
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).



TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
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TIEA311 - Today in Jyväskylä

Last lecture plan:

I Shading, texture mapping: Cover the principles up to
Phong model and texture coordinates.

I Cherry-pick title slides from advanced stuff that we mostly
defer to the follow-up course (starts next week) and/or
future self-study.

I When learning, don’t think about deadlines. Think about
learning!

I My deadlines are flexible, since this course is about
graphics and programming and not about meeting
time-to-market. Leave that to project courses and
traineeship periods!



1 MIT EECS 6.837 – Matusik  

Shading & Material Appearance  
 
 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Input for realistic rendering 
– Geometry, Lighting and Materials 

• Material appearance 
– Intensity and shape of highlights 
– Glossiness 
– Color 
– Spatial variation, i.e., texture (next Tuesday) 

2 

Lighting and Material Appearance 

Slide Addy Ngan © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• We will not be too formal in this class 
• Issues we will not really care about 

– Directional quantities vs. integrated over all directions 
– Differential terms: per solid angle, per area 
– Power? Intensity? Flux? 

 
• Color 

– All math here is for a single wavelength only; we will 
perform computations for R, G, B separately 

• Do not panic, that just means 
we will perform every operation three times, that is all 
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Unit Issues - Radiometry 



• Today, we only consider point light sources 
– Thus we do not need to care about solid angles 

• For multiple light sources, use linearity 
– We can add the solutions for two light sources 

• I(a+b) = I(a) + I(b) 

– We simply multiply the solution when we scale the light 
intensity 

• I(s a) = s I(a) 
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Light Sources 

a b 

Yet again, linearity 
is our friend! 



• 1/r2 fall-off for isotropic point lights 
– Why? An isotropic point light 

outputs constant power per solid 
angle (“into all directions”) 

– Must have same power in all 
concentric spheres 

• Sphere’s surface area grows with r2 => energy obeys 1/r2 

• … but in graphics we often cheat with or ignore this.  
– Why? Ideal point lights are kind of harsh 

• Intensity goes to infinity when you get close – not great! 

– In particular, 1/(ar2+br+c) is popular 
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Intensity as Function of Distance 

r1 

r2 



• The amount of light energy received by a surface 
depends on incoming angle 
– Bigger at normal incidence, even if distance is const. 

• Similar to winter/summer difference 

• How exactly? 
– Cos θ law 
– Dot product with normal 
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Incoming Irradiance 

Surface 

θ 

n 



• Let’s combine this with the 1/r2 fall-off: 
 
 
– Iin is the irradiance (“intensity”) at 

surface point x 

– Ilight is the “intensity” of the light 
– θ is the angle between light direction l 

and surface normal n 
– r is the distance between light and x. 
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Incoming Irradiance for Pointlights 

Surface 

θ 

n 

x 

l 



• “Pointlights that are infinitely far” 
– No falloff, just one direction and one intensity 

 
 
– Iin is the irradiance at surface point x 

from the directional light 
– Ilight is the “intensity” of the light 
– θ is the angle between light direction l 

and surface normal n 

• Only depends on n, not x! 
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Directional Lights 
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• Pointlights with non-uniform directional emission 
• Usually symmetric about a central 

direction d, with angular falloff 
– Often two angles 

• “Hotspot” angle: 
No attenuation within the central cone  

• “Falloff” angle: Light attenuates 
from full intensity to zero intensity 
between the hotspot and falloff 
angles 
 

• Plus your favorite distance 
falloff curve 
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Spotlights 

d 
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Spotlight Geometry 

Adapted from 
POVRAY documentation 

hotspot angle 

(direction d) 
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Questions? 
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Quantifying Reflection – BRDF 
• Bidirectional Reflectance 

Distribution Function 
• Ratio of light coming from one 

direction that gets reflected in 
another direction 
– Pure reflection, assumes no 

light scatters into the 
material 
 

• Focuses on angular aspects, not 
spatial variation of the material 

• How many dimensions? 

Incoming  
direction 

Outgoing  
direction 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.
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BRDF fr 
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BRDF fr 
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BRDF fr 
• Relates incident irradiance from 

every direction to outgoing light. 
How? 

l = light direction 

(incoming) 

v = view direction 

(outgoing)  
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BRDF fr 
• Relates incident irradiance from 

every direction to outgoing light. 
How? 
 
 

• Let’s combine with what 
we know already of pointlights: 

l = light direction 

(incoming) 

v = view direction 

(outgoing)  
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2D Slice at Constant Incidence 

Example: Plot of “PVC” BRDF at 55° incidence 

highlight incoming 

incoming 

• For a fixed incoming direction, 
view dependence is a 2D 
spherical function 
– Here a moderate specular 

component 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.



• When keeping l and v fixed, if rotation of surface 
around the normal does not change the reflection, the 
material is called isotropic 

• Surfaces with strongly oriented microgeometry 
elements are anisotropic 

• Examples:  
– brushed metals, 
– hair, fur, cloth, velvet 
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Isotropic vs. Anisotropic 

Westin et.al 92 



• One possibility: Gonioreflectometer 
– 4 degrees of freedom 
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How do we obtain BRDFs? 

Source: Greg Ward 
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Another possibility: Take pictures of spheres coated 
with material, rotate light around a 1D arc 
– This gives 3DOF => isotropic materials only 
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How Do We Obtain BRDFs? 

M
at

us
ik

 e
t a

l. 



• BRDFs can be measured from real data 
– But tabulated 4D data is too cumbersome for most uses 

• Therefore, parametric BRDF models represent the 
relationship between incident and outgoing light by 
some mathematical formula 
– The appearance can then be tuned by setting parameters 

• “Shininess”, “anisotropy”, etc. 

– Physically-based or Phenomenological 
– They can model with measured data (examples later) 

• Popular models: Diffuse, Blinn-Phong, Cook-
Torrance, Lafortune, Ward, Oren-Nayar, etc. 
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Parametric BRDFs 
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Questions? 



• Assume surface reflects equally in all directions. 
• An ideal diffuse surface is, at the microscopic level, a 

very rough surface. 
– Example: chalk, clay, some paints 

25 

Ideal Diffuse Reflectance 

Surface 



• Ideal diffuse reflectors reflect light according to 
Lambert’s cosine law 
– The reflected light varies with cosine even if distance to 

light source is kept constant 
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Ideal Diffuse Reflectance 



• Ideal diffuse reflectors reflect light according to 
Lambert’s cosine law 
– The reflected light varies with cosine even if distance to 

light source is kept constant 
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Ideal Diffuse Reflectance 

Remembering that incident irradiance depends on cosine, 

what is the BRDF of an ideally diffuse surface? 



• The ideal diffuse BRDF is a constant fr(l, v) = const. 
– What constant ρ/π, where ρ is the albedo 

• Coefficient between 0 and 1 that says what fraction is reflected 

– Usually just called “diffuse color” kd 

– You have already implemented this by taking dot products 
with the normal and multiplying by the “color”!  

28 

Ideal Diffuse Reflectance 



• This is the simplest possible parametric BRDF 
– One parameter: kd 

• (One for each RGB channel) 
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Ideal Diffuse Reflectance 



• Single Point Light Source 
– kd: diffuse coefficient (color) 
– n: Surface normal. 
– l: Light direction. 
– Li: Light intensity  
– r: Distance to source 
– Lo: Shaded color 
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Ideal Diffuse Reflectance Math 

Surface 

θ 
l 

n 
r 

light source 



• Single Point Light Source 
– kd: diffuse coefficient (color) 
– n: Surface normal. 
– l: Light direction. 
– Li: Light intensity  
– r: Distance to source 
– Lo: Shaded color 
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Ideal Diffuse Reflectance Math 

Surface 

  
l 

n 
r We do not want light from below the 

surface! From now on we always 
assume (on this lecture) that dot 

products are clamped to zero and 
skip writing out the max(). 

Do not forget 
to normalize 
your n and l! 

light source 



• Reflection is only at mirror angle 
• View dependent 

– Microscopic surface elements are usually oriented in the 
same direction as the surface itself. 

– Examples: mirrors, highly polished metals. 
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Ideal Specular Reflectance 

Surface 

θ 
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θ 

light source 



• Reflection angle = light angle 
– Both R & L have to lie on one plane  

• R = – L + 2 (L · N) N 
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Recap: How to Get Mirror Direction 

R L 

θ L θ R 

N 

L N N 

L N N 

-L 

light source 



• Light only reflects to the mirror direction 
• A Dirac delta multiplied by a specular coefficient ks 

 
• Not very useful for point lights, only for reflections 

of other surfaces 
– Why? You cannot really see a mirror reflection of an 

infinitely small light! 
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Ideal Specular BRDF 



• Real glossy materials usually deviate significantly 
from ideal mirror reflectors 
– Highlight is blurry 

• They are not ideal diffuse surfaces either … 

36 

Non-ideal Reflectors 



• Simple Empirical Reasoning for Glossy Materials 
– We expect most of the reflected light to travel in the 

direction of the ideal mirror ray. 
– However, because of microscopic surface variations we 

might expect some of the light to be reflected just slightly 
offset from the ideal reflected ray.  

– As we move farther and farther, in the angular sense, from 
the reflected ray, we expect to see less light reflected.  

37 

Non-ideal Reflectors 



• How much light is reflected? 

– Depends on the angle  between the ideal reflection 
direction r and the viewer direction v. 
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The Phong Specular Model 

Surface 

θ θ 
Camera  

r n 

l 

v 

light source 



 
 

• Parameters 
– ks: specular reflection coefficient 
– q : specular reflection exponent 
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The Phong Specular Model 

Surface 

θ θ 
Camera  

r n 

l 

v 

light source 



• Effect of q – the specular reflection exponent 

40 

The Phong Model 



• The specular reflection distribution 
is usually called a “lobe” 
– For Phong, its shape is  

41 

Terminology: Specular Lobe 

Surface 

light source 



• Sum of three components: 
      ideal diffuse reflection + 
      specular reflection + 
      “ambient”. 

42 

The Complete Phong Model 

Surface 

light source 



• Represents the reflection of all indirect illumination. 
• This is a total hack! 
• Avoids the complexity of 

indirect (“global”) illumination 

43 

Ambient Illumination 



• Phong Illumination Model 

44 

Putting It All Together 

© Leonard McMillan. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Phong Illumination Model 
 
 
 

• Is it physically based? 
– No, does not even conserve energy, 

may well reflect more energy than what goes in 
– Furthermore, it does not even conform to the BRDF model 

directly (we are taking the proper cosine for diffuse, but 
not for specular) 

– And ambient was a total hack 
45 

Putting It All Together 
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Phong Examples 

• The spheres illustrate 
specular reflections as 
the direction of the 
light source and the 
exponent q (amount of 
shininess) is varied. 



• Increasing specularity near grazing angles. 
– Most BRDF models account for this. 
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Fresnel Reflection 

Source: Lafortune et al. 97 
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



48 

Questions? 



• Uses the “halfway vector” h between l and v. 
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Blinn-Torrance Variation of Phong 

Surface 

l 

n 

Camera 

v 

h 

 

Light source 
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Lobe Comparison 

Half vector lobe Mirror lobe 

• Half vector lobe 
– Gradually narrower when approaching grazing 

• Mirror lobe 
– Always circular 
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Half Vector Lobe is Better 

• More consistent with what is observed in 
measurements (Ngan, Matusik, Durand 
2005) 

Example: Plot of “PVC” BRDF at 55° incidence 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.
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Questions? 



• Example 
– Think of water surface as lots of tiny mirrors (microfacets) 
– “Bright” pixels are 

• Microfacets aligned with the vector between sun and eye 
• But not the ones in shadow 
• And not the ones that are occluded 

53 

Microfacet Theory 

Image of sunset removed due to copyright restrictions. 



• Model surface by tiny mirrors 
[Torrance & Sparrow 1967] 
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Microfacet Theory 



• Value of BRDF at (L,V) is a product of 
– number of mirrors oriented halfway between L and V 
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Microfacet Theory 



• Value of BRDF at (L,V) is a product of 
– number of mirrors oriented halfway between L and V 
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Microfacet Theory 



• Value of BRDF at (L,V) is a product of 
– number of mirrors oriented halfway between L and V 
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Microfacet Theory 



• Value of BRDF at (L,V) is a product of 
– number of mirrors oriented halfway between L and V 
– ratio of the un(shadowed/masked) mirrors 
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Microfacet Theory 



59 

Microfacet Theory 

• Value of BRDF at (L,V) is a product of 
– number of mirrors oriented halfway between L and V 
– ratio of the un(shadowed/masked) mirrors 
– Fresnel coefficient 



• Some facets are hidden from viewpoint 
• Some are hidden from the light 
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Shadowing and Masking 

hidden from viewpoint hidden from viewpoint 



• Develop BRDF models by imposing simplifications 
[Torrance-Sparrow 67], [Blinn 77], [Cook-Torrance 
81], [Ashikhmin et al. 2000] 
 

• Model the distribution p(H) of 
microfacet normals 
– Also, statistical models 

for shadows and masking 

61 

Microfacet Theory-based Models 

spherical plot of a 
Gaussian-like p(H) 



• ρs is the specular coefficient (3 numbers RGB) 
• D is the microfacet distribution  

– δ is the angle between the half vector H and the normal N 
– m defines the roughness (width of lobe) 

• G is the shadowing and masking term 
• Need to add a diffuse term 

62 

Full Cook-Torrance Lobe 



• “Designer BRDFs” by Ashikhmin et al. 

63 

Questions? 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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BRDF Examples from Ngan et al. 
Acquired data 

Material – Dark blue paint 

Lighting 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.
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Dark Blue Paint 
Blinn-Phong 

Material – Dark blue paint 

Acquired data 

Finding the BRDF model parameters that best reproduce the real material 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.
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Dark Blue Paint 
Acquired data Cook-Torrance 

Material – Dark blue paint 

Finding the BRDF model parameters that best reproduce the real material 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.
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Observations 

Material – Red Christmas Ball 

Acquired data Cook-Torrance 

• Some materials impossible to represent with a 
single lobe 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.



68 

Adding a Second Lobe 

Material – Red Christmas Ball 

• Some materials impossible to represent with a 
single lobe 

Cook-Torrance 2 lobes Acquired data 

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.



• A Data-Driven Reflectance Model, SIGGRAPH 
2003 
– The data is available 

http://people.csail.mit.edu/wojciech/BRDFDatabase/ 

69 

Image-Based Acquisition 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Interpolate the average vertex normals across the 
face and use this in shading computations 
– Again, use barycentric interpolation! 

71 

Phong Normal Interpolation (Not Phong  
Shading) 



TIEA311 - Today in Jyväskylä
Facing the fact that our original course material from MIT is a
full-semester course whereas we only have one half, we need
to cut stock a bit. On this lecture, we’ll see “teasers” of what we
skip, with ideas of where to fit similar material in our curriculum:

I While we cover animation from the original “Lecture 6”, we
skip skinning, and the skinning part of “Assignment 2”.

→ This topic is covered in the follow-up course “Realtime
Rendering” – skinning can be implemented in vertex
shaders, which is also a topic of the follow-up course;
benefits from quaternions, a piece of math suitable for the
follow-up, too.

I We skip the original Lectures “7–9” about physical
models and the practical “Assignment 3” that deals with
those.

→ Maybe we could revive our own course about “physical
models in computer animations” in the (near-ish?)
future. . .



1 

MIT EECS 6.837 – Matusik 

MIT EECS 6.837 Computer Graphics 
 

Particle Systems and ODEs 
 
 

Image removed due to copyright restrictions.



• Keyframing 
• Procedural 
• Physically-based 

– Particle Systems: TODAY 

• Smoke, water, fire, sparks, etc. 
• Usually heuristic as opposed to simulation, but not always 
• Mass-Spring Models (Cloth) NEXT CLASS 

– Continuum Mechanics (fluids, etc.), finite elements 
• Not in this class 

– Rigid body simulation 
• Not in this class 

Types of Animation 

2 CERN 



• Assign physical properties to objects 
– Masses, forces, etc. 

• Also procedural forces (like wind) 
• Simulate physics by solving equations of motion 

– Rigid bodies, fluids, plastic deformation, etc. 
• Realistic but difficult to control 

3 

Types of Animation: Physically-Based 

v0 

m g 

3 3 



• Point 
 

• Rigid body 
 

• Deformable body  
(include clothes, fluids, smoke, etc.) 
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Types of Dynamics 

Mark Carlson 
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Today We Focus on Point Dynamics 
• Lots of points! 
• Particles systems 

– Borderline between 
procedural and physically-
based 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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MIT EECS 6.837 – Durand  

Particle Systems Overview 

• Emitters generate tons of “particles” 
• Describe the external forces with a force field 
• Integrate the laws of mechanics (ODEs) 
• In the simplest case, each particle is independent 
• If there is enough randomness (in particular at the 

emitter) you get nice effects 
– sand, dust, smoke, sparks, flame, water, … 

Images of particle systems removed due to copyright restrictions.

http://www.particlesystems.org/  



• It’s not all hacks: 
Smoothed Particle Hydrodynamics 
(SPH) 
– A family of “real” particle-based 

fluid simulation techniques. 
 

– Fluid flow is described by the 
Navier-Stokes Equations, a nonlinear 
partial differential equation (PDE) 

• SPH discretizes the fluid as small packets 
(particles!), and evaluates pressures and 
forces based on them. 

18 

Generalizations 

Jos Stam 

Müller et al. 2005 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R., 
"Two-way Coupled SPH and Particle Level Set Fluid 
Simulation", IEEE TVCG 14, 797-804 (2008). 

These Stanford folks use SPH for resolving the 
small-scale spray and mist that would otherwise 
be too much for the grid solver to handle. 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Particle-based methods can range from pure 
heuristics (hacks that happen to look good) to 
“real” simulation 
 

• Basics are the same: 
Things always boil 

down to integrating ODEs! 
– Also in the case of 

grids/computational meshes 

Take-Home Message 

22 

Andrew Selle et al. 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.



• Collection of many small simple pointlike things 
– Described by their current state: position, velocity, age, color, 

etc. 

• Particle motion influenced by external force fields and 
internal forces between particles 

• Particles created by generators or emitters 

– With some randomness 

• Particles often have lifetimes 

• Particles are often independent 
• Treat as points for dynamics, but 

rendered as anything you want 

24 

What is a Particle System? 

Image courtesy of Halixi72 on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/help/faq-fair-use/.



PL: linked list of particle = empty; 
spread=0.1;//how random the initial velocity is 

colorSpread=0.1; //how random the colors are 
For each time step 
    Generate k particles 
        p=new particle();  
        p->position=(0,0,0);  
        p->velocity=(0,0,1)+spread*(rnd(), rnd(), rnd());  
        p.color=(0,0,1)+colorSpread*(rnd(), rnd(),rnd());  
        PL->add(p); 
    For each particle p in PL  
        p->position+=p->velocity*dt; //dt: time step  
        p->velocity-=g*dt; //g: gravitation constant  
        glColor(p.color);  
        glVertex(p.position); 

30 Image Jeff Lander 

Simple Particle System: Sprinkler 

Image by Jeff Lander removed due to copyright restrictions.



• http://processing.org/learning/topics/simpleparticlesy
stem.html 
 

31 

Demo with Processing 



 
 
 

• Given a function f(X,t) compute X(t) 

• Typically, initial value problems: 
– Given values X(t0)=X0 

– Find values X(t) for t > t0 

 
• We can use lots of standard tools 

34 

Ordinary Differential Equations 



35 

Newtonian Mechanics 

or 

• Point mass: 2nd order ODE 
 
 
 
 

• Position x and force F are vector quantities 
– We know F and m, want to solve for x 

 

• You have all seen this a million times before 

This image is in the public domain.
Source: Wikimedia Commons.



• We have N point masses 
– Let’s just stack all xs and vs in a big vector of length 6N 
– Fi denotes the force on particle i 

• When particles don’t interact, Fi only depends on xi and vi. 

41 

Now, Many Particles 

f gives d/dt X, 

remember! 
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Path through a Vector Field 

“When we are at 
state X at time t, 
where will X be after 
an infinitely small 
time interval dt ?” 

• X(t): path in multidimensional phase space 
 
 
 
 
 
 
 

• f=d/dt X is a vector that sits at each point in phase 
space, pointing the direction. 

Image by MIT OpenCourseWare.



• Current state X 
• Examine f(X,t) at (or near) current state 
• Take a step to new value of X 

46 

Intuitive Solution: Take Steps 

f = d/dt X is a vector 
that sits at each 
point in phase 

space, pointing the 
direction. 

“            ” 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Simplest and most intuitive 
• Pick a step size h 

• Given X0=X(t0), take step: 
 
 
 
 

• Piecewise-linear approximation to the path 
• Basically, just replace dt by a 

small but finite number 
47 

Euler’s Method 



• Moves along tangent; can leave solution curve, e.g.: 
 
 

• Exact solution is circle: 
 
 

• Euler spirals outward 
no matter how small h is 
– will just diverge more slowly 

55 

Euler’s method: Inaccurate 

Image by MIT OpenCourseWare.



• Midpoint, Trapezoid, Runge-Kutta 
– Also, “implicit methods” (next week) 

 
 
 
 
 
 

• Extremely valuable resource: SIGGRAPH 2001 
course notes on physically based modeling  

56 

More Accurate Alternatives 

More on this during next 

class 



• http://processing.org/learning/topics/smokeparticlesy
stem.html 
 

64 

Processing demo 



78 

Massive software 

• http://www.massivesoftware.com/ 
• Used for battle scenes in the Lord of The Rings 



79 

Processing demo 

• http://processing.org/learning/topics/flocking.html 
 



• The grass is made of particles 
– The entire lifetime of the particle is drawn at once. 
– This can be done procedurally on the GPU these days! 

93 

Particle Modeling [Reeves 1983] 

William Reeves © ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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MIT EECS 6.837 Computer Graphics 

Particle Systems 
and ODE Solvers II, 
Mass-Spring Modeling 
With slides from Jaakko Lehtinen 
and others 
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MIT EECS 6.837 – Matusik  

Image removed due to copyright restrictions.



• Moves along tangent; can leave solution curve, e.g.: 
 
 

• Exact solution is circle: 
 
 

• Euler spirals outward 
no matter how small h is 
– will just diverge more slowly 

6 

Euler’s Method: Inaccurate 

Image by MIT OpenCourseWare.



• Limited step size! 
– When 
     things are fine, the solution decays 
– When  
 we get oscillation 
– When                                                         things explode 
 

11 

Euler’s Method: Not Always Stable 
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This image is in the public domain. Source: Wikimedia



• Expand exact solution X(t) 

 
 

• Euler’s method approximates: 
 
 
 
 

• First-order method: Accuracy varies with h 

• To get 100x better accuracy need 100x more steps 
13 

Analysis: Taylor Series 



• Problem: f varies along our Euler step 
• Idea 1: look at f at the arrival of the step and 

compensate for variation 

15 

Can We Do Better? 

Image by MIT OpenCourseWare.



• This translates to... 
 
 
 

• and we get 
 
• This is the trapezoid method 

– Analysis omitted (see 6.839) 
• Note: What we mean by “2nd order” is that the error 

goes down with h2 , not h – the equation is still 1st 
order! 16 

2nd Order Methods 



• Problem: f has varied along our Euler step 
• Idea 2: look at f after a smaller step, use that value 

for a full step from initial position 

17 

Can We Do Better? 

Image by MIT OpenCourseWare.



• This translates to... 
 
 
 

• and we get 
 

• This is the midpoint method 

– Analysis omitted again, 
but it’s not very complicated, see here. 

18 

2nd Order Methods Cont’d 



• Midpoint: 
– ½ Euler step 
– evaluate fm 

– full step using fm 

• Trapezoid: 
– Euler step (a) 
– evaluate f1 

– full step using f1 (b)  
– average (a) and (b) 

• Not exactly same result, 
but same order of accuracy 

19 

Comparison 

fm 

f1 
a 

b 

Image by MIT OpenCourseWare.



• You bet! 
• You will implement Runge-Kutta for assignment 3 

 
• Again, see Witkin, Baraff, Kass: Physically-based 

Modeling Course Notes, SIGGRAPH 2001 
 
 
 

• See eg 
http://www.youtube.com/watch?v=HbE3L5CIdQg  

20 

Can We Do Even Better? 



• Beyond pointlike objects: 
strings, cloth, hair, etc. 

• Interaction between particles 
– Create a network of spring 

forces that link pairs of particles 
 

• First, slightly hacky version of cloth simulation 
• Then, some motivation/intuition for implicit 

integration (NEXT LECTURE) 

22 

Mass-Spring Modeling 
Michael Kass 

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
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Springs 

Image courtesy of Jean-Jacques MILAN on Wikimedia Commons. License: CC-BY-SA. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Springs link the particles 
• Springs try to keep their rest lengths 

and preserve the length of the string 
• Not exactly preserved though, and we get oscillation 

– Rubber band approximation 

28 

How Would You Simulate a String? 



• Linear set of particles 
• Length-preserving structural springs like before 
• Deformation forces proportional to the angle 

between segments 
• External forces 

30 

Hair 

  



35 

Springs for Cloth 
• Network of masses and 

springs 
• Structural springs:  

– link (i j) and (i+1, j);  
and (i, j) and (i, j +1) 

• Deformation:  

– Shear springs 
• (i j) and (i+1, j+1)  

– Flexion springs 
•  (i,j) and (i+2,j); 

(i,j) and (i,j+2) 
• See Provot’s Graphics 

Interface ’95 paper for 
details 

Provot 95 

Image by MIT OpenCourseWare.
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Collisions Robert Bridson, Ronald Fedkiw & John Anderson 
Robust Treatment of Collisions, Contact  

and Friction for Cloth Animation 
SIGGRAPH 2002 • Cloth has many points  

of contact 
• Need efficient collision 

detection and 
stable treatment 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Robert Bridson, Ronald Fedkiw & John Anderson: 
Robust Treatment of Collisions, Contact  
and Friction for Cloth Animation 
SIGGRAPH 2002 

• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust 
High-Resolution Cloth Using Parallelism, History-
Based Collisions, and Accurate Friction," IEEE 
TVCG 15, 339-350 (2009). 

• Selle, A., Lentine, M. and Fedkiw, R., "A Mass 
Spring Model for Hair Simulation", SIGGRAPH 
2008, ACM TOG 27, 64.1-64.11 (2008). 
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Cool Cloth/Hair Demos 



1 

MIT EECS 6.837 Computer Graphics 

Implicit Integration 
Collision Detection 

Philippe Halsman: Dali Atomicus MIT EECS 6.837 – Matusik 

This image is in the public domain. Source: Wikimedia Commons.



• Implementing Particle Systems 
• Implicit Integration 
• Collision detection and response 

– Point-object and object-object detection 
– Only point-object response 

3 

Plan 



 
 

• Given a function f(X,t) compute X(t) 

• Typically, initial value problems: 
– Given values X(t0)=X0 

– Find values X(t) for t > t0 

 
• We can use lots of standard tools 

4 

ODEs and Numerical Integration 



• Midpoint: 
– ½ Euler step 
– evaluate fm 

– full step using fm 

• Trapezoid: 
– Euler step (a) 
– evaluate f1 

– full step using f1 (b)  
– average (a) and (b) 

• Better than Euler but still a speed limit 
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Integrator Comparison 

f1 
a 

 

fm 

f1 
a 

b 

Image by MIT OpenCourseWare.



• x’=-kx 
• First half Euler step: xm=x-0.5 hkx = x(1-0.5 hk) 
• Read derivative at xm: fm=-kxm=-k(1-0.5 hk)x 
• Apply derivative at origin:  

x(t+h)=x+hfm = x-hk(1-0.5hk)x =x(1-hk+0.5 h2k2) 
• Looks a lot like Taylor... 
• We want 0<x(t+h)/x(t)<1 

-hk+0.5 h2k2 < 0 
hk(-1+0.5 hk)<0 
For positive values of h & k =>  h <2/k 

• Twice the speed limit of Euler 
19 

Midpoint Speed Limit 



• In more complex systems, 
step size is limited by the largest k. 
– One stiff spring can ruin things for everyone else! 

 
• Systems that have some big k values 

are called stiff systems. 
 

• In the general case, k values are eigenvalues of the 
local Jacobian! 

20 

Stiffness 

From the siggraph PBM notes 

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Remember our model problem:  x’ = -kx 

– Exact solution was a decaying exponential x0 e-kt 

 

• Explicit Euler: x(t+h) = (1-hk) x(t) 
 

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)  
                        x(t+h) = x(t) - h k x(t+h) 
                               = x(t) / (1+hk) 
– It is a hyperbola! 

29 

Implicit Euler is 
unconditionally stable! 

1/(1+hk) < 1, 

when h,k > 0 

Simple Closed Form Case 



• Now locations Xi, Xi+1 and F are N-D 
• Newton solution of F(Xi+1) = 0 is just like 1D: 

 
 
 
 
 

• Must solve a linear system at each 
step of Newton iteration 
– Note that also Jacobian changes for each step 

46 

Newton’s Method – N Dimensions 

NxN Jacobian 
matrix 

unknown N-D 
step from 

current to next 
guess 



• Easy with implicit equations of surfaces: 
 
H(x,y,z) = 0     on the surface 
H(x,y,z) < 0     inside surface 
 

• So just compute H and you know that 
you are inside if it is negative 
 

• More complex with other surface 
definitions like meshes 
– A mesh is not necessarily even closed, what is inside? 

65 

Detecting Collisions 
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Collision Response for Particles 
N v 
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Collision Response for Particles 
N v 

vn 

vt 

v=vn+vt 

normal component 
tangential component 



• Tangential velocity vt  
often unchanged 

• Normal velocity vn reflects: 
 
 
 

• Coefficient of restitution ε 
 

• When ε = 1, mirror reflection 

68 

Collision Response for Particles 
N v 

vn 

vt 

N v vnew 

N v vnew 

ε=1 

ε<1 



• Usually, we detect collision when it is too late: 
we are already inside 

• Solution: Back up 
• Compute intersection point 
• Ray-object intersection! 
• Compute response there 
• Advance for remaining  

fractional time step 

• Other solution: 
Quick and dirty hack 

• Just project back to object closest point 
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Collisions – Overshooting 

fixing 

backtracking 
xi 

xi+1 



• Imagine we have n objects. Can we test all pairwise 
intersections? 
– Quadratic cost O(n2)! 

 
• Simple optimization: separate static objects 

– But still O(static × dynamic+ dynamic2) 

73 

Collision Detection in Big Scenes 



• Use simpler conservative proxies  
(e.g. bounding spheres) 
 

• Recursive (hierarchical) test 
– Spend time only for parts of the scene that are close 

 
• Many different versions, we will cover only one 

 
 

74 

Hierarchical Collision Detection 



• Place spheres around objects  
• If spheres do not intersect, neither do the objects! 
• Sphere-sphere collision test is easy. 

75 

Bounding Spheres 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.



• Two spheres, centers C1 and C2, radii r1 and r2 
• Intersect only if ||C1C2||<r1+r2 
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Sphere-Sphere Collision Test 

C1 C2 r1 r2 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.



• Hierarchy of bounding spheres 
– Organized in a tree 

• Recursive test with early pruning 

Hierarchical Collision Test 

Root encloses 

whole object 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• http://isg.cs.tcd.ie/spheretree/ 

79 

Examples of Hierarchy 

© Gareth Bradshaw. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Keyframing mostly 
• Articulated figures, inverse kinematics 
• Skinning  

– Complex deformable skin, muscle, skin motion 

• Hierarchical controls 
– Smile control, eye blinking, etc.  
– Keyframes for these higher-level controls 

• A huge time is spent building the 3D models,  
its skeleton and its controls (rigging) 

• Physical simulation for secondary motion 
– Hair, cloths, water 
– Particle systems for “fuzzy” objects 

How Do They Animate Movies? 

Images from the Maya tutorial 
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© Maya tutorial. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.



TIEA311 - last slide
Thus, we scratched the surface of something massive.

Where, when, and how to continue:

I Either TIES471 next week
I Or TIES471 next year (hobby projects and more math

in-between?)
I Theses, hobby projects
I The more math you can do, the better – to move from

“copy-paster” to “developer” of algorithms!
I Remember that the tax payers spend a lot of money

every day to pay for your subscription to research
articles! Make it count! Learn! Just browse journals
through the university IP, using VPN from home.

THANK YOU!


