
UNIVERSITY OF JYVÄSKYLÄ

Lecture 5: Reasoning

TIES4520 Semantic Technologies for Developers

Autumn 2023

University of Jyväskylä Khriyenko Oleksiy

UNIVERSITY OF JYVÄSKYLÄ

Reasoning types

◼ Two basic types:

– Rule-based reasoning

• General rule-based inference (semantic rules)

• Further classification: forward-chaining and backward-chaining

– Ontology-based reasoning

• Classification-based inference (e.g. RDF-S, OWL reasoning)

• The inference rules for RDF-S or OWL are fixed. Therefore: No need for

rule engine -> procedural algorithm sufficient

2

:John rdf:type :Human .

:John rdf:type :Man .

:Mary rdf:type :Human .

:Mary rdf:type :Woman .

:Mary :hasHusband :John.

:John :hasWife :Mary

Family ontology

+

TIES4520 - Lecture 5

also means

02/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Rule-based reasoning

◼ The inference based on free-form rules always

requires:

– A language for representing the rules

– A rule engine

REASONER

(RULE ENGINE)

(?a :hasWife ?b) => (?b :hasHusband ?a):John :hasWife :Mary

Belief

Rule

Premise(s) Conclusion(s)if , then

:Mary :hasHusband :John

Inferred Belief

3TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Rule-based reasoning

◼ The OWL language is not able to express all relations
(ex: it cannot express the relation “child of married parents“).

◼ The expressivity of OWL can be extended by adding

rules to an ontology.

◼ Rule definition language:

– SWRL (Semantic Web Rule Language)

– Notation 3 (N3) logic

– RIF (Rule Interchange Format)

4TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SWRL

◼ SWRL (Semantic Web Rule Language):
– Part of many tools (e.g. Hermit, Pellet, etc.)

– Basic form is XML, but also available in human-readable form

– unary predicates for describing classes and data types,

– binary predicates for properties,

– some special built-in n-ary predicates.

◼ SWRL rules are supported:
– Protege OWL editor.

– reasoners Pellet and Hermit.

5TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SWRL

◼ SWRL predicates:
– Class expressions: Class atom:

– Property expressions:
– Individual Property atom:

– Data Valued Property atom:

– Data range restrictions

– OWL Class expressions in SWRL Rules

– Core SWRL built-ins (http://www.daml.org/rules/proposal/builtins.html)

6

Man(?p) -> Person(?p)

Person(?p), integer[>= 18,<= 65](?age), hasAge(?p, ?age) -> hasDriverAge(?p, true)

Person(?p), hasAge(?p, ?age), swrlb:greaterThan(?age, 18) -> Adult(?p)

Person(?x) Man(fred)

hasBrother(?x,?y) hasSibling(fred,?y)

Person(?p), hasSibling(?p,?s), Man(?s) -> hasBrother(?p,?s)

hasAge(?x,?age) hasAge(?x,232) hasName(fred,”Fred”)

Person(?x), hasChild min 1 Person(?x) -> Parent(?x)

Person(?p), bornOnDate(?p, ?date), xsd:date(?date),

swrlb:date(?date, ?year, ?month, ?day, ?timezone) -> bornInYear(?p, ?year)

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SWRL

◼ Rule definition in Protégé 5.x (4.x)
– Open rule tub from the menu: Window – Views – Ontology Views – Rules

7TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Notation 3 (N3) logic rules

◼ Notation 3 (N3) logic rule expression
– graph definition ({}) give a possibility to write formulas in rules

◼ Shorthand symbols:
– ? – for universal variables “@forAll”;

– _: or better [] – for existential variables “@forSome” (blank node);

– => – for implies (log:implies);

– <=> – for meaning (log:means);

– = – for equivalents (owl:equivalentTo);

◼ Built-in Functions: used by CWM (http://www.w3.org/2000/10/swap/doc/CwmBuiltins)

8

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix family: <http://www.myOntology.org/family/>.

@forAll :x, :y, :z.

{ :x family:parent :y . :y family:brother :z } log:implies { :x family:uncle :z }.

{?x family:parent ?y. ?y family:brother ?z} => {?x family:uncle ?z}.

{ ?x f:age ?ag . ?ag math:lessThan 30} => { ?x rdf:type f:YoungPerson } .

{ ex:d test:point ?x. ?x math:sin ?y } => {...} .

{ ex:testData ex:value ?x .

(?x 1) math:sum ?y.

(?y " is one more than " ?x) string:concatenation ?s

} => { ex:result ex:value ?s }.

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of RDF Schema

◼ If a resource is an instance of a class, it is also an instance of any

super-class of that class (any human is a mammal).

10

:Mammal rdf:type owl:Class.

:Human rdf:type owl:Class.

:Human rdfs:subClassOf :Mammal.

:John rdf:type :Human.

:John rdf:type :Mammal.also means

:John :like :Mary.also means

{ ?A rdfs:subClassOf ?B. ?S rdf:type ?A } => { ?S rdf:type ?B } .

◼ If a statement with a property is made, the statement with any

super-property is also true (if you love something, you also like it).

:like rdf:type owl:ObjectProperty.

:love rdf:type owl:ObjectProperty.

:love rdfs:subPropertyOf :like.

:John :love :Mary.

{ ?P rdfs:subPropertyOf ?R. ?S ?P ?O } => { ?S ?R ?O } .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of RDF Schema

◼ Having defined domain and range of a property, we may

conclude that:

o the resource, which has this property, belongs to the class associated with

the domain of the property;

o the resource, which is referred as a value of the property, belongs to the class

associated with the range of the property.

11

:Man rdf:type owl:Class.

:Woman rdf:type owl:Class.

:hasWife rdf:type owl:ObjectProperty;

rdf:domain :Man;

rdf:range :Woman.

:John :hasWife :Mary.

:John rdf:type :Man.

:Mary rdf:type :Woman.
also means

{ ?P rdfs:domain ?C. ?S ?P ?O } => { ?S rdf:type ?C } .

{ ?P rdfs:range ?C. ?S ?P ?O } => { ?O rdf:type ?C } .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of OWL

◼ Some of the property characteristics allow reasoners to infer new

knowledge about instances and their relations:

– owl:inverseOf 𝐴 𝐵

𝑃1

𝑃2

12

:Human rdf:type owl:Class .

:hasChild rdf:type owl:ObjectProperty .

:hasParent rdf:type owl:ObjectProperty .

:hasChild owl:inverseOf :hasParent .

:John rdf:type :Human .

:Mary rdf:type :Human .

:John :hasChild :Mary .

:Mary :hasParent :John .also means

{ ?P owl:inverseOf ?Q . ?S ?P ?O } => { ?O ?Q ?S } .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of OWL

◼ Some of the property characteristics allow reasoners to infer new

knowledge about instances and their relations:

– owl:SymmetricProperty
𝐴 𝐵

𝑃

𝑃

13

:Human rdf:type owl:Class .

owl:inverseOf rdf:type owl:SymmetricProperty .

:hasChild rdf:type owl:ObjectProperty .

:hasParent rdf:type owl:ObjectProperty .

:hasChild owl:inverseOf :hasParent .

:John rdf:type :Human .

:Mary rdf:type :Human .

:Mary :hasParent :John .

:hasParent owl:inverseOf :hasChild .

:John :hasChild :Mary .

{ ?P rdf:type owl:SymmetricProperty. ?S ?P ?O } => { ?O ?P ?S } .

{ ?P owl:inverseOf ?Q . ?S ?P ?O } => { ?O ?Q ?S } .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of OWL

◼ Some of the property characteristics allow reasoners to infer new

knowledge about instances and their relations:

– owl:TransitiveProperty 𝐴1 𝐴2 𝐴𝑛 𝑃 𝑃

𝑃

14

:Human rdf:type owl:Class .

:bossOf rdf:type owl:TransitiveProperty .

:John rdf:type :Human .

:Michael rdf:type :Human .

:Mary rdf:type :Human .

:John :bossOf :Mary .

:Mary :bossOf :Michael .

:John :bossOf :Michael .

{ ?P rdf:type owl:TransitiveProperty. ?S ?P ?X. ?X ?P ?O } => { ?S ?P ?O } .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of RDF Schema

◼ Transitive property: If class A is a sub-class of B, while B is a sub-class

of C, then A is a sub-class of C (mother is woman, woman is human, therefore

mother is human). Also applies to sub-properties

◼ Example: rdfs:subClassOf and rdfs:subPropertyOf are transitive properties

15

:Human rdf:type owl:Class.

:Woman rdf:type owl:Class.

:Mother rdf:type owl:Class.

:Woman rdfs:subClassOf :Human.

:Mother rdfs:subClassOf :Woman.

:prefer rdf:type owl:ObjectProperty.

:like rdf:type owl:ObjectProperty.

:love rdf:type owl:ObjectProperty.

:like rdfs:subPropertyOf :prefer.

:love rdfs:subPropertyOf :like.

:Mother rdfs:subClassOf :Human.

:love rdfs:subPropertyOf :prefer.
also means

𝐴1 𝐴2 𝐴𝑛 𝑃 𝑃

𝑃

{ ?B rdfs:subClassOf ?C. ?A rdfs:subClassOf ?B }=>{ ?A rdfs:subClassOf ?C } .

{ ?Q rdfs:subPropertyOf ?R. ?P rdfs:subPropertyOf ?Q }=>{ ?P rdfs:subPropertyOf ?R } .

:Mary rdf:type :Woman.

:Mary rdf:type :Human.

:Mary :like :John.

:Mary :prefer :John.

:Mary rdf:type :Mother.

:John rdf:type :Human.

:Mary :love :John.

{?A rdfs:subClassOf ?B. ?S rdf:type ?A}=>{?S rdf:type ?B}.

{ ?P rdfs:subPropertyOf ?R. ?S ?P ?O } => { ?S ?R ?O } .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Property chains (OWL-2)

◼ owl:propertyChainAxiom (OWL-2)

Simply: If the property 𝑃1 relates individual 𝐴1 to individual 𝐴2, and property 𝑃2

relates individual 𝐴2 to individual 𝐴𝑛, then property 𝑃 relates individual 𝐴1 to
individual 𝐴𝑛;

:hasParent rdf:type owl:ObjectProperty .

:hasGrandparent rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom (:hasParent :hasParent) .

:hasGrandGrandparent rdf:type owl:ObjectProperty .

[rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom (:hasGrandparent :hasParent)] rdfs:subPropertyOf :hasGrandGrandparent.

[rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom (:hasParent :hasGrandparent)] rdfs:subPropertyOf :hasGrandGrandparent.

:Human rdf:type owl:Class .

:John rdf:type :Human .

:Michael rdf:type :Human .

:Mary rdf:type :Human .

:Katarina rdf:type :Human ;

:hasParent :Mary .

:Mary :hasParent :Michael .

:Michael :hasParent :John .

𝐴1 𝐴2 𝐴𝑛
𝑃1 𝑃2

𝑃

16

:Katarina :hasGrandparent :Michael .

:Mary :hasGrandparent :John .

:Katarina :hasGrandGrandparent :John .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Some rules of OWL

◼ Some of the property characteristics set certain conditions and

allow reasoners to detect inconsistency of the ontology:

– owl:AsymmetricProperty 𝐴 𝐵
𝑃

𝑃

17

:Human rdf:type owl:Class .

:isChildOf rdf:type owl:AsymmetricProperty .

:John rdf:type :Human .

:Mary rdf:type :Human .

:John :isChildOf :Mary .

…

:Mary :isChildOf :John . 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

𝐴 𝐵𝑃
𝑃

:Human rdf:type owl:Class .

:motherOf rdf:type owl:IrreflexiveProperty .

:John rdf:type :Human .

:Mary rdf:type :Human .

:Mary :motherOf :John .

…

:Mary :motherOf :Mary .

– owl:IrreflexiveProperty

𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Forward vs. backward-chaining reasoning

◼ Forward
– Input: rules + data

– Output: extended data

– Starts with available facts

– Uses rules to derive new facts (which can be stored)

– Stops when there is nothing else to be derived

◼ Backward
– Input: rules + data + hypothesis (statement)

– Output: Statement is true / Statement is false

– Goes backwards from the hypothesis to the set of axioms (our data)

– If it can find the path to the original axioms, then the hypothesis is

true (otherwise false)

18TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

CWM

◼ Forward-chaining reasoner written in Python

◼ Originally to show capabilities of N3

◼ Link: http://www.w3.org/2000/10/swap/doc/cwm.html

◼ ”Cwm (pronounced coom) is a general-purpose data processor

for the semantic web”. It can be used for:

– querying,

– checking,

– transforming,

– filtering information…

◼ Deals with open worlds!

◼ CWM’s function:

– Loads data in N3 or RDF/XML + rules in N3

– Applies rules to data

– Output result in N3 or RDF/XML

◼ Relevant links: http://ppr.cs.dal.ca:3002/n3/editor/

19TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

CWM

20

CWM
RDF in various

encodings
RDF in various

encodings

Reasoning via

N3 rules

filter

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

CWM usage

◼ You must have command python in your PATH variable
Use Python v2.7 (not v3.x)

◼ Basic usage:

◼ By default, the output goes to standard output

– If you want to store it in a file, use redirect, e.g.:

◼ Useful use cases:

python cwm input.n3 --think --data --rdf > result.rdf

python cwm <COMMAND> <OPTIONS> <STEPS>

python cwm --n3 data.n3 --apply=rules.n3 --n3

python cwm --n3 data.n3 --filter=rules.n3 --n3

source format destination formatsource file

Show only new reasoned facts by applying rules in rules.n3

Show both the old data from data.n3 together with new reasoned data

practical

e.g. set PATH=%PATH%;c:\Python27

21

python cwm --n3 data.n3 --think=rules.n3 --n3

As –apply, but continue until no more rule matches (or forever!)

TIES4520 - Lecture 5

If you have both Python v2 and v3

versions installed, ensure that you

run CWM on v2.

02/10/2023

UNIVERSITY OF JYVÄSKYLÄ

CWM usage: Example
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://www.example.org/someExample#> .

22

:Human rdf:type owl:Class .

:dan rdf:type :Human .

:peter rdf:type :Human .

:mary rdf:type :Human .

:jon rdf:type :Human .

:betty rdf:type :Human .

:ancestorOf rdf:type owl:TransitiveProperty.

:hasSpouse rdf:type owl:SymmetricProperty.

:brotherOf rdf:type owl:ObjectProperty.

:sisterOf rdf:type owl:ObjectProperty.

owl:inverseOf rdf:type owl:SymmetricProperty .

:brotherOf owl:inverseOf :sisterOf .

:dan :ancestorOf :peter .

:peter :ancestorOf :jon .

:peter :hasSpouse :mary .

:betty :sisterOf :jon .

{ ?P rdf:type owl:SymmetricProperty .

?S ?P ?O

} => {?O ?P ?S} .

{ ?P owl:inverseOf ?Q .

?S ?P ?O

} => {?O ?Q ?S} .

{ ?P rdf:type owl:TransitiveProperty .

?S ?P ?X .

?X ?P ?O

} => {?S ?P ?O} .

+

Rules

:dan :ancestorOf :jon .

:mary :hasSpouse :peter .

:sisterOf owl:inverseOf :brotherOf .

:jon :brotherOf :betty .

Data

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

CWM practical tips

◼ When you write a file for CWM, always put dot after

the last statement!

◼ You don’t have to separate data and rules into two

files

– If you use N3 as your notation, then they can be in one file

– Example:

◼ CWM can be used to convert files without reasoning

– Example:

◼ More CWM command line arguments are available at

(http://www.w3.org/2000/10/swap/doc/CwmHelp) or using

practical

python cwm --rdf source.rdf --n3 > destination.n3

23

python cwm –-n3 dataAndRules.n3 --rules

python cwm --help

python cwm –-n3 dataAndRules.n3 --think

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SPARQL Rules (SPIN)

SPARQL Rules are a collection of RDF vocabularies such as the SPARQL

Inferencing Notation (SPIN) that build on the W3C SPARQL standard. These

vocabularies let you define new functions, stored procedures, constraint checking,

and inferencing rules for your Semantic Web models, and all these definitions are

stored using object-oriented conventions and the RDF and SPARQL standards.
http://spinrdf.org/ , http://spinrdf.org/spinsquare.html

SPIN makes it possible to attach executable rules to classes. Rules are represented as SPARQL

CONSTRUCT queries that apply to all instances of the associated class and its subclasses. In those

rules, the variable ?this refers to each instance of those classes.

Getting Started with SPARQL Rules (SPIN): http://www.topquadrant.com/technology/sparql-rules-spin/

http://www.topquadrant.com/spin/tutorial/

24

ss:Rectangle spin:rule [

rdf:type sp:Construct ;

sp:text """

CONSTRUCT {

?this ss:area ?area . # Infer ?area as a value of ss:area

}

WHERE {

?this ss:width ?width . # Get the width of ?this Rectangle

?this ss:height ?height . # Get the height of ?this Rectangle

BIND ((?width * ?height) AS ?area) . # Compute area := width * height

}

""" ;

] .

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

GraphDB reasoning

Rulesets is a sets of axiomatic triples, consistency checks and entailment rules,

which determine the applied semantics. A ruleset file has three sections

named Prefices, Axioms, and Rules.
http://graphdb.ontotext.com/documentation/standard/reasoning.html

o Prefixes defines the abbreviations for the namespaces used in the rest of the file.

o Axioms asserts axiomatic triples, which usually describe the meta-level primitives used for defining the

schema such as rdf:type, rdfs:Class, etc. It contains a list of the (variable free) triples, one per line.

25

Prefices

{

rdf : http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs : http://www.w3.org/2000/01/rdf-schema#

owl : http://www.w3.org/2002/07/owl#

xsd : http://www.w3.org/2001/XMLSchema#

}

Axioms

{

// RDF axiomatic triples

<rdf:type> <rdf:type> <rdf:Property>

<rdf:subject> <rdf:type> <rdf:Property>

<rdf:predicate> <rdf:type> <rdf:Property>

<rdf:object> <rdf:type> <rdf:Property>

<rdf:first> <rdf:type> <rdf:Property>

<rdf:rest> <rdf:type> <rdf:Property>

<rdf:value> <rdf:type> <rdf:Property>

<rdf:nil> <rdf:type> <rdf:List>

}

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

GraphDB reasoning

o Entailment rules

26

Id: <rule_name>

<premises> <optional_constraints>

<consequences> <optional_constraints>

Rules

{

Id: rdf1_rdfs4a_4b

x a y

x <rdf:type> <rdfs:Resource>

a <rdf:type> <rdfs:Resource>

y <rdf:type> <rdfs:Resource>

Id: rdfs2

x a y [Constraint a != <rdf:type>]

a <rdfs:domain> z [Constraint z != <rdfs:Resource>]

x <rdf:type> z

Id: owl_FunctProp

p <rdf:type> <owl:FunctionalProperty>

x p y [Constraint y != z, p != <rdf:type>]

x p z [Constraint z != y] [Cut]

y <owl:sameAs> z

}

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

GraphDB reasoning

o Consistency checks. You can define rulesets that contain consistency rules. When creating a new

repository, set the check-for-inconsistencies configuration parameter to true. It is false by default (for

compatibility with the previous OWLIM releases). The syntax is similar to that of rules, except

that Consistency replaces the Id tag that introduces normal rules. Also, consistency checks do not have any

consequences and indicate an inconsistency whenever their premises can be satisfied, e.g.:

Predefined rulesets The pre-defined rulesets provided with GraphDB cover various well-known

knowledge representation formalisms and are layered in such a way that each one extends the preceding one.

27

Consistency: something_can_not_be_nothing

x rdf:type owl:Nothing

Consistency: both_sameAs_and_differentFrom_is_forbidden

x owl:sameAs y

x owl:differentFrom y

empty No reasoning, i.e., GraphDB operates as a plain RDF store.

rdfs Supports the standard model-theoretic RDFS semantics.

owl-horst OWL dialect close to OWL Horst - essentially pD*

owl-max RDFS and that part of OWL Lite that can be captured in rules (deriving functional and inverse functional properties, all-different, subclass

by union/enumeration; min/max cardinality constraints, etc.).

owl2-ql The OWL2 QL profile - a fragment of OWL2 Full designed so that sound and complete query answering is LOGSPACE with respect to

the size of the data. This OWL2 profile is based on DL-LiteR, a variant of DL-Lite that does not require the unique name assumption.

owl2-rl The OWL2 RL profile - an expressive fragment of OWL2 Full that is amenable for implementation on rule engines.

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

GraphDB reasoning

o Custom rulesets. GraphDB has an internal rule compiler that can be configured with a custom set of

inference rules and axioms. You may define a custom ruleset in a .pie file (e.g., MySemantics.pie). The

easiest way to create a custom ruleset is to start modifying one of the .pie files that were used to build the

precompiled rulesets.

All examples below use the sys: namespace, defined as:

Add a custom ruleset from .pie file

Reinferring. If reconnected to a repository with a different ruleset, it does not take effect immediately. However,

you can cause reinference with:

28

INSERT DATA {

_:b sys:addRuleset <file:c:/graphdb/test-data/test.pie>

}

prefix sys: <http://www.ontotext.com/owlim/system#>

INSERT DATA {

<:custom> sys:addRuleset <http://example.com/test-data/test.pie>

}

INSERT DATA {

_:b sys:addRuleset "owl-max"

}

INSERT DATA {

<:custom> sys:addRuleset

'''Prefixes { … }

Axioms { … }

Rules { … }'''

}

INSERT DATA { [] <http://www.ontotext.com/owlim/system#reinfer> [] }

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Euler/EYE

◼ Originally backward-chaining reasoner for N3 logic –

inference engine Euler

◼ Euler YAP Engine (EYE) – a backward-forward-

backward chaining reasoner design enhanced with

Euler path detection (reasoning is grounded in First Order Logic).
◼ Home: http://www.agfa.com/w3c/euler/ , https://github.com/josd/eye , https://josd.github.io/eye/

◼ Download: http://sourceforge.net/projects/eulersharp/files/eulersharp/ , https://github.com/josd/eye

◼ Implemented in several languages: Java, C#, Python,

Javascript and Prolog

◼ Input (in case of backward-chaining reasoning): rules + data + hypothesis

◼ Output (in case of backward-chaining reasoning): Chain of rules that lead to

the hypothesis (if the hypothesis is true)

◼ Relevant links: http://ppr.cs.dal.ca:3002/n3/editor/, https://n3.restdesc.org/rules/

29TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Other reasoners

◼ Racer by Racer Systems (open-source)
http://www.ifis.uni-luebeck.de/~moeller/racer/

◼ Jena inference support (open-source)
http://jena.apache.org/

◼ Pellet: OWL DL reasoner for Java (open-source)
https://github.com/complexible/pellet

◼ FaCT++ (open-source, in C++)
http://code.google.com/p/factplusplus/

◼ JFact DL Reasoner: a Java port of theFaCT++ (open-source)
http://jfact.sourceforge.net/

◼ HermiT Owl Reasoner (open-source)
http://hermit-reasoner.com/

◼ RDF4J(Sesame) supports RDFS reasoning

◼ RDF4J(Sesame) supports a forward-chaining SPIN rule engine (currently in beta)

30TIES4520 - Lecture 5

Links:
▪ https://en.wikipedia.org/wiki/Semantic_reasoner

▪ http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

▪ https://www.w3.org/2001/sw/wiki/Category:Reasoner

02/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SQWRL

SQWRL (Semantic Query-Enhanced Web Rule Language;

pronounced squirrel) is a SWRL-based query language that provides SQL-

like operators for extracting information from OWL ontologies.
https://github.com/protegeproject/swrlapi/wiki/SQWRL

The language provides two sets of query operators:

o Core Operators (https://github.com/protegeproject/swrlapi/wiki/SQWRLCore)

o Collection Operators (https://github.com/protegeproject/swrlapi/wiki/SQWRLCollections)

Running SQWRL Queries. Two mechanisms are provided by the

SWRLAPI to execute SQWRL queries:
o a Java API that provides a JDBC-like interface, called the SQWRL Query API, which can be

used to execute queries and retrieve query results in Java applications.

https://github.com/protegeproject/swrlapi/wiki/SQWRLQueryAPI

o a graphical user interface called the SQWRL Query Tab that supports interactive querying and

results display. The SQWRL Query Tab is available in both the Protégé SWRLTab Plugin and

the standalone SWRLTab. https://github.com/protegeproject/swrlapi/wiki/SQWRLQueryTab

31TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

SQWRL

SQWRL core examples:

o Counting: sqwrl:count, sqwrl:countDistinct

o Aggregation. Basic aggregation is supported four operators: sqwrl:min, sqwrl:max, sqwrl:sum, sqwrl:avg.

Any numeric variable not passed to a sqwrl:select operator can be aggregated…

o Grouping

o Ordering of Results. Ordered using the sqwrl:orderBy and sqwrl:orderByDescending operators.

o Selecting a Subset of Results: sqwrl:limit, sqwrl:firstN, sqwrl:lastN, sqwrl:notFirstN, sqwrl:notLastN,

sqwrl:leastN, sqwrl:greatestN, sqwrl:notLeastN, sqwrl:notGreatestN, sqwrl:nth, sqwrl:nthLast, sqwrl:notNth,

sqwrl:notNthLast, sqwrl:nthSlice, sqwrl:nthLastSlice, etc.

o Result Columns

32

Adult(?p) -> sqwrl:select(?p)

Person(?p) ^ hasAge(?p, ?a) ^ swrlb:lessThan(?a, 25) -> sqwrl:select(?p, ?a)

Person(?p) ^ hasName(?p, ?name) -> sqwrl:countDistinct(?name)

Person(?p) ^ hasAge(?p, ?age) -> sqwrl:avg(?age)

Person(?p) ^ hasDrug(?p,?d) ^ hasDose(?p,?dose)-> sqwrl:select(?p,?d) ^ sqwrl:avg(?dose)

Person(?p) ^ hasName(p, ?name) ^ hasCar(?p, ?c)

-> sqwrl:select(?name) ^ sqwrl:count(?c) ^ sqwrl:orderBy(?name)

Person(?p) ^ hasName(?p, ?name) -> sqwrl:select(?name) ^ sqwrl:limit(2)

Person(?p) ^ hasName(?p,?namer) ^ hasCar(?p,?c) -> sqwrl:select(?name, "Number of cars")

^ sqwrl:count(?c) ^ sqwrl:columnNames("Name", "Description", "Count")

TIES4520 - Lecture 502/10/2023

UNIVERSITY OF JYVÄSKYLÄ

Task 4

33TIES4520 - Lecture 502/10/2023

	Slide 1
	Slide 2: Reasoning types
	Slide 3: Rule-based reasoning
	Slide 4: Rule-based reasoning
	Slide 5: SWRL
	Slide 6: SWRL
	Slide 7: SWRL
	Slide 8: Notation 3 (N3) logic rules
	Slide 10: Some rules of RDF Schema
	Slide 11: Some rules of RDF Schema
	Slide 12: Some rules of OWL
	Slide 13: Some rules of OWL
	Slide 14: Some rules of OWL
	Slide 15: Some rules of RDF Schema
	Slide 16: Property chains (OWL-2)
	Slide 17: Some rules of OWL
	Slide 18: Forward vs. backward-chaining reasoning
	Slide 19: CWM
	Slide 20: CWM
	Slide 21: CWM usage
	Slide 22: CWM usage: Example
	Slide 23: CWM practical tips
	Slide 24: SPARQL Rules (SPIN)
	Slide 25: GraphDB reasoning
	Slide 26: GraphDB reasoning
	Slide 27: GraphDB reasoning
	Slide 28: GraphDB reasoning
	Slide 29: Euler/EYE
	Slide 30: Other reasoners
	Slide 31: SQWRL
	Slide 32: SQWRL
	Slide 33: Task 4

