
TASK 2 Mistakes:
In general, tasks were done well… Just to avoid unnecessary information overloading I
provide possible right answers (some other solutions might also exist):

Task 2-1:

Select all persons who belong to the class Father.

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?name

WHERE {

 ?name a g:Father

 }

Select all pairs x-y where x is a father and y is his child. At the same time their weights

should be different. Show the results in descending order of an age of the children.

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?father ?child

WHERE {

 ?child g:hasParent ?father .

 ?father g:hasChild ?child .

 ?child g:weight ?c_weight .

 ?father g:weight ?f_weight .

 ?child g:hasAge ?Age .

 FILTER (!SAMETERM(?c_weight, ?f_weight))

}

ORDER BY DESC(?Age)

OR

PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?father ?child

WHERE {

 ?father a g:Father; g:hasChild ?Son; g:weight ?x.

 ?child g:hasAge ?Age; g:weight ?y.

 FILTER NOT EXISTS {

 ?child g:weight ?weight.

 ?father g:weight ?weight }

}

ORDER BY DESC(?Age)

OR

PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?father ?child

WHERE {

 ?father a g:Father .

 ?father g:hasChild ?child .

 ?child g:weight ?weight .

 ?child g:hasAge ?Age .

 MINUS {?father g:weight ?weight}

}

ORDER BY DESC(?Age)

Select all persons who belong to either of Brother or Sister class.

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?people

WHERE {

 {?people a g:Sister}

 UNION

 {?people a g:Brother}

 }

Select all Men, and optionally their children and their parents if this information is available.

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?menName ?children ?parent

WHERE {

 ?menName a g:Man.

 OPTIONAL{?menName g:hasChild ?children}.

 OPTIONAL{?menName g:hasParent ?parent}

 }

OR

PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?menName ?children ?parent

WHERE {

 ?menName a g:Male.

 OPTIONAL{?menName g:hasChild ?children}.

 OPTIONAL{?menName g:hasParent ?parent}

 }

OR

PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?menName ?children ?parent

WHERE {

 ?menName g:hasSex g:MaleSex .

 OPTIONAL{?menName g:hasChild ?children} .

 OPTIONAL{?menName g:hasParent ?parent}

 }

Select all parents older than 30 who do not have any information whether he/she has parent.

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?parent

WHERE {?parent a g:Parent; g:hasAge ?age .

FILTER (?age > 30).

FILTER NOT EXISTS{?parent g:hasParent ?x }

}

OR

PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?parent

WHERE {?parent a g:Parent; g:hasAge ?age .

FILTER (?age > 30).

MINUS { ?parent g:hasParent ?x. }

}

OR

PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

SELECT ?parent

WHERE {?parent a g:Parent; g:hasAge ?age .

FILTER (?age > 30).

OPTIONAL { ?parent g:hasParent ?x. }.

FILTER (!bound (?x)).

}

Return an amount of people that have child (or children).

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT (COUNT(?parent) as ?amount)

WHERE {

 ?parent a g:Parent

 FILTER EXISTS {?parent g:hasChild ?child}

 }

OR

SELECT (COUNT(DISTINCT ?person) AS ?count)

WHERE {

 ?person g:hasChild ?child

 }

Try CONSTRUCT query: For all persons x who belong to either of Brother or Sister class,

make a statement that x is of type g:Sibling.

SPARQL query
PREFIX g: <http://www.owl-ontologies.com/generations.owl#>

CONSTRUCT {?people a g:Sibling}

WHERE {

 {?people a g:Sister}

 UNION

 {?people a g:Brother}

 }

Task 2-2:

Show me full names (first name + surname) of all the people below 30 years of age who

have a research job in ascending order of their ages.

SPARQL query
PREFIX e: <http://jyu.fi/employment#>

PREFIX f: <http://example.org#>

PREFIX j: <http://jyu.fi/jobs#>

SELECT ?fullName

WHERE {

 SERVICE <sparql endpoint of corresponding repository> {

 ?people e:worksAs ?job.

 }

 SERVICE <sparql endpoint of corresponding repository> {

 ?people f:age ?age.

 ?people f:firstName ?firstName.

 ?people f:surName ?surName.

 }

 SERVICE <sparql endpoint of corresponding repository> {

 ?job a j:ResearchJob.

 }

 FILTER (?age < 30)

 BIND(CONCAT(?firstName,” “,?surName) AS ?fullName)

 }

ORDER BY(?age)

Show me all people who love a senior researcher.

SPARQL query
PREFIX e: <http://jyu.fi/employment#>

PREFIX f: <http://example.org#>

PREFIX j: <http://jyu.fi/jobs#>

SELECT ?people

WHERE {

 SERVICE <sparql endpoint of corresponding repository> {

 ?senior e:worksAs j:seniorResearcher.

 }

 SERVICE <sparql endpoint of corresponding repository> {

 ?people f:loves ?senior.

 }

 }

OR

PREFIX e: <http://jyu.fi/employment#>

PREFIX f: <http://example.org#>

PREFIX j: <http://jyu.fi/jobs#>

SELECT ?firstName ?surName

WHERE {

 SERVICE <sparql endpoint of corresponding repository> {

 ?senior e:worksAs j:seniorResearcher.

 }

 SERVICE <sparql endpoint of corresponding repository> {

 ?people f:loves ?senior.

 ?people f:firstName ?firstName.

 ?people f:surName ?surName.

 }

 }

Task 2-3:

You might notice some problems during uploading the content caused by wrong encoding of

quotation character (“). Try to manually re-type it.

Since Fuseki v3 stars to support TriG format as well, you can upload data in TriG format

directly from the file. But, there is a possibility to define named graphs in the structure of

repository in other way. If you noticed, there is a possibility to provide Graph Id while

uploading a file.

So… you may create 2 Turtle files. First one should contain triples from default graph of initial

TriG document, second file should contain triples from the named graph. Specify

corresponding graph ID while uploading the files (“default” for the first file, <id of the named

graph> for the second). Unfortunately, some problems occur with IDs that contain “#”.Fuseki

does not support “#” character in the graph URI (drops out the rest starting form #). Use “/”

character instead of “#”.

Describe the way you did it and create/perform query that shows all triples with

corresponding Graph ID. Perform the task using both: Sesame and Fuseki.

SPARQL query
SELECT ?graphID ?subject ?predicate ?object

WHERE {

 ?subject ?predicate ?object.

 OPTIONAL{GRAPH ?graphID { ?subject ?predicate ?object}}

 }

SPARQL query
SELECT ?graphID ?subject ?predicate ?object

WHERE {

 {?subject ?predicate ?object}

 UNION

 {GRAPH ?graphID { ?subject ?predicate ?object}}

 }

There were no requirement to perform all the sub-tasks in Task3 using Fuseki. Therefore, you

are free to use Sesame, Fuseki, or both. Both of the repositories use different SPARQL

Endpoints for normal queries and for Update. In Sesame you just chose different links for

queries and Updates. In Fuseki you should specify corresponding SPARQL Endpoint:

“http://localhost:3030/ds/query" or "http://localhost:3030/ds/update" (in case if the repository

name is “ds”).

Check the notes regarding the graph handling approaches in different data stores as well as

handling of empty graphs from the material of the Lecture 3.

Using SPARQL Update query create new Graph with ID:

http://www.example.com/ont#scBooks in the repository. Create/perform query that returns

“Graph exists” in case a graph with id (http://www.example.com/ont#scBooks) exists in

repository.

SPARQL Update query
CREATE GRAPH <http://www.example.com/ont#scBooks>

SPARQL query
SELECT ?result

WHERE{

 GRAPH <http://www.example.com/ont#scBooks>{} .

 BIND ("Graph exists" AS ?result)

}

OR

SELECT ?result

WHERE{

 BIND (IF(EXISTS{GRAPH <http://www.example.com/ont#scBooks>{}},

 "Graph exists", "Graph doesn't exist") AS ?result)

 }

Using SPARQL Update query move all the scientific books (books that belongs to the

ex:Science class) from graph (http://www.example.com/ont#books) to the newly created

graph (http://www.example.com/ont#scBooks) . Shows content of repository (all triples with

corresponding Graph ID.)

SPARQL Update query
PREFIX ex: <http://www.example.com/ont#>

INSERT {GRAPH ex:scBooks {?book ?x ?y}}

WHERE {GRAPH ex:books {?book a ex:Science .

 ?book ?x ?y . }

 };

WITH ex:books

DELETE {?book ?x ?y }

WHERE {?book a ex:Science .

 ?book ?x ?y .

 }

SPARQL query
SELECT ?graphID ?subject ?predicate ?object

WHERE {{?subject ?predicate ?object}

 UNION

 {OPTIONAL{GRAPH ?graphID { ?subject ?predicate ?object}}}

 }

