
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp19/

TIEA311 - Today in Jyväskylä

Last lecture plan:

I Shading, texture mapping: Cover the principles up to
Phong model and texture coordinates.

I Cherry-pick title slides from advanced stuff that we mostly
defer to the follow-up course (starts next week) and/or
future self-study.

I When learning, don’t think about deadlines. Think about
learning!

I My deadlines are flexible, since this course is about
graphics and programming and not about meeting
time-to-market. Leave that to project courses and
traineeship periods!

1 MIT EECS 6.837 – Matusik

Shading & Material Appearance

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Input for realistic rendering
– Geometry, Lighting and Materials

• Material appearance
– Intensity and shape of highlights
– Glossiness
– Color
– Spatial variation, i.e., texture (next Tuesday)

2

Lighting and Material Appearance

Slide Addy Ngan © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• We will not be too formal in this class
• Issues we will not really care about

– Directional quantities vs. integrated over all directions
– Differential terms: per solid angle, per area
– Power? Intensity? Flux?

• Color

– All math here is for a single wavelength only; we will
perform computations for R, G, B separately

• Do not panic, that just means
we will perform every operation three times, that is all

3

Unit Issues - Radiometry

• Today, we only consider point light sources
– Thus we do not need to care about solid angles

• For multiple light sources, use linearity
– We can add the solutions for two light sources

• I(a+b) = I(a) + I(b)

– We simply multiply the solution when we scale the light
intensity

• I(s a) = s I(a)

4

Light Sources

a b

Yet again, linearity
is our friend!

• 1/r2 fall-off for isotropic point lights
– Why? An isotropic point light

outputs constant power per solid
angle (“into all directions”)

– Must have same power in all
concentric spheres

• Sphere’s surface area grows with r2 => energy obeys 1/r2

• … but in graphics we often cheat with or ignore this.
– Why? Ideal point lights are kind of harsh

• Intensity goes to infinity when you get close – not great!

– In particular, 1/(ar2+br+c) is popular

5

Intensity as Function of Distance

r1

r2

• The amount of light energy received by a surface
depends on incoming angle
– Bigger at normal incidence, even if distance is const.

• Similar to winter/summer difference

• How exactly?
– Cos θ law
– Dot product with normal

6

Incoming Irradiance

Surface

θ

n

• Let’s combine this with the 1/r2 fall-off:

– Iin is the irradiance (“intensity”) at

surface point x

– Ilight is the “intensity” of the light
– θ is the angle between light direction l

and surface normal n
– r is the distance between light and x.

7

Incoming Irradiance for Pointlights

Surface

θ

n

x

l

• “Pointlights that are infinitely far”
– No falloff, just one direction and one intensity

– Iin is the irradiance at surface point x

from the directional light
– Ilight is the “intensity” of the light
– θ is the angle between light direction l

and surface normal n

• Only depends on n, not x!

8

Directional Lights

Surface

θ

n

x

l

• Pointlights with non-uniform directional emission
• Usually symmetric about a central

direction d, with angular falloff
– Often two angles

• “Hotspot” angle:
No attenuation within the central cone

• “Falloff” angle: Light attenuates
from full intensity to zero intensity
between the hotspot and falloff
angles

• Plus your favorite distance
falloff curve

9

Spotlights

d

10

Spotlight Geometry

Adapted from
POVRAY documentation

hotspot angle

(direction d)

11

Questions?

12

Quantifying Reflection – BRDF
• Bidirectional Reflectance

Distribution Function
• Ratio of light coming from one

direction that gets reflected in
another direction
– Pure reflection, assumes no

light scatters into the
material

• Focuses on angular aspects, not
spatial variation of the material

• How many dimensions?

Incoming
direction

Outgoing
direction

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

13

BRDF fr

14

BRDF fr

15

BRDF fr
• Relates incident irradiance from

every direction to outgoing light.
How?

l = light direction

(incoming)

v = view direction

(outgoing)

16

BRDF fr
• Relates incident irradiance from

every direction to outgoing light.
How?

• Let’s combine with what
we know already of pointlights:

l = light direction

(incoming)

v = view direction

(outgoing)

17

2D Slice at Constant Incidence

Example: Plot of “PVC” BRDF at 55° incidence

highlight incoming

incoming

• For a fixed incoming direction,
view dependence is a 2D
spherical function
– Here a moderate specular

component

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

• When keeping l and v fixed, if rotation of surface
around the normal does not change the reflection, the
material is called isotropic

• Surfaces with strongly oriented microgeometry
elements are anisotropic

• Examples:
– brushed metals,
– hair, fur, cloth, velvet

19

Isotropic vs. Anisotropic

Westin et.al 92

• One possibility: Gonioreflectometer
– 4 degrees of freedom

21

How do we obtain BRDFs?

Source: Greg Ward
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Another possibility: Take pictures of spheres coated
with material, rotate light around a 1D arc
– This gives 3DOF => isotropic materials only

22

How Do We Obtain BRDFs?

M
at

us
ik

 e
t a

l.

• BRDFs can be measured from real data
– But tabulated 4D data is too cumbersome for most uses

• Therefore, parametric BRDF models represent the
relationship between incident and outgoing light by
some mathematical formula
– The appearance can then be tuned by setting parameters

• “Shininess”, “anisotropy”, etc.

– Physically-based or Phenomenological
– They can model with measured data (examples later)

• Popular models: Diffuse, Blinn-Phong, Cook-
Torrance, Lafortune, Ward, Oren-Nayar, etc.

23

Parametric BRDFs

24

Questions?

• Assume surface reflects equally in all directions.
• An ideal diffuse surface is, at the microscopic level, a

very rough surface.
– Example: chalk, clay, some paints

25

Ideal Diffuse Reflectance

Surface

• Ideal diffuse reflectors reflect light according to
Lambert’s cosine law
– The reflected light varies with cosine even if distance to

light source is kept constant

26

Ideal Diffuse Reflectance

• Ideal diffuse reflectors reflect light according to
Lambert’s cosine law
– The reflected light varies with cosine even if distance to

light source is kept constant

27

Ideal Diffuse Reflectance

Remembering that incident irradiance depends on cosine,

what is the BRDF of an ideally diffuse surface?

• The ideal diffuse BRDF is a constant fr(l, v) = const.
– What constant ρ/π, where ρ is the albedo

• Coefficient between 0 and 1 that says what fraction is reflected

– Usually just called “diffuse color” kd

– You have already implemented this by taking dot products
with the normal and multiplying by the “color”!

28

Ideal Diffuse Reflectance

• This is the simplest possible parametric BRDF
– One parameter: kd

• (One for each RGB channel)

29

Ideal Diffuse Reflectance

• Single Point Light Source
– kd: diffuse coefficient (color)
– n: Surface normal.
– l: Light direction.
– Li: Light intensity
– r: Distance to source
– Lo: Shaded color

30

Ideal Diffuse Reflectance Math

Surface

θ
l

n
r

light source

• Single Point Light Source
– kd: diffuse coefficient (color)
– n: Surface normal.
– l: Light direction.
– Li: Light intensity
– r: Distance to source
– Lo: Shaded color

31

Ideal Diffuse Reflectance Math

Surface


l

n
r We do not want light from below the

surface! From now on we always
assume (on this lecture) that dot

products are clamped to zero and
skip writing out the max().

Do not forget
to normalize
your n and l!

light source

• Reflection is only at mirror angle
• View dependent

– Microscopic surface elements are usually oriented in the
same direction as the surface itself.

– Examples: mirrors, highly polished metals.

33

Ideal Specular Reflectance

Surface

θ
l

n

r

θ

light source

• Reflection angle = light angle
– Both R & L have to lie on one plane

• R = – L + 2 (L · N) N

34

Recap: How to Get Mirror Direction

R L

θ L θ R

N

L N N

L N N

-L

light source

• Light only reflects to the mirror direction
• A Dirac delta multiplied by a specular coefficient ks

• Not very useful for point lights, only for reflections

of other surfaces
– Why? You cannot really see a mirror reflection of an

infinitely small light!

35

Ideal Specular BRDF

• Real glossy materials usually deviate significantly
from ideal mirror reflectors
– Highlight is blurry

• They are not ideal diffuse surfaces either …

36

Non-ideal Reflectors

• Simple Empirical Reasoning for Glossy Materials
– We expect most of the reflected light to travel in the

direction of the ideal mirror ray.
– However, because of microscopic surface variations we

might expect some of the light to be reflected just slightly
offset from the ideal reflected ray.

– As we move farther and farther, in the angular sense, from
the reflected ray, we expect to see less light reflected.

37

Non-ideal Reflectors

• How much light is reflected?

– Depends on the angle  between the ideal reflection
direction r and the viewer direction v.

38

The Phong Specular Model

Surface

θ θ
Camera 

r n

l

v

light source

• Parameters
– ks: specular reflection coefficient
– q : specular reflection exponent

39

The Phong Specular Model

Surface

θ θ
Camera 

r n

l

v

light source

• Effect of q – the specular reflection exponent

40

The Phong Model

• The specular reflection distribution
is usually called a “lobe”
– For Phong, its shape is

41

Terminology: Specular Lobe

Surface

light source

• Sum of three components:
 ideal diffuse reflection +
 specular reflection +
 “ambient”.

42

The Complete Phong Model

Surface

light source

• Represents the reflection of all indirect illumination.
• This is a total hack!
• Avoids the complexity of

indirect (“global”) illumination

43

Ambient Illumination

• Phong Illumination Model

44

Putting It All Together

© Leonard McMillan. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Phong Illumination Model

• Is it physically based?
– No, does not even conserve energy,

may well reflect more energy than what goes in
– Furthermore, it does not even conform to the BRDF model

directly (we are taking the proper cosine for diffuse, but
not for specular)

– And ambient was a total hack
45

Putting It All Together

46

Phong Examples

• The spheres illustrate
specular reflections as
the direction of the
light source and the
exponent q (amount of
shininess) is varied.

• Increasing specularity near grazing angles.
– Most BRDF models account for this.

47

Fresnel Reflection

Source: Lafortune et al. 97
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

48

Questions?

• Uses the “halfway vector” h between l and v.

49

Blinn-Torrance Variation of Phong

Surface

l

n

Camera

v

h



Light source

50

Lobe Comparison

Half vector lobe Mirror lobe

• Half vector lobe
– Gradually narrower when approaching grazing

• Mirror lobe
– Always circular

51

Half Vector Lobe is Better

• More consistent with what is observed in
measurements (Ngan, Matusik, Durand
2005)

Example: Plot of “PVC” BRDF at 55° incidence

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

52

Questions?

• Example
– Think of water surface as lots of tiny mirrors (microfacets)
– “Bright” pixels are

• Microfacets aligned with the vector between sun and eye
• But not the ones in shadow
• And not the ones that are occluded

53

Microfacet Theory

Image of sunset removed due to copyright restrictions.

• Model surface by tiny mirrors
[Torrance & Sparrow 1967]

54

Microfacet Theory

• Value of BRDF at (L,V) is a product of
– number of mirrors oriented halfway between L and V

55

Microfacet Theory

• Value of BRDF at (L,V) is a product of
– number of mirrors oriented halfway between L and V

56

Microfacet Theory

• Value of BRDF at (L,V) is a product of
– number of mirrors oriented halfway between L and V

57

Microfacet Theory

• Value of BRDF at (L,V) is a product of
– number of mirrors oriented halfway between L and V
– ratio of the un(shadowed/masked) mirrors

58

Microfacet Theory

59

Microfacet Theory

• Value of BRDF at (L,V) is a product of
– number of mirrors oriented halfway between L and V
– ratio of the un(shadowed/masked) mirrors
– Fresnel coefficient

• Some facets are hidden from viewpoint
• Some are hidden from the light

60

Shadowing and Masking

hidden from viewpoint hidden from viewpoint

• Develop BRDF models by imposing simplifications
[Torrance-Sparrow 67], [Blinn 77], [Cook-Torrance
81], [Ashikhmin et al. 2000]

• Model the distribution p(H) of
microfacet normals
– Also, statistical models

for shadows and masking

61

Microfacet Theory-based Models

spherical plot of a
Gaussian-like p(H)

• ρs is the specular coefficient (3 numbers RGB)
• D is the microfacet distribution

– δ is the angle between the half vector H and the normal N
– m defines the roughness (width of lobe)

• G is the shadowing and masking term
• Need to add a diffuse term

62

Full Cook-Torrance Lobe

• “Designer BRDFs” by Ashikhmin et al.

63

Questions?

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

64

BRDF Examples from Ngan et al.
Acquired data

Material – Dark blue paint

Lighting

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

65

Dark Blue Paint
Blinn-Phong

Material – Dark blue paint

Acquired data

Finding the BRDF model parameters that best reproduce the real material

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

66

Dark Blue Paint
Acquired data Cook-Torrance

Material – Dark blue paint

Finding the BRDF model parameters that best reproduce the real material

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

67

Observations

Material – Red Christmas Ball

Acquired data Cook-Torrance

• Some materials impossible to represent with a
single lobe

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

68

Adding a Second Lobe

Material – Red Christmas Ball

• Some materials impossible to represent with a
single lobe

Cook-Torrance 2 lobes Acquired data

Courtesy of Mitsubishi Electric Researh Laboratories, Inc. Used with permission.

• A Data-Driven Reflectance Model, SIGGRAPH
2003
– The data is available

http://people.csail.mit.edu/wojciech/BRDFDatabase/

69

Image-Based Acquisition

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Interpolate the average vertex normals across the
face and use this in shading computations
– Again, use barycentric interpolation!

71

Phong Normal Interpolation (Not Phong
Shading)

TIEA311 - Today in Jyväskylä
Facing the fact that our original course material from MIT is a
full-semester course whereas we only have one half, we need
to cut stock a bit. On this lecture, we’ll see “teasers” of what we
skip, with ideas of where to fit similar material in our curriculum:

I While we cover animation from the original “Lecture 6”, we
skip skinning, and the skinning part of “Assignment 2”.

→ This topic is covered in the follow-up course “Realtime
Rendering” – skinning can be implemented in vertex
shaders, which is also a topic of the follow-up course;
benefits from quaternions, a piece of math suitable for the
follow-up, too.

I We skip the original Lectures “7–9” about physical
models and the practical “Assignment 3” that deals with
those.

→ Maybe we could revive our own course about “physical
models in computer animations” in the (near-ish?)
future. . .

1

MIT EECS 6.837 – Matusik

MIT EECS 6.837 Computer Graphics

Particle Systems and ODEs

Image removed due to copyright restrictions.

• Keyframing
• Procedural
• Physically-based

– Particle Systems: TODAY

• Smoke, water, fire, sparks, etc.
• Usually heuristic as opposed to simulation, but not always
• Mass-Spring Models (Cloth) NEXT CLASS

– Continuum Mechanics (fluids, etc.), finite elements
• Not in this class

– Rigid body simulation
• Not in this class

Types of Animation

2 CERN

• Assign physical properties to objects
– Masses, forces, etc.

• Also procedural forces (like wind)
• Simulate physics by solving equations of motion

– Rigid bodies, fluids, plastic deformation, etc.
• Realistic but difficult to control

3

Types of Animation: Physically-Based

v0

m g

3 3

• Point

• Rigid body

• Deformable body
(include clothes, fluids, smoke, etc.)

6

Types of Dynamics

Mark Carlson
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

7

Today We Focus on Point Dynamics
• Lots of points!
• Particles systems

– Borderline between
procedural and physically-
based

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

12
MIT EECS 6.837 – Durand

Particle Systems Overview

• Emitters generate tons of “particles”
• Describe the external forces with a force field
• Integrate the laws of mechanics (ODEs)
• In the simplest case, each particle is independent
• If there is enough randomness (in particular at the

emitter) you get nice effects
– sand, dust, smoke, sparks, flame, water, …

Images of particle systems removed due to copyright restrictions.

http://www.particlesystems.org/

• It’s not all hacks:
Smoothed Particle Hydrodynamics
(SPH)
– A family of “real” particle-based

fluid simulation techniques.

– Fluid flow is described by the
Navier-Stokes Equations, a nonlinear
partial differential equation (PDE)

• SPH discretizes the fluid as small packets
(particles!), and evaluates pressures and
forces based on them.

18

Generalizations

Jos Stam

Müller et al. 2005

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

19

Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R.,
"Two-way Coupled SPH and Particle Level Set Fluid
Simulation", IEEE TVCG 14, 797-804 (2008).

These Stanford folks use SPH for resolving the
small-scale spray and mist that would otherwise
be too much for the grid solver to handle.

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Particle-based methods can range from pure
heuristics (hacks that happen to look good) to
“real” simulation

• Basics are the same:
Things always boil

down to integrating ODEs!
– Also in the case of

grids/computational meshes

Take-Home Message

22

Andrew Selle et al.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

• Collection of many small simple pointlike things
– Described by their current state: position, velocity, age, color,

etc.

• Particle motion influenced by external force fields and
internal forces between particles

• Particles created by generators or emitters

– With some randomness

• Particles often have lifetimes

• Particles are often independent
• Treat as points for dynamics, but

rendered as anything you want

24

What is a Particle System?

Image courtesy of Halixi72 on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/help/faq-fair-use/.

PL: linked list of particle = empty;
spread=0.1;//how random the initial velocity is

colorSpread=0.1; //how random the colors are
For each time step
 Generate k particles
 p=new particle();
 p->position=(0,0,0);
 p->velocity=(0,0,1)+spread*(rnd(), rnd(), rnd());
 p.color=(0,0,1)+colorSpread*(rnd(), rnd(),rnd());
 PL->add(p);
 For each particle p in PL
 p->position+=p->velocity*dt; //dt: time step
 p->velocity-=g*dt; //g: gravitation constant
 glColor(p.color);
 glVertex(p.position);

30 Image Jeff Lander

Simple Particle System: Sprinkler

Image by Jeff Lander removed due to copyright restrictions.

• http://processing.org/learning/topics/simpleparticlesy
stem.html

31

Demo with Processing

• Given a function f(X,t) compute X(t)

• Typically, initial value problems:
– Given values X(t0)=X0

– Find values X(t) for t > t0

• We can use lots of standard tools

34

Ordinary Differential Equations

35

Newtonian Mechanics

or

• Point mass: 2nd order ODE

• Position x and force F are vector quantities
– We know F and m, want to solve for x

• You have all seen this a million times before

This image is in the public domain.
Source: Wikimedia Commons.

• We have N point masses
– Let’s just stack all xs and vs in a big vector of length 6N
– Fi denotes the force on particle i

• When particles don’t interact, Fi only depends on xi and vi.

41

Now, Many Particles

f gives d/dt X,

remember!

43

Path through a Vector Field

“When we are at
state X at time t,
where will X be after
an infinitely small
time interval dt ?”

• X(t): path in multidimensional phase space

• f=d/dt X is a vector that sits at each point in phase
space, pointing the direction.

Image by MIT OpenCourseWare.

• Current state X
• Examine f(X,t) at (or near) current state
• Take a step to new value of X

46

Intuitive Solution: Take Steps

f = d/dt X is a vector
that sits at each
point in phase

space, pointing the
direction.

“ ”

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Simplest and most intuitive
• Pick a step size h

• Given X0=X(t0), take step:

• Piecewise-linear approximation to the path
• Basically, just replace dt by a

small but finite number
47

Euler’s Method

• Moves along tangent; can leave solution curve, e.g.:

• Exact solution is circle:

• Euler spirals outward
no matter how small h is
– will just diverge more slowly

55

Euler’s method: Inaccurate

Image by MIT OpenCourseWare.

• Midpoint, Trapezoid, Runge-Kutta
– Also, “implicit methods” (next week)

• Extremely valuable resource: SIGGRAPH 2001
course notes on physically based modeling

56

More Accurate Alternatives

More on this during next

class

• http://processing.org/learning/topics/smokeparticlesy
stem.html

64

Processing demo

78

Massive software

• http://www.massivesoftware.com/
• Used for battle scenes in the Lord of The Rings

79

Processing demo

• http://processing.org/learning/topics/flocking.html

• The grass is made of particles
– The entire lifetime of the particle is drawn at once.
– This can be done procedurally on the GPU these days!

93

Particle Modeling [Reeves 1983]

William Reeves © ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

1

MIT EECS 6.837 Computer Graphics

Particle Systems
and ODE Solvers II,
Mass-Spring Modeling
With slides from Jaakko Lehtinen
and others

P
ic

tu
re

: A
. S

el
le

 e
t a

l.

MIT EECS 6.837 – Matusik

Image removed due to copyright restrictions.

• Moves along tangent; can leave solution curve, e.g.:

• Exact solution is circle:

• Euler spirals outward
no matter how small h is
– will just diverge more slowly

6

Euler’s Method: Inaccurate

Image by MIT OpenCourseWare.

• Limited step size!
– When
 things are fine, the solution decays
– When
 we get oscillation
– When things explode

11

Euler’s Method: Not Always Stable
W

ik
ip

ed
ia

 u
se

r B
er

la
nd

This image is in the public domain. Source: Wikimedia

• Expand exact solution X(t)

• Euler’s method approximates:

• First-order method: Accuracy varies with h

• To get 100x better accuracy need 100x more steps
13

Analysis: Taylor Series

• Problem: f varies along our Euler step
• Idea 1: look at f at the arrival of the step and

compensate for variation

15

Can We Do Better?

Image by MIT OpenCourseWare.

• This translates to...

• and we get

• This is the trapezoid method

– Analysis omitted (see 6.839)
• Note: What we mean by “2nd order” is that the error

goes down with h2 , not h – the equation is still 1st
order! 16

2nd Order Methods

• Problem: f has varied along our Euler step
• Idea 2: look at f after a smaller step, use that value

for a full step from initial position

17

Can We Do Better?

Image by MIT OpenCourseWare.

• This translates to...

• and we get

• This is the midpoint method

– Analysis omitted again,
but it’s not very complicated, see here.

18

2nd Order Methods Cont’d

• Midpoint:
– ½ Euler step
– evaluate fm

– full step using fm

• Trapezoid:
– Euler step (a)
– evaluate f1

– full step using f1 (b)
– average (a) and (b)

• Not exactly same result,
but same order of accuracy

19

Comparison

fm

f1
a

b

Image by MIT OpenCourseWare.

• You bet!
• You will implement Runge-Kutta for assignment 3

• Again, see Witkin, Baraff, Kass: Physically-based

Modeling Course Notes, SIGGRAPH 2001

• See eg
http://www.youtube.com/watch?v=HbE3L5CIdQg

20

Can We Do Even Better?

• Beyond pointlike objects:
strings, cloth, hair, etc.

• Interaction between particles
– Create a network of spring

forces that link pairs of particles

• First, slightly hacky version of cloth simulation
• Then, some motivation/intuition for implicit

integration (NEXT LECTURE)

22

Mass-Spring Modeling
Michael Kass

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

24

Springs

Image courtesy of Jean-Jacques MILAN on Wikimedia Commons. License: CC-BY-SA. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Springs link the particles
• Springs try to keep their rest lengths

and preserve the length of the string
• Not exactly preserved though, and we get oscillation

– Rubber band approximation

28

How Would You Simulate a String?

• Linear set of particles
• Length-preserving structural springs like before
• Deformation forces proportional to the angle

between segments
• External forces

30

Hair



35

Springs for Cloth
• Network of masses and

springs
• Structural springs:

– link (i j) and (i+1, j);
and (i, j) and (i, j +1)

• Deformation:

– Shear springs
• (i j) and (i+1, j+1)

– Flexion springs
• (i,j) and (i+2,j);

(i,j) and (i,j+2)
• See Provot’s Graphics

Interface ’95 paper for
details

Provot 95

Image by MIT OpenCourseWare.

60

Collisions Robert Bridson, Ronald Fedkiw & John Anderson
Robust Treatment of Collisions, Contact

and Friction for Cloth Animation
SIGGRAPH 2002 • Cloth has many points

of contact
• Need efficient collision

detection and
stable treatment

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Robert Bridson, Ronald Fedkiw & John Anderson:
Robust Treatment of Collisions, Contact
and Friction for Cloth Animation
SIGGRAPH 2002

• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust
High-Resolution Cloth Using Parallelism, History-
Based Collisions, and Accurate Friction," IEEE
TVCG 15, 339-350 (2009).

• Selle, A., Lentine, M. and Fedkiw, R., "A Mass
Spring Model for Hair Simulation", SIGGRAPH
2008, ACM TOG 27, 64.1-64.11 (2008).

61

Cool Cloth/Hair Demos

1

MIT EECS 6.837 Computer Graphics

Implicit Integration
Collision Detection

Philippe Halsman: Dali Atomicus MIT EECS 6.837 – Matusik

This image is in the public domain. Source: Wikimedia Commons.

• Implementing Particle Systems
• Implicit Integration
• Collision detection and response

– Point-object and object-object detection
– Only point-object response

3

Plan

• Given a function f(X,t) compute X(t)

• Typically, initial value problems:
– Given values X(t0)=X0

– Find values X(t) for t > t0

• We can use lots of standard tools

4

ODEs and Numerical Integration

• Midpoint:
– ½ Euler step
– evaluate fm

– full step using fm

• Trapezoid:
– Euler step (a)
– evaluate f1

– full step using f1 (b)
– average (a) and (b)

• Better than Euler but still a speed limit

18

Integrator Comparison

f1
a

fm

f1
a

b

Image by MIT OpenCourseWare.

• x’=-kx
• First half Euler step: xm=x-0.5 hkx = x(1-0.5 hk)
• Read derivative at xm: fm=-kxm=-k(1-0.5 hk)x
• Apply derivative at origin:

x(t+h)=x+hfm = x-hk(1-0.5hk)x =x(1-hk+0.5 h2k2)
• Looks a lot like Taylor...
• We want 0<x(t+h)/x(t)<1

-hk+0.5 h2k2 < 0
hk(-1+0.5 hk)<0
For positive values of h & k => h <2/k

• Twice the speed limit of Euler
19

Midpoint Speed Limit

• In more complex systems,
step size is limited by the largest k.
– One stiff spring can ruin things for everyone else!

• Systems that have some big k values

are called stiff systems.

• In the general case, k values are eigenvalues of the
local Jacobian!

20

Stiffness

From the siggraph PBM notes

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Remember our model problem: x’ = -kx

– Exact solution was a decaying exponential x0 e-kt

• Explicit Euler: x(t+h) = (1-hk) x(t)

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)
 x(t+h) = x(t) - h k x(t+h)
 = x(t) / (1+hk)
– It is a hyperbola!

29

Implicit Euler is
unconditionally stable!

1/(1+hk) < 1,

when h,k > 0

Simple Closed Form Case

• Now locations Xi, Xi+1 and F are N-D
• Newton solution of F(Xi+1) = 0 is just like 1D:

• Must solve a linear system at each
step of Newton iteration
– Note that also Jacobian changes for each step

46

Newton’s Method – N Dimensions

NxN Jacobian
matrix

unknown N-D
step from

current to next
guess

• Easy with implicit equations of surfaces:

H(x,y,z) = 0 on the surface
H(x,y,z) < 0 inside surface

• So just compute H and you know that
you are inside if it is negative

• More complex with other surface
definitions like meshes
– A mesh is not necessarily even closed, what is inside?

65

Detecting Collisions

66

Collision Response for Particles
N v

67

Collision Response for Particles
N v

vn

vt

v=vn+vt

normal component
tangential component

• Tangential velocity vt
often unchanged

• Normal velocity vn reflects:

• Coefficient of restitution ε

• When ε = 1, mirror reflection

68

Collision Response for Particles
N v

vn

vt

N v vnew

N v vnew

ε=1

ε<1

• Usually, we detect collision when it is too late:
we are already inside

• Solution: Back up
• Compute intersection point
• Ray-object intersection!
• Compute response there
• Advance for remaining

fractional time step

• Other solution:
Quick and dirty hack

• Just project back to object closest point

71

Collisions – Overshooting

fixing

backtracking
xi

xi+1

• Imagine we have n objects. Can we test all pairwise
intersections?
– Quadratic cost O(n2)!

• Simple optimization: separate static objects

– But still O(static × dynamic+ dynamic2)

73

Collision Detection in Big Scenes

• Use simpler conservative proxies
(e.g. bounding spheres)

• Recursive (hierarchical) test
– Spend time only for parts of the scene that are close

• Many different versions, we will cover only one

74

Hierarchical Collision Detection

• Place spheres around objects
• If spheres do not intersect, neither do the objects!
• Sphere-sphere collision test is easy.

75

Bounding Spheres

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

• Two spheres, centers C1 and C2, radii r1 and r2
• Intersect only if ||C1C2||<r1+r2

77

Sphere-Sphere Collision Test

C1 C2 r1 r2

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

• Hierarchy of bounding spheres
– Organized in a tree

• Recursive test with early pruning

Hierarchical Collision Test

Root encloses

whole object

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

78

• http://isg.cs.tcd.ie/spheretree/

79

Examples of Hierarchy

© Gareth Bradshaw. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Keyframing mostly
• Articulated figures, inverse kinematics
• Skinning

– Complex deformable skin, muscle, skin motion

• Hierarchical controls
– Smile control, eye blinking, etc.
– Keyframes for these higher-level controls

• A huge time is spent building the 3D models,
its skeleton and its controls (rigging)

• Physical simulation for secondary motion
– Hair, cloths, water
– Particle systems for “fuzzy” objects

How Do They Animate Movies?

Images from the Maya tutorial
100

© Maya tutorial. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

TIEA311 - last slide
Thus, we scratched the surface of something massive.

Where, when, and how to continue:

I Either TIES471 next week
I Or TIES471 next year (hobby projects and more math

in-between?)
I Theses, hobby projects
I The more math you can do, the better – to move from

“copy-paster” to “developer” of algorithms!
I Remember that the tax payers spend a lot of money

every day to pay for your subscription to research
articles! Make it count! Learn! Just browse journals
through the university IP, using VPN from home.

THANK YOU!

