TIEA311

Tietokonegrafiikan perusteet
kevat 2019

(“Principles of Computer Graphics” — Spring 2019)
Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic "fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet — kevat 2019
(“Principles of Computer Graphics” — Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand: 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyvaskyla:
http://users.jyu.fi/~nieminen/tgpl9/

TIEA311 - Additional material

We did not have time to view this on lectures.

The following slides are the MIT course coverage on
rasterization and modern GPU rendering.

Our follow-up course “TIES471 Real time rendering” probably
starts with this topic, but if you decide to take the course later,
you may be interested in looking at the material gathered here.

Graphics Pipeline & Rasterization

Image removed due to copyright restrictions.

MIT EECS 6.837 — Matusik

How Do We Render Interactively?

» Use graphics hardware, via OpenGL or DirectX

— OpenGL is multi-platform, DirectX is MS only

OpenGL -rendering Our ray tracer

© Khronos Group. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

* Most global effects available in ray tracing will be
sacrificed for speed, but some can be approximated

Ray Casting vs. GPUs for Triangles

Ray Casting
For each pixel (ray)
For each triangle

Does ray hit triangle?
Keep closest hit

Scene

"Inverse-Mapping" approach , p_Primitives
[T [[] E
|
AREEE

Pixel raster

Ray Casting vs. GPUs for Triangles

Ray Casting GPU
For each pixel (ray) For each triangle

For each triangle

For each pixel

Does ray hit triangle? Does triangle cover pixel?

Keep closest hit Keep closest hit

Scene
"Inverse-Mapping" approach primitives "Forward-Mapping" approach

T Pixel raster
| I

*. b |

A/ B8

primitives

Pixel raster

Ray Casting vs. GPUs for Triangles

Ray Casting GPU
For each pixel (rayzxior each triangle
For each triangle For each pixel
Does ray hit triangle? Does triangle cover pixel?
Keep closest hit Keep closest hit

It’s just a different order of the loops!

GPUs do Rasterization

: GPU
* The process of takinga |~ triangle

triangle and figuring out| ror ecach pixel
which piXClS it covers is Does triangle cover pixel?
called rasterization Keep closest hit

"Forward-Mapping" approach

Pixel raster

primitives

GPUs do Rasterization

: GPU
* The process of takinga |~ triangle

triangle and figuring out| ror ecach pixel
which piXClS it covers is Does triangle cover pixel?
called rasterization Keep closest hit

« We’ve seen acceleration
structures for ray
tracing; rasterization is
not stupid either

— We’re not actually going
to test all pixels for each | HH |
triangle a&

"Forward-Mapping" approach

Pixel raster

primitives

Rasterization (“Scan Conversion”)

. . , .
 (Given a triangle’s vertices & glBegin (GL_TRIANGLES)
extra info for shading, figure glNormal3f(...)
out which pixels to "turn on" glvertex3f(...)
. glVertex3f(...)
to render the primitive glvVertex3f(...)
. . . 1End() ;
« Compute illumination values to 0
Hﬁll in" the plXClS Wlthin the _*',\I\" +:_+ +—_1;,_4=—,_IE{ C'- +|F+- |+ [+[#]+]F
. .. bl o il] [R R clagm]
primitive AT
« At each pixel, keep track of [FFrREEEEGREE ST
. .« . + |+ [+ +\ |+ +]+
the closest primitive (z-buffer) [+ JARE R L T T
— Only overwrite if triangle being [-[2]-]* R e
drawn is closer than the previous [=[-[-[-[+[-}l+[-]- |+ [-[-]+ :“f‘“‘:lgi_%
E

triangle in that pixel

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

9

What are the Main Differences?

Ray Casting GPU

For each pixel (ray)

-><F;or each triangle
For each triangle

For each pixel
Does ray hit triangle?

Keep closest hit

Does triangle cover pixel
Keep closest hit

Ray-centric Triangle-centric

» What needs to be stored in memory in each case?

What are the Main Differences?

Ray Casting GPU
For each pixel (ray) For each triangle
For each triangle-><-) For each pixel
Does ray hit triangle? Does triangle cover pixel
Keep closest hit Keep closest hit
Ray-centric Triangle-centric

* In this basic form, ray tracing needs the entire scene
description in memory at once

— Then, can sample the image completely freely

 The rasterizer only needs one triangle at a time, plus

the entire image and associated depth information for
all pixels

1

Rasterization Advantages

* Modern scenes are more complicated than images
— A 1920x1080 frame at 64-bit color and 32-bit depth per
pixel is 24MB (not that much)

* Of course, if we have more than one sample per pixel this gets
larger, but e.g. 4x supersampling is still a relatively comfortable
~100MB

— Our scenes are routinely larger than this
* This wasn’t always true

Rasterization Advantages veier aneron 1977

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Rasterization Advantages

* Modern scenes are more complicated than images

— A 1920x1080 frame (1080p) at 64-bit color and 32-bit
depth per pixel is 24MB (not that much)

* Of course, if we have more than one sample per pixel (later) this
gets larger, but e.g. 4x supersampling is still a relatively
comfortable ~100MB

— Our scenes are routinely larger than this
* This wasn’t always true

* A rasterization-based renderer can stream over the
triangles, no need to keep entire dataset around
— Allows parallelism and optimization of memory systems

Rasterization Limitations

» Restricted to scan-convertible primitives
— Pretty much: triangles
 Faceting, shading artifacts
— This is largely going away
with programmable per-pixel
shading, though

 No unified handling of
shadows, reflection,

ray tracing

transparency
 Potential problem of
overdraw (high depth
complexity) scan conversionff scan conversion
— Each pixel touched flat shading gouraud shading

1 © Khronos Group. All rights reserved. This content is excluded from our Creative
maIly tll’neS Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Ray Casting / Tracing

» Advantages

— Generality: can render anything
that can be intersected with a ray

— Easily allows recursion (shadows, reflections, etc.)

» Disadvantages

— Hard to implement in hardware (lacks computation
coherence, must fit entire scene in memory, bad memory
behavior)

» Not such a big point any more given general purpose GPUs
— Has traditionally been too slow for interactive applications

— Both of the above are changing rather rapidly right now!

Modern Graphics Pipeline

e Input
— Geometric model

 Triangle vertices, vertex normals, texture coordinates

— Lighting/material model (shader)

* Light source positions, colors, intensities, €tC. ¢ oscar Meruvia-pastor, baniel Rypl

All rights reserved. This content is

* Texture maps, specular/diffuse coefficients, etc. ggudeqrom our Creative Commons

— Viewpoint + projection plane

e Output
— Color (+depth) per pixel

Colbert & Krivanek

http://ocw.mit.edu/help/fag-fair-use/.

Image of Real-Time Rendering of the Stanford Bunny
with 40 Samples per Pixel removed due to copyright
restrictions -- please see Fig. 20-1 from http://http.
developer.nvidia.com/GPUGems3/gpugems3_ch20.html
for further details.

Modern Graphics Pipeline

 Project vertices to 2D
(image)

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

 Rasterize triangle: find
which pixels should be lit

 Test visibility (Z-buffer),
update frame buffer color

» Compute per-pixel color

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/. 19

Modern Graphics Pipeline

* Project vertices to 2D °

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more

(lmage) information, see http://ocw.mit.edu/help/fag-fair-use/.

s

 Rasterize triangle: find S
which pixels should be lit ®].(

— For each pixel, S e 1T
test 3 edge equations &

« if all pass, draw pixel

L/

» Compute per-pixel color
 Test visibility (Z-buffer), e o Creniwe Comon ek For e
information, see http://ocw.mit.edu/help/faq-fair-use/.

update frame buffer color

20

Modern Graphics Pipeline - w%

i)

© source unknown. All rights reserved. This content is

Perform projection of vertices
excluded from our Creative Commons license. For more

Rasterlze trlangle: ﬁnd Wthh information, see http://ocw.mit.edu/help/faq-fair-use/.
pixels should be lit

Compute per-pixel color
Test visibility, Y
update frame buffer color
— Store minimum distance to camera g e s s rened e onen s
for each pixel in “Z-buffer”

information, see http://ocw.mit.edu/help/faq-fair-use/.
* ~same as t,;, in ray casting! g
— if newz < zbuffer|x,y]

zbuffer[x,y]=new z
framebuffer[x,y]=new color frame buffer Z buffer

21

Modern Graphics Pipeline " =

For each triangle f
transform into eye space :

© slmérc; funkncwn. All rxights reservedl. This content is
excluded from our Creative Commons license. For more
(perform p rojection) information, see http://ocw.mit.edu/help/faq-fair-use/.
setup 3 edge equations
for each pixel x,y

if passes all edge equations
compute z
if z<zbuffer[x,y]
zbuffer[x,y]=z

framebuffer[x,y]=shade()

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

A

Questions?

Projection

Project vertices to 2D
(image)

Rasterize triangle: find
which pixels should be lit

Compute per-pixel color

Test visibility (Z-buffer),
update frame buffer

VERT -

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Orthographic vs. Perspective

 Orthographic

* Perspective

'/\ projection plane

“cop

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

26

Perspective in 2D

'p'=x/z,1)
&

%
%

(0,0)

This image is in the public domain. Source: openclipart

27

Perspective in 2D

The projected point in
homogeneous / 1
coordinates
X=-7 (we just added w=1):

® p=(x,z)

N
W

______ .‘p’=txfz,1l 7=1

z "
‘ X : z=0
(0,0)

This image is in the public domain. Source: openclipart

28

Perspective in 2D

x/z x
p=11 | x|z
1 z

® p=(x2)
" Projectively
equivalent
v __.p’={xfz,1) 2—1)

|

(0,0)

This image is in the public domain. Source: openclipart

29

Perspective in 2D

We’'ll just copy z to w, and

get the projected point T
. after homogenization! p’ x| z]| =
A . z
X=-Z

'p'=x/z,1)
>

o o =

%
%

0,0)

This image is in the public domain. Source: openclipart

30

Extension to 3D

 Trivial: Just ass another dimension y and treat it like x

* Different fields of view and non-square image aspect
ratios can be accomplished by simple scaling of the x
and y axes.

x 0 0 O x
v [0@o o]y
21 [0 0 1 0 z
w’ 0 01 0 1

31

Caveat

» These projections matrices work perfectly in the
sense that you get the proper 2D projections of 3D
points.

» However, since we are flattening the scene onto the
z=1 plane, we’ve lost all information about the
distance to camera.

— We need the distance for Z buffering, i.e., figuring out
what is in front of what!

32

Basic Idea: store 1/z

x’ 1 0 0 O x
1 10 1 0 0] |y
Z1 [0 0 0 1 z
w’ 0O 01 0 1

33

Basic Idea: store 1/z

x! 1 0 0 O T
1 10 1 0 0] |y
Z 1 10 0 0 1 z
w’ 0 0 1 0 1
x! x
Y’ Y
21 11
w’ 2z

« z” =1 before homogenization

» z’=1/z after homogenization

34

Full Idea: Remap the View Frustum

* We can transform the frustum by a modified
projection in a way that makes it a square (cube in
3D) after division by w’.

view frustum
(visible part of the scene)

z
X
viewpoint X/’

35

The View Frustum in 2D

* We can transform the frustum by a modified
projection in a way that makes it a square (cube in
3D) after division by w’.

u@ EMEI

The final image is obtained by merely
dropping the z coordinate after

projection (orthogonal projection)
36

The View Frustum in 2D

* (In 3D this is a truncated pyramid.)

A

37

The View Frustum in 2D

 Far and near are kind of arbitrary

« They bound the depth storage precision

z=far

38

The Canonical View Volume

z=1

X =-1 x=1

 Point of the exercise: This gives screen coordinates
and depth values for Z-buffering with unified math
— Caveat: OpenGL and DirectX define Z differently [0,1] vs.[-1,1]

39

OpenGL Form of the Projection

x 1 0 0 0 T
v (o1 o0 0 y
Z’ - 0 0 far+near __ 2xfarknear >
) far—near far—near
w 0 0 1 0 1
Homogeneous coordinates Input point in view

within canonical view volume coordinates

40

OpenGL Form of the Projection

0 0

€T 1 0 €T
y | [0 1 0 0 y
2 T o 0 e s ||
w' 0 0 1 0 1

» 7’=(aztb)/z =at+b/z
— where a & b depend on near & far

 Similar enough to our basic idea:

—-z=1/z x! 1 0 0
v | |0 0
Z1 |0 1
w' 0 0

— o OO
S SRS

|

o o =

41

Recap: Projection Questions?

» Perform rotation/translation/other transforms to put
viewpoint at origin and view direction along z axis
— This is the OpenGL “modelview’ matrix

» Combine with projection matrix (perspective or
orthographic)
— Homogenization achieves foreshortening
— This is the OpenGL “projection” matrix

» Corollary: The entire transform from object space to
canonical view volume [-1,1]3 is a single matrix

44

Modern Graphics Pipeline

* Project vertices to 2D

] © known. Al right d. This content i
(1mage) excluded from our Creative Commons ficense. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

— We now have screen
coordinates

 Rasterize triangle: find
which pixels should be lit

» Compute per-pixel color

© Khronos Group. All rights reserved. This content is excluded

* Test visibility (Z-buffer), e o e o e o
update frame buffer

2D Scan Conversion

* Primitives are “continuous” geometric objects;
screen is discrete (pixels)

46

2D Scan Conversion

* Primitives are “continuous” geometric objects;
screen is discrete (pixels)

 Rasterization computes a discrete approximation in
terms of pixels (how?)

47

Edge Functions

« The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)

— Lines map to lines, not curves

48

Edge Functions

« The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)

 The interior of the triangle is the set of points that is
inside all three halfspaces defined by these lines

49

Edge Functions

« The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)

 The interior of the triangle is the set of points that is
inside all three halfspaces defined by these lines

Ei(x,y) =
a;x + by + ¢

(x,y) within triangle

~
Ei(ma y) 2 Ua

Vi=1,2,3

Brute Force Rasterizer

* Compute E, E,, E; coefficients from projected
vertices
— Called “triangle setup”, yields a, b, c, for i=1,2,3

51

Brute Force Rasterizer

* Compute E, E,, E; coefficients from projected
vertices

 For each pixel (x, y)
— Evaluate edge functions at pixel center

— If all non-negative, pixel is in!

Problem?

52

Brute Force Rasterizer

* Compute E, E,, E; coefficients from projected
vertices

 For each pixel (x, y)
— Evaluate edge functions at pixel center

— If all non-negative, ppxel is in!

If the triangle is
small, lots of useless
computation if we
really test all pixels

53

Easy Optimization

» Improvement: Scan over only the pixels that overlap
the screen bounding box of the triangle
» How do we get such a bounding box?
— Xinine Xinaxe Ymine Y max Of the projected triangle vertices

min> max? min>

54

Note: No

Rasterization Pseudocode visibility

For every triangle
Compute projection for vertices, compute the E:
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Evaluate edge functions E;:
If all > 0

Framebpffer[x,y] = triangleColor

Bounding box clipping is easy,
just clamp the coordinates to
the screen rectangle

Questions?

56

Incremental Edge Functions

For every triangle
ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
Evaluate all Ei’s at (x0,y): Ei = aix0 + biy + ci
For all pixels x in bbox
If all Ei>0
Framebuffer([x,y] = triangleColor
Increment line equations: Ei += ai

» We save ~two multiplications and
two additions per pixel when the
triangle is large

60

Indeed, We Can Be Smarter

» Hierarchical rasterization!

— Conservatively test blocks of pixels before
going to per-pixel level (can skip large blocks at once)

— Usually two\evels

S— Can also test if an entire
: block is inside the

triangle; then, can skip
edge functions tests for
¥ LI\ all pixels for even further

e LN speedups.(Must still test
Z, because they might
still be occluded.)

+ |+
|~ —
+ [+ | +
+

65

Further References

* Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John
Austin, Frederick Brooks, Jr., John Eyles and John Poulton, “Fast
Spheres, Shadows, Textures, Transparencies, and Image
Enhancements in Pixel-Planes”, Proceedings of SIGGRAPH 85
(San Francisco, CA, July 22-26, 1985). In Computer Graphics,
v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.

* Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”,
Proceedings of SIGGRAPH ‘88 (Atlanta, GA, August 1-5, 1988).
In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH,
New York, NY, 1988. Figure 7: Image from the spinning teapot
performance test.

* Marc Olano Trey Greer, “Triangle Scan Conversion using 2D
Homogeneous Coordinates”, Graphics Hardware 97
http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

66

Oldschool Rasterization

» Compute the boundary pixels using line rasterization

« Fill the spans

+++++++++++

O R I I I I

+
E S I R R I I (A I IR (A PP IS

+ |+ |+]+

+ |+ |+ |+

More annoying to
implement than edge
functions

Not faster unless
triangles are huge

69

What if the p_is > eye_ ?

71

What if the p_is < epe ?

image plane

72

What if the p_ = eye_ ?

When w’ = 0, point projects to infinity
(homogenization is division by w’)

image plane

z axis =

73

A Solution: Clipping

"clip" geometry to
view frustum, discard
e, outside parts

Ya,
vy
....
vy
a

(e, D8y

Z=near

.
.
\J
L
.
.
.
.
\J
.
.
.
.
.
.
.

74

Clipping

» Eliminate portions of objects
outside the viewing frustum

* View Frustum

— boundaries of the image

plane projected in 3D left

— anear & far
clipping plane
» User may define
additional clipping

planes
iy

bottom

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.

75

Why Clip?

* Avoid degeneracies

— Don’t draw stuff
behind the eye

— Avoid division
by 0 and overflow

1
|
image plane:
1

z=far

76

Related Idea Questions?

» “View Frustum Culling”

— Use bounding volumes/hierarchies to test whether any
part of an object is within the view frustum
* Need “frustum vs. bounding volume” intersection test
* Crucial to do hierarchically when scene has /ots of objects!
* Early rejection (different from clipping)

See e.g. Optimized view
frustum culling
algorithms for bounding
boxes, UIf Assarsson
and Tomas Mdller,
journal of graphics
tools, 2000.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 78

Homogeneous Rasterization

* Idea: avoid projection (and division by zero) by
performing rasterization in 3D

— Or equivalently, use 2D homogenous coordinates
(w’=z after the projection matrix, remember)

* Motivation: clipping is annoying

* Marc Olano, Trey Greer: Triangle scan conversion
using 2D homogeneous coordinates, Proc. ACM
SIGGRAPH/Eurographics Workshop on Graphics
Hardware 1997

79

Homogeneous Rasterization

» Replace 2D edge equation by 3D plane equation

— Treat pixels as 3D points (x, y, 1) on image plane, test for
containment in 3 halfspaces just like edge functions

/

—4

2D rasterizatiN

—

3D (homogenous)

rasterization

s

82

Homogeneous Rasterization

Given 3D triangle
setup plane equations
(plane through viewpoint & triangle edge)
For each pixel x,y
compute plane equations for (x,y,1)
if all pass, draw pixel

plane equation

2D pixel 3D triangle

x¥1)

~ 1

plane equation

83

Homogeneous Rasterization

» Works for triangles behind eye
« Still linear, can evaluate incrementally/hierarchically

like 2 _ \

2D pixel

.y, 1)
®

3D triangle

84

Modern Graphics Pipeline

Perform projection of
vertices

Rasterize triangle: find
which pixels should be lit

Compute per-pixel color

Test visibility, update frame
buffer

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Pixel Shaders

* Modern graphics hardware enables the execution of
rather complex programs to compute the color of eve
single pixel

* More later

Translucence

Backlgﬂing
- .

Procedural texture,
Anisotropic brdf

iridescence

© NVIDIA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 88

Modern Graphics Pipeline

 Perform projection of ,
Vertices © source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

 Rasterize triangle: find
which pixels should be lit

» Compute per-pixel color

e Test VISIblllty update frame © Khronos Group. Al rights reserved. This content is
> excluded from our Creative Commons license. For more
b ff information, see http://ocw.mit.edu/help/faq-fair-use/.
UuIIrer

Visibility

* How do we know which parts are visible/in front?

90

Ray Casting

« Maintain intersection with closest object

IXXXXXXXXX

YYXXXXXXXIXX

91

Visibility

* In ray casting, use intersection with closest ¢
» Now we have swapped the loops (pixel, object)
* What do we do?

92

Z buffer

* In addition to frame buffer (R, G, B)
 Store distance to camera (z-buffer)

* Pixel is updated only if newz is closer

than z-buffer value

=

93

Z-buffer pseudo code

For every triangle
Compute Projection, color at vertices
Setup line equations
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Increment line equations
Compute curentZ
Compute currentColor
If all line equations>0 /pixel [x,y] in triangle
If currentZ<zBuffer[x,y] /pixelis visible
Framebuffer[x,y]=currentColor

zBuffer[x,y]=currentZ

94

Works for hard cases!

&
U

More questions for next time

* How do we get Z?
» Texture Mapping?

z0

z1

96

