
UNIVERSITY OF JYVÄSKYLÄ

Lecture 1: SOA in a nutshell

TIES4560 SOA and Cloud Computing

Autumn 2023

University of Jyväskylä Khriyenko Oleksiy

UNIVERSITY OF JYVÄSKYLÄ

2

❑ In Computer science, cloud computing describes a type of outsourcing of computer services, similar to the way in which
electricity supply is outsourced. Users can simply use it. They do not need to worry where the electricity is from, how it is
made, or transported. Every month, they pay for what they consumed. The idea behind cloud computing is similar: The user
can simply use storage, computing power, or specially crafted development environments, without having to worry how these
work internally. (Wikipedia)

❑ It is a style of computing in which IT-related capabilities are provided “as a service”, allowing users to access technology-
enabled services from the Internet ("in the cloud") without knowledge of, or control over the technologies behind these
servers. (Wikipedia)

❑ Cloud Computing is a paradigm in which information is permanently stored in servers on the Internet and cached temporarily
on clients that include computers, laptops, handhelds, sensors, etc. (according to a paper published by IEEE Internet
Computing in 2008)

❑ …

Some definitions of Cloud Computing…

TIES4560 - Lecture 15/09/2023

Cloud Computing

Cloud Computing is a buzzword that means different things to different people:

o another way of describing IT (information technology) "outsourcing"

o any computing service provided over the Internet or a similar network

o any bought-in computer service you use that sits outside your firewall

o etc.

UNIVERSITY OF JYVÄSKYLÄ

3

❑ To make your boss happy ...

❑ It becomes too expensive to manage hardware yourself - especially with low load.

o Most in house data center usage rates are very low.

o But it becomes cheaper again at some point (if you get the utilization rate up and

management costs down)

❑ More and more services are moved to the cloud

o When developing services, you must know cloud computing

Cloud Computing

Why do you want to study cloud computing?

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

4

Picture is taken from [1]

Cloud Computing

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

5

❑ At the beginning Cloud Computing has started as a business term

❑ Cloud Computing is the use of computing resources (hardware and software) that

are delivered as a service over a network. (Wikipedia)

Cloud Computing

Thus, Services come first!!!

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

6

❑ Learn generalizable techniques and skills

❑ Basics of Services (which are just a part of SOA)

❑ Basics of Cloud Computing

Main course targets

TIES4560 - Lecture 1

According to IEEE Spectrum ranking [2]

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

❑ Couse consists of 6 lectures

❑ Additionally we have 6 demo

❑

Course information webpage: http://users.jyu.fi/~olkhriye/ties4560

7

Course practicalities

Lecture Time Title Location

Lecture 1 (05.09.2023) 10:15 - 12:00 SOA in a nutshell AgC233.1

Lecture 2 (12.09.2023) 10:15 - 12:00 from SOAP towards REST AgC233.1

Lecture 3 (19.09.2023) 10:15 - 12:00 REST Web Service (with Jersey) AgC233.1

Lecture 4 (26.09.2023) 10:15 - 12:00 Security and Access Control AgC233.1

Lecture 5 (03.10.2023) 10:15 - 12:00 Cloud Computing AgC233.1

Lecture 6 (10.10.2023) 10:15 - 12:00 Serverless Architecture AgC233.1

Demo Time Location +extra Time Location

Demo 1 (13.09.2023) 10:15 - 12:00 AgC133.1 - (13.09.2023) 12:15 - 14:00 AgD513.1 Kalle

Demo 2 (20.09.2023) 10:15 - 12:00 AgC133.1 - (20.09.2023) 12:15 - 14:00 AgD513.1 Kalle

Demo 3 (27.09.2023) 10:15 - 12:00 AgC133.1 - (27.09.2023) 12:15 - 14:00 AgD513.1 Kalle

Demo 4 (04.10.2023) 10:15 - 12:00 AgC133.1 - (04.10.2023) 12:15 - 14:00 AgD513.1 Kalle

Demo 5 (11.10.2023) 10:15 - 12:00 AgC133.1 - (11.10.2023) 12:15 - 14:00 AgD513.1 Kalle

(17.10.2023) 10:15 - 12:00 AgC233.1

Demo 6 (18.10.2023) 10:15 - 12:00 AgC133.1 - (18.10.2023) 12:15 - 14:00 AgD513.1 Kalle

05/09/2023 TIES4560 - Lecture 1

UNIVERSITY OF JYVÄSKYLÄ

Course practicalities

❑ Practical tasks:

Practical tasks are planned to be done in groups of 4-5 people (depending on the total amount of

students). If you wish to do it alone, you may do it as well (just take into account corresponding

workload). Please, discuss this with your colleagues and inform me (via email) about the groups by

the end of the day 10.09.2023.

Course is practically oriented (students supposed to be able to program).

– Task 1(after Lecture 1): result presentation at Demo 1

– Task 2(after Lecture 2): result presentation at Demo 2

– Task 3(after Lecture 3): result presentation at Demo 3

– Task 4(after Lecture 4): result presentation at Demo 4

– Task 5(after Lecture 5): result presentation at Demo 5

– Task 6(after Lecture 6): result presentation at Demo 6
Results of the Tasks (PowerPoint presentation and software demonstration) will be presented by the groups

during the Demos. Groups will have a possibility to discuss the results of others, provide comments and

share opinions (active participation in the discussions will be taken into account during evaluation). Every

team member should send individual self-evaluation report (after each task) where mention contribution of

each team member with respect to the task (simply distribute 100 points among your team members).

805/09/2023 TIES4560 - Lecture 1

UNIVERSITY OF JYVÄSKYLÄ

9

Related courses

❑ TIES4520 - Semantic Technologies for Developers (7 ECTS) (18.09.-14.12.2023)

o covers relevant aspects of Automated Service Integration, Semantic Web Services,

Ontology Alignment (data model mapping), etc.

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

10

Service Oriented Architecture

VS

TIES4560 - Lecture 1

WorkmanshipManufactory

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Services and SOA

11

Some definitions for a “Service” concept…

❑ A service-oriented architecture (SOA) is an architectural pattern in computer software design in which application
components provide services to other components via a communications protocol, typically over a network. The
principles of service-orientation are independent of any vendor, product or technology.[3]

❑ A service-oriented architecture is essentially a collection of services. These services communicate with each other. The
communication can involve either simple data passing, or it could involve two or more services coordinating some
activity. Some means of connecting services to each other is needed.

❑ SOA is a style of architecting applications in such a way that they are composed of discrete software agents that have
simple, well-defined interfaces and are orchestrated through a loose coupling to perform a required function.

❑ A paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership
domains. It provides a uniform means to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations. (OASIS group)

❑ Service-Oriented Architecture (SOA) is an architectural style that supports service-orientation. Service-orientation is a way of
thinking in terms of services and service-based development and the outcomes of services. (Open Group)

❑ …

Some definitions of a Service Oriented Architecture (SOA)

❑ A service is a function (e.g. producing data, validating a customer, or providing simple analytical services, etc.) that is well-
defined, self-contained, and does not depend on the context or state of other services.

❑ A service comprises a stand-alone unit of functionality available via a formally defined interface.

❑ A service is a logical representation of a repeatable business activity that has a specified outcome (e.g., check customer
credit, provide weather data, consolidate drilling reports); is self-contained; may be composed of other services; is a "black
box" to consumers of the service. (Open Group)

❑ A services requires three fundamental aspects: implementation; elementary access details; and a contract. (Ben Margolis
with Joseph Sharpe: SOA for the Business Developer)

❑ …

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

12

Service request
Service Requestor/Customer

(Client)

Service Provider

(Server)
Service response

SOA and Web Services

Architecture

Web Services

Implementations of SOA

… …

TIES4560 - Lecture 1

Service Oriented Architecture
is all about…

• Build

• Use

• Combine

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Why services?

13

❑ Services are ubiquitous and are the main building block for the Internet.

❑ All companies' IT infrastructure is based on services.

❑ Service orientation makes adapting to change easier.

❑ SOA is popular because it lets you reuse applications, and it promises interoperability between heterogeneous applications
and technologies.

❑ SOA allows to orchestrate existing services to build different business processes.

❑ Simple in concept, SOA is also a best practice to fix broken architectures. With the wide use of standards such as Web
services, SOA is being promoted as the best way to bring architectural agility.

❑ Services uses similar concepts as modular programming and interface-based design.

❑ Defining isolated services makes testing easier.

❑ …

❑ SOA is a valid approach to solve many of the architectural problems that enterprises face today. However, those who
implement SOA typically look at it as something you buy, not something you do. Thus, many SOA projects are about
purchasing some technology that is sold as 'SOA-in-a-box.' You get something-in-a-box, but not SOA, and that only adds to
the problems.

❑ Web services and SOA are not synonymous. SOA is a design principle, whereas web services is an implementation
technology. You can build a service-oriented application without using web services (for example, by using other traditional
technologies such as Java RMI). Web services bring the platform-independent standards such as HTTP, XML, SOAP, and
UDDI, thus allowing interoperability between heterogeneous technologies. RESTful services make life even easier relying on
HTTP and widely used data exchange formats (JSON, XML).

❑ In the past, loosely coupled architectures have relied upon other technologies like CORBA and DCOM or document-based
approaches like EDI for B2B integration that were conceptual examples of SOA.

Be aware…

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Main principles to be followed by services

15

❑ Formal contract: Services adhere to a communications agreement, as defined collectively by one or more service-
description documents. A service’s contract consists of the following elements: service endpoint, message interchange
formats, Message Exchange Patterns (MEPs), capabilities (service operations) and requirements, inputs and outputs,
possible aggregation of multiple services (optional). Service consumers will rely upon a service’s contract to invoke and
interact with a service. Given this reliance, a service’s contract must remain stable over time. Contracts should be designed
as explicitly as possible.

❑ Abstraction: Beyond descriptions in the service contract, services hide logic from the outside world. The information
published in a service contract is limited to what is required to effectively utilize the service and does not contain any
superfluous information that is not required for its invocation.

❑ Loose coupling: This principle is applied to the services in order to ensure that the service contract is not tightly coupled to
the service consumers and to the underlying service logic and implementation. This results in service contracts that could be
freely evolved without affecting either the service consumers or the service implementation.

❑ Autonomy: Services have control over the logic they encapsulate, from a Design-time and a run-time perspective.
Autonomy provides services with improved independence from their execution environments. This results in greater
reliability, since services can operate with less dependence on resources over which there is little or no control.

❑ Reusability: Service should have the potential to be reused across the enterprise. These reusable services are designed in
a manner so that their solution logic is independent of any particular business process or technology. Logic is divided into
services with the intention of promoting reuse. Service-orientation encourages reuse in all services, regardless of whether
immediate requirements for reuse exist.

❑ Discoverability: Services are supplemented with communicative meta data by which they can be effectively discovered and
interpreted. Service discovery requires a common language to allow software agents to make use of one another's services
without the need for continuous user intervention

❑ Composability: Services are effective composition participants, regardless of the size and complexity of the composition.

❑ Statelessness: This principle is applied to design scalable services by separating them from their state data whenever
possible. This results in reduction of the resources consumed by a service as the actual state data management is delegated
to an external component or to an architectural extension. By reducing resource consumption, the service can handle more
requests in a reliable manner.

❑ ...

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Interrelation of the principles

16

Picture is taken from [4]

❑ Service autonomy establishes an execution
environment that facilitates reuse because the service
achieves increased independence and self-
governance. The less dependencies a service has, the
broader its reuse applicability.

❑ Service statelessness supports reuse because it
maximizes the availability of a service and typically
promotes a generic service design that defers state
management and activity-specific processing outside
of the service boundary.

❑ Service abstraction fosters reuse because it
establishes the black box concept. Proprietary
processing details are hidden, and potential
consumers are only made aware of an access point
represented by a generic public interface.

❑ Service discoverability promotes reuse as it allows
those that build consumers to search for, discover and
assess services offering reusable functionality.

❑ Service loose coupling establishes an inherent
independence that frees a service from immediate ties
to others. This makes it a great deal easier to realize
reuse.

❑ Service composability is primarily possible because
of reuse. The ability for new automation requirements
to be fulfilled through the composition of existing
services is feasible when those services being
composed are built for reuse. (It is technically possible
to build a service so that its sole purpose is to be
composed by another, but reuse is generally
emphasized.)

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Microservices

17

Picture is taken from [5]

TIES4560 - Lecture 1

Microservice Architecture has sprung up over the last years to describe a particular way of

designing software applications as suites of independently deployable small services, each running in

its own process and communicating with lightweight mechanisms, often an HTTP resource API

[5,6,7,8,9].
❑ minimum of centralized management of the services,

❑ different programming languages,

❑ different data storage technologies.

Libraries vs. Services

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Microservices

18

Picture is taken from [5]

TIES4560 - Lecture 1

Organized around Business Capabilities

Decentralized Governance… Products not Projects

Smart endpoints instead of centralized Enterprise Service Bus

(HTTP request-response with resource API's and lightweight messaging)

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Microservices

19

Picture is taken from [5]

TIES4560 - Lecture 1

Deployment

Decentralized Data Management

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Microservices

20

Picture is taken from [9]

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

SOAP Web Services

21

Web Services – are software systems offered over the Internet via platform- and programming-language

independent interfaces defined on the basis of a set of open standards such as XML, SOAP, and WSDL.

(http://www.tutorialspoint.com/webservices/webservices_tutorial.pdf)

o Web Services description/definition has been done with WSDL

(http://www.tutorialspoint.com/wsdl/index.htm) that provides a machine-

readable description of how the service can be called, what parameters it

expects, and what data structures it returns. Specification of only syntactic

interoperability without semantic meaning of data requires programmers to

reach specific agreements on the interaction of web services and makes

automatic composition very difficult;

o Web Services interaction has been implemented via XML-based SOAP

(Simple Object Access Protocol) messaging

(http://www.tutorialspoint.com/soap/index.htm);

o Web Service composition has been supported by several languages in

order to combine services in a process-oriented way (e.g., BPEL4WS,

WS-BPEL);

o Web Service publication has been performed via UDDI (Universal

Description, Discovery, and Integration)registries that were relatively

complex and do not support expressive queries

(http://www.tutorialspoint.com/uddi/index.htm).

<definitions>

<types>

definition of types........

</types>

<message>

definition of a message....

</message>

<portType>

<operation>

definition of a operation.......

</operation>

</portType>

<binding>

definition of a binding....

</binding>

<service>

definition of a service....

</service>

</definitions>

WSDL Document Structure

Web Service related practical tutorials:
• http://www.softwareagility.gr/index.php?q=node/29

• http://www.javatpoint.com/web-services-tutorial

• http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html

• http://wiki.eclipse.org/Creating_a_top-down_Axis2_Web_service

• http://www.eclipse.org/webtools/community/education/web/t320/Implementing_a_Simple_Web_Service.pdf

• https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/JavaWSTutorial.pdf

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

22

SOAP Web Services

Why Web Services?..

App Server 1

…

…

getProducts()

App Server 2

…

…

Java Java

.jar

❑ Simple packaging of business logic into .jar file and porting it to other server does not work in case of
dependency of business logic on other resources (applications, database, etc.) from the mother
server.

… but, if we consider clients that are implemented with different technology (different programming language, platform, etc.),

we have to provide Technology Independent Interface!!!

interface

❑ To allow consumer to use an implementation of some business logic, provider should provide an

Interface as a form of contract.

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

23

SOAP Web Services

Why Web Services?..

App Server 1

…

…

getProducts()

App Server 2

…

…

Java C++

App Server 3

…

…

.Net

?
WSDL

XML

SOAP
XML

XML via HTTP

SEI SEI

SEI

Service Endpoint Interface (SEI) is generated out of WSDL to be used by App.

It covers all the complexity of web service (converting objects and access to web service into SOAP message).

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

• WSDL: https://en.wikipedia.org/wiki/Web_Services_Description_Language

• WADL: https://en.wikipedia.org/wiki/Web_Application_Description_Language

WSDL Analyzer: https://www.wsdl-analyzer.com/

SOAP Web Services

24

Web Services Description Language (WSDL) – is an XML-based interface definition language that is used

for describing the functionality offered by a web service. The current version of WSDL is WSDL 2.0.

WSDL file – is WSDL description of a web service, which provides a machine-readable description of:

o how the service can be called;

o what parameters it expects;

o what data structures it returns.

The WSDL describes services as collections of network endpoints, or ports. The

abstract definitions of ports and messages are separated from their concrete use

or instance, allowing the reuse of these definitions. A port is defined by

associating a network address with a reusable binding, and a collection of ports

defines a service. Messages are abstract descriptions of the data being

exchanged, and port types are abstract collections of supported operations. The

concrete protocol and data format specifications for a particular port type

constitutes a reusable binding, where the operations and messages are then

bound to a concrete network protocol and message format.

WSDL is often used in combination with SOAP and an XML Schema to provide

Web services over the Internet. A client program connecting to a Web service can

read the WSDL file to determine what operations are available on the server. Any

special datatypes used are embedded in the WSDL file in the form of XML

Schema. The client can then use SOAP to actually call one of the operations

listed in the WSDL file using for example XML over HTTP.

WSDL 2.0 is a W3C recommendation (WSDL 1.1 is not). WSDL 2.0 specification offers better support for RESTful web services since accepts

binding to all the HTTP request methods (not only GET and POST as in version 1.1) and is much simpler to implement. However, support for this

specification is still poor in software development kits and is not supported by Business Process Execution Language (BPEL) version 2.0.

Web Application Description Language (WADL) is a machine-readable XML description of HTTP-based web services. WADL is the REST

equivalent of SOAP's WSDL. But it is not standardized by W3C yet.

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

• SOAP: http://www.tutorialspoint.com/soap/soap_tutorial.pdf

http://www.digilife.be/quickreferences/pt/xml%20messaging%20with%20soap.pdf

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:

SOAP-ENV =

"http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle =

"http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Header>

...

...

</SOAP-ENV:Header>

<SOAP-ENV:Body>

...

...

<SOAP-ENV:Fault>

...

...

</SOAP-ENV:Fault>

...

</SOAP-ENV:Body>

</SOAP_ENV:Envelope>

SOAP Web Services

25

Simple Object Access Protocol (SOAP) – is industry open-standard, XML-based messaging protocol for

exchanging information among computers. It can be delivered via a variety of transport protocols, but the initial

focus of SOAP is remote procedure calls transported via HTTP. SOAP messages are written entirely in XML and

are therefore uniquely platform- and language-independent.

o SOAP is a communication protocol designed to communicate via Internet.

o SOAP can extend HTTP for XML messaging.

o SOAP provides data transport for Web services.

o SOAP can exchange complete documents or call a remote procedure.

o SOAP can be used for broadcasting a message.

o SOAP is platform- and language-independent.

o SOAP is the XML way of defining what information is sent and how.

o SOAP enables client applications to easily connect to remote services and

invoke remote methods.

o Envelope : Defines the start and the end of the message. (mandatory element).

o Header: Contains any optional attributes of the message used in processing

the message. (optional element).

o Body: Contains the XML data comprising the message being sent. (mandatory

element).

o Fault: Provides information about errors that occur while processing the

message. (optional element).

A SOAP message contains:

SOAP Message Structure

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Use -keep and -s options to generate and store .class and .java source files

26

Client to a SOAP Web Service
Check a list of SOAP Web Services from the course webpage…

Web Service: Number Convertor (https://www.dataaccess.com/webservicesserver/numberconversion.wso)

 WSDL: https://www.dataaccess.com/webservicesserver/numberconversion.wso?WSDL

wsimport tool is used to parse an existing Web Services Description Language (WSDL) file and generate

required files (JAX-WS portable artifacts) for web service client to access the published web services.

(http://www.mkyong.com/webservices/jax-ws/jax-ws-wsimport-tool-example/)

wsimport –keep –s <folder> <wsdl_uri>

wsimport [options] <wsdl_uri>

1) Import .java files to your project: 2) Check wsdl:service and wsdl:port elements from the service WSDL file:

3) Use corresponding java classes to get an access to the service functionality:

Demo

TIES4560 - Lecture 1

Demo Project uses Java 1.8

If you use Java version later than 1.8.0_152, it might not include WS related Jars. So, add them to the project or to the

server you use, or simply use Java version that has corresponding classes. There are some sources for jar download:
• http://www.java2s.com/Code/Jar/j/Downloadjavaxxmlws30preludejar.htm

• https://mvnrepository.com/artifact/org.glassfish/javax.xml.ws/10.0-b28

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

https://crunchify.com/how-to-create-dynamic-web-project-using-maven-in-eclipse/

https://www.baeldung.com/jax-ws and https://www.baeldung.com/java-soap-web-service

https://stackoverflow.com/questions/17674456/multiple-wsdls-configurations-with-maven-jaxws

https://www.mojohaus.org/jaxws-maven-plugin/examples/using-wsdlLocation.html

27

Client to a SOAP Web Service
Build Maven Dynamic Web Project

◼ Build new Dynamic Web Project in Eclipse. Pay attention to the web

content directory set in the web module setting configuration…

◼ Convert it into Maven project (configure -> convert to Maven project).

◼ Edit pom.xml file with following dependencies

◼ Define targeted runtime (e.g. Apache Tomcat v9.0). Right click on project

(properties -> Targeted Runtimes).

Demo

TIES4560 - Lecture 1

Useful links:

<dependencies>

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>javax.servlet-api</artifactId>

 <version>3.1.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>com.sun.xml.ws</groupId>

 <artifactId>jaxws-ri</artifactId>

 <version>2.3.1</version>

 <type>pom</type>

 </dependency>

</dependencies>

Generate JAX-WS portable artifacts for web service client to

access the published web services

◼ Edit pom.xml file with following plugin, and specify corresponding

WSDL location

◼ Apply changes (right click on pom.xml file, Maven -> Update Project)

◼ In case you would like to try Maven plugin with several WSDLs, try to

define separate <execution> sections for each service and insert

individual <configuration> section inside each of them instead of

common <configuration>. You should also use different names for

<packageName> in the configurations for different services.

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>jaxws-maven-plugin</artifactId>

 <version>2.6</version>

 <executions>

 <execution>

 <id>wsimport-from-jdk</id>

 <goals>

 <goal>wsimport</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <wsdlUrls>

 <wsdlUrl> url to WSDL file </wsdlUrl>

 </wsdlUrls>

 <keep>true</keep>

 <packageName>com.soap.ws.client</packageName>

 <sourceDestDir>src</sourceDestDir>

 </configuration>

</plugin>
Specify the source destination directory. Depending on the java/IDE version,

it can be for example “src” or “src/main/java” folder (suggested by default).

5/09/2023

UNIVERSITY OF JYVÄSKYLÄ

• Servlets: http://www.oracle.com/technetwork/java/servlet-142430.html

http://www.tutorialspoint.com/servlets/index.htm

• Handling HTML form data with Java Servlet: http://www.codejava.net/java-ee/servlet/handling-html-form-data-with-java-servlet

• JavaScript, servlet and JSP: https://www.quora.com/What-is-the-difference-between-JavaScript-servlet-and-JSP

• Ajax: https://netbeans.org/kb/docs/web/ajax-quickstart.html

http://stackoverflow.com/questions/4112686/how-to-use-servlets-and-ajax

28

Java Servlets
Servlets provide a component-based, platform-independent method for building Web-based applications. A servlet is

an extension to a server that enhances the server's functionality. The most common use for a servlet is to extend a web

server by providing dynamic web content. A servlet is a normal Java class which extends from the

javax.servlet.http.HttpServlet class.

◼ In the class you can override the doPost or doGet method depending on the type of requests this Servlet needs to

answer to.

◼ In the method, you can call methods on the request and response objects to get the query parameters, set status

codes and write the response itself.

Frontend

Servlet

SOAP WS

Client
SOAP

Web Service

Application Server

HTML

HTTP request

HTTP response

HTTP request

HTTP response

Demo

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

29

Task 1

TIES4560 - Lecture 15/09/2023

UNIVERSITY OF JYVÄSKYLÄ

30

[1] http://www.digitalistmag.com/technologies/cloud-computing/2012/07/26/top-9-challenges-in-cloud-

computing-that-are-slowing-its-adoption-011918

[2] http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

[3] https://msdn.microsoft.com/en-us/library/bb833022.aspx

[4] http://searchsoa.techtarget.com/tip/The-principles-of-service-orientation-part-6-of-6-Principle-

interrelationships-and-service-layers

[5] https://www.martinfowler.com/articles/microservices.html

[6] https://smartbear.com/learn/api-design/what-are-microservices/

[7] https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/architect-microservice-

container-applications/microservices-architecture

[8] https://dzone.com/articles/microservices-vs-soa-is-there-any-difference-at-al

[9] https://dzone.com/articles/microservices-vs-soa-2

References

TIES4560 - Lecture 1

If you use Java version later than 1.8_152, it might not include ws related Jars. So, add them to the project or to the

server you use, or simply use Java version that has corresponding classes. Alternatively, build Maven project with

corresponding dependencies.

There are some sources for jar download:

• http://www.java2s.com/Code/Jar/j/Downloadjavaxxmlws30preludejar.htm

• https://mvnrepository.com/artifact/org.glassfish/javax.xml.ws/10.0-b28

5/09/2023

	Slide 1
	Slide 2: Cloud Computing
	Slide 3: Cloud Computing
	Slide 4: Cloud Computing
	Slide 5: Cloud Computing
	Slide 6: Main course targets
	Slide 7
	Slide 8: Course practicalities
	Slide 9: Related courses
	Slide 10: Service Oriented Architecture
	Slide 11: Services and SOA
	Slide 12: SOA and Web Services
	Slide 13: Why services?
	Slide 15: Main principles to be followed by services
	Slide 16: Interrelation of the principles
	Slide 17: Microservices
	Slide 18: Microservices
	Slide 19: Microservices
	Slide 20: Microservices
	Slide 21: SOAP Web Services
	Slide 22: SOAP Web Services
	Slide 23: SOAP Web Services
	Slide 24: SOAP Web Services
	Slide 25: SOAP Web Services
	Slide 26: Client to a SOAP Web Service
	Slide 27: Client to a SOAP Web Service
	Slide 28: Java Servlets
	Slide 29: Task 1
	Slide 30: References

