
UNIVERSITY OF JYVÄSKYLÄ

Lecture 2: from SOAP towards REST

TIES4560 SOA and Cloud Computing

Autumn 2023

University of Jyväskylä Khriyenko Oleksiy

UNIVERSITY OF JYVÄSKYLÄ

2

SOAP Web Services

JAX-WS
JAX-WS is a set of APIs to build SOAP Web Services. JAX-WS provides many annotation to simplify the
development and deployment for both web service clients and web service providers (endpoints).

Related tutorials:
• http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html

• http://www.mkyong.com/tutorials/jax-ws-tutorials/

• http://www.mkyong.com/webservices/jax-ws/jax-ws-hello-world-example/

• https://www.baeldung.com/jax-ws

• https://axis.apache.org/axis2/java/core/docs/jaxws-guide.html

• https://spring.io/guides/gs/producing-web-service/

• https://spring.io/guides/gs/consuming-web-service/

• https://dzone.com/articles/creating-a-soap-web-service-with-spring-boot-start

Although SOAP messages are complex, the JAX-WS
API hides this complexity from the application
developer. On the server side, the developer specifies
the web service operations by defining methods in an
interface written in the Java programming language.
The developer also codes one or more classes that
implement those methods. Client programs are also
easy to code. A client creates a proxy (a local object
representing the service) and then simply invokes
methods on the proxy. With JAX-WS, the developer
does not generate or parse SOAP messages. It is the
JAX-WS runtime system that converts the API calls and
responses to and from SOAP messages.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

3

Dynamic Client to a SOAP Web Service

Related tutorials:
• http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/twbs_devwbsjaxwsclient_dyn.html

• https://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.base.doc/ae/twbs_jaxwsdynclient.html

• http://cxf.apache.org/docs/jax-ws-dispatch-api.html

• http://cxf.apache.org/docs/how-do-i-develop-a-client.html

• http://docs.oracle.com/cd/E21764_01/web.1111/e13734/provider.htm#WSADV583

• http://java.boot.by/ocewsd6-guide/ch10s04.html

• http://www.programcreek.com/java-api-examples/index.php?api=javax.xml.ws.Dispatch

The JAX-WS supports both the dynamic and static client programming models that enable both synchronous

and asynchronous invocation of JAX-WS web services.

The Dispatch client API is a dynamic client programming model for JAX-WS. The Dispatch interface provides

support for the dynamic invocation of a service endpoint operations. SOAP web services use XML messages for

communication between services and service clients. The higher level JAX-WS APIs are designed to hide the details

of converting between Java method invocations and the corresponding XML messages, but in some cases operating

at the XML message level is desirable. The Dispatch client API, javax.xml.ws.Dispatch, is an XML messaging-oriented

client that is intended for advanced XML developers who prefer using XML constructs. You do not need a WSDL file if

you are developing a dynamic client.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

The Dynamic proxy client API is a static client programming model for JAX-WS. In contrast to Dispatch

client, the Dynamic proxy client invokes a web service based on a service endpoint interface (SEI) that is generated

from a WSDL file. If you do not want to work directly with XML (work with either the message structure or the message

payload structure) and do appreciate work with a Java abstraction and want the Web services client to invoke the

service based on service endpoint interfaces with a dynamic proxy, use the Dynamic Proxy API to develop a static

web service client. The Dynamic Proxy client is similar to the Static proxy client (stub client) in the Java API

for XML-based RPC (JAX-RPC) programming model.

Although the JAX-WS Dynamic Proxy client and the Static proxy client (JAX-RPC stub client) are both based on the

Service Endpoint Interface (SEI) that is generated from a WSDL file, there is a major difference. Static proxy client

compile and bind the Web service client at development time. This generates a static stub for the Web service client

proxy. The source code for the generated static stub client relies on a specific service implementation. As a result, this

option offers the least flexibility. Unlike the JAX-RPC stub clients, the Dynamic Proxy client does not require you to

regenerate a stub prior to running the client on an application server for a different vendor because the generated

interface does not require the specific vendor information. The Dynamic Proxy client is dynamically generated at run

time using the Java Dynamic Proxy functionality. This option does not rely upon a specific service implementation,

providing greater flexibility, but also a greater performance hit.

The Generated Client classes are great if you know precisely what web-service your client code is going to call and that it isn't going to

change over the lifetime of your client. In case of Dynamic Client, you don't need to have generated stubs before run time. This allows

you to generically invoke services that you may not know about beforehand. Comparing to Generated Stub(GS) it works slower,

because of run-time stub generation.

4

Dynamic Client to a SOAP Web Service

Related tutorials:
• http://www.xyzws.com/scdjws/SGS34/6

• http://docs.oracle.com/cd/E23943_01/web.1111/e13734/proxy.htm#WSADV146

• https://docs.oracle.com/middleware/1213/wls/WSRPC/jax-rpc-client.htm#WSRPC199

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

The Dynamic Invocation Interface (DII) client does not require a WSDL file to generate static stubs or

pass the WSDL file to the service factory to create the service; instead, the client must know a service's address,

operations, and parameters in advance. Using the Dynamic Invocation Interface (DII) enables the client to discover

target services dynamically on runtime and then to invoke methods. During runtime, the client uses a set of service

operations and parameters, establishes a search criterion to discover the target service, and then invokes its methods.

This also enables a DII client to invoke a service and its methods without knowing its data types, objects, and its

return types.

With the Dynamic Invocation Interface (DII), a client can call a remote procedure even if the signature of the remote

procedure or the name of the service are unknown until runtime. Because of its flexibility, a DII client can be used in a

service broker that dynamically discovers services, configures the remote calls, and executes the calls.

5

Dynamic Client to a SOAP Web Service

Related tutorials:
• http://www.xyzws.com/scdjws/SGS34/6

• https://docs.oracle.com/cd/E17802_01/j2ee/j2ee/1.4/docs/tutorial-update2/doc/JAXRPC5.html

• http://www.inf.fu-berlin.de/lehre/SS03/19560-P/Docs/JWSDP/tutorial/doc/JAXRPC6.html

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

❑ Create a simple Java project. (In case of missing http server issues, add corresponding libraries or make Dynamic Web Project)

❑ Define a simple Interface that will represent a Web Service

❑ Create a service implementation class that implements the Interface of Web Service and annotate it with

@WebService annotation

Some Web Service annotations could be also applied to the Interface definition. And this is actually recommended! In this case, actual

implementation class should be annotated with specification of endpointInterface attribute that refers to the interface class (incl. package name).

❑ Create a publisher for the Web Service. Specify a Web Service URL and the class of service implementation.

Publisher will work only if your implementation of jax-ws supports endpoint publishing. As long as you are using Sun virtual machine or Oracle

JDK, that would be fine.

❑ Run publisher as a java application and check the URL of the published endpoint of the Web Service. There you will

find basic information of the published Web Service as well as its WSDL.

6

Simple SOAP Web Service

…

public interface PService {

public int add(int a, int b);

}

import javax.jws.WebService;

@WebService

public class PServiceImpl implements PService {

@Override

@WebMethod

public int add(int a, int b) { return a+b;}

}

import javax.xml.ws.Endpoint;

public class Exporter {

public static void main(String[] args) {

Endpoint.publish("http://localhost:8080/MyServices/pservice", new PServiceImpl());

}

}

Demo

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

❑ Some dependences that might be useful…

7

Simple SOAP Web Service

…

<dependency>

<groupId>javax.servlet</groupId>

<artifactId>javax.servlet-api</artifactId>

<version>3.1.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>javax.xml.bind</groupId>

<artifactId>jaxb-api</artifactId>

<version>2.3.1</version>

</dependency>

<dependency>

<groupId>javax.xml.ws</groupId>

<artifactId>jaxws-api</artifactId>

<version>2.3.1</version>

</dependency>

<dependency>

<groupId>com.sun.xml.ws</groupId>

<artifactId>jaxws-rt</artifactId>

<version>2.3.1</version>

</dependency>

<dependency>

<groupId>com.sun.net.httpserver</groupId>

<artifactId>http</artifactId>

<version>20070405</version>

</dependency>

Demo

TIES4560 - Lecture 2

…

<dependencies>

<dependency>

<groupId>jakarta.xml.ws</groupId>

<artifactId>jakarta.xml.ws-api</artifactId>

<version>4.0.0</version>

</dependency>

<dependency>

<groupId>com.sun.xml.ws</groupId>

<artifactId>jaxws-rt</artifactId>

<version>4.0.0</version>

</dependency>

</dependencies>

JDK16

The biggest change in Java 11 was the removal of the Java EE and
CORBA modules such as the four web services APIs - JAX-WS,
JAXB, JAF and Common Annotations - that were deemed redundant
since they were already included in Java EE. Oracle donated Java EE
8 to the Eclipse Foundation shortly after its release in 2017 with
the intent that Java EE be open-sourced. Due to Oracle’s branding
policy, it was necessary to rename Java EE to Jakarta
EE and migrate the namespace from javax to jakarta .

Related tutorials:
• https://www.infoq.com/articles/why-how-upgrade-java17/

12/09/2023

UNIVERSITY OF JYVÄSKYLÄ

❑ Create a Java Dynamic Web Project

❑ Create a class that will represent a Web Service functionality

❑ Create a Web Service (Fine > New > Other… > Web Services > Web Service) based on created class.

Tomcat will publish the Web Service under temporal URL , as well as, automatically generated WSDL file.

Corresponding human friendly Client for the service will be automatically generated to test functionality.

❑ To generate a web service client, create a project and run wizard (Fine > New > Other… > Web Services > Web

Service Client) specifying location of WSDL file of the service. Configure automatic generation of a Client (level of

readiness <Test client>).

❑ WSDL is accessible following the endpoint of the Web Service (e.g. http://localhost:6173/PWS_web/services/PService?wsdl)

Having WSDL description of the Web Service you may build a Client using generated java code by wsimport tool.

❑ Web Service Explorer – imbedded as a plug-in into Eclipse.

❑ SoapUI - External Web Service testing tool (https://www.soapui.org/). It is also available as a plug-in for Eclipse.

Guide: http://www2.smartbear.com/rs/smartbear/images/SmartBear-SoapUI-101-eBook.pdf

❑ Other Web Service testing tools: https://www.guru99.com/top-6-api-testing-tool.html

8

Simple SOAP Web Service with Tomcat

…

@WebService (targetNamespace=“http://myWSService”)

public class PService {

@WebMethod

public int add(int a, int b) { return a+b;}

}

Demo

TIES4560 - Lecture 2

You might need to specify:

❑ Apache CXF directory (binary distribution with jar files) in Eclipse (Window>Preferences>Web Services>CXF Preferences)

❑ TargetNamespace (that might refer to the location of you service class in the project)

12/09/2023

UNIVERSITY OF JYVÄSKYLÄ

❑ Service First vs. Contract First strategies

There are also some other annotations to configure Input

and Output types (@SOAPBinding, @WebParam,

@WebResult)

JAXB annotation (@XmlRootElement, @XmlType,

@XmlElement) is used to customize XML based custom

types definitions

9

SOAP Web Service extra (WSDL customization)

package org.ws.myservise;

import javax.jws.WebMethod;

import javax.jws.WebService;

//@WebService (name=“name",

portName="portName",

serviceName="serviceName",

targetNamespace="targetNamespace“,

endpointInterface="endpointInterface",

wsdlLocation="wsdlLocation“)

//@SOAPBinding (style=Style.RPC or .DOCUMENT,

use=“…“)

public class ServiceLogic {

//@WebMethod (operationName="operationName",

action="action",

exclude=true or false)

//@WebResult (partName=“partName”)

public String helloName(@WebParam

(partName=“partName”)String name){

return "Hello there " + name;

}

}

…

<wsdl:definitions targetNamespace="http://myservice.ws.org" …>

...

<wsdl:message name="helloNameResponse">

<wsdl:part element="impl:helloNameResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="helloNameRequest">

<wsdl:part element="impl:helloName" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="ServiceLogic">

 <wsdl:operation name="helloName">

 <wsdl:input message="impl:helloNameRequest" name="helloNameRequest">

 </wsdl:input>

 <wsdl:output message="impl:helloNameResponse"

 name="helloNameResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

<wsdl:binding name="ServiceLogicSoapBinding" type="impl:ServiceLogic">

 <wsdlsoap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="helloName">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="helloNameRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="helloNameResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ServiceLogicService">

 <wsdl:port binding="impl:ServiceLogicSoapBinding" name="ServiceLogic">

 <wsdlsoap:address

 location="http://localhost:8080/MyWS/services/ServiceLogic"/>

 </wsdl:port>

 </wsdl:service>

…TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

From SOAP towards REST

10

Overall, Web Services architecture consists of many layers including protocols and standards for security and

reliability. Therefore, it becomes complicated and time/resource consuming for developers of simple web services.

Related tutorials:
• https://en.wikipedia.org/wiki/Representational_state_transfer

• https://crunchify.com/soap-vs-rest-simple-object-access-protocol-vs-representational-state-transfer/

REpresentational State Transfer (REST) has gained

widespread acceptance across the Web as a simpler alternative

to SOAP and WSDL based Web services. REST defines a set of

architectural principles by which you can design Web services

that focus on a system’s resources, including how resource

states are addressed and transferred over HTTP by a wide

range of clients written in different languages. Simply put, it is

the architecture of the Web. REST has emerged as a

predominant Web service design model. REST has had such a

large impact on the Web that it has mostly displaced SOAP- and

WSDL-based interface design because it’s a considerably

simpler style to use.

Web Services can be implemented in Web environments too,

on top of basic Web technologies such as HTTP, Simple Mail

Transfer Protocol (SMTP), and so on.

◼ REST is preferable in problem domains that are query intense or that require exchange of large grain chunks of data.

Basically, you would want to use RESTful web services for integration over the web.

◼ SOAP and WSDL based Web services (“Big” Web services) are preferable in areas that require asynchrony and various

qualities of services. Finally, SOAP-based custom interfaces enable straightforward creation of new services based on

choreography. Therefore, you will use big web services in enterprise application integration scenarios that have advanced

quality of service (QoS) requirements.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

11

Web Services with Jetty and Java Servlets

Demo

The Jetty Web Server provides an HTTP server and Servlet container capable of

serving static and dynamic content either from a standalone or embedded instantiations.
(http://www.eclipse.org/jetty/about.html)

Servers comparison: https://stackify.com/tomcat-vs-jetty-vs-glassfish-vs-wildfly/

Postman helps you be extremely efficient while working with APIs.
(https://www.getpostman.com/apps)

import org.eclipse.jetty.server.Server;

import org.eclipse.jetty.servlet.ServletHandler;

public class RunServlets {

public static void main(String[] args) throws Exception{

ServletHandler handler = new ServletHandler();

//add all servlet to use to the handler, the second argument is the path (e.g. http://localhost:8080/searchPublication)

handler.addServletWithMapping(SearchPublication.class, "/searchPublication");

handler.addServletWithMapping(UserProfile.class, "/getProfile");

handler.addServletWithMapping(CreateUserProfile.class, "/createProfile");

//Create a new Server, add the handler to it and start

Server server = new Server(8080);

server.setHandler(handler);

server.start();

//this dumps a lot of debug output to the console.

server.dumpStdErr();

server.join();

}

}

path method parameters response failures

/searchPublication GET searchString
response code 200 and JSON

containing publication’ information

response code 404 and JSON

containing an error message

/createProfile POST
Data is sent in

the POST body

code 302 (or 303) and redirect to

/getProfile?authorName=name

response code 400 and JSON

containing an error message

/getProfile GET authorName always fails
response code 501 and JSON

message “is not implemented”

…see https://en.wikipedia.org/wiki/Post/Redirect/Get for redirection related issues.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

REST API Client is the web

developers helper program to create
and test custom HTTP requests.

12

REST Web Services

API Client

HTTP request

HTTP response

RESTful Web Service API

Chrome

Postman: https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

Advanced REST client: https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo

DHC: https://chrome.google.com/webstore/detail/dhc-rest-client/aejoelaoggembcahagimdiliamlcdmfm?hl=en

Firefox

Firefox add-on: https://addons.mozilla.org/en-US/firefox/addon/restclient/

Insomnia is a cross-platform application for organizing, running, and debugging HTTP requests (https://insomnia.rest/).

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

RESTful Web Services

13

In the web services terms, REpresentational State Transfer (REST) is a stateless client-server architecture in which the web

services are viewed as resources and can be identified by their URIs. Web service clients that want to use these resources

access via globally defined set of remote methods that describe the action to be performed on the resource.

RESTFul web services are based on HTTP methods and the concept of REST. A RESTFul web service typically

defines the base URI for the services, the supported MIME-types (XML, text, JSON, user-defined, ...) and the set of

operations (POST, GET, PUT, DELETE) which are supported.

A concrete implementation of a REST Web service follows four basic design principles:

❑ Use HTTP methods explicitly.

❑ Be stateless.

❑ Expose directory structure-like URIs.

❑ Transfer XML, JavaScript Object Notation (JSON), or both.

JAX-RS - Java API for RESTful Web Services, is a set of APIs to develop REST service. JAX-RS is part of the Java EE, and make

developers to develop REST web application easily. There are two main implementation of JAX-RS API: Jersey and RESTEasy

Jersey is the open source, production quality, JAX-RS (JSR 311) Reference Implementation for building RESTful Web services. But, it is also

more than the Reference Implementation. Jersey provides an API so that developers may extend Jersey to suit their needs.

Related practical tutorials:
• https://www.ibm.com/developerworks/webservices/library/ws-restful/

• https://www.guru99.com/restful-web-services.html

• http://www.java2blog.com/2013/04/restful-web-service-tutorial.html

• http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html

• http://www.java2blog.com/2013/04/create-restful-web-servicesjax-rs-using.html

• http://www.java2blog.com/2016/04/spring-restful-web-services-crud-example.html

• http://www.tutorialspoint.com/restful/restful_first_application.htm

• http://www.vogella.com/tutorials/REST/article.html

In the REST architecture style, clients and servers exchange representations

of resources by using a standardized interface and protocol. REST isn't

protocol specific, but when people talk about REST they usually mean REST

over HTTP. The response from server is considered as the representation of

the resources (that can be generated from one resource or more number of

resources).

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

10 differences between SOAP and REST

14

http://www.javatpoint.com/soap-vs-rest-web-services

https://www.guru99.com/comparison-between-web-services.html

No. SOAP REST

1) SOAP is a protocol. REST is an architectural style.

2) SOAP stands for Simple Object Access Protocol. REST stands for REpresentational State Transfer.

3) SOAP can't use REST because it is a protocol.

REST can use SOAP web services because it is a

concept and can use any protocol like HTTP,

SOAP.

4)
SOAP uses services interfaces to expose the business

logic.
REST uses URI to expose business logic.

5) JAX-WS is the java API for SOAP web services. JAX-RS is the java API for RESTful web services.

6) SOAP defines standards to be strictly followed.
REST does not define too much standards like

SOAP.

7)
SOAP requires more bandwidth and resources than

REST.

REST requires less bandwidth and resources than

SOAP.

8) SOAP defines its own security.
RESTful web services inherits security measures

from the underlying transport.

9) SOAP permits XML data format only.
REST permits different data format such as Plain

text, HTML, XML, JSON etc.

10) SOAP is less preferred than REST. REST more preferred than SOAP.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

16

REST Web Services

HTML

Stirred by Web 2.0, classical Web Services has significantly evolved with the proliferation of Web APIs – RESTful services
(when confirm to the REST (Representational State Transfer) architectural style).

Web Apps became able to consume data as well as push/post data to other Apps through Web API.

http://www.dropbox.com https://api.dropbox.com/

XML or JSON

Web Apps

REST Web Services are:

❑ Modern;

❑ Light weight;

❑ Use a lot of concepts behind HTTP

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

17

REST Web Services

HTTP request

HTML

Client
Web

Service

HTTP response

< DATA >

No RULES
❑ No Protocol is needed for Client-Service communication. (in case of SOAP Web

Services - standardized SOAP protocol is required).

❑ Communication could be done using XML, JSON or Text as long as it satisfies
Client and Service provider;

❑ REST Web Service is a really “WEB” service and all communication is done via
HTTP using available in HTTP methods (GET, POST, PUT, DELETE, etc.);

❑ No Service Definition like WSDL in case of SOAP Web Services. Documentation of
REST Web Service is usually done in a form of human readable page. The best
implementation of a REST Web Service is an implementation that does not require any
documentation!

The ONLY RULE – make it as easy as possible for use!

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

18

REST Web Services

❑ Not only URL of the page to be displayed

❑ Status Code is very important in case of REST WS (e.g. 200 – Success, 500 – Server
Error, 404- Not Found, etc.)

❑ Metadata in the Header of the message:

❑ Content Type tells what format of data is used (e.g. text/xml, application/json, etc.)

❑ Content Negotiation is used by client to specify preferable content format

Using standard HTTP methods, we get in the Response…

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

19

REST Web Services

Client should send complete, independent
requests, including within the HTTP headers
and body of a request all of the parameters,
context, and data needed by the server-side
component (service) to generate a
response. (absence of state on the server
removes the need to synchronize session data with
an external application)

Be stateless…

Stateless server-side components are less complicated to design, write, and distribute

across load-balanced servers. A stateless service not only performs better, it shifts most

of the responsibility of maintaining state to the client application.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

20

REST Web Services

Service might generate responses that indicate whether they are cacheable or not to improve
performance by reducing the number of requests for duplicate resources and by eliminating some
requests entirely. The server does this by including a Cache-Control and Last-Modified (a date value)
HTTP response header.

Client uses the Cache-Control response header to determine whether to cache the resource (make a
local copy of it) or not. The client also reads the Last-Modified response header and sends back the
date value in an If-Modified-Since header to ask the server if the resource has changed. This is called
Conditional GET, and the two headers go hand in hand in that the server's response is a standard 304
code (Not Modified) and omits the actual resource requested if it has not changed since that time. A
304 HTTP response code means the client can safely use a cached, local copy of the resource
representation as the most up-to-date, in effect by passing subsequent GET requests until the
resource changes.

Cachebility…

Layered system…
A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary
along the way. Intermediary servers may improve system scalability by enabling load balancing and
by providing shared caches. They may also enforce security policies.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

21

REST Web Services

www.myCV.org/members/OleksiyKhriyenko/

Resource-based Address!!!
URI should look like you are looking up for something that is already exists (like in case of static pages).

www.myCV.org/members/OleksiyKhriyenko/publications/

www.myCV.org/getMemberByName?memberName=OleksiyKhriyenko

an address to a service where you put some parameters to perform some actions…
not like

www.myCV.org/getPublications?memberName=OleksiyKhriyenko

www.myCV.org/getMembes

Use nouns, not verbs !!!

www.myCV.org/members/OleksiyKhriyenko/publications/{publicationId}

www.myCV.org/members/OleksiyKhriyenko/degrees/{degreeId}

www.myCV.org/members/{memberName}

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

22

REST Web Services

/members/{memberName}/publications/{publicationId}/comments/{commentId}

Resource relations…
For example, publication’s comments could be reached by following URI…

… dependence on what client knows … If it is just a comment id, and client does not know
id of publication and member id, then this information could not be retrieved.

Instance Resource URI

/members/{memberName}/publications/

If you need to access a collection of resources – use Collection Resource URI Collection Resource URI

/members/{memberName}/publications/{publicationId}/comments/

They are plural – meaning that they represent a collection.

/publications/

To get all publications or comments irrespectively to particular person
(member) or publication use… Collection Resource URI

/comments/

… since there is no rules – it is up to you how to design URIs of your WS.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

23

REST Web Services

/members/{memberName}/publications?offset=10&limit=15

Filtering results…
To filter the results, you may simply provide query parameters…

Starts from publication number 10 and returns max15 following publications.

/members/{memberName}/publications?year=2018&type=journal

Returns only journal publications published in year 2018

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

24

REST Web Services

❑ Hide the server-side scripting technology file extensions (.jsp, .php, .asp), if any, so you can port to
something else without changing the URIs.

❑ Keep everything lowercase.

❑ Avoid using spaces Instead use hyphens (-) or underscores (_).

❑ Avoid query strings as much as you can.

❑ Instead of using the 404 Not Found code if the request URI is for a partial path, always provide a
default page or resource as a response.

Extra guidelines for URI structure…

URIs should also be static so that when the resource changes or the implementation of
the service changes, the link stays the same. This allows bookmarking. It's also
important that the relationship between resources that's encoded in the URIs remains
independent of the way the relationships are represented where they are stored.

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

25

REST Web Services

/getPublication?id=5

Operation via HTTP Methods…
Get publication number 5…

Ordinary WS

Similarly …

/degrees/3/HTTP PUT/updateDegree?id=3

/comments/7/HTTP DELETE/deleteComment?id=7

get Publications id=5

/publications/5/

REST WS

HTTP GET

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

26

REST Web Services

Operation via HTTP Methods…
Get a publication under <id>…

Read-only method

Idempotent – is safely repeatable since does not make
any changes

/publications/{publicationId}HTTP GET

Update/change a publication under <id>…

Write method

Idempotent – is repeatable since updates the same
resource

/publications/{publicationId}HTTP PUT
with new content in

the message

/publications/{publicationId}HTTP DELETE
Delete a publication under <id>…

Write method

Idempotent – is repeatable since ones deleted there is
nothing to delete anymore

Create a new publication…

Write method

Non idempotent – is not repeatable since it will create
every time some new resource

/publications/
HTTP POST

with correspondent
publication in the

message

since we do not know the publication Id, we
just refer to the Collection URI. The response

will contain an Id of created publication

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

27

REST Web Services

< XML >

< JSON >

< text >

Client
Web

Serviceresponse

REST Response…
… is a representation of a resource. It could have several representations (e.g. XML, JSON, text, etc.)

… contains metadata in the Header:

❑ Status Code

❑ Message length

❑ Date

❑ Content Type

❑ Etc.

Status Codes
5 classes of codes:

❑ 1xx – Informational code

❑ 2xx – Success code

❑ 3xx – Redirection code

❑ 4xx – Client Error code

❑ 5xx – Service Error code

❑ “200 OK”

❑ “201 Created”

❑ “204 No Content”

❑ “302 Found”

❑ “304 Not modified”

❑ “307 Temporary Redirect”

❑ “400 Bad Request”

❑ “401 Unauthorized”

❑ “403 Forbidden”

❑ “404 Not Found”

❑ “415 Unsupported Media Type”

❑ “500 Internal Service Error”

It is very good to use Status Codes as a service developer!!!

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

28

REST Web Services

HATEOAS… Hypermedia As The Engine Of Application State

A REST client needs no prior knowledge about how to interact with any particular application or server
beyond a generic understanding of hypermedia. A REST client enters a REST application through a
simple fixed URL. All future actions (the client may take) are discovered within resource representations
returned from the server.

Provide further guidance in the response!!!

{

“id” : “10”,

“title” : “Publication 123”,

“mainAuthor” : “me”,

“published” : “…”,

“co-Authors” : […]

}

{

“id” : “10”,

“title” : “Publication 123”,

“mainAuthor” : “me”,

“published” : “…”,

“co-Authors” : […],

“commentsUri” : “…”,

“mainAuthorProfileUri” : “…”

}

Could be extended with some
relevant data as links to the
publication’s comments and link to
a profile of the main author…

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

29

REST Web Services

HATEOAS… Hypermedia As The Engine Of Application State

❑ To separate extra relevant data from actual properties of a resource use concept of Links.

❑ Use “href“ and “rel“ attributes to specify URI of a linked document and relationship between the
linked and original documents.

… client just needs to understand meaning of “rel” attribute!!!

{ “id” : “10”,

“title” : “Publication 123”,

“mainAuthor” : “me”,

“published” : “…”,

“co-Authors” : […],

“links” : [{ “href” : “/publications/10”,

“rel” : “self” },

{ “href” : “/publications/10/comments”,

“rel” : “comments” },

{ “href” : “/profiles/3”,

“rel” : “mainAuthorProfile” }

]

}

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

30

REST Web Services

Richardson Maturity Model by Leonardo Richardson

Not RESTful API (SOAP Web Service): has one URI, request body contains
operation, everything in XML and no HTTP concepts are used.

Level 0

Introduce Resource-based URI, but still operations are contained in the request
message.

Level 1

Introduce HTTP Methods to do different operations. Use of Status Codes.Level 2

Introduce HATEOAS implementation.Level 3

Not RESTful Fully RESTful0 …… 1 …… 2 …… 3

TIES4560 - Lecture 212/09/2023

UNIVERSITY OF JYVÄSKYLÄ

31

Task 2

TIES4560 - Lecture 212/09/2023

	Slide 1
	Slide 2: SOAP Web Services
	Slide 3: Dynamic Client to a SOAP Web Service
	Slide 4: Dynamic Client to a SOAP Web Service
	Slide 5: Dynamic Client to a SOAP Web Service
	Slide 6: Simple SOAP Web Service
	Slide 7: Simple SOAP Web Service
	Slide 8: Simple SOAP Web Service with Tomcat
	Slide 9: SOAP Web Service extra (WSDL customization)
	Slide 10: From SOAP towards REST
	Slide 11: Web Services with Jetty and Java Servlets
	Slide 12: REST Web Services
	Slide 13: RESTful Web Services
	Slide 14: 10 differences between SOAP and REST
	Slide 16: REST Web Services
	Slide 17: REST Web Services
	Slide 18: REST Web Services
	Slide 19: REST Web Services
	Slide 20: REST Web Services
	Slide 21: REST Web Services
	Slide 22: REST Web Services
	Slide 23: REST Web Services
	Slide 24: REST Web Services
	Slide 25: REST Web Services
	Slide 26: REST Web Services
	Slide 27: REST Web Services
	Slide 28: REST Web Services
	Slide 29: REST Web Services
	Slide 30: REST Web Services
	Slide 31: Task 2

