
UNIVERSITY OF JYVÄSKYLÄ

Lecture 9: Semantic Web Services

University of Jyväskylä Khriyenko Oleksiy

TIES4520 Semantic Technologies for Developers

Autumn 2023

UNIVERSITY OF JYVÄSKYLÄ

What is Semantic Web Services?...

2TIES4520 - Lecture 923/10/2023

◼ Web services annotated with semantics. Semantic Web services extend the existing Web services with semantic capability.

◼ Semantic Web services can be defined as web services whose descriptions are annotated by machine-interpretable

ontologies so that other software agents can use them without having any prior ‘built-in’ knowledge about how to invoke

them.

◼ Self-contained, self-describing, semantically marked-up software resources that can be published, discovered, composed and

executed across the Web in a task-driven semiautomatic way.

◼ Ontology-based descriptions of Web services that could be processed by ontology reasoning tools.

◼ Integrate Web services technology with machine supported data interpretation, using ontologies as a data model, to enable

automatic discovery, selection, composition, and Web-based execution of services.

◼ Semantic Web Services are Web Services that can specify not only their interfaces, but also describe in full, under the form of

OWL-based ontologies, their capabilities, and the prerequisites and consequences of their use.

◼ Semantic enrichment of current Web Services allowing automated discovery, composition and execution of services.

◼ When Web services and their related messages are semantically described (capabilities, interfaces) with appropriate

ontologies, they are called semantic Web services.

◼ Research in the Semantic Web services area is addressing the problems of automated service discovery, composition,

execution and similar problems by augmenting the existing Web services standards by additional semantic layer(s). The

additional semantic focuses on enabling “... semantically transparent services which will make it possible for clients to

successfully use services that are dynamically discovered without prior negotiations between client and service developers”.

Most of the proposed mechanisms rely on extending the current WS descriptions with descriptions in some logical formalism

more suitable for capturing the explicit meaning of provided Web services. Such formalisms typically rely on formal ontologies

and research conducted in the Semantic Web area.

◼ Semantic Web Services, like conventional web services, are the server end of a client–server system for machine-to-machine

interaction via the World Wide Web. Semantic services are a component of the semantic web because they use markup

which makes data machine-readable.

Link: https://www.igi-global.com/dictionary/semantic-web-services/26380

UNIVERSITY OF JYVÄSKYLÄ

Semantic Web Services

3TIES4520 - Lecture 9

UDDI, WSDL, SOAP, REST…

OWL-S, WSMO, SAWSDL, WSDL2.0,

WADL, hRESTS, MSM, SADI, SSWAP…

URI, HTML, HTTP… XML, RDF, OWL, SPARQL,

SWRL, RDFa, JSON-LD…

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

4

Service Profile – tells "what the service does“, includes a description of what is accomplished by the

service, limitations on service applicability and quality of service, and requirements that the service

requester must satisfy to use the service successfully;

Service Model – tells a client how to use the service, by detailing the semantic content of requests, the

conditions under which particular outcomes will occur, and, where necessary, the step by step

processes leading to those outcomes;

Service Grounding - specifies the details of how an agent can access a service. Typically a grounding

will specify a communication protocol, message formats, and other service-specific details such as port

numbers used in contacting the service.

Useful link: Practical tutorial on Semantic Web Services [1]

In Semantic Web, users and software agents should be able to discover, invoke, compose, and monitor

Web resources offering particular services and having particular properties, and should be able to do

so with a high degree of automation if desired. Powerful tools should be enabled by service

descriptions, across the Web service lifecycle. Semantic Web Services, like conventional web

services, are system for machine-to-machine interaction via the Web, but additionally support semantic

meaning of the messages making data machine-readable in a detailed and sophisticated way.

o OWL-S (formerly DAML-s) defines an ontology for the domain of Web services that provides tags which can be used for

describing actual Web Services (http://www.w3.org/Submission/OWL-S). OWL-S services are mapped to WSDL operations,

inputs and outputs of OWL-S are mapped to WSDL messages. Top level ontology consists of:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

5

o WSDL-S extends WSDL with extending attributes (e.g. wssem:modelReference, wssem:schemaMapping, wssem:precondition,

wssem:effect, wssem:category) and provides a lightweight (comparing to OWL-S) approach to create Semantic Web Service

descriptions (http://www.w3.org/Submission/WSDL-S/);

o SAWSDL defines a set of extension attributes for the WSDL and XML Schema (http://www.w3.org/2002/ws/sawsdl/)(relevant tools:

http://easywsdl.ow2.org/extensions-sawsdl.html). It does not specify a language for representing the semantic models, but provides

mechanisms by which concepts from the semantic models can be referred using annotations, specify how to translate an XML schema

element to/from an ontology instance in another language using following extensibility attributes:

– modelReference - to specify the association between a WSDL or XML Schema component and a concept in some semantic model;

– liftingSchemaMapping and loweringSchemaMapping - to specify mappings between WSDL Type Definitions in XML and semantic data and

back respectively. Lowering and Lifting scripts can be written in XSLT together with SPARQL. Later, XSPARQL (which combines XQuery and

SPARQL) have been recognized as a more effective language for this purpose (http://www.w3.org/Submission/xsparql-language-

specification).

Semantic Web Services, like conventional web services, are system for machine-to-machine

interaction via the Web, but additionally support semantic meaning of the messages making data

machine-readable in a detailed and sophisticated way.

<wsdl:operation name="order"

sawsdl:modelReference=“http://www.w3.org/2002/ws/sawsdl/spec/ontology/rosetta#RequestPurchaseOrder">

<wsdl:input element="OrderRequest"/>

<wsdl:output element="OrderResponse"/>

<wsdl:fault name="ItemUnavailableFault" element="AvailabilityInformation"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/rosetta#ItemUnavailable"/>

</wsdl:operation>

<complexType name="POAddress“

sawsdl:modelReference = "http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#Address"

sawsdl:liftingSchemaMapping = "http://www.w3.org/2002/ws/sawsdl/spec/mapping/POAdress2Ont.xslt"

sawsdl:loweringSchemaMapping = "http://www.w3.org/2002/ws/sawsdl/spec/mapping/Ont2POAddress.xsparql" >

<all>

<element name="streetAddr1" type="string" />

<element name="streetAddr2" type="string" />

<element name=“zipCode" type="string" />

<element name="city" type="string" />

</all>

</complexType>

Address

xsd:string

xsd:string

xsd:string

has_City

has_StreetAddress

has_Zip

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Semantic Web Services, like conventional web services, are system for machine-to-machine

interaction via the Web, but additionally support semantic meaning of the messages making data

machine-readable in a detailed and sophisticated way.

o WSMO (Web Service Modeling Ontology) (http://www.w3.org/Submission/WSMO) is a conceptual model for relevant

aspects related to Semantic Web Services (capabilities, orchestration and choreography, goals, ontologies, etc.) that

provides an ontology based framework, which supports the deployment and interoperability of Semantic Web Services.

WSMO identifies four main top-level elements:

1. Ontologies that provide the terminology used by other elements;

2. Goals that state the intentions that should be solved by Web Services;

3. Web Services descriptions which describe various aspects of a service;

4. Mediators: to resolve interoperability problems.

o It has a lightweight ontology WSMO-Lite - the next evolutionary step after SAWSDL, filling the SAWSDL annotations with

concrete semantic service descriptions. WSMO-Lite (http://www.w3.org/Submission/WSMO-Lite/) is inspired by the WSMO

ontology, focusing on a small subset of it to define a limited extension of SAWSDL. WSMO-Lite addresses the following

requirements:

• Identify the types and a simple vocabulary for semantic descriptions of services (a service ontology).

• Define an annotation mechanism for WSDL using this service ontology.

• Provide the bridge between WSDL, SAWSDL and (existing) domain-specific ontologies such as classification

schemas, domain ontology models, etc.

6

In contrast to OWL-S, it has built-in syntax for encoding the boolean formulas that are used to

describe the pre-conditions and post-conditions of the services. It is presented in the Web

Service Modeling Language (WSML) - a formalization of the WSMO ontology, providing a

language within which the properties of Semantic Web Services can be described.

WSMX execution environment provides an architecture including discovery, mediation, selection, and invocation and

has been designed including all required supporting components enabling an exchange of messages between

requesters and the providers of services.

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Stirred by Web 2.0, classical Web Services has significantly evolved with the proliferation of Web

APIs – RESTful services (when confirm to the REST (Representational State Transfer) architectural

style).

o Web APIs are generally described using plain, unstructured HTML

o There are some formats to represent Web API in machine-readable form:

• WSDL 2.0 – an extension of WSDL to support the rest HTTP operations could be considered as acceptable method of

documenting RESTful services (http://www.w3.org/TR/wsdl20/). But it is still operation-based description for resource-

oriented services, contains some difficulties with specifying the message exchange formats;

• WADL - a machine-readable XML description of HTTP-based web applications (http://www.w3.org/Submission/wadl/). As

opposed to WSDL, WADL models the resources provided by a service, and the relationships between them in the form of

links. A service is described using a set of resource elements. Each resource contains descriptions of the inputs and

method elements, including the request and response for the resource. The main difficulty of using WADL descriptions is

that they are complex, in comparison to text-based documentation, and require that developers have a certain level of

training and tool support that enables the application development on top of WADL;

• hRESTS (HTML for RESTful Services) microformat for machine-readable descriptions of Web APIs [2][3]. hRESTS

enables the marking of service properties including operations, inputs and outputs, HTTP methods and labels, by inserting

HTML tags within the HTML. As an alternative to using hRESTS, RDFa - enables the embedding of RDF data in HTML.

RDFa is similar to using microformats, but is somewhat more complex and offers more HTML marking options, as opposed

to hRESTS.

o Approaches, based on making existing RESTful service descriptions machine-processable by using HTML tags are simpler

and more lightweight as opposed to WSDL and WADL. In addition, they can be applied directly on already available

descriptions, rather then creating new service descriptions from scratch. The adoption by developers is also easier, since

the creation of a machine-processable restful service description is equivalent to Web content creation or modification.

o Web APIs require supportive infrastructure/tools to provide more sufficient descriptions in machine and human readable

form. (e.g., HAL - a format that simplify developer’s work with API. HAL provides a set of conventions for expressing

hyperlinks in either JSON or XML : http://stateless.co/hal_specification.html);

o One of the registries of Web APIs: http://www.programmableweb.com

7TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

8

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix hr: <http://www.wsmo.org/ns/hrests#> .

hr:Service a rdfs:Class .

hr:hasOperation a rdf:Property ;

 rdfs:domain hr:Service ;

 rdfs:range hr:Operation .

hr:Operation a rdfs:Class .

hr:hasInputMessage a rdf:Property ;

 rdfs:domain hr:Operation ;

 rdfs:range hr:Message .

hr:hasOutputMessage a rdf:Property ;

 rdfs:domain hr:Operation ;

 rdfs:range hr:Message .

hr:hasAddress a rdf:Property ;

 rdfs:domain hr:Operation ;

 rdfs:range hr:URITemplate .

hr:hasMethod a rdf:Property ;

 rdfs:domain hr:Operation ;

 rdfs:range hr:HTTPMethod .

hr:Message a rdfs:Class .

hr:URITemplate a rdfs:Datatype .

hr:HTTPMethod a rdfs:Class .

hr:GET a hr:HTTPMethod .

hr:POST a hr:HTTPMethod .

hr:PUT a hr:HTTPMethod .

hr:DELETE a hr:HTTPMethod .

<div class="service" id="svc">

<p> Description of the ACME

Hotels service:

</p>

<div class="operation" id="op1">

<p> The operation <code class="label" >

getHotelDetails </code> is invoked using the

method GET at <code

class="address"> http://example.com/h/{id}

</code>, with the ID of the

particular hotel replacing the parameter

<code> id </code>. It returns <span

class="output">the hotel details in an <code>

ex:hotelInformation </code> document.

</p>

</div>

</div>

hRESTS:

hRESTS service model:
<p>

Description of the ACME Hotels service:

</p>

<p>

The operation <code> getHotelDetails </code> is

invoked using the method GET at <code>

http://example.com/h/{id} </code>, with the ID of

the particular hotel replacing the parameter

<code> id </code>. It returns the hotel details in

an <code> ex:hotelInformation </code> document.

</p>

HTML:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

9

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix hr: <http://www.wsmo.org/ns/hrests#> .

@prefix jk: <http://members.sti2.at/j̃acekk/hrests/src.xhtml#> .

jk:svc a hr:Service;

rdfs:isDefinedBy

<http://members.sti2.at/j̃acekk/hrests/src.xhtml>;

rdfs:label ”ACME Hotels”;

hr:hasOperation jk:op1 .

jk:op1 a hr:Operation;

rdfs:label ”getHotelDetails”;

hr:hasMethod hr:GET;

hr:hasAddress

”http://example.com/h/{id}”ˆˆhr:URITemplate;

hr:hasInputMessage [a hr:Message];

hr:hasOutputMessage [a hr:Message] .

<div class="service" id="svc">

<p> Description of the ACME

Hotels service:

</p>

<div class="operation" id="op1">

<p> The operation <code class="label" >

getHotelDetails </code> is invoked using the

method GET at <code

class="address"> http://example.com/h/{id}

</code>, with the ID of the

particular hotel replacing the parameter

<code> id </code>. It returns <span

class="output">the hotel details in an <code>

ex:hotelInformation </code> document.

</p>

</div>

</div>

hRESTS:

RDF description:

<p>

Description of the ACME Hotels service:

</p>

<p>

The operation <code> getHotelDetails </code> is

invoked using the method GET at <code>

http://example.com/h/{id} </code>, with the ID of

the particular hotel replacing the parameter

<code> id </code>. It returns the hotel details in

an <code> ex:hotelInformation </code> document.

</p>

HTML:

hRESTS does not actually provide machine-readable

information about the inputs and outputs…

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SA-REST originally proposed as an RDFa-based

annotation mechanism, is an extension of hRESTS that

supports the description of different service properties

(various facets of Web APIs) to support search and

filtering for programmers:
o data formats (e.g., XML, JSON, GData and ATOM/RSS, etc.);

o programming language bindings.

10

MicroWSMO is a SAWSDL-based extension of

hRESTS with the elements (model, lowering, lifting)

which can be associated with the elements of a

hRESTS definition.
o modelReference is used to link any part of a service description

with its semantic properties (points to a concept in some semantic

model).

o liftingSchemaMapping – transformation of the XML data produced

by the web service into RDF data .

o loweringSchemaMapping - vice versa to liftingSchemaMapping.

<div class=”service” id=”svc”>

<p>The output format of the operations of the

<code class=”label”>ACME Hotels</code>

service is

JSON . Client libraries are available

in Java

and PHP.

</p>

</div>

SA-RESR example:

<div class=”service” id=”svc”>

<p>ACME Hotels is

a <abbr class=”mref”

title=”.../ecommerce/hotelReservation”> hotel

reservation</abbr> service.</p>

...

<div class=”operation” id=”op1”>

<p> ...

A particular hotel ID

replaces the param <code class=”mref”

title=”.../onto.owl#Hotel”>id</code>

(<a rel=”lowering”

href=”.../hotelID.xslt”>lowering).

. ... </p>

</div>

</div>

MicroWSMO example:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

WSMO-Lite Ontology is a lightweight approach to the semantic annotation of Web service

descriptions.

11

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .

@prefix wl: <http://www.wsmo.org/ns/wsmo-lite#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dc: <http://purl.org/dc/terms/>.

wl: a owl:Ontology ;

 ...
classes for use in semantic annotation of service descriptions

wl:FunctionalClassificationRoot rdfs:subClassOf

rdfs:Class ;

 rdfs:label "Functional Classification Root"@en ;

rdfs:description "instances of this class are roots of

functionality classification hierarchies"@en .

wl:NonfunctionalParameter rdf:type rdfs:Class ;

 rdfs:label "Nonfunctional Parameter"@en ;

rdfs:description "instances of this class are concrete

nonfunctional properties of services"@en .

wl:Condition rdf:type rdfs:Class ;

 rdfs:label "Condition"@en ;

rdfs:description "preconditions of services and

operations"@en .

wl:Effect rdf:type rdfs:Class ;

 rdfs:label "Effect"@en ;

rdfs:description "effects (postconditions) of services

and operations"@en.

the following two are deprecated definitions (as of May 2013),
they haven't been found useful

wl:Ontology rdf:type rdfs:Class ;

 rdfs:subClassOf owl:Ontology ;

 owl:deprecated "true"^^xsd:boolean ;

 rdfs:label "Ontology"@en ;

rdfs:description "information model ontology

(deprecated)"@en.

property for identifying potentially relevant ontologies

wl:usesOntology a rdfs:Property ;

 rdfs:domain wl:Service ;

 rdfs:subPropertyOf rdfs:seeAlso ;

 owl:deprecated "true"^^xsd:boolean ;

 rdfs:label "uses Ontology"@en ;

rdfs:description "pointer from a semantic

description to an ontology that it uses

(deprecated)"@en ;

 rdfs:isDefinedBy wl: .

Additional useful definitions, not defined as part of WSMO-Lite

SAWSDL properties (repeated here for completeness)

sawsdl:modelReference rdf:type rdf:Property .

sawsdl:liftingSchemaMapping rdf:type rdf:Property.

sawsdl:loweringSchemaMapping rdf:type rdf:Property.

Minimal Service Model used to be copied here but is no longer (as
of May 2013)

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix msm: <http://iserve.kmi.open.ac.uk/ns/msm#> .

@prefix dc: <http://purl.org/dc/terms/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix wl: <http://www.wsmo.org/ns/wsmo-lite#> .

@prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .

Minimal Service Model (MSM) represents an operation-based approach towards describing

Web APIs. It is a simple RDF(S) ontology that supports the annotation of common Web API

descriptions. It also aims to enable the reusability of existing Semantic Web service approaches by

capturing the maximum common denominator between existing conceptual models for services.

12TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix msm: <http://iserve.kmi.open.ac.uk/ns/msm#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix hr: <http://iserve.kmi.open.ac.uk/ns/hrests#> .

@prefix http: <http://www.w3.org/2011/http#> .

Minimal Service Model (MSM) additionally targets to support both traditional Web services,

as well as Web APIs with procedural view on resources, so that they can be handled in a unified way.

The hRESTS vocabulary, extends the MSM with specific attributes for operations so as to allow

modeling additional details necessary for Web APIs such as grounding, URI templates to support URI

construction for invocation, HTTP methods used, etc.

13TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

14

◼ Service-to-Service (S2S) interaction:

o publishes Semantic Web Services as Linked Data (no matter their original format);

o provide suitable support for publishing and querying services in expressive and

extensible manner;

o the registry transparently supports the discovery of heterogeneous services,

mainly WSDL services (described in WSDL and SAWSDL) and Web APIs

(documented with hRESTS). Additional support is also provided for OWL-S

services.

o uses as its core the Minimal Service Model, a minimal vocabulary for describing

services in RDF which abstracts us away from the original approach used for

annotating the services, such as SAWSDL, WSMO-Lite, MicroWSMO or OWL-S.;

o provides a range of advanced service analysis and discovery techniques. For

instance, iServe currently supports input/output discovery using RDFS and SKOS

reasoning, functional classification-based discovery with RDFS reasoning, and

similarity-based discovery given services' textual descriptions.

o URL: http://iserve.kmi.open.ac.uk/ , http://kmi.github.io/iserve/latest/index.html and

https://github.com/kmi/iserve/releases

Services Discovery and Publication [9][10]

iServe is a service warehouse which unifies service publication, analysis, and discovery through the use of

lightweight semantics as well as advanced discovery and analytic capabilities:

iServe provides:

o iServe Browser - web-based application allowing users to browse, query and upload services to iServe;

o SPARQL endpoint where all the data hosted in iServe can be accessed and queried;

o RESTful API that enables creating, retrieving and querying for services directly from applications;

o SWEET and SOWER - web-based applications supporting the annotation of Web APIs and WSDLs based on

MicroWSMO and WSMO-Lite respectively, which directly provide the means for publishing the annotations in iServe.

(http://sweet.kmi.open.ac.uk)

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

15

◼ Service-to-Service (S2S) interaction:

Google APIs Discovery Service (https://developers.google.com/discovery/) gives possibility to build client libraries, IDE plugins, and

other tools that interact with Google APIs. It provides a lightweight, JSON-based API that exposes machine-readable metadata about

Google APIs. Google has built several tools using the service: Google API client libraries (client libraries in various languages for

accessing Google APIs) and Google APIs Explorer (an interactive web-based tool for exploring Google APIs).

However, such platforms that provide machine-readable metadata about APIs enabling the auto-generation of client software

support only a predefined set of APIs and provide very limited coverage…

OmniVoke [11] is an invocation engine which provides a single interface for invoking linked services

(http://omnivoke.kmi.open.ac.uk). The engine takes RDF data as input and returns RDF data as a response, enabling a

seamless integration of linked services within applications as linked data producers and/or consumers.

Services Invocation

o For services that do not handle RDF natively, the engine uses lowering and

lifting schema mappings as declared on the service description in order to

transform, respectively, the RDF input into the suitable data format the

underlying endpoint accepts and viceversa. Currently, OmniVoke embeds

an XSPARQL engine to this end.

o OmniVoke works with the Extended Minimal Service Model

(http://iserve.kmi.open.ac.uk/ontology/msm1.0.rdfxml), which extends the initial

model with invocation-specific service descriptions. In particular, the model

define input data grounding (:isGroundedIn), which specifies whether the

input values are transmitted as part of the URI, HTTP headers or the HTTP

request message body (applicable to HTTP POST and PUT requests), as

well as the message format when input is transmitted as message body

(:producesContentType and :acceptsContentType).

o Since a majority of the Web APIs require some form of authentication,

OmniVoke uses an authentication ontology that enables the annotation of

authentication information as part of a semantic Web API description so

that authentication can be seamlessly handled by OmniVoke

(http://omnivoke.kmi.open.ac.uk/authentication).

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Previously mentioned description languages have tackled the semantic enrichment of function-based

services, such as WSDL and REST, by using domain knowledge describing mainly technical

interfaces. In fact, legal aspects, pricing models, and service levels are all elements which need to be

explicitly described when dealing with cloud services. Therefore, efforts were redirected to the

development of new languages to capture business and operational perspectives beside the technical

one. USDL and Linked USDL are a family of languages that provide a comprehensive view on

services to be used by providers, brokers, and consumers when searching, evaluating, and selecting

services. [4]

Unified Service Description Language (USDL) is a platform-neutral language for

describing services consolidated from SAP Research projects. The kinds of services targeted for

coverage by USDL include human services (e.g., consultancy), business services (e.g. purchase

order requisition), software services (e.g., WSDL and RESTful services), infrastructure services (e.g.,

CPU and storage services), etc. [5]

Linked USDL is a remodeled version of USDL that builds upon the Linked Data principles and the

Web of Data. This effort is therefore most concerned with remodeling the existing USDL specification

as an RDF(S) vocabulary that could better support machines in trading services on the Web. To

maximize the potential interoperability Linked USDL adopts, where possible, existing RDF(S)

vocabularies such as GoodRelations, the Minimal Service Model and FOAF to name a few. Linked

USDL is inline with other Linked Data centric initiatives around services such as the work on Linked

Services. [6] (http://linked-usdl.github.io/ , https://github.com/linked-usdl)

16TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Linked Services are services described as Linked Data [8].

o service descriptions, their inputs and outputs, their functionality, and their non-functional

properties are described in terms of (reused) light weight RDFS vocabularies and exposed

following Linked Data principles

▪ Use URIs as names for thing;

▪ Use HTTP URIs so that people can look up those names;

▪ When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL);

▪ Include links to other URIs, so that they can discover more things.

o services, with appropriate infrastructure support, can consume RDF from the Web of Data, and, if

necessary, can also generate additional RDF to be fed back to the Web of Data.

17TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Semantic Automated Discovery and Integration (SADI) - is a lightweight set of fully standards-

compliant Semantic Web service design patterns [12] (http://sadiframework.org/content/about-sadi/).

SADI simply consists of a number of recommendations for how services themselves should be implemented

and described in order to achieve a set of useful, interoperable behaviors that can be leveraged by existing

Web service standards:

o SADI Web services are stateless and atomic;

o SADI service endpoints respond to HTTP GET by returning the interface definition of the service;

o Service interfaces (i.e., inputs and outputs) are defined in terms of OWL-DL classes; the property restrictions on these

OWL classes define what specific data elements are required by the service and what data will be provided by the

service, respectively;

o SADI services consume and produce data in RDF format;

o SADI services are invoked through plain HTTP POST of RDF data to the service endpoint. All information required for

service invocation must be present in the data itself, because SADI uses a non-parameterized POST - i.e. does not

use the HTTP FORM encoding;

o Input RDF data - data that is compliant with (i.e. classifies into) the input OWL Class definition – is “decorated” or

“annotated” by the service provider to include new properties until it fulfills the Class definition of the service’s output

OWL Class. Importantly, in so doing, the URI of the input OWL Class Instance is preserved and becomes the URI of

the output OWL Class Instance.

18

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

Links:

o https://metacpan.org/dist/SADI-Simple

o https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212890/

o https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-5-46

23/10/2023

https://metacpan.org/dist/SADI-Simple
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212890/

UNIVERSITY OF JYVÄSKYLÄ

19

◼ Service-to-Service (S2S) interaction:

@prefix : <http://www.mygrid.org.uk/mygrid-moby-service#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix schema: <http://www.w3.org/2001/XMLSchema#> .

@prefix ser: <http://sadiframework.org/examples/hello#> .

@prefix h-ser: <http://sadiframework.org/examples/hello> .

@prefix h-ont: <http://sadiframework.org/examples/hello.owl#> .

h-ser: a :serviceDescription ;

:hasOperation ser:operation ;

:hasServiceDescriptionText "A simple Hello“ ;

:hasServiceNameText "Hello"^^schema:string .

ser:operation a :operation ;

:inputParameter ser:input ;

:outputParameter ser:output .

ser:input a :parameter;

:objectType h-ont:NamedIndividual .

ser:output a :parameter;

:objectType h-ont:GreetedIndividual .

GET http://example.org/myservice

Service description

INPUT OWL Class

”NamedIndividual”: things with a

”name” property from ”foaf” ontology

OUTPUT OWL Class

”GreetedIndividual”: things with a

”greeting” property from ”hello” ontology

SADI service description:
@prefix : <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix schema: <http://www.w3.org/2001/XMLSchema#> .

<> a :Ontology ;

:imports <http://xmlns.com/foaf/0.1/name> .

<#NamedIndividual> a :Class ;

:equivalentClass [

a :Restriction ;

:minCardinality "1"^^schema:int ;

:onProperty <http://xmlns.com/foaf/0.1/name>] .

<#GreetedIndividual> a :Class ;

:equivalentClass [

a :Restriction ;

:minCardinality "1"^^schema:int ;

:onProperty <#greeting>] .

<#greeting> a :DatatypeProperty .

Ontology to describe a service (hello.owl):

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

20

◼ Service-to-Service (S2S) interaction:

POST /examples/hello HTTP/1.1

Host: sadiframework.org

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:hello="http://sadiframework.org/examples/hello.owl#">

<hello:NamedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">

<foaf:name>John Smith</foaf:name>

</hello:NamedIndividual>

</rdf:RDF>

Invocation HTTP message to invoke the “hello world” service:

POST http://example.org/myservice

hello:GreetedIndividual
hello:greetingHello, John Smith!

hello:NamedIndividual
rdf:type

Instance 1
foaf:name

John Smith

rdf:type
Instance 1

HTTP/1.1 200 OK

Content-type: application/rdf+xml

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:hello="http://sadiframework.org/examples/hello.owl#">

<hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">

<hello:greeting>Hello, John Smith!</hello:greeting>

</hello:GreetedIndividual>

</rdf:RDF>

Response HTTP message sent in response to the invocation message:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

21

◼ Service-to-Service (S2S) interaction:

Simple Semantic Web Architecture and Protocol SSWAP (pronounced “swap”) is a lightweight, document-

centric protocol and architecture for the Semantic Web [13][14].

It aims to combine web services and semantic web technologies to enable high-throughput discovery, assessment, and

integration of data and services between distributed parties.

o Using SSWAP, users can create systems to enable creation, discovery and execution of RESTful and other web services;

o SSWAP utilizes OWL ontologies to describe the features and capabilities of web services and standard HTTP methods to

execute these web services;

o In SSWAP a service represents nothing more than a mapping from its inputs to its outputs;

o SSWAP ontology is not domain-specific and can be combined with arbitrary domain ontologies to represent the relevant types

of services, inputs, or outputs.

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

22

◼ Service-to-Service (S2S) interaction:

providedBy

SSWAP architecture is based on five basic concepts: Provider, Resource, Graph, Subject, and Object:

o Provider. Providers typically correspond to organizations that own and publish resources;

o Resource. Resources can be arbitrary resources like web pages or ontologies or datasets, but they are primarily used

to describe web services. The descriptions of resources are stored in documents that are referred as a Resource

Description Graph (RDG);

o Graph. Graph concept describes transformation performed by the service.

o It defines a mapping from a Subject (input) to an Object (output).

o Multiple inputs and multiple outputs can be represented using multiple graphs or multiple mappings in a single graph,

respectively.

o Subject and Object. Subject and Object are input and output respectively.

SSWAP protocol: https://sourceforge.net/p/sswap/wiki/protocol/

providesResource operatesOn hasMapping mapsTo
PDG RDG

Provider Resource Graph Subject Object

rdf:type rdf:type rdf:type rdf:type rdf:type

name

oneLineDescription

aboutURI

matadata

name

oneLineDescription

aboutURI (point to an informative human-readable web page)

matadata (usually is a .txt file with key-words to be used in key-word based search)

icon

inputURI (points to the appropriate user interface to request input from users)

outputURI (points to the appropriate user interface to represent output for users)
PDG: Provider Description Graph

RDG: Resource Description Graph

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

23

◼ Service-to-Service (S2S) interaction:

Resource Description Graph (RDG) is a

document that stores the description of

resources.

o Providers publish their resource descriptions (RDGs)

on the Web under resource URL;

o Clients can obtain these RDGs by dereferencing the

URL for the resource;

o RDGs can be collected and stored by a discovery

server that will provide a search service. A discovery

server can locate RDGs either by crawling the Web

or by allowing providers to submit the URL for their

resources to the discovery server. The discovery

server stores resource descriptions and any other

domain ontology imported by the RDG in its

knowledge base. In this way, SSWAP is similar to the

Linked Open Data (LOD) approach, which also relies

on URL-identified documents to contain machine

processable information.

SSWAP's emphasis on a canonical structured document

means that service description, querying for new services,

service invocation, and service response all occur around

the structure of the same, mutable RDF/XML document.

This is distinct from traditional web service protocols (the

way a service describes itself may say little about how to

query and discover the service via a search engine,

similarly, the way data is marshalled to invoke the service

may have little connection to how the return data is

packaged as a response).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix sswap: <http://sswapmeet.sswap.info/sswap/> .

@prefix location: <http://www.example.org/locationOntology/> .

@prefix weather: <http://www.example.org/weatherOntology/> .

@prefix resource: <http://www.example.org/getTemperatureService/> .

resource:getTemperatureService

rdf:type sswap:Resource ,

weather:TemperatureInformationService;

sswap:providedBy resource:resourceProvider ;

sswap:name "Temperature lookup service" ;

sswap:oneLineDescription "A service that accepts a

location identified by a 5-digit zipcode or IP

address and returns the current temperature in that

location“ ;

sswap:operatesOn [

rdf:type sswap:Graph ;

sswap:hasMapping [

rdf:type sswap:Subject, location:Location ;

location:zipcode "" ;

location:ipAddress "" ;

sswap:mapsTo [

rdf:type sswap:Object, weather:Temperature

]

]

].

Resource Description Graph (RDG) example:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

In SSWAP :
o Performing an HTTP GET on a service's URL returns the service description - the RDG for that service.

o Removing the service's URL from the graph and sending the graph to a semantic search engine will query (i.e., discover) all

similar services. This graph is called a Resource Query Graph (RQG).

o Adding input data to a SSWAP subject of the graph creates a graph ready for invocation which is called a Resource

Invocation Graph (RIG). To invoke the service, the graph is POSTed to the service's URL or sent as a query string in an

HTTP GET.

o The service's response is also embedded in the same graph. The response graphs is called a Resource Response Graph

(RRG).

o A client may then simply remap the returned SSWAP object to another graph's SSWAP input and send it to another service,

and so forth.

24

◼ Service-to-Service (S2S) interaction:

The match between the service and the query is based on the semantic relations between the resource,

subject, and object types. A discovery server will return all resources that are:

o the same class or a subclass of the query graph's Resource. Ensures that results will contain all services that are tagged as at

least as specific as requested (and maybe more specific);

o superclass of the query graph's Subject. Ensures that results will contain all services that operate on data that is guaranteed

to subsume the input provided (and may operate on more general data);

o subclass of the query graph's Object. Ensures that results will contain all services that return data that is at least as specific as

the requested output (and maybe more specific).

_:r rdf:type sswap:Resource, weather:TemperatureInformationService.

_:s rdf:type sswap:Subject, location:Location.

_:o rdf:type sswap:Object, weather:Temperature.

Examples of RQG:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

25

◼ Service-to-Service (S2S) interaction:

USING LOOSELY COUPLED COMPUTATIONAL

SEMANTICS FOR LOGIC-BASED SERVICE

INTERFACES [14]

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

…

resource:getTemperatureService

rdf:type sswap:Resource ,

weather:TemperatureInformationService;

sswap:providedBy resource:resourceProvider ;

sswap:name "Temperature lookup service" ;

sswap:oneLineDescription "A service that accepts a location identified by a 5-

digit zipcode and returns the current temperature in that location“ ;

sswap:operatesOn [rdf:type sswap:Graph ;

sswap:hasMapping [rdf:type sswap:Subject,

location:Location;

location:zipcode “40100” ;

location:ipAddress “130.234.160.47” ;

sswap:mapsTo [rdf:type sswap:Object,

weather:Temperature

]

]

].

26

◼ Service-to-Service (S2S) interaction:

…

resource:getTemperatureService

rdf:type sswap:Resource ,

weather:TemperatureInformationService;

sswap:providedBy resource:resourceProvider ;

sswap:name "Temperature lookup service" ;

sswap:oneLineDescription "A service that accepts a location identified by a 5-

digit zipcode and returns the current temperature in that location“ ;

sswap:operatesOn [rdf:type sswap:Graph ;

sswap:hasMapping [rdf:type sswap:Subject,

location:Location;

location:zipcode “” ;

location:ipAddress “” ;

sswap:mapsTo [rdf:type sswap:Object,

weather:Temperature

]

]

].

…

resource:getTemperatureService

rdf:type sswap:Resource ,

weather:TemperatureInformationService;

sswap:providedBy resource:resourceProvider ;

sswap:name "Temperature lookup service" ;

sswap:oneLineDescription "A service that accepts a

location identified by a 5-digit zipcode and returns

the current temperature in that location“ ;

sswap:operatesOn [

rdf:type sswap:Graph ;

sswap:hasMapping [

rdf:type sswap:Subject, location:Location ;

location:zipcode “40100” ;

location:ipAddress “130.234.160.47” ;

sswap:mapsTo [

rdf:type sswap:Object, weather:Temperature ;

weather:value “30” ;

weather:unit “celsius”.

];

sswap:mapsTo [

rdf:type sswap:Object, weather:Temperature ;

weather:value “86” ;

weather:unit “fahrenheit”

]

]

].

RDG: RRG:

RIG:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP web site (http://sswapmeet.sswap.info/) (https://sourceforge.net/p/sswap/wiki/protocol)

presents iPlant’s Semantic Web Platform that provides:

o Discovering Semantic Web Services;

o Hosting Semantic Web Services;

o Several developer tools

(SSWAP Java API - http://sswap.iplantcollaborative.org/javadocs/ ;

https://sourceforge.net/p/sswap/code/HEAD/tree/API-SDK/);

o Platform to build pipelines of services;

o Semantic Pipeline RESTful API (https://sourceforge.net/p/sswap/wiki/api/;

https://pods.iplantcollaborative.org/wiki/display/SemanticWeb/Semantic+Pipeline+RESTful+API)

o Semantic web service ontology portal (http://sswap.info/jit/).

Wiki (https://sourceforge.net/p/sswap/wiki/Home/;

 https://pods.iplantcollaborative.org/wiki/display/SemanticWeb/Home)

27

◼ Service-to-Service (S2S) interaction:

iPlant Semantic Web Service ArchitectureTIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

28

◼ Service-to-Service (S2S) interaction:

SSWAP Pipeline:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service Consumer side

o RDG retrieving from service response to HTTP GET request.

29

// execute HTTP GET request using service URL and use corresponding response to get RDG …

RDG rdg = null;

try {

URI uri = new URI(serviceUrl);

rdg = SSWAP.getResourceGraph(response.getEntity().getContent(), RDG.class, uri);

} catch (DataAccessException e1) {

// TODO Auto-generated catch block

e1.printStackTrace();

} catch (IllegalStateException e1) {

// TODO Auto-generated catch block

e1.printStackTrace();

} catch (URISyntaxException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

SSWAPResource resource = rdg.getResource();

System.out.println("Resource name: " + resource.getName());

System.out.println("Resource oneline description: " + resource.getOneLineDescription());

SSWAPGraph graph = resource.getGraph();

SSWAPSubject subject = graph.getSubject();

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service Consumer side

o RIG creation through assigning properties’ values of graph Subject;

o RRG retrieving via RIG invocation.

30

//SSWAPResource resource = rdg.getResource();

//SSWAPSubject subject = graph.getSubject();

…

Iterator<SSWAPProperty> iterator = subject.getProperties().iterator();

int i=0;

while (iterator.hasNext()) {

SSWAPProperty property = iterator.next();

SSWAPPredicate predicate = rdg.getPredicate(property.getURI());

i++;

subject.setProperty(predicate, "value"+i);

}

SSWAPGraph graph = resource.getGraph();

graph.setSubject(subject);

resource.setGraph(graph);

RIG rig = resource.getRDG().getRIG();

HTTPProvider.RRGResponse response = rig.invoke();

RRG rrg = response.getRRG();

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service Consumer side

o Retrieving Objects’ properties from RRG.

31

SSWAPResource resource = rrg.getResource();

SSWAPGraph graph = resource.getGraph();

SSWAPSubject subject = graph.getSubject();

Iterator<SSWAPObject> iteratorObjects = subject.getObjects().iterator();

while (iteratorObjects.hasNext()) {

SSWAPObject object = iteratorObjects.next();

Iterator<SSWAPProperty> iteratorProperties = object.getProperties().iterator();

while (iteratorProperties.hasNext()) {

SSWAPProperty property = iteratorProperties.next();

SSWAPPredicate predicate = rrg.getPredicate(property.getURI());

String lookupName = getStrName(property.getURI());

String lookupValue = getStrValue(object,predicate);

System.out.println(""+lookupName+" : "+lookupValue);

}

}

◼ Service-to-Service (S2S) interaction:

private String getStrValue(SSWAPIndividual sswapIndividual, SSWAPPredicate sswapPredicate) {

String value = null;

SSWAPProperty sswapProperty = sswapIndividual.getProperty(sswapPredicate);

if (sswapProperty != null) {

value = sswapProperty.getValue().asString();

if (value.isEmpty()) { value = null; }

} return value; }

private String getStrName(URI uri) {

String[] parts = uri.toString().split("#");

return parts[1]; }

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service side

o Create your servlet class as an extension of SimpleSSWAPServlet.

32

/**

* Servlet implementation class MySSWAPServlet

*/

@WebServlet("/MySSWAPServlet")

public class MySSWAPServlet extends SimpleSSWAPServlet{

private static final long serialVersionUID = 1L;

@Override

public void init(ServletConfig servletConfig) throws ServletException {

// always do this

super.init(servletConfig);

// do anything else here that needs to be done once, on servlet load

}
/*

* We can override this method to connect this servlet with the

* service class, or define the init-param 'ServiceClass' in web.xml

*

* @see info.sswap.api.servlet.SimpleSSWAPServlet#getServiceClass()

*/

@SuppressWarnings("unchecked")

@Override

public <T> Class<T> getServiceClass() {

return (Class<T>) SSWAPService.class;

}

}

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service side

o Define location of RDG file in web.xml.

33

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

id="WebApp_ID" version="3.0">

<display-name>MySSWAPService</display-name>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>

<welcome-file>index.jsp</welcome-file>

<welcome-file>default.html</welcome-file>

<welcome-file>default.htm</welcome-file>

<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>My SSWAP service</servlet-name>

<servlet-class>mySSWAPService.MySSWAPServlet</servlet-class>

<init-param>

<param-name>RDGPath</param-name>

<param-value>/res/mySSWAPServiceRDG</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>My SSWAP service</servlet-name>

<url-pattern>/getService/*</url-pattern>

</servlet-mapping>

</web-app>

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

<?xml version="1.0"?>

<rdf:RDF xmlns:resource="http://localhost:8080/MySSWAPService/"

 xmlns:sswap="http://sswapmeet.sswap.info/sswap/"

 …

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<sswap:Resource rdf:about="http://localhost:8080/MySSWAPService/getService">

 <rdf:type rdf:resource="http://localhost:8080/MySSWAPService/res/mySSWAPServiceOntology.owl#TemperatureInformationService" />

 <sswap:providedBy rdf:resource="http://localhost:8080/MySSWAPService/res/resourceProvider" />

 <sswap:name>Temperature lookup service</sswap:name>

 <sswap:oneLineDescription>A service that accepts a location identified by a 5-digit zipcode and returns the current temperature in that location

</sswap:oneLineDescription>

 <sswap:operatesOn>

 <sswap:Graph>

 <sswap:hasMapping>

 <sswap:Subject>

 <rdf:type rdf:resource="http://localhost:8080/MySSWAPService/res/mySSWAPServiceOntology.owl#Location" />

 <ont:zipcode></ont:zipcode >

 <ont:ipAddress></ont:ipAddress>

 <sswap:mapsTo>

 <sswap:Object>

 <rdf:type rdf:resource="http://localhost:8080/MySSWAPService/res/mySSWAPServiceOntology.owl#Temperature" />

 <ont:value></ont:value>

 <ont:unit></ont:unit>

 </sswap:Object>

 </sswap:mapsTo>

 </sswap:Subject>

 </sswap:hasMapping>

 </sswap:Graph>

 </sswap:operatesOn>

 </sswap:Resource>

</rdf:RDF>

34

◼ Service-to-Service (S2S) interaction:

RDG:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service side

o SSWAPService class extends MapsTo.

35

public class SSWAPService extends MapsTo {

// initialize variables here

@Override

protected void initializeRequest(RIG rig) {

rigGraph = rig;

// if we need to check service parameters we could start here

}

@Override

protected void mapsTo(SSWAPSubject translatedSubject) throws Exception {

subject = translatedSubject;

object = translatedSubject.getObject();

// check an input (Subject) and fill an output (Object) through the

//logic of the service

}

}

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SSWAP Java API: Service side

o Create extra Object in case of several outputs.

36

/**

* Creating new empty object result...

*/

SSWAPObject sswapObject = null;

sswapObject = assignObject(subject);

Iterator<SSWAPProperty> iterator = object.getProperties().iterator();

while (iterator.hasNext()) {

SSWAPProperty property = iterator.next();

SSWAPPredicate predicate = rigGraph.getPredicate(property.getURI());

sswapObject.addProperty(predicate, "");

}

subject.addObject(sswapObject);

// fill the Object

◼ Service-to-Service (S2S) interaction:

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

o Registry: Service registry might be performed by service provider (through registry of service description to a Service

Repository) or by crawlers that search for service descriptions in the Web.

o Search/Querying: Search can be done by human (developer) as well as by other web service via querying correspondent

service description. In case of human-driven search, Service Repository should provide correspondent template of service

description and supportive tools for ontology browsing.

o Instance matching: Service Repository does match of the queried service description with the descriptions of registered

services by matching correspondent properties of the services. Some reasoning might be applied.

Heterogeneity of Ontologies is a crucial bottleneck for

automated service discovery and interoperability.

o Service Repository may simply play a role of ontology mapper between

ontologies (𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦1 … 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦𝑛) and the 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦𝑖 ; and provide

correspondent alignment for further data transformation.

o More reasonable case when Service Repository has its own ontology

𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦0 and does correspondent ontology mapping during service

registry and service querying: mapping 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦0 with ontologies

(𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦1 … 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦𝑛) and with the 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦𝑖. In this case own

ontology of the Service Repository 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦0 should be as big and

general as possible to cover all the domain areas of possibly registered

services. Thus, Service Repository should support a mechanism of

ontology extension.

Depending on complexity of ontologies, different alignments might have

different levels of probability that will influence on the level of automation of

service interaction. Therefore, process might be semi-automated and will

require human involvement.

37

◼ Service-to-Service (S2S) interaction:

𝑾𝒆𝒃𝑨𝑷𝑰𝟏 𝑾𝒆𝒃𝑨𝑷𝑰𝟐

𝑾𝒆𝒃𝑨𝑷𝑰𝒏

…

Service Repository

crawlers

Search/Querying

developer service

𝑶𝒏𝒕𝒐𝒍𝒐𝒈𝒚𝟏 𝑶𝒏𝒕𝒐𝒍𝒐𝒈𝒚𝟐

𝑶𝒏𝒕𝒐𝒍𝒐𝒈𝒚𝒏

𝑶𝒏𝒕𝒐𝒍𝒐𝒈𝒚𝒊

𝑶𝒏𝒕𝒐𝒍𝒐𝒈𝒚𝟎

TIES4520 - Lecture 9

Semantic Web Services

23/10/2023

UNIVERSITY OF JYVÄSKYLÄ

All the links in the lecture materials:

❑ [1] Hakimpour F, Cong S, Damm D. E., ”A Practical Tutorial on Semantic Web Services”, URL:

http://www.academia.edu/331267/A_Practical_Tutorial_on_Semantic_Web_Services

❑ [2] Kopecky J, Gomadam K. and Vitvar T. (2008). hRESTS: An HTML microformat for describing RESTful web services. In:

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 9-12 Dec 2008,

Sydney, Australia.

❑ [3] Kopeck J, Vitvar T, Fensel D, ”MicroWSMO and hRESTS”. Deliverable D3.4.3 of the FP7 Project ” Service Oriented

Architectures for All (SOA4ALL)”. URL: http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf

❑ [4] Jorge Cardoso and Carlos Pedrinaci, Evolution and Overview of Linked USDL. 6th International Conference Exploring

Services Science, IESS 2015, Porto, Portugal, February 4-6, 2015, LNBIP, Vol. 201, Novoa, Henriqueta, Dragoicea, Monica

(Eds.), 2015.

❑ [5] J. Cardoso, A. Barros, N. May, and U. Kylau. Towards a unified service description language for the internet of services:

Requirements and first developments. In IEEE International Conference on Services Computing (SCC), pages 602 {609, July

2010.

❑ [6] Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. Linked USDL: A vocabulary for web-scale service trading. In 11th

Ext. Semantic Web Conference, Greece, 2014.

❑ [7] Andrade L. J. S., Prazeres C. V. S. (2015). LDaaSWS: Toward Linked Data as a Semantic Web Service. In Proceedings

of the Tenth International Conference on Internet and Web Applications and Services (ICIW 2015), Brussels, Belgium, 2015,

p. 56-62.

❑ [8] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,” Int. Journal on Semantic Web and Information

Systems (IJSWIS), 2009.

❑ [9] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue, “iServe: a linked services publishing

platform,” in CEUR Workshop Proceedings, vol. 596, 2010.

❑ [10] Rodriguez-Mier, P., Pedrinaci, C., Lama, M. and Mucientes, M. (2015) An Integrated Semantic Web Service Discovery

and Composition Framework, IEEE Transactions on Services Computing

❑ [11] Ning Li, Carlos Pedrinaci, Maria Maleshkova, Jacek Kopecky, and John Domingue. OmniVoke: a framework for

automating the invocation of Web APIs. In ICSC 2011 Fifth IEEE International Conference on Semantic Computing, 2011.

38

References

TIES4520 - Lecture 923/10/2023

http://www.academia.edu/331267/A_Practical_Tutorial_on_Semantic_Web_Services
http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf

UNIVERSITY OF JYVÄSKYLÄ

All the links in the lecture materials:

❑ [12] Wilkinson M. D., Vandervalk B. and McCarthy L. (2011). The Semantic Automated Discovery and Integration

(SADI) Web service Design-Pattern, API and Reference Implementation. Journal of Biomedical Semantics, 2011, v2,

n8.

❑ [13] Gessler DDG, Schiltz GS, May GD, Avraham S, Town CD, Grant D, Nelson RT 2009. SSWAP: A Simple Semantic

Web Architecture and Protocol for semantic web services. BMC Bioinformatics, 10:309 doi:10.1186/1471-2105-10-309

(URL: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-309).

❑ [14] SSWAP: Enabling Transaction-Time Reasoning for Semantic Workflows. URL:

http://ieeexplore.ieee.org/document/7274418/

❑ [15] Ly, Papa Alioune; Pedrinaci, Carlos and Domingue, John (2012). Automated information extraction from web APIs

documentation. In: The 13th International Conference on Web Information System Engineering (WISE 2012), 28-30

November 2012, Paphos, Cyprus, pp. 497–511.

Relevant practical links:

❑ Java Servlets: http://www.tutorialspoint.com/servlets/servlets_tutorial.pdf, http://tutorials.jenkov.com/java-

servlets/index.html

❑ AJAX: https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started, http://www.w3schools.com/ajax/

❑ XSPARQL Tutorial: http://www.slideshare.net/net2-project/xsparql-tutorial, http://xsparql.deri.org

❑ REST Tutorial: http://rest.elkstein.org

39

References

TIES4520 - Lecture 923/10/2023

http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-309
http://ieeexplore.ieee.org/document/7274418/
http://www.tutorialspoint.com/servlets/servlets_tutorial.pdf
http://tutorials.jenkov.com/java-servlets/index.html
http://tutorials.jenkov.com/java-servlets/index.html
https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
http://www.w3schools.com/ajax/
http://www.slideshare.net/net2-project/xsparql-tutorial
http://xsparql.deri.org/
http://rest.elkstein.org/

	Slide 1
	Slide 2: What is Semantic Web Services?...
	Slide 3: Semantic Web Services
	Slide 4: Semantic Web Services
	Slide 5: Semantic Web Services
	Slide 6: Semantic Web Services
	Slide 7: Semantic Web Services
	Slide 8: Semantic Web Services
	Slide 9: Semantic Web Services
	Slide 10: Semantic Web Services
	Slide 11: Semantic Web Services
	Slide 12: Semantic Web Services
	Slide 13: Semantic Web Services
	Slide 14: Semantic Web Services
	Slide 15: Semantic Web Services
	Slide 16: Semantic Web Services
	Slide 17: Semantic Web Services
	Slide 18: Semantic Web Services
	Slide 19: Semantic Web Services
	Slide 20: Semantic Web Services
	Slide 21: Semantic Web Services
	Slide 22: Semantic Web Services
	Slide 23: Semantic Web Services
	Slide 24: Semantic Web Services
	Slide 25: Semantic Web Services
	Slide 26: Semantic Web Services
	Slide 27: Semantic Web Services
	Slide 28: Semantic Web Services
	Slide 29: Semantic Web Services
	Slide 30: Semantic Web Services
	Slide 31: Semantic Web Services
	Slide 32: Semantic Web Services
	Slide 33: Semantic Web Services
	Slide 34: Semantic Web Services
	Slide 35: Semantic Web Services
	Slide 36: Semantic Web Services
	Slide 37: Semantic Web Services
	Slide 38
	Slide 39

