augmentation object for the training and
testing dataset (Daffodii and  Galanthus Nivalis).
https://s3.amazonaws.com/italial8/transfer_learning dataset.zip

# Initiate the train and test generators with data Augmentation

train_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.3,
width_shift_range = 0.3,
height_shift_range=0.3,
rotation_range=30)

test_datagen = ImageDataGenerator(
rescale = 1./255,
horizontal_flip = True,
fil_mode = "nearest",
zoom_range = 0.3,
width_shift_range = 0.3,
height_shift_range=0.3,
rotation_range=30)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size = (img_height, img_width),
batch_size = batch_size,
class_mode = "categorical")

validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size = (img_height, img_width),
class_mode = "categorical")

15/02/2024
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# Save the model according to the conditions

callbacks = [ EarlyStopping(monitor="val_accuracy', min_delta=0,
patience=10, verbose=1, mode='auto’),

ModelCheckpoint(os.path.join(data_dir,'DL-L4_02_model.h5’),

monitor="val_loss', save_best_only=True)

J# Fit the new final layers for the model

model_final.fit(
train_generator,
steps_per_epoch = nb_train_samples//batch_size,
epochs = epochs,
validation_data = validation_generator,
validation_steps = nb_validation_samples //batch_size,
callbacks = callbacks)

# test

im = cv2.resize(cv2.imread('test/galan.jpg’), (img_width, img_height))

im = np.expand_dims(im, axis=0).astype(np.float32)

im=preprocess_input(im)

print (im.shape)

out = model_final.predict(im)

model_classes=["Daffodil","Galanthus Nivalis"]

print (model_classes[np.argmax(out)])

print (out)

print ("Probability: ", out[0][np.argmax(out)])

(1, 224, 224, 3)

Galanthus Nivalis
[[7.9571405e-38 1.0000000e+00]]
Probability: 1.0
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Transfer Learning...

def show_result(im):
im = cv2.resize(im, (img_width, img_height))
im = np.expand_dims(im, axis=0).astype(np.float32)
im=preprocess_input(im)
out = model_final.predict(im)
model_classes=["Daffodil","Galanthus Nivalis"]
print (model_classes[np.argmax(out)])
print (out)
print ("Probability: ", out[O][np.argmax(out)])

def run_visualization(url):
try:
resp = urllib.request.urlopen(url)
image = np.asarray(bytearray(resp.read()), dtype="uint8")
orignal_im = cv2.imdecode(image, cv2.IMREAD_COLOR)
except IOError:
print('Cannot retrieve image. Please check url: ' + url)
return
print(‘'running model on image %s...' % url)
show_result(orignal_im)

# test

image_url = 'http://www.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg'
run_visualization(image_url)
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— 3
running model on image

http://mww.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg...
Daffodil

[[1.0.]]
Probability: 1.0
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Transfer Learning & Fine-tune

from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D

# create the base pre-trained
base _model = InceptionV3(weights='imagenet', include_top=False)

# add a global spatial average pooling layer

X = base_model.output

X = GlobalAveragePooling2D()(x)

# let's add a fully-connected layer

x = Dense(1024, activation="relu’)(x)

# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax"')(x)

# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)

# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:

layer.trainable = False

# compile the model (should be done *after* setting layers to non-
trainable)
model.compile(optimizer="rmsprop’, loss='categorical_crossentropy')

# train the model on the new data for a few epochs
model.fit(...)

Relevant links:
https://keras.io/api/applications/

15/02/2024
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# at this point, the top layers are well trained, and we can start fine
# tuning convolutional layers from inception V3. We will freeze the
# bottom N layers and train the remaining top layers.

# let's visualize layer names and layer indices to see how many layers
# we should freeze:
for i, layer in enumerate(base_model.layers):

print(i, layer.name)

# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 249 layers and unfreeze the rest:
for layer in model.layers[:249]:
layer.trainable = False
for layer in model.layers[249:]:
layer.trainable = True

# we need to recompile the model for these modifications to take

# effect we use SGD with a low learning rate

from tensorflow.keras.optimizers import SGD

model.compile(optimizer=SGD(Ir=0.0001, momentum=0.9),
loss="categorical_crossentropy')

# we train our model again (this time fine-tuning the top 2 inception

# blocks alongside the top Dense layers
model.fit(...)
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Image Recognition

Customization of image classifier via retraining pre-trained model...

Transfer Learning with TensorFlow Hub...

https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub
https://tthub.dev/

Pre-trained model (e.g. MobileNet or Inception) doesn't
know how to tell a tulip from a daisy. We can retrain existing
model based on image collection of 5 different
types/classes of flowers (daisy, sunflowers, dandelion,
tulips and roses)

Transfer Learning with Keras...

https://www.tensorflow.org/tutorials/images/transfer_learning

Build a classifier on top of the pre-trained MobileNet network for
recognize dogs and cats.

Relevant links:
https://www.tensorflow.org/guide/keras/transfer_learning
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Image Recognition

Wrap classification into Restful service using Flask framework (https:/imww.fullstackpython.com/flask.html):

Take an initial template for your restful service and Implement classification functionality
modify it by adding classification functionality from label image ws.py
label_image_ws.py and corresponding handling of HTTP

POST request and response (webapp.py) Install Flask ...

import label_image_ws as cl LD (S i
from flask import Flask, request A B
from flask_restful import Api, Resource pip install flask_restrul

app = Flask(__name_ )
api = Api(app) Run you web service (webapp.py)

class Classification(Resource): python webapp.py
def post(self):
try:
data = request.get_json()
except:
return {'errorMessage": 'Wrong request..."}, 500
if(len(data)>0):
response, err = cl.classify(data[imageURL')
else:
return {'errorMessage': 'Please, provide a fileName..."}, 500
if response:
return response, 200
else:
return {'errorMessage': err}, 404

api.add_resource(Classification, ‘/classify’)

if _name_ ==" main_ "
app.run()
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Image Recognition

Wrap classification into Restful service using Flask framework:

After you run the service, system will tell
you the address to access it... Q Ssareh Postman % S O

“ hoe PUT h. @ T h. @ CET h. @ GET h. @ GET h. GE [ ] > T oo Mo Environment ~

= Prepare a HTTP POST request with
Correspondlng |nput |n the body and hitp://127.0.0.1:5000/classify B save ~
execute it (e.g. http://127.0.0.1:5000/classify) 7
You may use Postman as a restful service Ty m

Cllent Params Authorization Headers (8) Body @ Pre-request Seript Tests Settings Cookies

(httpS://WWW_getpOStman_Com/dOWnloadS)_ none form-data x-www-form-urlencoded @ raw binary GraphQL JSON ~ Beautify

1 H"imageURL":"http://www.helpmykidlearn.ie/images/uploads/daffodil_larger.jpg"}§

Body Cookies Headers (4) Test Results -ﬁﬁ Status: 200 OK Time: 2.64 = Size: 243 B Save Response

Pretty Raw Preview Wisualize JSON  ~ ==
[
": "Daffodil”,

Wy owg ge

"label”: "Galanthus Nivalis",
"score”: "5.6282765e-28"

I R - R S

[

= Bootcamp [ Runner [ Trash [H @&
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