TIEA311 Tietokonegrafiikan perusteet kevät 2019

("Principles of Computer Graphics" - Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for registered students only. Please, do not redistribute them for other purposes. Use of auxiliary copyrighted material (academic papers, industrial standards, web pages, videos, and other materials) as a part of this lecture is intended to happen under academic "fair use" to illustrate key points of the subject matter. The lecturer may be contacted for take-down requests or other copyright concerns (email: paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet - kevät 2019 ("Principles of Computer Graphics" - Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand: 6.837 Computer Graphics. Fall 2012. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/~nieminen/tgp19/

TIEA311 - Event horizon of this course

Image and rendering code by Sakari Kapanen. Used with permission. Source:
https://github.com/flannelhead/blackstar/blob/master/example.png Code repo:
https://github.com/flannelhead/blackstar

TIEA311 - Is your glass (of knowledge) now half full or half empty? Or just splashing?

TIEA311 - Final week in Jyväskylä

- Ray Casting (ideas on lecture; practicals in the final Assignment!)
- Ray Tracing issues \rightarrow possible to continue as a "hobby project"; teachers of "TIEA306 Ohjelmointityö" may be contacted regarding credit for (any) hobby projects.
- When learning, don't think about deadlines. Think about learning!
- My deadlines are flexible, since this course is about graphics and programming and not about meeting time-to-market. Leave that to project courses and traineeship periods!

Plan for the final two lectures:

- The usual questions and urgent issue handling
- Essentials of ray intersection with plane, sphere, and triangle
- Essentials of lighting calculations
- Cherry-pick title slides from advanced stuff that we mostly defer to the follow-up course (starts next week) and/or future self-study.

TIEA311 - Today in Jyväskylä

Plan for today:

- (Possible announcements or food-for-thought)
- Usual warm-up and group discussion
- Try to address the most urgent issues
- Break - reset the brain.
- Then continue with the theory.

TIEA311 - Today in Jyväskylä

We start by discussion and questions! (We reflect tomorrow, at the end of the very last lecture)

Work in groups of 3 students if possible:

- Fast warm-up: 90 seconds evenly split between group members (30s each in groups of 3), no interruptions from others: Foremost feelings right now?
- Last chance: Silent work, solo, 1 minute, make notes if you have to: At the moment, what would be the most helpful thing to help you (or others) to finalize the course successfully.
- Interaction: Group work, 1.5 minutes: At the moment, what would be the most helpful thing to help you (or others)? \rightarrow Sum it up classwide, and try to address the findings.

TIEA311 - Today in Jyväskylä

What were the findings in group discussion?

What were found to be the most important issues to address right now?
\rightarrow Classwide discussion is found on the lecture video.

NOTE: Even if you watch at home, please think about the same things and try to be in "virtual dialogue" with those in classroom. Use pen and paper! I believe, more and more every day, that doing so will make your brain perform activities that help your own learning.

NOTE: Contemplate if you could watch the lecture videos with some friends who would also like to learn computer graphics? Get some pizza and coke if it helps you get to the mood(?).

TIEA311 - Today in Jyväskylä

Plan for today:

- (Possible announcements or food-for-thought)
- Usual warm-up and group discussion
- Try to address the most urgent issues
- Break - reset the brain.
- Then continue with the theory.

Ray Casting

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection
- Ray-Sphere Intersection

Ray Casting

```
For every pixel
    Construct a ray from the eye
    For every object in the scene
    Find intersection with the ray
    Keep if closest
```

First we will study ray-plane intersection

Recall: Ray Representation

- Parametric line
- $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Explicit representation

3D Plane Representation?

$$
H(p)=d>0
$$

- (Infinite) plane defined by

3D Plane Representation?

$$
H(p)=d>0
$$

- (Infinite) plane defined by

$$
\begin{aligned}
& -\mathrm{P}_{\mathrm{o}}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \\
& -\mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Implicit plane equation

$$
\begin{aligned}
-\mathrm{H}(\mathrm{P}) & =\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \\
& =\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0
\end{aligned}
$$

3D Plane Representation?

$$
H(p)=d>0
$$

- (Infinite) plane defined by

$$
\begin{aligned}
& -\mathrm{P}_{\mathrm{o}}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z} 0\right) \\
& -\mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Implicit plane equation

$$
\begin{aligned}
-\mathrm{H}(\mathrm{P}) & =\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \\
& =\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0
\end{aligned}
$$

- What is D ?
$A x_{0}+B y_{0}+C z_{0}+D=0 \quad$ (Point P_{0} must lie on plane)
$\Rightarrow D=-A x_{0}-B y_{0}-C z_{0}$

3D Plane Representation?

$$
H(p)>0
$$

- (Infinite) plane defined by

$$
\begin{aligned}
& -\mathrm{P}_{\mathrm{o}}=(\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0) \\
& -\mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Implicit plane equation

$$
\begin{aligned}
-\mathrm{H}(\mathrm{P}) & =\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \\
& =\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0
\end{aligned}
$$

- Point-Plane distance?
- If n is normalized, distance to plane is $\mathrm{H}(\mathrm{P})$
- it is a signed distance!

Explicit vs. Implicit?

- Ray equation is explicit $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Parametric
- Generates points
- Hard to verify that a point is on the ray
- Plane equation is implicit $\mathrm{H}(\mathrm{P})=\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0$
- Solution of an equation
- Does not generate points
- Verifies that a point is on the plane
- Exercise: Explicit plane and implicit ray?

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Done!? What the.. How?

Puzzled by how the final equation "suddenly appears"?

You should be, at least for a second. And then as long as it takes, until you are happy that you understand and agree.

This was talked through and sketched on lecture. What you should always do when attempting to fully understand "anything math" is to fill all the gaps either in your brain (impossible at first, becoming possible and then faster only with experience) or with pen and paper. Suspect everything until you agree, every step of the way! With your own hands, you can also use cleaner notation than in some slide set, for example to mark up vectors apart from scalars using "arrow hats".

The next slide leaves not many gaps. Once you understand the "legal moves", you can start combining them in your head, no more writing out those dull intermediate steps. Math articles and textbooks (even introductory ones!) leave out many "obvious", "minor" details, because they expect the reader to fill them in, one way (brain) or the other (brain \& paper)!

Done!? What the.. How?

$$
\begin{aligned}
\vec{n} \cdot\left(\vec{R}_{o}+t \vec{R}_{d}\right)+D & =0 \\
\vec{n} \cdot\left(\vec{R}_{o}+t \vec{R}_{d}\right)+D-D & =0-D \\
\vec{n} \cdot\left(\vec{R}_{o}+t \vec{R}_{d}\right)+(D-D) & =0-D \\
\vec{n} \cdot\left(\vec{R}_{o}+t \vec{R}_{d}\right)+0 & =0-D \\
\vec{n} \cdot\left(\vec{R}_{o}+t \vec{R}_{d}\right) & =-D \\
\vec{n} \cdot \vec{R}_{o}+\vec{n} \cdot\left(t \vec{R}_{d}\right) & =-D \\
\vec{n} \cdot \vec{R}_{o}-\vec{n} \cdot \vec{R}_{o}+\vec{n} \cdot\left(t \vec{R}_{d}\right) & =-D-\vec{n} \cdot \vec{R}_{o} \\
\left(\vec{n} \cdot \vec{R}_{o}-\vec{n} \cdot \vec{R}_{o}\right)+\vec{n} \cdot\left(t \vec{R}_{d}\right) & =-D-\vec{n} \cdot \vec{R}_{o} \\
0+\vec{n} \cdot\left(t \vec{R}_{d}\right) & =-D-\vec{n} \cdot \vec{R}_{o} \\
\vec{n} \cdot\left(t \vec{R}_{d}\right) & =-D-\vec{n} \cdot \vec{R}_{o} \\
t\left(\vec{n} \cdot \vec{R}_{d}\right) & =-D-\vec{n} \cdot \vec{R}_{o} \\
t\left(\vec{n} \cdot \vec{R}_{d}\right)\left(\vec{n} \cdot \vec{R}_{d}\right)^{-1} & =\left(-D-\vec{n} \cdot \vec{R}_{o}\right)\left(\vec{n} \cdot \vec{R}_{d}\right)^{-1} \\
t * 1 & =\left(-D-\vec{n} \cdot \vec{R}_{o}\right)\left(\vec{n} \cdot \vec{R}_{d}\right)^{-1} \\
t & =-\left(D+\vec{n} \cdot \vec{R}_{o}\right)\left(\vec{n} \cdot \vec{R}_{d}\right)^{-1} \\
t & =-\frac{D+\vec{n} \cdot \vec{R}_{o}}{\vec{n} \cdot \vec{R}_{d}}
\end{aligned}
$$

Start with equation. Do stuff that keeps both sides equal, towards leaving only t on the left side.

Added $-D$ to both sides. Different but equal.
Regroup (real sums are associative)
Sum of additive inverses yields zero (definition of "minus": $D-D=D+(-D)=0)$
Rid of zeros (neutral element for addition, i.e., additive identity). Performing the steps up to here, all at once, should have become "obvious" in high school; underlying axiomatic algebra likely not.

Dot product is distributive over vector addition
Add $-\vec{n} \cdot \vec{R}_{O}$ (additive inverse, like $-D$ above) to both sides. Middle OK since sum is commutative.

Regroup (associativity again)
Sum of additive inverses (again)
Rid of zero (additive identity)
Scalar multiplication property of dot product
Multiply both sides by multiplicative inverse ("divide"). Such inverse is not defined for 0 though!
multiplication by inverse yields multiplicative identity 1 ; multiplication denoted $*$ for clarity
Rid of 1 (multiplicative identity). Distributive and associative properties used on right to fit slide.

Use fractional "divide-by" notation for multiplication by the multiplicative inverse

Done!? What the.. Oh, yes, done indeed!

And that was why

$$
\vec{n} \cdot\left(\vec{R}_{o}+t \vec{R}_{d}\right)+D=0
$$

gives us

$$
t=-\frac{D+\vec{n} \cdot \vec{R}_{o}}{\vec{n} \cdot \vec{R}_{d}}
$$

"as the reader should verify" :).

Meanwhile, the reader will have noticed the possible case of division by zero! The reader will have attempted to figure out if and when it could happen, possibly by sketching figures, re-checking what the equations mean, and using real-world artefacts in front of real-world eye-rays (see the lecture video for example). If the reader hasn't done this, he or she may have wasted time just looking at random equations and not learning too much.

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Additional Bookkeeping

- Verify that intersection is closer than previous t $<\mathrm{t}_{\text {current }}$
- Verify that it is not out of range (behind eye)

Normal

- Also need surface normal for shading
- (Diffuse: dot product between light direction and normal, clamp to zero)
- Normal is gonstant over the plane

Questions?

Courtesy of Henrik Wann Jensen. Used with permission.
Image by Henrik Wann Jensen

Ray Casting

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection
- Ray-Sphere Intersection

Sphere Representation?

- Implicit sphere equation
- Assume centered at origin (easy to translate)
$-\mathrm{H}(\mathrm{P})=\|\mathrm{P}\|^{2}-\mathrm{r}^{2}=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0$

Ray-Sphere Intersection

- Insert explicit equation of ray into implicit equation of sphere \& solve for t
$\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t}^{*} \mathrm{R}_{\mathrm{d}} \quad ; \quad \mathrm{H}(\mathrm{P})=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0$

$$
\left(R_{o}+t R_{d}\right) \cdot\left(R_{o}+t R_{d}\right)-r^{2}=0
$$

Ray-Sphere Intersection

- Quadratic: $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0$
$-\mathrm{a}=1 \quad$ (remember, $\left\|\mathrm{R}_{\mathrm{d}}\right\|=1$)
$-\mathrm{b}=2 \mathrm{R}_{\mathrm{d}} \cdot \mathrm{R}_{\mathrm{o}}$
$-c=R_{o} \cdot R_{o}-r^{2}$
- with discriminant $d=\sqrt{b^{2}-4 a c}$
- and solutions $\quad t_{ \pm}=\frac{-b \pm d}{2 a}$

Ray-Sphere Intersection

- 3 cases, depending on the sign of $b^{2}-4 a c$
- What do these cases correspond to?
- Which root ($\mathrm{t}+$ or $\mathrm{t}-$) should you choose?
- Closest positive!

Ray-Sphere Intersection

- It's so easy that all ray-tracing images
have spheres!

:-)

Sphere Normal

- Simply Q/||Q||
$-\mathrm{Q}=\mathrm{P}(\mathrm{t})$, intersection point
- (for spheres centered at origin)

Questions?

Courtesy of Henrik Wann Jensen. Used with permission.

Ray-Triangle Intersection

- Use ray-plane intersection followed by in-triangle test
- Or try to be smarter
- Use barycentric coordinates

Barycentric Definition of a Plane

- A (non-degenerate) triangle ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) defines a plane
- Any point \mathbf{P} on this plane can be written as
$\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$,
with $\alpha+\beta+\gamma=1$

Barycentric Coordinates

- Since $\alpha+\beta+\gamma=1$, we can write $\alpha=1-\beta-\gamma$
$\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$
$\mathbf{P}(\beta, \gamma)=(1-\beta-\gamma) \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$

$$
=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

Vectors that lie on the triangle plane

Non-orthogonal coordinate system on the plane!

Barycentric Definition of a Plane

- $\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$ with $\alpha+\beta+\gamma=1$
- Is it explicit or implicit?

Fun to know:
\mathbf{P} is the barycenter, the single point upon which the triangle would balance if weights of size $\alpha, \beta, \& \gamma$ are placed on points $\mathbf{a}, \mathbf{b} \& \mathbf{c}$.

Barycentric Definition of a Triangle

- $\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$
with $\alpha+\beta+\gamma=1$ parameterizes the entire plane

Barycentric Definition of a Triangle

- $\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$
with $\alpha+\beta+\gamma=1$ parameterizes the entire plane
- If we require in addition that $\alpha, \beta, \gamma>=0$, we get just the triangle!
- Note that with $\alpha+\beta+\gamma=1$ this implies $0 \leq \alpha \leq 1 \quad \& \quad 0 \leq \beta \leq 1 \quad \& \quad 0 \leq \gamma \leq 1$
- Verify:
- $\alpha=0 \Rightarrow \mathbf{P}$ lies on line $\mathbf{b - c}$
- $\alpha, \beta=0 \Rightarrow \mathbf{P}=\mathbf{c}$
- etc.

Barycentric Definition of a Triangle

- $\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$
- Condition to be barycentric coordinates: $\alpha+\beta+\gamma=1$
- Condition to be inside the triangle:

$$
\alpha, \beta, \gamma \geq 0
$$

TIEA311 - Fast forward a bit

Let us briefly skim through a couple of slides about determining the barycentric coordinates of a point (already known to be within the plane).
(Example of some "math kinda stuff")

How Do We Compute α, β, γ ?

- Ratio of opposite sub-triangle area to total area

$$
-\alpha=\mathrm{A}_{\mathrm{a}} / \mathrm{A} \quad \beta=\mathrm{A}_{\mathrm{b}} / \mathrm{A} \quad \gamma=\mathrm{A}_{\mathrm{c}} / \mathrm{A}
$$

- Use signed areas for points outside the triangle

How Do We Compute α, β, γ ?

- Or write it as a 2×2 linear system
- $\mathbf{P}(\beta, \gamma)=\mathbf{a}+\beta \mathbf{e}_{1}+\gamma \mathbf{e}_{2}$

$$
\mathbf{e}_{1}=(\mathbf{b}-\mathbf{a}), \mathbf{e}_{2}=(\mathbf{c}-\mathbf{a})
$$

$$
\boldsymbol{a}+\beta \boldsymbol{e}_{1}+\gamma \boldsymbol{e}_{2}-\boldsymbol{P}=0
$$

C

How Do We Compute α, β, γ ?

- Or write it as a 2×2 linear system
- $\mathbf{P}(\beta, \gamma)=\mathbf{a}+\beta \mathbf{e}_{1}+\gamma \mathbf{e}_{2}$

$$
\mathbf{e}_{1}=(\mathbf{b}-\mathbf{a}), \mathbf{e}_{2}=(\mathbf{c}-\mathbf{a})
$$

$$
\boldsymbol{a}+\beta \boldsymbol{e}_{1}+\gamma \boldsymbol{e}_{2}-\boldsymbol{P}=0
$$

C

This should be zero

> Something's wrong... This
> is a linear system of 3
> equations and 2 unknowns!

How Do We Compute α, β, γ ?

- Or write it as a 2×2 linear system
- $\mathbf{P}(\beta, \gamma)=\mathbf{a}+\beta \mathbf{e}_{1}+\gamma \mathbf{e}_{2}$

$$
\mathbf{e}_{1}=(\mathbf{b}-\mathbf{a}), \mathbf{e}_{2}=(\mathbf{c}-\mathbf{a})
$$

$$
\begin{gathered}
\left\langle\boldsymbol{e}_{1}, \boldsymbol{a}+\beta \boldsymbol{e}_{1}+\gamma \boldsymbol{e}_{2}-\boldsymbol{P}\right\rangle=0 \\
\left\langle\boldsymbol{e}_{2}, \boldsymbol{a}+\beta \boldsymbol{e}_{1}+\gamma \boldsymbol{e}_{2}-\boldsymbol{P}\right\rangle=0 \\
\text { These should be zero }
\end{gathered}
$$

How Do We Compute α, β, γ ?

- Or write it as a 2×2 linear system
- $\mathbf{P}(\beta, \gamma)=\mathbf{a}+\beta \mathbf{e}_{1}+\gamma \mathbf{e}_{2}$

$$
\mathbf{e}_{1}=(\mathbf{b}-\mathbf{a}), \mathbf{e}_{2}=(\mathbf{c}-\mathbf{a})
$$

$$
\begin{aligned}
& \left\langle\boldsymbol{e}_{1}, \boldsymbol{a}+\beta \boldsymbol{e}_{1}+\gamma \boldsymbol{e}_{2}-\boldsymbol{P}\right\rangle=0 \\
& \left\langle\boldsymbol{e}_{2}, \boldsymbol{a}+\beta \boldsymbol{e}_{1}+\gamma \boldsymbol{e}_{2}-\boldsymbol{P}\right\rangle=0
\end{aligned}
$$

$$
\left(\begin{array}{ll}
\left\langle\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right\rangle & \left\langle\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\rangle \\
\left\langle\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right\rangle & \left\langle\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right\rangle
\end{array}\right)\binom{\beta}{\gamma}=\binom{c_{1}}{c_{2}}
$$

where $\binom{c_{1}}{c_{2}}=\binom{\left\langle(\boldsymbol{P}-\boldsymbol{a}), \boldsymbol{e}_{1}\right\rangle}{\left\langle(\boldsymbol{P}-\boldsymbol{a}), \boldsymbol{e}_{2}\right\rangle}$
and <abb> is the dot product.

TIEA311

Back to basics...
... which means: Just grab an equation from a "math person" and reproduce it in C_{++}(or any other language) for fun and/or profit.

Intersection with Barycentric Triangle

- Again, set ray equation equal to barycentric equation

$$
\begin{aligned}
\mathbf{P}(\mathrm{t}) & =\mathbf{P}(\beta, \gamma) \\
\mathbf{R}_{\mathrm{o}}+\mathrm{t} * \mathbf{R}_{\mathrm{d}} & =\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
\end{aligned}
$$

- Intersection if $\beta+\gamma \leq 1 \quad \& \beta \geq 0 \quad \& \gamma \geq 0$ (and $\mathrm{t}>\mathrm{t}_{\text {min }} \ldots$)

Intersection with Barycentric Triangle

- $\mathbf{R}_{\mathrm{o}}+\mathrm{t} * \mathbf{R}_{\mathrm{d}}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})$

$$
\left.\begin{array}{l}
R_{o x}+t R_{d x}=a_{x}+\beta\left(b_{x}-a_{x}\right)+\gamma\left(c_{x}-a_{x}\right) \\
R_{o y}+t R_{d y}=a_{y}+\beta\left(b_{y}-a_{y}\right)+\gamma\left(c_{y}-a_{y}\right) \\
R_{o z}+t R_{d z}=a_{z}+\beta\left(b_{z}-a_{z}\right)+\gamma\left(c_{z}-a_{z}\right)
\end{array}\right\} \begin{aligned}
& 3 \text { equations, } \\
& 3 \text { unknowns }
\end{aligned}
$$

- Regroup \& write in matrix form $\mathbf{A x}=\mathbf{b}$

$$
\left[\begin{array}{ccc}
a_{x}-b_{x} & a_{x}-c_{x} & R_{d x} \\
a_{y}-b_{y} & a_{y}-c_{y} & R_{d y} \\
a_{z}-b_{z} & a_{z}-c_{z} & R_{d z}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right]=\left[\begin{array}{l}
a_{x}-R_{o x} \\
a_{y}-R_{o y} \\
a_{z}-R_{o z}
\end{array}\right]
$$

Cramer's Rule

- Used to solve for one variable at a time in system of equations

$$
\beta=\frac{\left|\begin{array}{lll}
a_{x}-R_{o x} & a_{x}-c_{x} & R_{d x} \\
a_{y}-R_{o y} & a_{y}-c_{y} & R_{d y} \\
a_{z}-R_{o z} & a_{z}-c_{z} & R_{d z}
\end{array}\right|}{|A|} \gamma=\frac{\left|\begin{array}{lll}
a_{x}-b_{x} & a_{x}-R_{o x} & R_{d x} \\
a_{y}-b_{y} & a_{y}-R_{o y} & R_{d y} \\
a_{z}-b_{z} & a_{z}-R_{o z} & R_{d z}
\end{array}\right|}{|A|}
$$

$$
t=\frac{\left|\begin{array}{lll}
a_{x}-b_{x} & a_{x}-c_{x} & a_{x}-R_{o x} \\
a_{y}-b_{y} & a_{y}-c_{y} & a_{y}-R_{o y} \\
a_{z}-b_{z} & a_{z}-c_{z} & a_{z}-R_{o z}
\end{array}\right|}{|A|}
$$

| | denotes the determinant

Can be copied mechanically into code

Barycentric Intersection Pros

- Efficient
- Stores no plane equation
- Get the barycentric coordinates for free
- Useful for interpolation, texture mapping

Barycentric Interpolation

- Values $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ defined at $\mathbf{a}, \mathbf{b}, \mathbf{c}$
- Colors, normal, texture coordinates, etc.
- $\mathbf{P}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$ is the point...
- $\mathrm{v}(\alpha, \beta, \gamma)=\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}+\gamma \mathrm{v}_{3}$ is the barycentric interpolation of $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ at point \mathbf{P}
- Sanity check: $v(1,0,0)=v_{1}$, etc.
- I.e, once you know α, β, γ you can interpolate values using the same weights.
- Convenient!

Questions?

- Image computed using the RADIANCE system by Greg Ward

Ray Casting: Object Oriented Design

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest

Object-Oriented Design

- We want to be able to add primitives easily
- Inheritance and virtual methods
- Even the scene is derived from Object3D!

- Also cameras are abstracted (perspective/ortho)
- Methods for generating rays for given image coordinates

Assignment 4 \& 5: Ray Casting/Tracing

- Write a basic ray caster
- Orthographic and perspective cameras
- Spheres and triangles

- 2 Display modes: color and distance
- We provide classes for
- Ray: origin, direction
- Hit: t, Material, (normal)
- Scene Parsing
- You write ray generation,
 hit testing, simple shading

Books

- Peter Shirley et al.: Fundamentals of Computer Graphics AK Peters
- Ray Tracing
- Jensen
- Shirley \quad-Shirley P., M. Ashikhmin and S. Marschner, Fundamentals of Computer Graphics -Shirley P. and R.K. Morley, Realistic Ray Tracing
- Glassner

Remember the ones at books 24×7 mentioned in the beginning!

Constructive Solid Geometry (CSG)

] \square| 8 | 2 |
| :---: | :---: |
| 8 | 2 |

A neat may a ouild complex objects from simple parts using Boolean operations

- Very easy y hen ray tracing
- Remedy used this in the Max Payne games for modeling the environments
- Not so easy when not ray tracing :)

Precision

- What happens when
- Ray Origin lies on an object?
- Grazing rays?
- Problem with floating-point approximation

The Evil ε

- In ray tracing, do NOT report intersection for rays starting on surfaces
- Secondary rays start on surfaces
- Requires epsilons
- Best to nudge the starting point off the surface e.g., along normal

The Evil ε

- Edges in triangle meshes
- Must report intersection (otherwise not watertight)
- Hard to get right

Questions?

Image by Henrik Wann Jensen

Courtesy of Henrik Wann Jensen. Used with permission.

Transformations and Ray Casting

- We have seen that transformations such as affine transforms are useful for modeling \& animation
- How do we incorporate them into ray casting?

Incorporating Transforms

1. Make each primitive handle any applied transformations and produce a camera space description of its geometry
```
Transform {
    Translate { 1 0.5 0 }
    Scale { 2 2 2 }
    Sphere {
        center 0 0 0
        radius 1
    }
}
```

2. ...Or Transform the Rays

Primitives Handle Transforms

```
Sphere {
                center 3 2 0
        z_rotation 30
        r_major 2
        r_minor 1
}
```


- Complicated for many primitives

Transform Ray

- Move the ray from World Space to Object Space

World Space

$$
\begin{aligned}
p_{W S} & =\mathbf{M} p_{O S} \\
p_{O S} & =\mathbf{M}^{-1} p_{W S}
\end{aligned}
$$

Transform Ray

- New origin:
origin $_{O S}=\mathbf{M}^{-1}$ origin $_{W S}$

Note that the w

 component of direction is 0- New direction:
direction $_{O S}=\mathbf{M}^{-1}\left(\right.$ origin $_{W S}+\mathbf{1}^{*}$ direction $\left._{W S}\right)-\mathbf{M}^{-1}$ origin $_{W S}$
direction $_{O S}=\mathbf{M}^{-1}$ direction $_{W S}$

What About t ?

- If \mathbf{M} includes scaling, direction $_{\text {OS }}$ ends up NOT be normalized after transformation
- Two solutions
- Normalize the direction
- Do not normalize the direction

1. Normalize Direction

- $t_{O S} \neq t_{W S}$
and must be rescaled after intersection
==> One more possible failure case...

2. Do Not Normalize Direction

- $t_{O S}=t_{W S} \quad \rightarrow$ convenient!
- But you should not rely on $t_{O S}$ being true distance in intersection routines (e.g. $\mathrm{a} \neq 1$ in ray-sphere test)

Object Space

Transforming Points \& Directions

- Transform point

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
a x+b y+c z+d \\
e x+f y+g z+h \\
i x+j y+k z+l \\
1
\end{array}\right)
$$

- Transform direction

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
0
\end{array}\right]=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left[\begin{array}{c}
x \\
y \\
z \\
0
\end{array}\right]=\left(\begin{array}{c}
a x+b y+c z \\
e x+f y+g z \\
i x+j y+k z \\
0
\end{array}\right]
$$

Homogeneous Coordinates:
(x, y, z, w)
$w=0$ is a point at infinity (direction)

- If you do not store w you need different routines to apply \mathbf{M} to a point and to a direction ==> Store everything in 4D!

Different objects

- Points
- represent locations
- Vectors
- represent movement, force, displacement from A to B
- Normals
- represent orientation, unit length

- Coordinates
- numerical representation of the above objects in a given coordinate system

$$
\binom{1}{2}
$$

Normal

- Surface Normal: unit vector that is locally perpendicular to the surface

Why is the Normal important?

- It's used for shading — makes things look 3D!

object color only

Diffuse Shading

Visualization of Surface Normal

$$
\begin{gathered}
\pm x=\text { Red } \\
\pm y=\text { Green } \\
\pm z=\text { Blue }
\end{gathered}
$$

How do we transform normals?

Object Space

World Space

Transform Normal like Object?

- translation?
- rotation?
- isotropic scale?
- scale?
- reflection?
- shear?
- perspective?

Transform Normal like Object?

- translation?
- rotation?
- isotropic scale?
- scale?
- reflection?
- shear?
- perspective?

Transformation for shear and scale

Incorrect

Normal
Transformation

More Normal Visualizations

Incorrect Normal Transformation

Correct Normal Transformation

So how do we do it right?

- Think about transforming the tangent plane to the normal, not the normal vector

Original

Incorrect

Correct

Pick any vector $v O S$ in the tangent plane, how is it transformed by matrix \mathbf{M} ?

$$
v_{w s}=\mathbf{M} v_{o s}
$$

Transform tangent vector v

v is perpendicular to normal n :
Dot product

$$
\begin{aligned}
n_{o s}^{\top}\left(\mathbf{M}^{-1} \mathbf{M}\right) v_{o s} & =0 \\
\left(n_{o s}^{\top} \mathbf{M}^{-1}\right)\left(\mathbf{M} v_{o s}\right) & =0 \\
\left(n_{o s}^{\top} \mathbf{M}^{-1}\right) v_{w s} & =0
\end{aligned}
$$

$\nu_{v s}$ is perpendicular to normal $n_{n s}$:

$$
\begin{aligned}
& n_{w s}^{\top}=n_{o s}^{\top}\left(\mathbf{M}^{-1}\right) \\
& n_{w s}=\left(\mathbf{M}^{-1}\right)^{\top} n_{o s} \\
& n_{w s}^{\top} \mathcal{V}_{w s}=0
\end{aligned}
$$

Digression

$$
n_{w S}=\left(\mathbf{M}^{-1}\right)^{\top} n_{o s}
$$

- The previous proof is not quite rigorous; first you'd need to prove that tangents indeed transform with M.
- Turns out they do, but we'll take it on faith here.
- If you believe that, then the above formula follows.

Comment

- So the correct way to transform normals is:

$$
n_{w s}=\left(\mathbf{M}^{-1}\right)^{\top} n_{o s}
$$

Sometimes denoted $\mathrm{M}^{-\mathrm{T}}$

- But why did $n_{w s}=\mathbf{M} n_{o s}$ work for similitudes?
- Because for similitude / similarity transforms,

$$
\left(\mathbf{M}^{-1}\right)^{\top}=\lambda \mathbf{M}
$$

- e.g. for orthonormal basis:

$$
\mathbf{M}^{-\mathbf{1}}=\mathbf{M}^{\mathbf{\top}} \quad \text { i.e. }\left(\mathbf{M}^{-\mathbf{1}}\right)^{\mathbf{\top}}=\mathbf{M}
$$

Connections

- Not part of class, but cool
- "Covariant": transformed by the matrix
- e.g., tangent
- "Contravariant": transformed by the inverse transpose
- e.g., the normal
- a normal is a "co-vector"
- Google "differential geometry" to find out more

Position, Direction, Normal

- Position
- transformed by the full homogeneous matrix \mathbf{M}
- Direction
- transformed by \mathbf{M} except the translation component
- Normal
- transformed by $\mathbf{M}^{-\mathrm{T}}$, no translation component

MIT EECS 6.837 Computer Graphics

Ray Tracing

Wojciech Matusik, MIT EECS
Many slides from Jaakko Lehtinen and Fredo Durand

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene Find intersection with the ray

Keep if closest Shade

Today - Ray Tracing

(Indirecist 1 mination)

Reflections

Refractions

Shadows

HENLZKK WANM JENSEN zood

Overview of Today

- Shadows
- Reflection
- Refraction
- Recursive Ray Tracing
- "Hall of mirrors"

How Can We Add Shadows?

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade

How Can We Add Shadows?

```
color = ambient*hit->getMaterial()->getDiffuseColor()
for every light
    Ray ray2(hitPoint, directionToLight)
    Hit hit2(distanceToLight, NULL, NULL)
    For every object
        object->intersect(ray2, hit2, 0)
    if (hit2->getT() = distanceToLight)
        color += hit->getMaterial() ->Shade
            (ray, hit, directionToLight, lightColor)
return color
```


Problem: Self-Shadowing

color = ambient*hit->getMaterial()->getDiffuseColor()
for every light
Ray ray2 (hitPoint, directionToLight)
Hit hit2 (distanceToLight, NULL, NULL)
For every object
object->intersect(ray2, hit2, epsilon)
if (hit2->getT() = distanceToLighc) color += hit->getMaterial() ->Shade (ray, hit, directionToLight, lightColor)

Let's Think About Shadow Rays

- What's special about shadow rays compared to eye rays?

Let's Think About Shadow Rays

- What's special about shadow rays compared to eye rays?

Let's Think About Shadow Rays

- What's special about shadow rays compared to eye rays?

Let's Think About Shadow Rays

- What's special about shadow rays compared to eye rays?
- We do not need to find the closest intersection, any will do!

Shadow Optimization

- We only want to know whether there is an intersection, not which one is closest
- Special routine object3D: :intersectShadowRay ()
- Stops at first intersection

Questions?

That's All for Today!

- Further reading
(Shirley, Morley)

TIEA311 - Today in Jyväskylä

The time allotted for this lecture is now over.

Now: Break until tomorrow morning. Sleep if you have time.

But also try to wake up and come to the lecture!

We will pick up our thoughts soon enough!

