
UNIVERSITY OF JYVÄSKYLÄ

Lecture 3: AutoEncoders and
Convolutional Neural Networks (CNN)

by:
Dr. Oleksiy Khriyenko

IT Faculty
University of Jyväskylä

TIES4911 Deep-Learning for Cognitive Computing for Developers
Spring 2024

UNIVERSITY OF JYVÄSKYLÄ

I am grateful to all the creators/owners of the images that I found from Google and have
used in this presentation.

2

Acknowledgement

01/02/2024 TIES4911 – Lecture 3

UNIVERSITY OF JYVÄSKYLÄ

3

Deep Learning

 Feature Extraction
 Unsupervised Learning
 Pattern Recognition

UNLABELED data

use Unsupervised Learning (extraction of the patterns
from a set of unlabeled data):

o Restricted Boltzmann Machine (RBM)
o Autoencoders

 Supervised Learning
LABELED data

use Supervised Learning to build predictors, classifiers,
generators, etc. Depending on application use:

o Multilayer Perceptrons and Deep Belief Networks for regression
and classification tasks.

o Convolutional Net (CNN) and Transformers for image and video
processing (classification, annotation, generation, etc.)

o CNN for object detection/recognition.
o Recurrent Neural Net (RNN) and Transformers for sequences or

time series analysis including speech recognition/generation and
language model-based NLP tasks such as sentiment analysis,
parsing, named entity recognition, etc.

A visual and intuitive understanding of deep learning:
https://www.youtube.com/watch?v=Oqm9vsf_hvU

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

4

Autoencoders

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

5

Autoencoders in Deep Learning
Data compression and Dimensionality reduction help
us to increase the performance by converting our data into a
smaller representation that we can recreate to a degree of quality.

Relevant links:
https://www.youtube.com/watch?v=nTt_ajul8NY
http://www.deeplearningbook.org/contents/autoencoders.html
https://stats.stackexchange.com/questions/190148/building-an-autoencoder-in-tensorflow-to-surpass-pca

Autoencoders outperform linear
dimensionality reduction approaches (e.g.
Principle Component Analysis (PCA))
applying non-linear transformations using
multiple layers and non-linear activation
functions…

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

6

Autoencoders in Deep Learning

Relevant links:
https://www.youtube.com/watch?v=nTt_ajul8NY
http://www.deeplearningbook.org/contents/autoencoders.html

Autoencoders are an important
family of neural networks that are designed
to recognize inherent patterns in data and
sort of encode their own structure.
Autoencoder is a neural net that takes a set
of typically unlabeled inputs, and after
encoding them, tries to reconstruct them as
accurately as possible. As a result, the net
decides which of the data features are the
most important, essentially acting as a
feature extraction engine.

Autoencoders are typically very shallow, and are usually comprised of an input layer, an output
layer and a hidden layer. However, there are deep autoencoders that are extremely useful tools for
dimensionality reduction.

Autoencoder training parameters:

• Code size – size of compressed data (number of nodes in the middle layer)

• Number of Layers – could be as deep as you wish

• Loss Function – mean square error or binary cross entropy (if the input values in the range [0,1])

• Number of Nodes per Layers – usually layers structure is symmetric for encoder and decoder, and number of
nodes decrease the “code” (compressed data)

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

7

Deep Learning

Deep Belief Net (DBN) could be considered as a stack (a combination) of several
RBMs that detect patterns based on unlabeled data and need relatively small amount of
labeled data to organize them for classification purpose.

Each RBM layer learns the entire input.
After this initial training, the RBMs have
created a model that can detect inherent
patterns in the data. To finish training, we
need to introduce labels to the patterns and
fine-tune the net with supervised learning.
 DBN only needs a small labelled data set, which is important for real-world applications.
 the training process can also be completed in a reasonable amount of time through the use of GPUs.
 the resulting net will be very accurate compared to a shallow net

Restricted Boltzmann Machine (RBM) (is a very
popular example of an autoencoder) allows automatically
find patterns in data by reconstructing the input. It makes
decisions about which input features are important and
how they should be combined to form patterns. An RBM
is an example of an autoencoder with only two layers.

Relevant links:
https://www.edureka.co/blog/restricted-boltzmann-machine-tutorial/
https://medium.com/@batuhanyilmaz1999/detailed-explanation-of-deep-belief-neural-networks-dbn-with-implementation-in-python-and-45353c82922d

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

8

Autoencoders in Deep Learning

Loss function (usually consists of two terms: one
encourage the model to be sensitive to the inputs
(reconstruction loss), another one discourages
memorization/overfitting (added regularizer).

Relevant links:
https://www.jeremyjordan.me/autoencoders/
https://www.youtube.com/watch?v=xTU79Zs4XKY
https://www.youtube.com/watch?v=EehRcPo1M-Q
https://keras.io/api/layers/regularizers/

For binary inputs calculate distance as cross-entropy (sum of Bernoulli
cross-entropies):

For real-values inputs use a linear activation function at the output and
calculate distance as sum of squared differences (squared Euclidian
distance):

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

9

Autoencoders in Deep Learning

Relevant links:
https://www.jeremyjordan.me/autoencoders/
https://medium.com/aimonks/contractive-autoencoders-an-insight-into-enhanced-feature-learning-d3d3bd103d88

Sparse autoencoders – is an approach towards regularization via
regularization of the activations, not the weights of a network. They offer an
alternative method for introducing an information bottleneck without requiring a
reduction in the number of nodes at the hidden layers. Here loss function
supposed to penalize activations within a layer.

Contractive autoencoders add a penalty to the backpropagation of the
autoencoder preventing it from cheating. Here we explicitly encouraging the
model to learn an encoding in which similar inputs have similar encodings.
Denoising autoencoders make the reconstruction function (ie. decoder) resist
small but finite-sized perturbations of the input, while contractive autoencoders
make the feature extraction function (ie. encoder) resist infinitesimal
perturbations of the input. Jacobian of encoder added to loss function prevent
the encoder from copying the input…

Autoencoders learn how to compress the data based on attributes (ie.
correlations between the input feature vector) discovered from data during
training, these models are typically only capable of reconstructing data similar
to the class of observations of which the model observed during training.

vs

Undercomplete Overcomplete Overcomplete Hidden Layers – a concept in which
autoencoders may recognize more features, having a hidden
layer that is equal to the number of inputs nodes or greater.
However, it might bring a huge problem when trained and
make it useless…
Both types of autoencoders can be shallow or deep...

Denoising autoencoders – is an approach towards developing a
generalizable model by slightly corrupting the input data but still maintaining
the uncorrupted data as a target output.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

10

Autoencoders Use-cases

Relevant links:
https://www.edureka.co/blog/autoencoders-tutorial/

 Data compression and dimensionality reduction
 Image reconstruction
 Image coloring
 Feature variation and Denoising
 Generating higher resolution images
 Image search and information retrieval
 Anomaly detection
 …

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

Relevant links:
https://www.tensorflow.org/tutorials/generative/autoencoder

read dataset
(x_train, _), (x_test, _) = mnist.load_data()
normalize all values between 0 and 1
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
#fit autoencoder
autoencoder.fit(x_train, x_train, epochs=10, shuffle=True,

validation_data=(x_test, x_test))
encode and decode some digits, taking them from the *test* set
encoded_imgs = autoencoder.encoder(x_test).numpy()
decoded_imgs = autoencoder.decoder(encoded_imgs).numpy()
visualise the results
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):

display original
ax = plt.subplot(3, n, i + 1)
plt.imshow(x_test[i])
plt.gray()
display latent code
ax = plt.subplot(3, n, i + 1 + n)
plt.imshow(encoded_imgs[i].reshape(8, 8))
plt.gray()
display reconstruction
ax = plt.subplot(3, n, i + 1 + 2*n)
plt.imshow(decoded_imgs[i])
plt.gray()

plt.show()

11

Autoencoders

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, losses
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Model
size of encoded representations
latent_dim = 64# compression (vs. the input is 784)
define autoencoder class
class Autoencoder(Model):

def __init__(self, latent_dim):
super(Autoencoder, self).__init__()
self.latent_dim = latent_dim
model that maps an input to its latent/encoded representation
self.encoder = tf.keras.Sequential([

layers.Flatten(),
layers.Dense(latent_dim, activation='relu'),])

model that maps an encoded representation to reconstructed
self.decoder = tf.keras.Sequential([

layers.Dense(784, activation='sigmoid'),
layers.Reshape((28, 28))])

def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded

model that maps an input to its reconstruction
autoencoder = Autoencoder(latent_dim)
configure the model
autoencoder.compile(optimizer='adam’,

loss=losses.MeanSquaredError())

Reconstruction on MNIST dataset…

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

Relevant links:
https://blog.keras.io/building-autoencoders-in-keras.html

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
#fit autoencoder
autoencoder.fit(x_train, x_train, epochs=50, batch_size=256,
shuffle=True, validation_data=(x_test, x_test))
encode and decode some digits, taking them from the *test* set
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
visualise the results
n = 20 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):

display original
ax = plt.subplot(3, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
display code
ax = plt.subplot(3, n, i + 1 + n)
plt.imshow(encoded_imgs[i].reshape(8, 4))
plt.gray()
display reconstruction
ax = plt.subplot(3, n, i + 1 + 2*n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()

plt.show()

12

Autoencoders

import numpy as np
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
import matplotlib.pyplot as plt
size of encoded representations
encoding_dim = 32 # compression (vs. the input is 784)
input placeholder
input_img = Input(shape=(784,))
encoded representation of the input
encoded = Dense(encoding_dim, activation='relu')(input_img)
lossy reconstruction of the input
decoded = Dense(784, activation='sigmoid')(encoded)
model that maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
model that maps an input to its encoded representation
encoder = Model(input_img, encoded)
create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
configure the model
autoencoder.compile(optimizer='adam', loss='mse')
read dataset
(x_train, _), (x_test, _) = mnist.load_data()
normalize all values between 0 and 1 and flatten
the 28x28 images into vectors of size 784.

Reconstruction on MNIST dataset…

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

Sparse Deep Net
def getDeepAE():

input layer
input_layer = Input(shape=(784,))
encoding architecture
encode_layer1 = Dense(1024, activation='relu')(input_layer)
encode_layer2 = Dense(1024, activation='relu')(encode_layer1)
latent view
latent_view = Dense(1024, activation=’relu’,

activity_regularizer=regularizers.l1(1e-5))(encode_layer2)
decoding architecture
decode_layer1 = Dense(1024, activation='relu')(latent_view)
decode_layer2 = Dense(1024, activation='relu')(decode_layer1)
output layer
output_layer = Dense(784, activation='sigmoid')(decode_layer2)
model
model = Model(input_layer, output_layer)

return model

13

Autoencoders

Vanila Net
def getVanilaAE():

input layer
input_layer = Input(shape=(784,))
latent view
latent_view = Dense(64, activation=’relu')(input_layer)
output layer
output_layer = Dense(784, activation='sigmoid')(latent_view)
model
model = Model(input_layer, output_layer)

return model

Different architectures of the models…

Deep Net
def getDeepAE():

input layer
input_layer = Input(shape=(784,))
encoding architecture
encode_layer1 = Dense(512, activation='relu')(input_layer)
encode_layer2 = Dense(256, activation='relu')(encode_layer1)
encode_layer3 = Dense(128, activation='relu')(encode_layer2)
latent view
latent_view = Dense(64, activation=’relu')(encode_layer3)
decoding architecture
decode_layer1 = Dense(128, activation='relu')(latent_view)
decode_layer2 = Dense(256, activation='relu')(decode_layer1)
decode_layer3 = Dense(512, activation='relu')(decode_layer2)
output layer
output_layer = Dense(784, activation='sigmoid')(decode_layer3)
model
model = Model(input_layer, output_layer)

return model

…

TIES4911 – Lecture 3

Relevant links:
https://towardsdatascience.com/implementing-an-autoencoder-in-
tensorflow-2-0-5e86126e9f7
https://learnopencv.com/autoencoder-in-tensorflow-2-beginners-guide/

01/02/2024

UNIVERSITY OF JYVÄSKYLÄ

14

Autoencoders in Deep Learning

TIES4911 – Lecture 3

Feature extraction

Representation
transformation

Reconstruction / Generation

01/02/2024

UNIVERSITY OF JYVÄSKYLÄ

15

Convolutional Neural
Networks (CNN)

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

16

Image Classification

Our expectation: Computer takes an array of pixels (w x h x 3) with RGB values (0..255) and
produces output number(s) that describe the probability of the image being a certain class (.80 for dog,
.15 for cat, .05 for car, etc).

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

17

Image Classification

Fully connected DNN is very rarely used in computer vision tasks…

 Too many parameters require too much training data, computation power and time

 No generalization, no spatial invariance for images

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

18

CNNs
Approach to be used: In a similar way as human classify picture with a dog if it has identifiable features such as
paws or 4 legs, the computer suppose to be able perform image classification by looking for low level features such as
edges and curves, and then building up to more abstract concepts through a series of convolutional layers. Therefore,
we have to train a computer to differentiate between all the images it’s given and by figuring out the unique features
that make a dog a dog or that make a cat a cat, etc.

Convolutional Neural Networks (CNN) are probably the most popular
deep learning architecture for the moment.

CNN progressed from 8 layer AlexNet in 2012 towards 152 layer ResNet in 2015 and much further
beyond...

Applied for:
 image related problem
 recommender systems
 natural language processing
 etc.

The main advantages:
 Automatic detection of important features without any human supervision (e.g. given many pictures of two different

classes it learns distinctive features for each class by itself).
 Using special convolution and pooling operations and parameter sharing, CNN becomes computationally efficient

and enables models to be run on any device.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

Relevant links:
http://cs231n.stanford.edu/
http://cs231n.github.io/convolutional-networks/
http://www.matthewzeiler.com/wp-content/uploads/2017/07/arxive2013.pdf
https://www.youtube.com/watch?v=AgkfIQ4IGaM
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

19

CNNs
CNN model is kind of a combination of two
components:

Feature extraction. The convolution + pooling layers
perform feature extraction and make possible to detect features
like two eyes, four legs, road sign, two wheels, building, face,
etc. The convolution layers learn theses complex features by
building on top of each other. The first layers detect edges, the
next layers combine them to detect shapes, to following layers
merge this information to infer complete objects.

Classification. The fully connected layers act as a classifier
on top of the extracted features and assign a probability for the
input image being a representative of certain class.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

20

Convolution
A convolution is an integral that expresses the amount of overlap of one
function g as it is shifted over another function f. It therefore "blends" one
function with another. In another words, Convolution - is a
mathematical operation to merge two sets of information.

Convolution on signal processing is used for the following use cases:
 Filter signals (1D audio, 2D image processing)
 Check how much a signal is correlated to another
 Find patterns in signals

Relevant links:
https://en.wikipedia.org/wiki/Convolution
http://mathworld.wolfram.com/Convolution.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/convolution.html

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

21

2D Convolution
2D convolutions are used as image filters, and when you
would like to find a specific patch on an image.

We use a convolution filter on top of the input data to produce
a feature map.

Convolution operation on matrixes (images context):
 slide the filter over the input
 do element-wise matrix multiplication and sum the result at every sliding location

(receptive field)

Nice visual explanation of Image Kernels: http://setosa.io/ev/image-kernels/
Convolution – from probability to image processing: https://www.3blue1brown.com/lessons/convolutions

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

22

2D Convolution
Stride specifies how much we move the convolution filter at
each step (e.g. stride 1 ([1,1]), stride 2 ([2,2]), etc.). We can
have bigger strides if we want less overlap between the
receptive fields making the resulting feature map smaller.

We can use padding to maintain the
feature map’s dimensionality similar to
the input by surrounding input with
zeros or the values on the edge.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

23

TensorFlow
Convolution

#Importing
import numpy as np
from scipy import signal
from scipy import misc
import matplotlib.pyplot as plt
from PIL import Image

Load image of your choice on the notebook
im = Image.open('bird.jpg') # type here your image's name
uses the ITU-R 601-2 Luma transform (there are several
ways to convert an image to grey scale)
image_gr = im.convert("L")
print("\n Original type: %r \n\n" % image_gr)

convert image to a matrix with values from 0 to 255 (uint8)
arr = np.asarray(image_gr)
print("After conversion to numerical representation: \n\n %r" % arr)

Activating matplotlib for Ipython
%matplotlib inline

Plot image
imgplot = plt.imshow(arr)
#you can experiment different colormaps (Greys,winter,autumn)
imgplot.set_cmap('gray')
print("\n Input image converted to gray scale: \n")
plt.show(imgplot)
kernel = np.array([[0, 1, 0],

[1,-4, 1],
[0, 1, 0],])

grad = signal.convolve2d(arr, kernel, mode='same', boundary='symm')
%matplotlib inline
print('GRADIENT MAGNITUDE - Feature map')
fig, aux = plt.subplots(figsize=(10, 10))
aux.imshow(np.absolute(grad), cmap='gray')

type(grad)
grad_biases = np.absolute(grad) + 100
grad_biases[grad_biases > 255] = 255
%matplotlib inline
print('GRADIENT MAGNITUDE - Feature map')
fig, aux = plt.subplots(figsize=(10, 10))
aux.imshow(np.absolute(grad_biases), cmap='gray')

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

24

2D Convolution
Usually, an image is represented as a 3D matrix with dimensions of
height, width and depth (color channels - RGB). In turn, a convolution
filter become 3D as well having a specific height and width (e.g. 3x3
or 5x5), and by design covering the entire depth of the input.

Using different filters, we perform
multiple convolutions on an input and
stack all the distinct feature maps
together forming the final output of
the convolution layer. Each of these
channels (distinct feature maps) will
end up being trained to detect certain
key features in the image (e.g. lines,
edges or other distinctive shapes).

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

25

2D Convolution
To be powerful, neural network (that basically has just been computing linear operations during the conv layers) needs
to contain non-linearity. It is achieved by passing the weighted sum of its inputs through an activation function.

In CNN we pass the result of the convolution operation through ReLU activation function, that works
far better (comparably to tanh and sigmoid) and makes the network able to train a lot faster (due to
the computational efficiency) without making a significant difference to the accuracy. So, the values in
the final feature maps are not actually the sums, but the ReLU function applied to them.

Short summary on Convolution Layer:
There are 4 important hyper-parameters to decide on:

 Filter size. 3x3 filters are typically used, but 5x5 or 7x7 are also applicable depending on the application. Even
1x1 filters have sense, since filters are 3D and have a depth dimension as well.

 Filters amount. This is the most variable parameter, it’s a power of 2 anywhere between 32 and 1024. More
filters make a model more powerful, but we risk overfitting due to increased number of parameters. One of the
strategies is to start with a small number of filters at the initial layers, and progressively increase number of them
as go deeper into the network.

 Stride. Usually default value is 1 (stride [1,1]).

 Padding. Usually use padding.

Relevant links:
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://www.quora.com/What-is-the-vanishing-gradient-problem
https://www.youtube.com/watch?v=V9ZYDCnItr0

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

26

Pooling
To reduce the number of parameters, which both shortens the training time and combats overfitting, we reduce the

dimensionality of convolution operation result by performing a pooling (sub-sampling) operation. It is also a
“sliding window” technique, that applies some sort of statistical function over the values within the window.

max pooling - the most common type of pooling
operation that just slides a window over the input,
and simply takes the max value in the window.

 There are some other alternatives e.g. mean (average)
pooling or L2-norm pooling. Similar to a filter size and
sliding step in convolution, we specify the window size
and stride for pooling operation.

 Pooling layers reduce the height and width, keeping the
depth of convolution layer output intact. It down-sample
each feature map independently, while keeping the
important information.

 The intuition behind the pooling layer is that once there is
a high activation value, there will be a specific feature in
the original input volume and its exact location is not as
important as its relative location to the other features.

In CNN architectures, pooling is typically performed with 2x2 windows, stride 2 (stride [2,2]) and no
padding. While convolution is done with 3x3 windows, stride 1 and with padding.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

27

Pooling
Pooling in CNN:
 reduces the dimensionality of the output (called down-sampling), and reduces the number of

parameters (or weights) in the model, thus lessening the computation cost.

 by controlling overfitting, makes the detection of certain features in the input invariant to scale and
orientation changes.

Pooling acts as a generalizer of the lower level information and so enables us to move from high
resolution data to lower resolution information. In other words, pooling coupled with convolutional
filters attempt to detect objects within an image.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

28

CNN

At the output of the convolutional-pooling layers we have moved from high resolution low level data about the pixels to
representations of objects within the image. The purpose of these final, fully connected layers is to make classifications
regarding these objects – so, we insert a standard neural network classifier onto the end of a trained object detector.

Since the output of both convolution and pooling layers are 3D volumes and a fully connected layer accepts input in a
form of a 1D vector of numbers, the output of the final pooling layer should be flatten to a vector.

In CNN architecture, a chain of
the convolution + pooling layers
is wrapped up with a couple of

fully connected layers.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

29

CNN simple example

Relevant links:
https://brohrer.github.io/how_convolutional_neural_networks_work.html
https://www.edureka.co/blog/convolutional-neural-network/

CNNs compare images based on generalized features rather than on pixel basis.
Comparing images piece by piece, CNNs try to find rough feature matches in roughly the same positions in two images.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

30

CNN simple example
Convolution makes a filtering of the image by
calculating the match to a feature across it.

To calculate the match of a feature to a patch of the image,
simply multiply each pixel in the feature by the value of the
corresponding pixel in the image. Then add up the answers
and divide by the total number of pixels in the feature.

Next repeat the convolution process in its entirety for each
of the other features and get a set of filtered images, one
for each of our filters.

Relevant links:
https://brohrer.github.io/how_convolutional_neural_networks_work.html
https://www.edureka.co/blog/convolutional-neural-network/

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

31

CNN simple example
Pooling is a way to take large images and
shrink them down while preserving the most
important information in them.

The math behind pooling consists of stepping a small
window across an image and taking the maximum value
(max pooling) from the window at each step.

After pooling, an image has about a quarter as many
pixels as it started with. Because it keeps the maximum
value from each window, it preserves the best fits of
each feature within the window. This means that it
doesn’t care so much exactly where the feature fit as
long as it fit somewhere within the window.

Relevant links:
https://brohrer.github.io/how_convolutional_neural_networks_work.html
https://www.edureka.co/blog/convolutional-neural-network/

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

32

CNN simple example
Rectified Linear Unit (ReLU) helps the CNN
stay mathematically healthy by keeping learned
values from getting stuck near 0 or blowing up
toward infinity.

Wherever a negative number occurs, swap it out for a 0

Layers could be stacked like Lego bricks.

As a result, raw images get filtered, rectified and pooled to create a set of shrunken, feature-filtered
images. Each time, the features become larger and more complex, and the images become more
compact. This lets lower layers represent simple aspects of the image (e.g. edges and bright spots).
Higher layers can represent increasingly sophisticated aspects of the image, such as shapes and
patterns.

Relevant links:
https://brohrer.github.io/how_convolutional_neural_networks_work.html
https://www.edureka.co/blog/convolutional-neural-network/

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

33

CNN simple example
Fully connected layers take the high-level filtered
images and translate them into votes.

Instead of treating inputs as a two-dimensional array, Fully
connected layers are treated as a single list and all treated
identically. Every value gets its own vote on whether the
current image is an X or and O. Some values are much
better than others at knowing when the image is an X, and
some are particularly good at knowing when the image is
an O. These get larger votes than the others. These votes
are expressed as weights, or connection strengths,
between each value and each category.

Relevant links:
https://brohrer.github.io/how_convolutional_neural_networks_work.html
https://www.edureka.co/blog/convolutional-neural-network/

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

34

CNN
Training…
 What values filters in each layer should have?
 How do the filters in the initial conv layers know to what edges and curves they should look for?
 How filters on further layers know which edges and curves aggregate to construct higher level features?
 How does the fully connected layer know what activation maps to look at?
 etc.

To address theses questions, CNN is trained the same way as ordinary ANN using

Backpropagation with gradient descent to adjust its filter values (weights):

 forward pass: on the first training example (W x H x 3 array of numbers that represents image) all of the
weights/filter values were randomly initialized and the output will not give preference to any classification class in
particular (e.g. [.1 .1 .1 .1 .1 .1 .1 .1 .1 .1] – probability distribution).

 loss function: having a training data with both an image and a label, we will use labels to compute a loss against
the output of previous step (forward pass). One of the common ways to define a loss function we want to
minimize is cross entropy between target (e.g. [0 0 0 0 0 0 0 1 0 0] that represents digit “7”) and actual output:

 backward pass: solving an optimization problem, we find out which weights most directly contributed to the loss
of the network. We have to calculate a derivative of the loss dE/dW (where W are the weights at a particular layer)
to determining which weights contributed most to the loss and find ways to adjust them so that the loss
decreases.

 weight update: update all the weights of the filters so that they change in the opposite direction of the gradient.
Where the learning rate is a parameter chosen by the programmer to define a step in weight change.

Relevant links:
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://en.wikipedia.org/wiki/Backpropagation
http://neuralnetworksanddeeplearning.com/chap2.html
https://brilliant.org/wiki/backpropagation/
https://www.youtube.com/watch?v=Lakz2MoHy6o

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

35

Model fitting

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

36

CNN

The most popular regularization technique for deep
neural networks is Dropout. It is used to prevent
overfitting via temporarily “dropping”/disabling a neuron
with probability p (a hyperparameter called the dropout-
rate that is typically a number around 0.5) at each
iteration during the training phase.

 The dropped-out neurons are resampled with probability p at every
training step (a dropped out neuron at one step can be active at the
next one). (Dropout is not applied during test time after the network is trained).

 Dropout can be applied to input or hidden layer nodes but not the
output nodes.

Reason. Dropout forces every neuron to be able to operate independently and prevents the network
to be too dependent on a small number of neurons.

Relevant links:
https://www.tensorflow.org/tutorials/images/classification
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://arxiv.org/abs/1502.03167
https://www.youtube.com/watch?v=EehRcPo1M-Q

We may face a case, when training loss keeps going down but the validation loss starts
increasing after certain epoch. It is a sign of overfitting. It tells us that our model is
memorizing the training data, but it’s failing to generalize to new instances.

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

37

CNN
Batch Normalization is a popular regularization technique…
Batch Normalization is a method to reduce internal covariate shift in neural networks,
improving the performance and stability of neural networks. To speed up learning, it is
reasonable to normalize not only the input layer, but similarly, to apply normalization for
the values in the hidden layers as well, improving training speed and overall accuracy.
Batch normalization allows each layer of a network to learn by itself a little bit more
independently of other layers.

 Speeds up training: it should converge much quicker, even though each training iteration will be slower because of the extra
normalisation calculations during the forward pass and the additional hyperparameters to train during back propagation.

 Allows higher learning rates:  as networks get deeper, initially small gradients get even smaller during back propagation, and so require
even more iterations. Batch normalisation allows much higher learning rates, increasing the speed at which networks train.

 Simplifies weights initialization: batch normalisation helps reduce the sensitivity to the initial starting weights.
 Makes activation functions viable : as batch normalisation regulates the values going into each activation function, nonlinearities that

don’t work well in deep networks tend to become viable again.  
 Reduces overfitting: it has a slight regularization effects and, similarly to dropout, it adds some noise to each hidden layer’s activations. If

we use batch normalization, we will use less dropout, which is a good thing because we are not going to lose a lot of information. However,
we should not depend only on batch normalization for regularization; we should better use it together with dropout.

Batch normalization adds two trainable parameters to each layer, so the normalized output is
multiplied by a “standard deviation” parameter and add a “mean” parameter.
Being used before the activation function and dropout, Batch Normalization layer applies a transformation that maintains the mean activation
close to 0 and the activation standard deviation close to 1.

Relevant links:
https://www.coursera.org/learn/deep-neural-network/lecture/81oTm/why-does-batch-norm-work
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://keras.io/layers/normalization/ , https://arxiv.org/abs/1502.03167 , https://www.youtube.com/watch?v=yXOMHOpbon8

tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones',
moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)

tf.layers.batch_normalization(inputs, axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer=tf.zeros_initializer(),
gamma_initializer=tf.ones_initializer(), moving_mean_initializer=tf.zeros_initializer(), moving_variance_initializer=tf.ones_initializer(), beta_regularizer=None,
gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, training=False, trainable=True, name=None, reuse=None, renorm=False,
renorm_clipping=None, renorm_momentum=0.99, fused=None)

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

38

CNN
Overfitting happens when we are training on very few examples (e.g. 1000 images per category), and even use of
dropout does not help us much. To start think about Deep Learning, we have to operate with at least 100K training
examples. On a small dataset we will overfit no matter which regularization technique is applied.

Fortunately, there is a data augmentation method which enables us to train deep
models on small datasets. It allows us to artificially boost the size of the training set
through enrichment or “augmentation” of the training data by generating new examples
via random transformation of existing ones.

Data augmentation is done dynamically during training time. To generate
realistic images, the common transformations are: rotation, shifting,
resizing, exposure adjustment, contrast change etc.

Also, some data cleaning tricks on images can be applied
(e.g. whitening and mean normalization).
http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

Relevant links:
https://www.tensorflow.org/tutorials/images/classification
https://keras.io/preprocessing/image/
https://machinelearningmastery.com/image-augmentation-deep-learning-keras/
https://www.youtube.com/watch?v=EehRcPo1M-Q

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

39

TensorFlow
Convolution NN on MNIST dataset
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()
import matplotlib.pyplot as plt
import numpy as np
import math
Import MNIST data
(train_images,train_labels),(test_images,test_labels) =

tf.keras.datasets.mnist.load_data()
train_images = tf.reshape(train_images,[60000,784])
test_images = tf.reshape(test_images,[10000,784])
train_images /= 255
test_images /= 255
unique_category_count = 10
y_train = tf.one_hot(train_labels, unique_category_count)
y_test = tf.one_hot(test_labels, unique_category_count)
Parameters
learning_rate = 0.001
training_epochs = 5
batch_size = 1000
def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME')

def getActivations(layer,stimuli):
units =

sess.run(layer,feed_dict={x:np.reshape(stimuli,[1,784],order='F'),keep_prob:1.0})

plotNNFilter(units)
def plotNNFilter(units):

filters = units.shape[3]
plt.figure(1, figsize=(20,20))
n_columns = 6
n_rows = math.ceil(filters / n_columns) + 1
for i in range(filters):

plt.subplot(n_rows, n_columns, i+1)
plt.title('Filter ' + str(i))
plt.imshow(units[0,:,:,i], interpolation="nearest",

cmap="gray")
Create the model
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, 1-keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

40

TensorFlow
Convolution NN on MNIST dataset

Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(

tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_,
logits=y_conv))

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
Add ops to save and restore all the variables.
saver = tf.train.Saver()
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
for ii in range(training_epochs):

total_batch = int(train_images.shape[0]/batch_size)
for i in range(total_batch):

batch_xs = train_images[i * batch_size: (i+1) * batch_size]
batch_ys = y_train[i * batch_size: (i+1) * batch_size]
train_accuracy = accuracy.eval(feed_dict={x: sess.run(batch_xs),

y_: sess.run(batch_ys), keep_prob: 1.0})
print('step %d, training accuracy %g' % (ii, train_accuracy))
train_step.run(feed_dict={x: sess.run(batch_xs),

y_: sess.run(batch_ys), keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={

sess.run(test_images), y_: sess.run(y_test), keep_prob: 1.0}))

save_path = saver.save(sess, "my_models_tmp/model.ckpt")
print("Model saved in file: %s" % save_path)

saver.restore(sess, "my_models_tmp/model.ckpt")
print("Model restored.")

print('---------------------')
print("Test sample:")

#Get 28x28 image
img_to_use = test_images[47]
sample_1 = sess.run(img_to_use).reshape(28,28)

Get corresponding integer label from one-hot encoded data
sample_label_1 = np.where(sess.run(y_test)[47] == 1)[0][0]

Plot sample
plt.imshow(sample_1, cmap='Greys')
plt.title('label = {}'.format(sample_label_1))
plt.show()

predicted_value = tf.argmax(y_conv, 1)
print("is classified as: {}”.format(predicted_value.eval(

session= sess,
feed_dict={x:isess.run(mg_to_use).reshape(1,784),

keep_prob: 1.0})))

print("conv layer:")
getActivations(h_conv2, sess.run(img_to_use))

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

As an example… tf.layers.conv2d handles activation and bias automatically while you have to write additional codes for
these if you use tf.nn.conv2d.

Check the tutorial that explains how to build a convolutional neural network model to recognize the
handwritten digits in the MNIST data set using layers and creating corresponding Estimator to handle the
model. https://www.tensorflow.org/tutorials/layers

41

TensorFlow
The TensorFlow layers module provides a high-level API that makes it easy
to construct a neural network.
https://www.tensorflow.org/api_docs/python/tf/layers

It provides methods that facilitate the creation of dense (fully connected) layers and convolutional
layers, adding activation functions, and applying dropout regularization.

Check the tutorial that explains how to build a convolutional neural network model to
recognize the handwritten digits in the MNIST data set using layers and creating
corresponding Estimator to handle the model.
https://www.tensorflow.org/tutorials/layers

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

tf.layers.conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None,
use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, trainable=True, name=None, reuse=None)

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

42

Convolution NN on MNIST dataset with Keras

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
get_ipython().magic(u'matplotlib inline')
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten, BatchNormalization, Conv2D, MaxPooling2D,
ZeroPadding2D, GlobalAveragePooling2D

from tensorflow.keras.optimizers import Adam
from tensorflow.keras import utils
from tensorflow.keras.preprocessing.image import

ImageDataGenerator
Import MNIST data
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train/=255
X_test/=255
convert output if use ’categorical_crossentropy’, or do not, if
’sparse_categorical_crossentropy’
#Y_train = utils.to_categorical(y_train, number_of_classes)
#Y_test = utils.to_categorical(y_test, number_of_classes)
number_of_classes = 10

Three steps to create a CNN
1. Convolution
2. Activation
3. Pooling

Repeat Steps 1,2,3 for adding more hidden layers
4. After that make a fully connected network
This fully connected network gives ability to
the CNN to classify the samples
model = Sequential()

model.add(Conv2D(32, (3, 3), input_shape=(28,28,1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Conv2D(64,(3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())
Fully connected layer
model.add(Dense(512))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(number_of_classes))

model.add(Activation('softmax'))

Keras

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

43

Convolution NN on MNIST dataset with Keras

#model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=Adam(), metrics=['accuracy’])
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=Adam(), metrics=['accuracy’])

gen = ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3,
height_shift_range=0.08, zoom_range=0.08)

test_gen = ImageDataGenerator()

train_generator = gen.flow(X_train, Y_train, batch_size=64)
test_generator = test_gen.flow(X_test, Y_test, batch_size=64)

model.fit(train_generator, batch_size=64, epochs=5, validation_data=test_generator)

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset, collected by
Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
https://www.cs.toronto.edu/~kriz/cifar.html

CNN on CIFAR-10 tutorial: https://www.tensorflow.org/tutorials/images/cnn

Relevant links:
https://elitedatascience.com/keras-tutorial-deep-learning-in-python
http://cv-tricks.com/tensorflow-tutorial/keras/
http://adventuresinmachinelearning.com/keras-tutorial-cnn-11-lines/

Some datasets: http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
MNIST CNN based on csv data: https://github.com/tgjeon/kaggle-MNIST/blob/master/mnist.py

Visualizing convolutional neural networks (CNN with colored images): https://www.oreilly.com/ideas/visualizing-convolutional-
neural-networks

Keras

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

convert class vectors to binary class matrices if use
’categorical_crossentropy’ loss. Otherwise use
’spars_categorical_crossentropy’ loss.
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)
Model Building
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu',
input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=tf.keras.losses.categorical_crossentropy,
optimizer=Adam(), metrics=['accuracy'])

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

from __future__ import print_function
import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Conv2D,

MaxPooling2D, Flatten
from tensorflow.keras.optimizers import RMSprop, SGD, Adam
import matplotlib.pyplot as plt
%matplotlib inline

batch_size = 128
num_classes = 10
epochs = 20
Data Preparation
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if tf.keras.backend.image_data_format() == 'channels_first':

x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)

else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

44

CNN on Fashion-MNIST dataset…
Keras

Label Description
 0 T-shirt
 1 Trouser
 2 Pullover
 3 Dress
 4 Coat
 5 Sandal
 6 Shirt
 7 Sneaker
 8 Bag
 9 Ankle boot

…
Epoch 20/20
55040/60000 [==========================>...] - ETA: 0s - loss: 0.1247 - acc:
0.955060000/60000 [==============================] - 10s 165us/step - loss:
0.1239 - acc: 0.9553 - val_loss: 0.2282 - val_acc: 0.9299
Test loss: 0.22820208635628222
Test accuracy: 0.9299

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

45

Spatial Transformation
Spatial Transformer Networks (by a group at Google Deepmind)
even though CNNs define an exceptionally powerful class of models, they are still limited by the lack of ability to be
spatially invariant to the input data in a computationally and parameter efficient manner. To show good results, model
should be trained on a huge variety of “transformed” samples…

Spatial Transformer is a new learnable module, which explicitly allows the spatial manipulation of
data within the network. This differentiable module can be inserted into existing convolutional
architectures, giving neural networks the ability to actively spatially transform feature maps,
conditional on the feature map itself, without any extra training supervision or modification to the
optimization process. Authors has shown that the use of spatial transformers results in models which
learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art
performance on several benchmarks, and for a number of classes of transformations.

 Instead of making changes to the main CNN
architecture itself, the authors offer making changes to
the image before it is fed into the specific conv layer.

 The module transforms the input image in a way so
that the subsequent layers have an easier time making
a classification...

 The module can be dropped into a CNN at any point
and helps the network learn how to transform feature
maps in a way that minimizes the cost function during
training…

Relevant links:
https://arxiv.org/pdf/1506.02025.pdf
Video from Deepmind: https://drive.google.com/file/d/0B1nQa_sA3W2iN3RQLXVFRkNXN0k/view
https://gist.github.com/kvn219/b42d382a06eff3254bf00e780e9b8e0f

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

46

Capsule Net
Capsule Net as an improvement of the CNN…
CNNs are awesome and can do amazing things. Nevertheless, they have their limits and they have fundamental
drawbacks. Internal data representation of a convolutional neural network does not take into account important spatial
hierarchies between simple and complex objects…

Geoffrey Hinton and his team introduced a completely new type of neural network based on so-called capsules. In
addition to that, the team published an algorithm, called dynamic routing between capsules (October 2017), that
allows to train such a network. Capsule is introduced as a group of neurons (subnet) that are nested inside the
convolutional layer. Authors also introduced a corresponding new non-linearity function to be applied to the capsule…

Relevant links:
https://arxiv.org/abs/1710.09829, https://blog.paperspace.com/capsule-networks/
https://www.sciencedirect.com/science/article/pii/S1319157819309322
https://www.youtube.com/watch?v=pPN8d0E3900, https://www.youtube.com/watch?v=6S1_WqE55UQ
https://paperswithcode.com/method/fixcaps
https://towardsdatascience.com/implementing-capsule-network-in-tensorflow-11e4cca5ecae
https://github.com/XifengGuo/CapsNet-Keras
https://www.nature.com/articles/s41598-021-93977-0
https://theailearner.com/2019/01/21/implementing-capsule-network-in-keras/
https://hackernoon.com/what-is-a-capsnet-or-capsule-network-2bfbe48769cc
https://medium.com/botsupply/running-capsulenet-on-tensorflow-1099f5c67189
https://www.youtube.com/watch?v=2Kawrd5szHE
https://www.youtube.com/watch?v=VKoLGnq15RM
https://github.com/jaesik817/adv_attack_capsnet
https://medium.com/ai³-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://github.com/naturomics/CapsNet-Tensorflow ; https://github.com/llSourcell/capsule_networks ; https://github.com/bourdakos1/capsule-networks
https://github.com/XifengGuo/CapsNet-Keras ; https://openreview.net/pdf?id=HJWLfGWRb
https://becominghuman.ai/understand-and-apply-capsnet-on-traffic-sign-classification-a592e2d4a4ea

Hinton: “The pooling operation used in convolutional neural networks is
a big mistake and the fact that it works so well is a disaster.”

 Position and pose information are preserved (equivariance), that is promising for
image segmentation and object detection.

 Offers robustness to affine transformations (translation, scale, shear, rotation, etc.)
 A CapsNet cannot see two very close identical objects (it is called “crowding”).

 High accuracy on MNIST (but not yet so good on CIFAR10). Is not tested yet on larger images (e.g. ImageNet)
 Requires less training data, but more training time (due to the inner loop)

TIES4911 – Lecture 301/02/2024

UNIVERSITY OF JYVÄSKYLÄ

47

CNN 101
Interactive Visual Learning for Convolutional Neural Networks an
interactive visualization system for explaining and teaching convolutional neural networks. Through
tightly integrated interactive views, CNN 101 offers both overview and detailed descriptions of how a
model works. Built using modern web technologies, CNN 101 runs locally in users' web browsers
without requiring specialized hardware, broadening the public's education access to modern deep
learning techniques. https://arxiv.org/abs/2001.02004

Demo Video: https://www.youtube.com/watch?v=g082-zitM7s&feature=youtu.de

TIES4911 – Lecture 301/02/2024

