
ONTOENVIRONMENT: AN INTEGRATION INFRASTRUCTURE
FOR DISTRIBUTED HETEROGENEOUS RESOURCES

Oleksiy Khriyenko*1, Oleksandr Kononenko*2, Vagan Terziyan*3,

Department of Mathematical Information Technology,
University of Jyväskylä,

P.O. Box 35, 40014, Jyväskylä,
FINLAND

*1olkhriye@cc.jyu.fi, *2olkonone@cc.jyu.fi, *3vagan@it.jyu.fi

ABSTRACT

A new age of heterogeneous resource integration has
begun. Next generation of integration systems will utilize
different methods and techniques to achieve the vision of
ubiquitous knowledge: Semantic Web and Web Services,
Agent Technologies and Mobility. In this paper we
overview the approach to heterogeneous resources
integration base on OntoShell concept and Semantic Web-
enabled integration environment (OntoEnvironment). We
describe OntoEnvironment architecture, interaction
models and business model for it.

KEY WORDS
Resource integration, Semantic Web, Peer-to-Peer.

1. Introduction

Nowadays, knowledge is one of the most valuable
resources of enterprises and an important productivity and
competitiveness factor. Therefore, in global and growing
market the optimal usage of existing knowledge
represents a key factor for the future enterprises.
Knowledge-based assets, or intellectual capital is the sum
of accumulated values of the company’s shareable
knowledge and expertise. Information sharing is critically
important, because intellectual assets, unlike physical
assets, increase in value while used; knowledge and
intellect grow when shared. Information stored in archives
is useless if it is not available as raw material for making
decisions, improving quality, or enhancing productivity.

A new age of integration has begun. Gone are the days
where integration consisted of tactical, point-to-point
connections between disconnected applications. Today,
integration is a critical and strategic factor in company’s
ability to compete. A successfully deployed integration
network can: provide the agility for company to respond
quickly and effectively to capture business opportunities,
simplify business process and shorten business cycles to
drive down costs, leverage company’s vast ICT

expenditures to realize real return on these investments.
Integration is the unrestricted sharing of business
processes and data among connected applications and data
sources within an enterprise and between trading partners.
According to [iPlanet, 2002], without integration,
enterprises are left with stovepipe applications,
inconsistent data, and inefficient business processes.

Talking about resource integration (in common case), we
have a deal with heterogeneous in many aspects
resources. Concerning this problem, ontology provides a
common language at a human and a machine level to
enable knowledge exchange and resource integration.
Ontologies are the key technology used to describe the
semantics of information exchange. They provide a
shared and common understanding of a domain that can
be communicated across people and application systems,
and thus facilitate knowledge sharing and reuse. The
underlying technology that enables main desired features
is Semantic Web [Ankolekar et al., 2002], [Paolucci et al.,
2002]. Semantic Web uses ontologies to create a
comprehensive environment, in which intelligent agents
(software applications) can access annotated resources,
communicate and perform collaborative activities.

Next generation of integration systems will utilize
different methods and techniques to achieve the vision of
ubiquitous knowledge: Semantic Web and Web Services,
Agent Technologies, Mobility [Curbera et al., 2002],
[Clabby, 2002], [WEBSERVICES], [Ankolekar et al.,
2002], [Paolucci et al., 2002], [FIPA, 2001]. In this paper
we overview the approach to heterogeneous resources
integration base on OntoShell concept and Semantic Web-
enabled integration environment (OntoEnvironment). This
idea comes from OntoServ.Net concept [IOG, 2003]
developed by “Industrial Ontologies Group”1. We
describe OntoEnvironment architecture, interaction
models and business model for it.

1 http://www.cs.jyu.fi/ai/Ontogroup

mailto:olkhriye@cc.jyu.fi
mailto:olkonone@cc.jyu.fi
http://www.cs.jyu.fi/ai/Ontogroup

2. The approach to heterogeneous resources
integration

As a matter of fact there is not yet an agreement about a
service development standard, which allows automated
interaction between services in heterogeneous
environment. However complex environments that have
to combine a variety of existing systems need such a
standard to achieve maximal integration performance.
When we have heterogeneous resources (services) and
need to enable their autonomous integration over the
Web, then we have to provide common language for their
interactions to make them semantically enabled. We need
to describe them in a common way based on a common
ontology.

An OntoShell is a software shell, which has a deal to
make resource (service) semantically enabled. The
OntoShell is configured for a concrete resource based on
ontology of it. The OntoShell represents a resource and
carries its ontology-based description. It plays a role of a
mediator, which provides interoperability between a
resource and world of other OntoShells (other resources),
where they have common interaction mechanisms and
common language (Figure 1). Depending on resource
domain, an ontology-based annotation must comprise not
only a resource’s description (inputs, outputs,
parameters), but also many other aspects, which concern
resources’ goals, intentions, interactions aspects, etc.

Figure 1. Environment-mediator

One of the important OntoShell’s parts is an OntoAdapter
for resources. When we develop service based on
OntoShell approach (when we support interaction
interface with OntoShell), we just need to adapt our
service on semantic level via the visual interface of the
OntoShell. On the other hand, if we need to transform an
existing resource to a semantically enabled one, then we

have to develop mechanisms for accessing that resource.
Since the resources are developed according to different
standards for both content (WSDL, C/C++ DLL, Java
classes or applications, SQL Server, DCOM, CORBA,
etc.) and transport protocols (TCP, HTTP, RMI, etc.) we
need to design and develop respectively resource
(services) transformation modules (OntoAdapters) for
semantic, content and transport levels. It will be
construction blocks, which will fill OntoShell depending
on resource’s description (Figure 2).

Figure 2. Structural schema of the OntoShell

OntoAdapters are ontology-based modules supplied with
both interaction interfaces for the OntoShells and concrete
class of the resources. For example, there are many
services, databases, smart-devices (software interfaces for
them), human, etc. “Ontology-based” means that we have
to create all of the resources’ Ontologies in advance.
Ontologies building phase includes development of
upper-ontology and development of ontologies
themselves, which include data about resources (services)
and environment domains. Concrete data will be
annotated (marked up) in terms of upper- and common
ontology. Here, ontology provides a basis for a well-
understood “common language” to be used between
system’s elements.

3. OntoEnvironment for Semantic Web-
enabled services

Considering the distributed resource integration, we
propose architecture of ontology-based distributed
integration environment for Semantic Web Services based
on OntoShell concept (OntoEnvironment).

3.1 Environment architecture

OntoShell is the main structural component of the
OntoEnvironment. As it was mentioned, OntoShell is
based on a mechanism of making ontological description
and providing interoperability for resources. So, we have
environment with many OntoShells, which can interact
with each other via common language. But it isn’t
enough, because these OntoShells need also the
interaction, advertising and registration mechanisms,
possibility to be mobile (movable), etc. That is why an
OntoEnvironment is an organized set of the OntoShell-
enabled elements (services) (Figure 3), such as:
� OntoAdapter for the resources;
� OntoShellContainer;
� OntoMeetingPlatform;
� OntoMobilityService.

Figure 3. Elements of an OntoEnvironment

So, we observe the modular approach to constructing
universal resource integration based on OntoShells. It
assumes that resources can be nested to arbitrary levels
via such shells for modeling multilevel cluster
architecture. In the OntoEnvironment, services can be
organized into a cluster (OntoShellContainer), which
represents services wrapped within OntoShells. In order
to share their information, OntoShellContainers must be
also integrated into a higher-level network like a resource.
Each element of the OntoEnvironment can be connected
to several others. Finally the integrated elements form a
decentralized environment of resources – Peer-to-Peer
network. In such context, the OntoShellContainers
become representatives of local resources at the
appropriate level of the network. Resource clusters will
reduce the cost of resource searches. Such consolidation
into clusters may be organized according to various
principles, such as:

� Location in the concrete server;
� Membership in a concrete domain;
� One-target federation of the resources (services);
� Geographical location (e.g. in cases, when a human is

a resource, or a resource is a movable device, for
example).

3.2 Hybrid interaction model

In a centralized interaction model, each OntoShell has a
mechanism for registration to shell, which represents a
cluster – aggregate of OntoShells. Thus, whole interaction
will be realized via “mother shell” – OntoShellContainer
(that is requests for searching of necessary resource and
advertising yourself in “mother shell”, what results in
further discovery of registered resource). In such case we
have a need to realize a special demountable (adapter)
module for OntoShell representation in role of the
OntoShellContainer for cluster. Such demountable
module has to be configurable in a detailed way
(especially in business model realization). It has to be
responsible for observation of registration agreements,
quality of provided search service, etc.

We may consider two main reasons for cluster
organization:
� Cluster organization with a goal of useless traffic

decreasing during searching the resource. In this case,
cluster is organized in a way of hierarchical relation
of “class-subclass” type based on resource ontology.
A “mother shell” may register just such elements,
which are members of its subclasses. Example of
such clusterization is presented in Figure 4.

Figure 4. “Class-subclass” clusterization model

Since organization of such clusters will be carried out
spontaneously and shells of some level may not
register in a “mother shell”, than we are not talking
about centralized shells’ management architecture.

� Cluster is organized to behave based on a community
goal of closed set of functioning resources
(components), which compose it. A cluster can be
used to cover concrete domain with a set of different
resources without relation to same class (for example
maintenance platform with a set of services such as:
main maintenance service, device alarm service, set
of classifiers, etc.). In this case, “mother shell”,
which represent some cluster, provides search and
interaction organization for registered resources.
However a mother shell cannot always represent all
of its elements the same way as a (sub)class in a
hierarchical model because we are not assuming that
an aggregation of heterogeneous components covers

a separate class. Organization of such heterogeneous
cluster organization is represented in Figure 5.

Figure 5. “Closed system” clusterization model

Because of impossibility of whole hierarchical clusters’
nesting, which covers all levels of “class-subclass” type
ontology, we cannot provide a guaranteed resource search
via the “mother shells”. Also, search within a cluster-tree
(formed at some level) provides both centralized top-
down search and non-effective bottom-up rising at the
same time.

For resolving these two problems the OntoEnvironment
introduces additional possibility of interaction between
elements without “mother shell”. This can be considered
as a P2P interaction model. The main challenge here is
own “record book” keeping by each OntoShell. This
“record book” has to contain list of useful resources. In
that way each shell (resource) can use own “record book”
directly. Replenishment and modification of resource’s
“record book” is executed during interaction
establishment with other resources. Such direct interaction
model is represented in Figure 6.

Figure 6. Direct interaction model

Lets consider some variants for resource search in hybrid
interaction model:

1. Interaction organization via OntoShellContainer
(“mother shell”)

2. Records exchange during interaction between
resources.

3. Using OntoMeetingPlatforms – places, where shells
(more precisely, shell’s Advertising Agents) can meet
each other and exchange their “record books” (fill up
them).

4. Using special search services.

During of each records exchange case (cases 2 and 3) a
negotiation mechanism may be used.

OntoMeetingPlatform is a service, which provides
possibility for shell’s publicity agent (PublicityAgents) to
meet each other and exchange records in “record book”.
This service may be placed into OntoShell or may be
elaborated like service of new generation in
OntoEnvironment and supplied with the same interaction
interface like OntoShells. Such OntoMeetingPlatforms
may be attached to some class of service classification
tree in ontology and cover some specific resource domain.
Such relation to the concrete domain may be fixed on
OntoMeetingPlatform’s annotation (description) and used
by OntoShells’ PublicityAgents.

Since amount of records will increase very fast, we have a
need to supplement an OntoShell structure with “record
book’s” management block – RelationManager. Thus, we
insert two additional elements into an OntoShell for
management of relations. There are RelationManager and
PublicityAgent blocks. These blocks have to be
configurable. RelationManager has to be responsible for
rectification of the “record book” depending on useless
and useful records. PublicityAgent has to be responsible
for visiting necessary OntoMeetingPlatforms, negotiation
with other agents for exchange of the records, etc.

3.3 Mobility

While considering distributed environment for resources,
the necessity of resource mobility emerges in a number of
cases. In other words, there is sometimes a need to move a
resource with its necessary “equipment” from one
machine (computing system) to another one. Realization
of such movement is a duty of special service
(OntoMobilityService), which will provide mobility in
OntoEnvironment. Thus, party (player), in case of need to
provide mobility for resources, has to supply its
computing system with such specific service.

To be a “player” within a mobile environment, elements
of OntoEnvironment have to be supplied with
MobilityManager module. This module has to be
configured in conformity with a policy system
(concerning mobility). Resource can be configured in
both way like movement initiator or like available
resource to be moved. All resources of a mobile
environment, which support an OntoMobilityService and
accordingly support mobility, have to provide necessary
data for this service, such as: location, final point of
destination, residence time, etc. Thus, we have a need to
design respective ontology for messages between
elements of mobile environment and ontology concerning
behavior and relations of these elements.

3.4 Business model

Considering implementation issues of a distributed
integration environment based on OntoShell approach, we
have to consider also related business environment. In
such environment service providers are interested in
frequent use of their services; that is why service
advertising and search plays an important role. Also,
within such business environment some mediation
elements, which provide necessary services for players,
have to be embedded.

3.4.1 Patterns of behavior for elements of
OntoEnvironment

OntoShell. At the very beginning of its appearance an
OntoShell needs to advertise its resource. For realization
of this goal we may consider two ways: registration in a
“mother shell” and delegating responsibility for
advertising duties to it; or self advertising during the life
cycle by visiting OntoMeetingPlatforms. In case of need
to interact with some resource (which is not available in a
“record book”), an OntoShell has to use search process
via “mother shell” or special search service. Also,
alternative solution is stay on an OntoMeetingPlatform
with a goal of meet necessary resource or find reference
to it. During establishment of a link with environment
element for records (from “record book”) exchange or
registration in a cluster, some negotiation mechanism is
used. Thus, various aspects of behavior have to be
configured in advance via a respective software visual
interface module. Such configuration plays important role
especially in business environment, where “service” costs
“money”.

OntoMeetingPlatform. We may consider two ways of
OntoMeetingPlatforms providing. If they will be provided
in a centralized way, then they will be advertised in one
central point. But if they will be provided without
centralization, then they will need to advertise themselves
in the same way like OntoShells. In general case,
OntoMeetingPlatform as a resource in OntoShell plays its
(OntoShell’s) role. It may register in a cluster, visit
another OntoMeetingPlatforms, use search services, etc.

OntoShellContainer. OntoShellContainer provides a
mechanism with more complicated behavior especially in
Business Environment, where it plays a role of
commercial mediation element. Loose configuration of
such element may result to a negative profit. From the
moment of an OntoShellContainer emergence in the same
way as an OntoShell, it needs to advertise itself. Then in
role of “mother shell” an OntoShellContainer has two
main goals:
� Advertising of the “daughter shells” via itself
advertising.
� Supplying with a search mechanism.

Registration in a cluster allows OntoShell to share its
“record book” within whole OntoShellContainer for
advertising purposes. This information allows execution
of a more effective search and allows removal useless
ascent (bottom-up rise) in a cluster-tree during search,
which has been described in chapter #3.2. In case of
further refresh of OntoShell’s “record book”, an
OntoShell may proceed with its sharing within
OntoShellContainer (“mother shell”). Depending on
amount of new records (references) an
OntoShellContainer updates its profile used for
advertising of the whole cluster. There is a competition
between “daughter shells” to get more queries from a
mother shell based on advanced personal profile. In the
same time, there is a competition between
OntoShellContainers based on updated community
profile.

3.4.2 Business relations between players

In our business model we may highlight the set of
following “players”:

A – provider of OntoShells, OntoShellContainers and
OntoMeetingPlatform, OntoMobilityService;
B – OntoAdapters’ blocks developers;
C – Owner of an OntoShell with resource;
D – Owner of an OntoShellContainer;
E – Owner of an OntoMeetingPlatform;
F – Owner of some search service.

Figure 7. Inter-players interaction

Figure 7 shows business relations between players:
1 – Player “A” is a customer of player “B” for adaptation
modules development (OntoAdapter’s modules);
2 – Player “A” supplies OntoShell with necessary
adaptation modules and OntoMobilityService (in case of
need) to player “C” for inclusion of its resource into
OntoEnvironment;
3 – Player “A” supplies OntoShellContainer and
OntoMobilityService (in case of need) to player “D” for
cluster organization;
4 – Player “A” supplies OntoMeetingPlatform and
OntoMobilityService (in case of need) to player “E”;
5 – Player “C” pays player “F” in case of need to search
necessary resource;

6 – Player “C” pays player “F” in case of need to find
someone or refresh “record book” during stay on an
OntoMeetingPlatform;
7 – OntoShell registers itself in OntoShellContainer based
on some agreements and advertises itself for further
discovery. Additionally an OntoShellContainer provides
search service for registered OntoShells. Player “C” pays
player “D” namely for that search service;
8 – In a similar manner like in case #5, an
OntoShellContainer may have a need to search some
resource for guaranteeing a high-level quality of its
services (in that way, increases its competitiveness). In
case of search services use, a player “D” pays player “F”.
In same time player “F” plays a role of player “C” and
may have a need to register in OntoShellContainer (case
#7), then player “F” pays player “D”;
9 – Player “D” pays player “E” for use an
OntoMeetingPlatform by OntoShellContainer. On the
other hand, OntoMeetingPlatform is a service, which
needs to advertise itself. In that case,
OntoMeetingPlatform may be registered in respective
On oShellContainer; t
10 – Player “F” pays player “E” for use an
OntoMeetingPlatform with a goal to supplement resource
database of search service. On the other hand,
OntoMeetingPlatform may use search service for find
necessary resource (another OntoMeetingPlatform,
OntoShellContainer). In that case, player “E” plays a role
of player “C” and pays player “F” (case #5);
11 - In a similar manner like OntoShell,
OntoShellContainer may register itself within other
OntoShellContainer for advertising and additionally for
search via a “mother shell”. So, in that case, player “D”
pays player “D” namely for that search service.
12 - OntoMeetingPlatform may visit another necessary
OntoMeetingPlatform in case of need to advertise itself
for concrete resources. Then player “E” pays to another
player “E”.
13 – One player “F” plays a role of player “C” in case of
need to use a search service with a goal to supplement its
resource database and increase its quality. Then this
player “F” pays to another player “F”.
14 – If we consider real business environment, we have
commercial services, which require payment for its
service. Then player “C” pays to another player “C”.

4. Conclusion

Nowadays world is overcrowded by information, which is
decentralized and non-shared (i.e. not available) for wide
community of users, who would need this information.
The Semantic Web approach based on creation and using
common ontologies seems to be appropriate solution for
integration and sharing useful information, knowledge,
services and in general sense – Web resources.

Resources and services (like subclass of the resources) are
heterogeneous and need to be preliminarily adapted via
common ontology. According to this problem, we

consider an OntoShell approach to heterogeneous
resource adaptation and Ontology-based universal
integration environment - OntoEnvironment. It allows
transforming all resources (already existing and being
developed) to semantically enabled resources for their
integration. We consider environment, which supports
mobility of the elements to enable effective integration of
distributed resources.

Such environment provides integration within enterprise,
as well as with trading partners, suppliers, and customers,
by offering latest technology and open standards. This
integration solution provides possibility to create a cost-
effective, extended enterprise and get more return on
information assets from existing ICT investments.

REFERENCES

[Ankolekar et al., 2002] A. Ankolekar, M. Burstein,
J.R. Hobbs, O. Lassila, D.L. Martin, D. McDermott, S.A.
McIlraith, S. Narayanan, M. Paolucci, T.R. Payne, K.
Sycara, DAML-S: Web Service Description for the
Semantic Web, URL: http://www-2.cs.cmu.edu/
~terryp/Pubs/ ISWC2002-DAMLS.pdf, 2002.
[Clabby, 2002] J. Clabby, Web Services Executive
Summary, URL: http://www-106.ibm.com/
developerworks/webservices/library/ws-gotcha/?dwzone=
webservices, 2002.
[Curbera et al., 2002] F. Curbera, M. Dufler, R.
Khalaf, W. Nagy, N. Mukhi, S. Weerawarana,
Unravelling the Web Services Web: An introduction to
SOAP, WSDL and UDDI, Internet computing,
March/April, 2002.
[FIPA, 2001] FIPA Interaction Protocol Library
Specification Specification, FIPA00025. URL:
http://www.fipa.org/specs/fipa00025/, 2001.
[IOG, 2003] Industrial Ontologies Group “Semantic Web
Enabled Network of Maintenance Services for Smart
Devices”, Tekes project proposal, Agora Center,
University of Jyväskylä, URL: http://www.cs.jyu.fi/ai/
Metso_Maintenance.ppt, March 2003
[iPlanet, 2002] “iPlanet Application Server Enterprise
Connector for CICS”, URL: http://docs-pdf.sun.com/806-
5504/806-5504.pdf, 2002
[Paolucci et al., 2002] M. Paolucci, T. Kawamura, T.
R. Payne, K. Sycara, Importing the Semantic Web in
UDDI, URL:http://www-2.cs.cmu.edu/~softagents/papers
/Essw.pdf, 2002.
[WebServices] URL: http://www.webservices.org.

http://www-2.cs.cmu.edu/ ~terryp/Pubs/ ISWC2002-DAMLS.pdf
http://www-2.cs.cmu.edu/ ~terryp/Pubs/ ISWC2002-DAMLS.pdf
http://www-106.ibm.com/ developerworks/webservices/library/ws-gotcha/?dwzone= webservices
http://www-106.ibm.com/ developerworks/webservices/library/ws-gotcha/?dwzone= webservices
http://www-106.ibm.com/ developerworks/webservices/library/ws-gotcha/?dwzone= webservices
http://www.fipa.org/specs/fipa00025/
http://www.cs.jyu.fi/ai/ Metso_Maintenance.ppt
http://www.cs.jyu.fi/ai/ Metso_Maintenance.ppt
http://docs-pdf.sun.com/806-5504/806-5504.pdf
http://docs-pdf.sun.com/806-5504/806-5504.pdf
http://www-2.cs.cmu.edu/~softagents/papers /Essw.pdf
http://www-2.cs.cmu.edu/~softagents/papers /Essw.pdf
http://www.webservices.org/

	Introduction
	The approach to heterogeneous resources integration
	OntoEnvironment for Semantic Web-enabled services
	Environment architecture
	Hybrid interaction model
	Mobility
	Business model
	Patterns of behavior for elements of OntoEnvironment
	Business relations between players

	Conclusion

