
UNIVERSITY OF JYVÄSKYLÄ

Lecture 4: Ontologies

TIES4520 Semantic Technologies for Developers

Autumn 2023

University of Jyväskylä Khriyenko Oleksiy

UNIVERSITY OF JYVÄSKYLÄ

Part 1

Ontology basics

229/09/2023 TIES4520 - Lecture 4

UNIVERSITY OF JYVÄSKYLÄ

Ontology

◼ A person's vocabulary is the set of words within a language that

are familiar to that person. (Wikipedia)

◼ On the Semantic Web, vocabularies define the concepts and

relationships used to describe and represent an area of concern.

(W3C). Vocabularies are used to:

– classify the terms that can be used in a particular application,

– characterize relationships, and

– define constraints on using those terms.

3TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Ontology

◼ An Ontology is an explicit, formal specification of a shared

conceptualization. Ontologies are formal models that describe a

certain domain and specify the definitions of terms by describing

their relationships with other terms in the ontology.

◼ Example: medical ontology, IT ontology, music ontology, etc.

◼ Consists of:

– TBox

• Describes abstract concepts (Class) and their relationships (Property)

• Taxonomy, classification

– ABox

• Describes concrete individuals (Instance) and their relationships to other individuals

and/or abstract concepts from Tbox

◼ There cannot be a global ontology of everything
– Ontologies are dynamic (they change in time)

– Every person can have a different perspective on the domain

4TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Instance vs. class

◼ Class (type)

– Represents a set of things that share same properties (and/or

behavior)

– characterized via attributes (name-value pairs)

– Example: Person, Fruit, Feeling…

◼ Instance (individual)

– Represents a concrete thing

– Can belong to one or more classes

– Example: johnDoe, appleGoldenDelicious, anger…

5

Usually names start with a capital letter

Usually names start with a small letter

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ont: <http://www.john.com/myOntology.owl#> .

ont:benny rdf:type ont:Dog .

ont:superman a ont:ComicBookCharacter .

ont:mrBean <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ont:ComicCharacter .

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Important parts of TBox

◼ Class hierarchy

– Defines classes of things and their relationships (class-

subclass and others)

◼ Object properties

– Connections between two individuals

– Example:

◼ Data properties

– Connection between an individual and a value

– Example:

6

p:john p:loves p:mary.

p:john p:hasHeight "178.5"^^xsd:float .

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Sample ontology: class hierarchy

7

MotherBoard

Mouse

Keyboard

InputDev

OutputDev

Display

Printer

CPU

Memory

HDD

TouchScreen

PC

Thing

RAM

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Properties

◼ In ontologies we define property’s domain and range

– Domain: What can have this property

– Range: What can be the value of this property

8

hum:isAttractedBy

D:

R: Human

Human

phy:isAttractedBy

D:

R: Particle

Particle

med:hasDiagnosis

D:

R: Diagnosis

Human

hum:hasSurname

D:

R: rdfs:Literal

Human

psy:hasAtomicNumber

D:

R: xsd:string

Atom

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Properties

◼ Object properties:

– Domain: URI

– Range: URI

◼ Data properties:

– Domain: URI

– Range: Literal (typed or plain)

9

@prefix o: <http://john.com/myOnt.owl#> .

o:mary o:likes o:chocolate .

@prefix o: <http://john.com/myOnt.owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

o:mary o:age "30"^^xsd:int .

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Sample ontology: object properties

10

topObjectPrperty

D:

R:
hasCPU

D:

R: CPU

PC

hasMemory

D:

R: Memory

PC

hasRAM

D:

R: RAM

PC

hasComponent

D:

R: CPU

MotherBoard

RAM InputDev OutputDev

Thing

Thing

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Sample ontology: data properties

11

topDataPrperty

D:

R:
hasSpeed

D:

R:

CPU

hasCapacity

D:

R:

Memory

producedIn

D:

R:

PC

hasProducer

D:

R:

PC

rdfs:Literal

rdf:PlainLiteral

xsd:date

xsd:string

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Thing

Thing

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Ontology language

◼ Language that is used to formally define ontologies

◼ Example:

– RDFS (RDF Schema)

– OWL (Web Ontology Language)

– OWL2

◼ Majority is based on RDF model as well

– Ontology written in such language is RDF itself

◼ Differences between ontology languages

– Expressiveness

– Computational complexity of reasoning

12TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

RDF Schema (RDFS)

◼ Simple ontology language (W3C Recommendation in 2004)

◼ Prefix:

◼ Features:

– Declaration of classes and subclass hierarchy:

– Declaration of literals and their hierarchy:

– Definition of properties and their hierarchy:

– Other features (statement, container, collections, comments, etc.)

13

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

x:Human rdf:type rdfs:Class .

x:Human rdfs:subClassOf x:LivingBeing .

x:Henkilotunnus rdf:type rdfs:Literal .

rdfs:Datatype rdfs:subClassOf rdfs:Literal .

x:hasAge rdf:type rdf:Property .

x:hasAge rdfs:domain x:LivingBeing .

x:hasAge rdfs:range xsd:int .

rdfs:subPropertyOf rdf:type rdf:Property .

x:hasMovablePart rdfs:subPropertyOf x:hasPart .

x:hasStaticPart rdfs:subPropertyOf x:hasPart .

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

RDFS example

◼ Ontology

◼ Annotated resource

14

@prefix x: <http://mypage.com/myOntologies/humanOntology#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

x:LivingBeing rdf:type rdfs:Class .

x:Human a rdfs:Class ;

rdfs:subClassOf x:LivingBeing .

x:hasAge a rdf:Property ;

rdfs:domain x:Human ;

rdfs:range xsd:int .

@prefix x: <http://mypage.com/myOntologies/humanOntology#> .

@prefix xsd: <http://www.w3.org/2000/01/rdf-schema#> .

x:bill a x:Human ; x:hasAge "40"^^xsd:int .

@prefix x: <http://mypage.com/myOntologies/humanOntology#> .

@prefix xsd: <http://www.w3.org/2000/01/rdf-schema#> .

x:bill a x:LivingBeing ; "40"^^xsd:int .x:hasAgex:hasAge

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL language

◼ Web Ontology Language (OWL) - is a semantic markup

language for publishing and sharing ontologies on the World

Wide Web.

◼ OWL is vocabulary extension RDF and derived from DAML+OIL

Web Ontology Language.

◼ Two versions:

– Version 1 (W3C Recommendation Feb 2004)

• Dialects: OWL-Lite, OWL-DL, OWL-Full

– Version 2 (W3C Recommendation Oct 2009)

• Profiles: OWL EL, OWL QL, OWL RL

◼ Uses vocabulary from RDF and RDFS

◼ More expressive than RDFS

15TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL version 1

◼ OWL has more expressive power than RDF Schema, provides

additional vocabulary along with a formal semantics

◼ Three sublanguages:

– OWL Lite was designed for easy implementation and to provide users with a functional

subset that will get them started in the use of OWL.

– OWL DL was designed to support the existing Description Logic business segment

and to provide a language subset that has desirable computational properties for

reasoning systems.

• More expressive

• Based on DL (Description Logic)

• (Almost) all features included

• Still computationally complete and decidable

– OWL Full relaxes some of the constraints on OWL DL so as to make available

features which may be of use to many database and knowledge representation systems,

but which violate the constraints of Description Logic reasoners.

• Maximum expressiveness

• Computational properties not guaranteed

16TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL version 2

◼ OWL 2 is extension of OWL designed to facilitate ontology development

and sharing via the Web, with the ultimate goal of making Web content

more accessible to machines.
– OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic

Web documents;

– RDF/XML is primary exchange syntax for OWL 2 and provides interoperability of OWL 2 tools. Other

alternative syntaxes also are used (Turtle, XML, Manchester Syntax, Functional-Style Syntax, etc.)

◼ OWL 2 Profiles (sublanguages) are syntactic restrictions of OWL 2.

Each is more restrictive than OWL DL and provides different

computational and/or implementational benefits:
– OWL 2 EL enables polynomial time algorithms for all the standard reasoning tasks

• applications with very large ontologies that need expressive power for performance

– OWL 2 QL enables conjunctive queries to be answered in LogSpace using standard relational

database technology

• applications with relatively lightweight ontologies used to organize large numbers of individuals

and need to access the data directly via relational queries (e.g., SQL)

– OWL 2 RL enables the implementation of polynomial time reasoning algorithms using rule-extended

database technologies operating directly on RDF triples

• applications with relatively lightweight ontologies used to organize large numbers of individuals

and need to operate directly on data in the form of RDF triples

17TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL version 2

◼ Additionally to three new profiles and new OWL 2 Manchester

Syntax, OWL 2 adds new functionality with respect to OWL 1:

– syntactic sugar to make some common patterns easier to write (e.g., disjoint union of

classes);

– property chains and keys (in order to uniquely identify individuals of a given class by

values of (a set of) key properties);

– richer datatypes:

• various kinds of numbers: a wider range of XML Schema Datatypes (double, float, decimal,

positiveInteger, etc.) and providing its own datatypes, e.g., owl:real;

• strings with (or without) a Language Tag (using the rdf:PlainLiteral datatype);

• boolean values, binary data, IRIs, time instants, etc.

– datatype restrictions by means of constraining facets that constrain the range of

values allowed for a given datataype, by length (for strings) e.g., minLength, maxLength,

and minimum/maximum value, e.g., minInclusive, maxInclusive.

– N-ary Datatypes;

– qualified cardinality restrictions;

– asymmetric, reflexive, and disjoint properties;

– enhanced annotation capabilities.

18TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL

19TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Protégé

◼ Protégé is an ontology editor (http://protege.stanford.edu/)

◼ Documentation: (http://protegewiki.stanford.edu/wiki/Main_Page)

◼ Differences between Protege 3.x and 5.x (4.x) are equivalent to those between

Frames based systems and OWL (and DL reasoning) based ones

(http://users.jyu.fi/~olkhriye/ties4520/lectures/FramesAndOWLSideBySide.pdf)

– Version 3.x (OWL 1 + RDFS)

– Version 4.x & 5.x (OWL 2)

• written in a much more principled way than Protege 3 and for OWL ontologies

Protege 5 (4) is generally the right choice;

• does not include some of the plugins of Protege 3 and Protege 3 forms mechanism.

◼ Many plugins

– Reasoners (HermiT, Pellet, FaCT++)

– Exporters

– New views

◼ Manchester syntax

– Used in Protégé to define set operations and property restrictions

– More info: http://www.w3.org/TR/owl2-manchester-syntax/

20TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

WebProtege

◼ WebProtege is an open source, lightweight, web-based

ontology editor (http://protegewiki.stanford.edu/wiki/WebProtege):

– allows users to collaboratively develop ontologies in a distributed way;

– supports OWL 2 ontologies;

– users can upload OBO Format ontologies and edit them collaboratively

◼ WebProtege has a content management system.

– Users can log in and upload their ontologies to the server, edit them, invite

collaborators to contribute, and set permissions for collaborators (who can

then view, edit, or make comments).

◼ Two modes of WebProtege:

– Local Mode: WebProtégé loads the ontologies from a standalone instance of

Protégé running in a servlet container (default mode);

– External Server Mode: WebProtégé loads the ontologies from a Protégé

server running outside of the servlet container, and acts as a web-based

client connecting to the Protégé server.

◼ WebProtege On-line: http://webprotege.stanford.edu/

24TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Part 2

Ontologies and Protégé

25TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL document

◼ Parts

– Ontology header

– Class axioms

– Property axioms

– Facts about individuals

◼ Order of components is not important

◼ Extensions usually: rdf, owl. But supports many of

main serializations…

◼ MIME type:
– application/rdf+xml or

– application/xml

26TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL: Ontology header

◼ Ontology is a resource as well, therefore can have

own annotations (properties).

◼ Annotations (owl:AnnotationProperty):

– owl:versionInfo - string that provides version information (does not influence the logical

meaning of the ontology);

– owl:priorVersion - identifies the ontology as a prior version of the containing ontology;

– owl:backwardCompatibleWith - identifies the specified ontology as a prior version of

the containing ontology, and further indicates that it is backward compatible with it;

– owl:incompatibleWith - indicates that the containing ontology is a later version of the

referenced ontology, but is not backward compatible with it.

– also: rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy

– also (OWL-2): owl:deprecated used to specify whether IRI is deprecated or not

◼ Ontology imports (owl:imports)

– Imports another ontology that is considered to be a part of the importing

ontology

27TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL: Ontology header

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix : <http://jyu.fi/ontology1.owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<http://jyu.fi/ontology1.owl> rdf:type owl:Ontology ;

rdfs:comment "simple family ontology"@en ;

owl:backwardCompatibleWith <http://jyu.fi/ontology0.owl> .

28TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL: Class axioms

◼ Class descriptions

1. Plain declaration – a class identifier (URI reference)

2. Exhaustive enumeration of all individuals

3. Property restriction

4. Set operations:

• Intersection of classes;

• Union of classes;

• Complement of a class.

◼ Each class belongs to owl:Class

– owl:Class is a subclass of rdfs:Class

◼ Special classes:

– owl:Thing (class with all individuals);

– owl:Nothing (class with no individuals, empty set).

29TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

owl:Thing and owl:Nothing

◼ owl:Thing
– Contains all the individuals in the world

– Automatically parent of every other class

– Any individual is automatically a member of this class

– Any class is automatically a subclass of owl:Thing

◼ owl:Nothing
– No individual belongs to this class (empty set)

– Automatically subclass of all other classes

• Empty set is always a subset of any non-empty set

– Automatically disjoint with other classes

• Empty set is always disjoint with any non-empty set

30TIES4520 - Lecture 329/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: Axioms

◼ Axiom
– Formula in a formal language that is universally valid and describes

knowledge that cannot be expressed simply with the help of other existing

components.

– Some statement (“rule”) that is always true

– It is given, you don’t question it or prove it

◼ Necessary condition
– X is necessary condition for Y: (Y=>X)

– Example: Having PhD. is a necessary condition for being a professor (but not

sufficient)

◼ Sufficient condition
– X is sufficient condition for Y: (X=>Y)

– Stronger than necessary condition

– Example: Being a human is a sufficient condition for being a living being (but

not necessary)

31TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: Axioms 2

◼ Class-subclass axiom

– rdfs:subClassOf (came from RDFS)

– Same meaning as in RDFS

◼ Equivalence axiom (owl:equivalentClass)

– Class description has exactly the same meaning as some other class

description (they represent the same set)

◼ Disjointness axiom (owl:disjointWith) (is not part of OWL Lite)

– Only necessary condition, not sufficient

– You specify what the class is not about

– You do not specify what the class is about

– Example: Car is disjoint with Bicycle

– a shortcut to define several classes to be disjunctive

32

_:x45 rdf:type owl:AllDisjointClasses;

owl:members (:Car :Human :Organization).

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 1.Plain declaration, 2.Enumeration

◼ Plain declaration

– You specify that some URI represents a class

◼ Enumeration (is not part of OWL Lite)

– You define the Class by saying what individuals belong to it. The Class has

exactly those individuals, nothing more, nothing less;

– Use owl:oneOf predicate. Value must be a list of individual of that class;

– Example: Continent, Gender, Grade, etc.

ex:Human rdf:type owl:Class

ex:Gender owl:oneOf (ex:female ex:male)

33TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Anonymous class (restriction) defined by specifying

restrictions on its properties

◼ owl:Restriction is a subclass of owl:Class

◼ Restrictions:
– Value constraint:

• owl:allValuesFrom,

• owl:someValuesFrom,

• owl:hasValue (is not part of OWL Lite)

– Cardinality constraint:

• owl:cardinality (OWL Lite supports cardinality constraint with only values “0” or ”1”),

• owl:minCardinality and owl:maxCardinality,

• owl:qualifiedCardinality (OWL-2),

• owl:minQualifiedCardinality and owl:maxQualifiedCardinality (OWL-2)

– Self-Restriction:

• owl:hasSelf (OWL-2)

34TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Value constraint: owl:allValuesFrom

:HumanChild rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :hasParent ;

owl:allValuesFrom :Human

] .

35TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Value constraint: owl:someValuesFrom

:FinnByOrigin rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :hasParent ;

owl:someValuesFrom :Finn

] .

36TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Value constraint: owl:hasValue

:CitizenOfJyvaskyla rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :livesInCity ;

owl:hasValue :cityJKL

] .

37TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Cardinality constraint example:

:Mammal rdf:type owl:Class;

 rdfs:subClassOf [

 rdf:type owl:Restriction;

 owl:onProperty :hasParent;

 owl:cardinality 2

];

 rdfs:subClassOf [

 rdf:type owl:Restriction;

 owl:qualifiedCardinality 1;

 owl:onProperty :hasParent;

 owl:onClass :Female

];

 rdfs:subClassOf [

 rdf:type owl:Restriction;

 owl:qualifiedCardinality 1;

 owl:onProperty :hasParent;

 owl:onClass :Male

].

38TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Cardinality: owl:cardinality, owl:minCardinality, owl:maxCardinality

:Mammal rdf:type owl:Class;

 rdfs:subClassOf [

 rdf:type owl:Restriction;

 owl:onProperty :hasParent;

 owl:cardinality 2

]…

39TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

:Person rdf:type owl:Class;

 rdfs:subClassOf [

 rdf:type owl:Restriction;

 owl:qualifiedCardinality

 ”1”^^xsd:nonNegativeInteger;

 owl:onProperty :hasAge;

 owl:onDataRange xsd:integer

]…

Classes: 3.Property restrictions

◼ Qualified cardinality: owl:qualifiedCardinality,

owl:minQualifiedCardinality, owl:maxQualifiedCardinality (OWL-2)

◼ Also can be used with Datatype properties

:Mammal rdf:type owl:Class;

 rdfs:subClassOf [

 rdf:type owl:Restriction;

 owl:qualifiedCardinality 1;

 owl:onProperty :hasParent;

 owl:onClass :Female

]…

40TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

◼ Qualified cardinality is not a part of OWL-1. Such restriction can

be done via intersection of two other restrictions:

:Mammal rdf:type owl:Class;

 rdfs:subClassOf [rdf:type owl:Class ;

 owl:intersectionOf (

 [rdf:type owl:Restriction ;

 owl:onProperty :hasParent ;

 owl:allValuesFrom :Female]

 [rdf:type owl:Restriction ;

 owl:onProperty :hasParent ;

 owl:cardinality "1"^^xsd:int ;]

)

] …

Classes: 3.Property restrictions

41TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Self-restriction: owl:hasSelf (OWL-2)

:NarcisticPerson rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :loves ;

owl:hasSelf "true"^^xsd:boolean

] .

42TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 3.Property restrictions

◼ Constraining facets can be used to restrict datatype values. The

following constraining facets can be used:

– Numbers and time instants: xsd:minInclusive, xsd:maxInclusive,

xsd:minExclusive, xsd:maxExclusive

– Strings and IRIs: xsd:minLength, xsd:maxLength, xsd:length, xsd:pattern

– Binary data: xsd:minLength, xsd:maxLength, xsd:length

Example: class Teenager is defined as those who are between 13 and 19 years

old (both inclusive).

:Teenager rdfs:subClassOf _:x .

_:x rdf:type owl:Restriction ;

 owl:onProperty :hasAge ;

 owl:someValuesFrom _:y .

_:y rdf:type rdfs:Datatype ;

 owl:onDatatype xsd:integer ;

 owl:withRestrictions (_:z1 _:z2) .

_:z1 xsd:minInclusive "13"^^xsd:integer .

_:z2 xsd:maxInclusive "19"^^xsd:integer .

43TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 4. Set operations

44

Union (A or B) Intersection (A and B)

Set-subset

(A is subset of B)

Complement

(complement of A inside B)
Disjoint sets

Set theory basics

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 4. Set operations

◼ Intersection (has some restrictions in OWL Lite)

– owl:intersectionOf (= logical AND)

– Example: class Man is intersection of classes Male and Human

– Example: Man = Male AND Human

45

:Man rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Class ;

owl:intersectionOf (:Human :Male)

] ;

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 4. Set operations

◼ Union (is not part of OWL Lite)

– owl:unionOf (= logical OR)

– Example: class Vehicle is union of classes Car and Motorcycle

– Example: Vehicle = Car OR Motorcycle

46

:Vehicle rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Class ;

owl:unionOf (:Car :Motorcycle)

] ;

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes: 4. Set operations

◼ Complement (is not part of OWL Lite)

– owl:complementOf (logical NOT)

– Example: class DeadPerson is complement of class LivingPerson

– Example: DeadPerson = NOT LivingPerson

47

:DeadPerson rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Class ;

owl:complementOf :LivingPerson

] ;

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Classes

◼ Keys: owl:hasKey (OWL-2)

– a collection of (data or object) properties can be assigned as a key to a class

expression. This means that each named instance of the class expression is

uniquely identified by the set of values which these properties attain in relation

to the instance.

– Example: the identification of a person by his/her social security number (SSN)

48

:Person owl:hasKey (:hasSSN) .

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Properties:

◼ In OWL we already recognize 2 properties

– Object property (class owl:ObjectProperty)

– Datatype property (class owl:DatatypeProperty)

– There are two other type of properties that are used in OWL DL

(owl:AnnotationProperty and owl:OntologyProperty classes).

◼ All of them are subclass of rdf:Property

◼ Special properties:

– owl:topObjectProperty (the object property that relates every two individuals).

– owl:topDataProperty (the data property that relates every individual to every data value).

◼ More property axioms:
– Old RDFS: rdfs:subPropertyOf, rdfs:domain, rdfs:range

– Relation to other properties: owl:equivalentProperty, owl:inverseOf

– Global cardinality constraints: owl:FunctionalProperty, owl:InverseFunctionalProperty

– Logical characteristics: owl:SymmetricProperty, owl:TransitiveProperty

– Logical characteristics (OWL-2): owl:AsymmetricProperty, owl:ReflexiveProperty,
owl:IrreflexiveProperty

– Property chains (OWL-2): owl:propertyChainAxiom

49TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Old RDFS axioms

◼ rdfs:subPropertyOf

– Same meaning as in RDFS (sublanguage limitations must be

taken into account)

◼ rdfs:domain and rdfs:range

– Same meaning as in RDFS;

– Multiple axioms allowed and interpreted as a conjunction

(intersection of provided classes);

– If union of classes is needed, then use owl:unionOf

50

:hasFriend rdf:type owl:ObjectProperty ;

rdfs:domain :Human ;

rdfs:range [rdf:type owl:Class ;

owl:unionOf (:Animal :Human)

] .

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Relation to other properties

◼ owl:equivalentProperty
– Equivalence of two properties.

◼ owl:inverseOf
◼ Simply: property 𝑃1 is inverse property of the property 𝑃2, if

range and domain of these properties are switched (direction

of “arrow” is switched);

◼ Example: properties ex:isOwnedBy & ex:owns are inverse,

ex:hasChild & ex:hasParent are inverse.

◼ owl:propertyDisjointWith (OWL-2)

◼ Simply: properties 𝑃1 and 𝑃2 are disjunctive, if two individuals

are never related via both properties;

◼ Example: properties ex:hasParent & ex:hasChild are

disjunctive.

◼ a shortcut to define several properties to be disjunctive

51

𝐴 𝐵

𝑃1

𝑃2

𝐴 𝐵

𝑃1

𝑃2

𝐴 𝐵

𝑃1

𝑃2

_:x25 rdf:type owl:AllDisjointProperties;

owl:members (:hasParent :hasChild :hasGrantchild).

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Global cardinality constraints

◼ owl:FunctionalProperty
◼ Simply: such property can have only one value. Property may relate

individual A only to one individual;

◼ Example: ex:marriedTo (in monogamous cultures);

52

𝐴 𝐵
𝑃

𝐶
𝐷

𝑃
𝑃

𝐴 𝐵
𝑃

𝐶
𝐷

𝑃
𝑃

◼ owl:InverseFunctionalProperty
◼ Simply: such property cannot relate two or more individuals (only

one) to the same destination individual A;

◼ Example: ex:biologicalMotherOf

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Logical characteristics

◼ owl:SymmetricProperty
◼ Simply: if property 𝑃 relates individual 𝐴 to individual 𝐵, then the

same property 𝑃 also relates individual 𝐵 to individual 𝐴;

◼ Example: ex:hasSpouse.

53

𝐴 𝐵

𝑃

𝑃

TIES4520 - Lecture 4

◼ owl:AsymmetricProperty (OWL-2)

◼ Simply: If the property 𝑃 relates individual 𝐴 to individual 𝐵, then individual 𝐵
cannot be related to individual 𝐴 via the same property 𝑃;

◼ Example: ex:isChildOf. 𝐴 𝐵

𝑃

𝑃

29/09/2023

UNIVERSITY OF JYVÄSKYLÄ

𝐴 𝐵
𝑃

𝑃

◼ owl:IrreflexiveProperty (OWL-2)

◼ Simply: If the property 𝑃 relates individual 𝐴 to individual 𝐵, then individuals 𝐴
and 𝐵 are not the same individuals;

◼ Example: ex:motherOf.

Logical characteristics (OWL-2)

54

𝐴 𝐵
𝑃

𝑃

◼ owl:ReflexiveProperty (OWL-2)

◼ Simply: If the property 𝑃 relates individual 𝐴 to individual 𝐴 (to itself) and at

the same time the property 𝑃 may relate individual 𝐴 to other individuals;

◼ Example: ex:knows.

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Logical characteristics

55

𝐴1 𝐴2 𝐴𝑛
𝑃 𝑃

𝑃

◼ owl:TransitiveProperty
◼ Simply: if property 𝑃 relates individual 𝐴1 to individual 𝐴2 , and the

same property 𝑃 relates individual 𝐴2 to individual 𝐴𝑛, then the same

property 𝑃 also relates individual 𝐴1 to individual 𝐴𝑛;

◼ Example: ex:bossOf, ex:hasAncestor.

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Property chains (OWL-2)

◼ owl:propertyChainAxiom (OWL-2)

◼ Simply: If the property 𝑃1 relates individual 𝐴1 to individual 𝐴2, and property 𝑃2

relates individual 𝐴2 to individual 𝐴𝑛, then property 𝑃 relates individual 𝐴1 to
individual 𝐴𝑛;

◼ Example:

56

:hasGrandparent rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom (:hasParent :hasParent) .

:hasComponentFrom rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom (:hasComponent :hasCountryOfOrigin) .

𝐴1 𝐴2 𝐴𝑛
𝑃1 𝑃2

𝑃

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Individuals’ identity

◼ Equality:

– Predicate owl:sameAs;

– Saying that URI1 and URI2 mean the same individual.

◼ Non-equality:

– Predicate owl:differentFrom;

– Saying that URI1 and URI2 are definitely not the same individual.

◼ Different among each other:

– property owl:distinctMembers is defined as a predicate that links an

instance of owl:AllDifferent class to a list of individuals which are all

different from each other;

– Saying that URI1, …, URIn are all different from each other.

◼ Important: If no information about equality or non-equality is specified, then we

must assume that both are possible.

57

_:x39 rdf:type owl:AllDifferent;

owl:distinctMembers (f:John f:Mary f:Bill f:Susan).

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Individuals’ identity

◼ Negated Property Instantiation:

– Two individuals can be explicitly defined as “not related to each

other” via a given property

– Can also be used with Datatype properties…

58

_:x29 rdf:type owl:NegativePropertyAssertion ;

owl:sourceIndividual :Bob ;

owl:assertionProperty :isBrother ;

owl:targetIndividual :Michael .

_:x19 rdf:type owl:NegativePropertyAssertion ;

owl:sourceIndividual :Bob ;

owl:assertionProperty :hasAge ;

owl:targetValue "53"^^xsd:integer.

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL Full

◼ All the constructs are allowed;

◼ owl:Class is equivalent to rdfs:Class;

◼ owl:Thing is equivalent to rdfs:Resource;

◼ owl:ObjectProperty is equivalent to rdf:Property.

Therefore, datatype property is subclass of object

property;

◼ Very expressive (a lot of “freedom” to define things);

◼ You lose some guarantees on computability.

59TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL DL

◼ Requires disjointness of:

– classes, properties (datatype properties, object properties,

annotation properties, ontology properties), individuals, data

values, datatypes, built-in vocabulary

– This has many implications…

◼ All axioms must be:

– well-formed

– with no missing or extra components

– must form a tree-like structure

60

:Vehicle rdf:type owl:Class .

:Car rdf:type owl:Class ;

rdfs:subClassOf :Vehicle . … not enough

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

OWL Lite

◼ Least expressive

◼ “Minimal useful subset of language features, that are

relatively straightforward for tool developers to

support”

◼ No use of:

– owl:oneOf

– owl:unionOf

– owl:complementOf

– owl:hasValue

– owl:disjointWith

– owl:DataRange

◼ + some other limitations

61TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Ontology Development Process

In theory:

In reality: it is an iterative process…

62

Links:
o http://protege.stanford.edu/publications/ontology_development/ontology101-noy-

mcguinness.html

o http://smartdata2015.dataversity.net/uploads/handouts/TUE_0830_Kendall_Elis

a_McGuinness_Deborah_COLOR_7736.pdf

o http://slideplayer.com/slide/4414078/

TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Further reading

◼ OWL Reference guide

– http://www.w3.org/TR/owl-ref/

– Easy to understand, many examples

– Good chapters

• All language elements (http://www.w3.org/TR/owl-ref/#appA)

• Differences between sublanguages (http://www.w3.org/TR/owl-

ref/#Sublanguage-def)

• Tips (http://www.w3.org/TR/owl-ref/#app-DLinRDF)

◼ OWL-2 (http://www.w3.org/TR/owl2-syntax/ and http://www.w3.org/TR/owl2-primer/)

◼ Ontology editors (https://www.w3.org/wiki/Ontology_editors)

– TopBraid Composer;

– Fluent Editor;

– Knoodl;

– Semantic Turkey;

– NeOn Toolkit;

– Etc.

63TIES4520 - Lecture 429/09/2023

UNIVERSITY OF JYVÄSKYLÄ

Task 3

64TIES4520 - Lecture 429/09/2023

	Slide 1
	Slide 2: Part 1
	Slide 3: Ontology
	Slide 4: Ontology
	Slide 5: Instance vs. class
	Slide 6: Important parts of TBox
	Slide 7: Sample ontology: class hierarchy
	Slide 8: Properties
	Slide 9: Properties
	Slide 10: Sample ontology: object properties
	Slide 11: Sample ontology: data properties
	Slide 12: Ontology language
	Slide 13: RDF Schema (RDFS)
	Slide 14: RDFS example
	Slide 15: OWL language
	Slide 16: OWL version 1
	Slide 17: OWL version 2
	Slide 18: OWL version 2
	Slide 19: OWL
	Slide 20: Protégé
	Slide 24: WebProtege
	Slide 25: Part 2
	Slide 26: OWL document
	Slide 27: OWL: Ontology header
	Slide 28: OWL: Ontology header
	Slide 29: OWL: Class axioms
	Slide 30: owl:Thing and owl:Nothing
	Slide 31: Classes: Axioms
	Slide 32: Classes: Axioms 2
	Slide 33: Classes: 1.Plain declaration, 2.Enumeration
	Slide 34: Classes: 3.Property restrictions
	Slide 35: Classes: 3.Property restrictions
	Slide 36: Classes: 3.Property restrictions
	Slide 37: Classes: 3.Property restrictions
	Slide 38: Classes: 3.Property restrictions
	Slide 39: Classes: 3.Property restrictions
	Slide 40: Classes: 3.Property restrictions
	Slide 41: Classes: 3.Property restrictions
	Slide 42: Classes: 3.Property restrictions
	Slide 43: Classes: 3.Property restrictions
	Slide 44: Classes: 4. Set operations
	Slide 45: Classes: 4. Set operations
	Slide 46: Classes: 4. Set operations
	Slide 47: Classes: 4. Set operations
	Slide 48: Classes
	Slide 49: Properties:
	Slide 50: Old RDFS axioms
	Slide 51: Relation to other properties
	Slide 52: Global cardinality constraints
	Slide 53: Logical characteristics
	Slide 54: Logical characteristics (OWL-2)
	Slide 55: Logical characteristics
	Slide 56: Property chains (OWL-2)
	Slide 57: Individuals’ identity
	Slide 58: Individuals’ identity
	Slide 59: OWL Full
	Slide 60: OWL DL
	Slide 61: OWL Lite
	Slide 62: Ontology Development Process
	Slide 63: Further reading
	Slide 64: Task 3

