## TIEA311 Tietokonegrafiikan perusteet kevät 2019

("Principles of Computer Graphics" - Spring 2019)

## Copyright and Fair Use Notice:

The lecture videos of this course are made available for registered students only. Please, do not redistribute them for other purposes. Use of auxiliary copyrighted material (academic papers, industrial standards, web pages, videos, and other materials) as a part of this lecture is intended to happen under academic "fair use" to illustrate key points of the subject matter. The lecturer may be contacted for take-down requests or other copyright concerns (email: paavo.j.nieminen@jyu.fi).

## TIEA311 Tietokonegrafiikan perusteet - kevät 2019 ("Principles of Computer Graphics" - Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand: 6.837 Computer Graphics. Fall 2012. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/~nieminen/tgp19/

## TIEA311 - Additional material

We did not have time to view this on lectures.

The following slides are the MIT course coverage on rasterization and modern GPU rendering.

Our follow-up course "TIES471 Real time rendering" probably starts with this topic, but if you decide to take the course later, you may be interested in looking at the material gathered here.

## Graphics Pipeline \& Rasterization

Image removed due to copyright restrictions.

## How Do We Render Interactively?

- Use graphics hardware, via OpenGL or DirectX
- OpenGL is multi-platform, DirectX is MS only


OpenGL rendering
Our ray tracer
(c) Khronos Group. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Most global effects available in ray tracing will be sacrificed for speed, but some can be approximated


## Ray Casting vs. GPUs for Triangles

Ray Casting
For each pixel (ray)
For each triangle
Does ray hit triangle?
Keep closest hit


## Ray Casting vs. GPUs for Triangles

Ray Casting
For each pixel (ray)
For each triangle
Does ray hit triangle?
Keep closest hit

## GPU

For each triangle
For each pixel
Does triangle cover pixel?
Keep closest hit

Scene


Pixel raster
"Forward-Mapping" approach

Pixel raster


Scene primitives

## Ray Casting vs. GPUs for Triangles

Ray Casting
GPU
For each pixel (ray) $\longrightarrow$ For each triangle For each triangle $\longrightarrow$ For each pixel

Does ray hit triangle?
Keep closest hit

Does triangle cover pixel?
Keep closest hit

It's just a different order of the loops!

## GPUs do Rasterization

- The process of taking a triangle and figuring out which pixels it covers is called rasterization


## GPU

For each triangle
For each pixel
Does triangle cover pixel? Keep closest hit


## GPUs do Rasterization

- The process of taking a triangle and figuring out which pixels it covers is called rasterization
- We've seen acceleration structures for ray tracing; rasterization is not stupid either
- We're not actually going to test all pixels for each triangle


## GPU

For each triangle
For each pixel
Does triangle cover pixel? Keep closest hit
"Forward-Mapping" approach
Pixel raster


## Rasterization ("Scan Conversion")

- Given a triangle's vertices \& extra info for shading, figure out which pixels to "turn on" to render the primitive
- Compute illumination values to
glBegin (GL_TRIANGLES) glNormal3f(...) glVertex3f(...) glVertex3f(...) glVertex3f(...) glEnd () ; "fill in" the pixels within the primitive
- At each pixel, keep track of the closest primitive (z-buffer)
- Only overwrite if triangle being drawn is closer than the previous triangle in that pixel

(c) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


## What are the Main Differences?

Ray Casting GPU<br>For each pixel (ray) $\longrightarrow$ For each triangle For each triangle $\longrightarrow$ For each pixel<br>Does ray hit triangle?<br>Keep closest hit<br>Does triangle cover pixel<br>Keep closest hit

## Ray-centric

- What needs to be stored in memory in each case?


## What are the Main Differences?

```
Ray Casting GPU
For each pixel (ray) \(\longrightarrow\) For each triangle For each triangle \(\longrightarrow\) For each pixel
Does ray hit triangle? Does triangle cover pixel Keep closest hit
```


## Keep closest hit

## Ray-centric

## Triangle-centric

- In this basic form, ray tracing needs the entire scene description in memory at once
- Then, can sample the image completely freely
- The rasterizer only needs one triangle at a time, plus the entire image and associated depth information for all pixels


## Rasterization Advantages

- Modern scenes are more complicated than images
- A 1920x1080 frame at 64-bit color and 32-bit depth per pixel is 24 MB (not that much)
- Of course, if we have more than one sample per pixel this gets larger, but e.g. 4x supersampling is still a relatively comfortable ~100MB
- Our scenes are routinely larger than this
- This wasn't always true


## Rasterization Advantages



## Rasterization Advantages

- Modern scenes are more complicated than images
- A 1920x1080 frame (1080p) at 64-bit color and 32-bit depth per pixel is 24 MB (not that much)
- Of course, if we have more than one sample per pixel (later) this gets larger, but e.g. 4 x supersampling is still a relatively comfortable $\sim 100 \mathrm{MB}$
- Our scenes are routinely larger than this
- This wasn't always true
- A rasterization-based renderer can stream over the triangles, no need to keep entire dataset around
- Allows parallelism and optimization of memory systems


## Rasterization Limitations

- Restricted to scan-convertible primitives
- Pretty much: triangles
- Faceting, shading artifacts
- This is largely going away with programmable per-pixel shading, though
- No unified handling of shadows, reflection, transparency
- Potential problem of overdraw (high depth complexity)
- Each pixel touched many times
ray tracing

scan conversion gouraud shading


## Ray Casting / Tracing

- Advantages
- Generality: can render anything that can be intersected with a ray
- Easily allows recursion (shadows, reflections, etc.)
- Disadvantages
- Hard to implement in hardware (lacks computation coherence, must fit entire scene in memory, bad memory behavior)
- Not such a big point any more given general purpose GPUs
- Has traditionally been too slow for interactive applications
- Both of the above are changing rather rapidly right now!


## Modern Graphics Pipeline

- Input
- Geometric model
- Triangle vertices, vertex normals, texture coordinates
- Lighting/material model (shader)
- Light source positions, colors, intensities, etc.
© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is
- Texture maps, specular/diffuse coefficients, etc. excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
- Viewpoint + projection plane
- Output
- Color (+depth) per pixel with 40 Samples per Pixel removed due to copyright restrictions -- please see Fig. 20-1 from http://http. developer.nvidia.com/GPUGems3/gpugems3_ch20.html for further details.


## Modern Graphics Pipeline

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Test visibility (Z-buffer), update frame buffer color
- Compute per-pixel color


## Modern Graphics Pipeline

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- For each pixel, test 3 edge equations
- if all pass, draw pixel
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer color
(c) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
 excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



## Modern Graphics Pipeline

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer color
- Store minimum distance to camera for each pixel in "Z-buffer"
- $\sim$ same as $\mathrm{t}_{\text {min }}$ in ray casting!
- if newz < zbuffer $[x, y]$ zbuffer $[x, y]=$ new_z
framebuffer $[x, y]=$ new_color
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


## Modern Graphics Pipeline

For each triangle
transform into eye space (perform projection)
setup 3 edge equations
for each pixel $x, y$
if passes all edge equations
compute z
if $\mathrm{z}<\mathrm{zb}$ buffer[x,y]
zbuffer[x,y]=z
framebuffer[ $\mathrm{x}, \mathrm{y}]=$ shade()

## Questions?

(C) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(c) Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


## Projection

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer
(c) Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



## Orthographic vs. Perspective

- Orthographic

- Perspective



## Perspective in 2D



This image is in the public domain. Source: openclipart

## Perspective in 2D



## Perspective in 2D



This image is in the public domain. Source: openclipart

## Perspective in 2D



## Extension to 3D

- Trivial: Just ass another dimension $y$ and treat it like $x$
- Different fields of view and non-square image aspect ratios can be accomplished by simple scaling of the $x$ and $y$ axes.

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

## Caveat

- These projections matrices work perfectly in the sense that you get the proper 2D projections of 3D points.
- However, since we are flattening the scene onto the $z=1$ plane, we've lost all information about the distance to camera.
- We need the distance for Z buffering, i.e., figuring out what is in front of what!


## Basic Idea: store 1/z

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

## Basic Idea: store $1 / z$



- $z^{\prime}=1$ before homogenization
- $z^{\prime}=1 / z$ after homogenization


## Full Idea: Remap the View Frustum

- We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by $w^{\prime}$.



## The View Frustum in 2D

- We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by $w^{\prime}$.

$\rightarrow x^{\prime} / w^{\prime}$
The final image is obtained by merely dropping the z coordinate after projection (orthogonal projection)


## The View Frustum in 2D

- (In 3D this is a truncated pyramid.)



## The View Frustum in 2D

- Far and near are kind of arbitrary
- They bound the depth storage precision
$z=f a r$



## The Canonical View Volume



- Point of the exercise: This gives screen coordinates and depth values for Z-buffering with unified math
- Caveat: OpenGL and DirectX define $Z$ differently $[0,1]$ vs. $[-1,1]$


## OpenGL Form of the Projection



Homogeneous coordinates within canonical view volume

## OpenGL Form of the Projection

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{\text { fartnear }}{\text { far-near }} & -\frac{2 * \text { far*near }}{\text { far }- \text { near }} \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- $\mathrm{z}^{\prime}=(\mathrm{az}+\mathrm{b}) / \mathrm{z}=\mathrm{a}+\mathrm{b} / \mathrm{z}$
- where $\mathrm{a} \& \mathrm{~b}$ depend on near $\&$ far
- Similar enough to our basic idea:
$-\mathrm{z}=1 / \mathrm{z} \quad\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right)=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)$


## Recap: Projection

- Perform rotation/translation/other transforms to put viewpoint at origin and view direction along z axis
- This is the OpenGL "modelview" matrix
- Combine with projection matrix (perspective or orthographic)
- Homogenization achieves foreshortening
- This is the OpenGL "projection" matrix
- Corollary: The entire transform from object space to canonical view volume $[-1,1]^{3}$ is a single matrix


## Modern Graphics Pipeline

- Project vertices to 2D
(image)
- We now have screen coordinates
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer
(c) Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(C) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



## 2D Scan Conversion

- Primitives are "continuous" geometric objects; screen is discrete (pixels)



## 2D Scan Conversion

- Primitives are "continuous" geometric objects; screen is discrete (pixels)
- Rasterization computes a discrete approximation in terms of pixels (how?)



## Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- Lines map to lines, not curves



## Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines



## Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines


$$
E_{i}(x, y)=
$$

$$
a_{i} x+b_{i} y+c_{i}
$$

$(x, y)$ within triangle

$$
\begin{aligned}
E_{i}(x, y) & \geq 0, \\
\forall i & =1,2,3
\end{aligned}
$$

## Brute Force Rasterizer

- Compute $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ coefficients from projected vertices
- Called "triangle setup", yields $a_{i}, b_{\dot{i}}, c_{i}$ for $i=1,2,3$



## Brute Force Rasterizer

- Compute $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ coefficients from projected vertices
- For each pixel (x, y)
- Evaluate edge functions at pixel center
- If all non-negative, pixel is in!



## Problem?

## Brute Force Rasterizer

- Compute $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ coefficients from projected vertices
- For each pixel (x, y)
- Evaluate edge functions at pixel center
- If all non-negative, pyxel is in!


If the triangle is small, lots of useless computation if we really test all pixels

## Easy Optimization

- Improvement: Scan over only the pixels that overlap the screen bounding box of the triangle
- How do we get such a bounding box?
$-\mathrm{X}_{\text {min }}, \mathrm{X}_{\text {max }}, \mathrm{Y}_{\text {min }}, \mathrm{Y}_{\max }$ of the projected triangle vertices



## Rasterization Pseudocode

For every triangle
Compute projection for vertices, compute the $\mathrm{E}_{\mathrm{i}}$
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Evaluate edge functions Ei
If all > 0
Framebuffer $[x, y]=$ triangleColor

Bounding box clipping is easy, just clamp the coordinates to the screen rectangle

## Questions?

## Incremental Edge Functions

For every triangle

```
ComputeProjection
```

Compute bbox, clip bbox to screen limits
For all scanlines $y$ in bbox
Evaluate all $\mathrm{E}_{\mathrm{i}}{ }^{\prime} \mathbf{s}$ at $(\mathbf{x} 0, \mathrm{y}): \mathrm{E}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \mathbf{x} 0+\mathrm{b}_{\mathrm{i}} \mathbf{y}+\mathrm{c}_{\mathrm{i}}$
For all pixels $x$ in bbox
If all Ei>0
Framebuffer[x,y ] = triangleColor
Increment line equations: $\mathrm{E}_{\mathrm{i}}+=\mathrm{a}_{\mathrm{i}}$

- We save $\sim$ two multiplications and two additions per pixel when the triangle is large


## Indeed, We Can Be Smarter

- Hierarchical rasterization!
- Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)
- Usually two


Can also test if an entire block is inside the triangle; then, can skip edge functions tests for all pixels for even further speedups.(Must still test Z, because they might still be occluded.)

## Further References

- Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John Austin, Frederick Brooks, Jr., John Eyles and John Poulton, "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", Proceedings of SIGGRAPH '85 (San Francisco, CA, July 22-26, 1985). In Computer Graphics, v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.
- Juan Pineda, "A Parallel Algorithm for Polygon Rasterization", Proceedings of SIGGRAPH '88 (Atlanta, GA, August 1-5, 1988). In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH, New York, NY, 1988. Figure 7: Image from the spinning teapot performance test.
- Marc Olano Trey Greer, "Triangle Scan Conversion using 2D Homogeneous Coordinates", Graphics Hardware 97 http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf


## Oldschool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans


More annoying to implement than edge functions

Not faster unless triangles are huge

## What if the $p_{z}$ is $>$ eye $_{z}$ ?



## What if the $p_{z}$ is $<$ eye $_{z}$ ?



## What if the $p_{z}=$ eye $e_{z}$ ?

When $w^{\prime}=0$, point projects to infinity (homogenization is division by w')


## A Solution: Clipping

"clip" geometry to view frustum, discard "4.4... outside parts

## Clipping

- Eliminate portions of objects outside the viewing frustum
- View Frustum
- boundaries of the image plane projected in 3D
- a near \& far clipping plane
- User may define additional clipping planes



## Why Clip?

- Avoid degeneracies
- Don't draw stuff behind the eye
- Avoid division by 0 and overflow



## Related Idea

## Questions?

- "View Frustum Culling"
- Use bounding volumes/hierarchies to test whether any part of an object is within the view frustum
- Need "frustum vs. bounding volume" intersection test
- Crucial to do hierarchically when scene has lots of objects!
- Early rejection (different from clipping)

See e.g. Optimized view frustum culling algorithms for bounding boxes, Ulf Assarsson and Tomas Möller, journal of graphics tools, 2000.


## Homogeneous Rasterization

- Idea: avoid projection (and division by zero) by performing rasterization in 3D
- Or equivalently, use 2D homogenous coordinates ( $w^{\prime}=z$ after the projection matrix, remember)
- Motivation: clipping is annoying
- Marc Olano, Trey Greer: Triangle scan conversion using 2D homogeneous coordinates, Proc. ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware 1997


## Homogeneous Rasterization

- Replace 2D edge equation by 3D plane equation
- Treat pixels as 3D points $(x, y, 1)$ on image plane, test for containment in 3 halfspaces just like edge functions



## Homogeneous Rasterization

Given 3D triangle
setup plane equations
(plane through viewpoint \& triangle edge)
For each pixel $x, y$
compute plane equations for ( $\mathrm{x}, \mathrm{y}, 1$ )
if all pass, draw pixel
plane equation


## Homogeneous Rasterization

- Works for triangles behind eye
- Still linear, can evaluate incrementally/hierarchically like 2D


## Modern Graphics Pipeline

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer
(c) Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



## Pixel Shaders

- Modern graphics hardware enables the execution of rather complex programs to compute the color of every single pixel
- More later



## Modern Graphics Pipeline

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(c) Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



## Visibility

- How do we know which parts are visible/in front?



## Ray Casting

- Maintain intersection with closest object



## Visibility

- In ray casting, use intersection with closest $t$
- Now we have swapped the loops (pixel, object)
- What do we do?



## Z buffer

- In addition to frame buffer (R, G, B)
- Store distance to camera (z-buffer)
- Pixel is updated only if newz is closer than $z$-buffer value



## Z-buffer pseudo code

For every triangle
Compute Projection, color at vertices
Setup line equations
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Increment line equations
Compute curentZ
Compute currentColor
If all line equations>0 //pixel [x,y] in triangle If currentZ<zBuffer [ $\mathrm{x}, \mathrm{y}$ ] //pixel is visible Framebuffer[x,y]=currentColor zBuffer[ $\mathrm{x}, \mathrm{y}$ ]=currentZ

## Works for hard cases!



## More questions for next time

- How do we get Z?
- Texture Mapping?
image


