
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).



TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyväskylä:
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TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.



TIEA311 - Local plan for today

I Maybe some things I forgot to mention yesterday?
I Very brief recap of what went on previously.
I Then forward, with full speed!



1 MIT EECS 6.837 – Matusik 

MIT EECS 6.837 Computer Graphics 
Part 2 – Rendering 

NVIDIA 

Today: Intro to Rendering, Ray Casting 

© NVIDIA Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



26 

Ray Tracing 

Reflections, refractions 

Caustics 

Reflections 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Henrik Wann Jensen. Used with permission.

© Turner Whitted, Bell Laboratories. All rights reserved. This content is
excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.



For every pixel  

Construct a ray from the eye  

For every object in the scene 

Find intersection with the ray  

Keep if closest 

Shade depending on light and normal vector 

28 

Ray Casting 

N 
Finding the 

intersection point 

and normal is the 

central part of ray 

casting 



• Origin – Point 
• Direction – Vector  

– normalized is better 
• Parametric line 

– P(t) = origin + t * direction 

29 

Ray Representation 

origin 
direction 

P(t) 

How would you 

represent a ray? 



• Origin – Point 
• Direction – Vector  

– normalized is better 
• Parametric line 

– P(t) = origin + t * direction 

30 

Ray Representation 

origin 
direction 

P(t) 

Another way to put 

the ray casting 

problem statement: 

Find smallest t > 0 

such that P(t) lies 

on a surface in the 

scene 



• Albrecht Dürer, 16th century 

31 

Dürer’s Ray Casting Machine 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Albrecht Dürer, 16th century 

32 

Dürer’s Ray Casting Machine 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Ray Casting Basics 
 

• Camera and Ray Generation 
 

• Ray-Plane Intersection 
 

• Ray-Sphere Intersection 

33 

Ray Casting 



For every pixel 

  Construct a ray from the eye 

  For every object in the scene 

    Find intersection with ray 

      Keep if closest 

34 

Cameras 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Pinhole Camera 
• Box with a tiny hole 
• Inverted image 
• Similar triangles 

• Perfect image if hole 
infinitely small 

• Pure geometric optics 
• No depth of field issue 

(everything in focus) 



• From Gemma Frisius, 1545 
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Oldest Illustration  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Also Called “Camera Obscura” 

Image courtesy of Wellcome Library, London. License: CC-BY-NC. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Camera Obscura Today 

Abelardo Morell   
www.abelardomorell.net 

Images removed due to copyright restrictions -- please see
http://www.abelardomorell.net/photography/cameraobsc_01/cameraobsc_17.html
http://www.abelardomorell.net/posts/camera-obscura/
http://www.abelardomorell.net/photography/cameraobsc_49/cameraobsc_63.html 
for further details.



• Eye-image pyramid (view frustum) 
• Note that the distance/size of image are arbitrary 
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Simplified Pinhole Camera 

same image 

will result on 

this image plane 
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Camera Description? 



• Eye point e (center) 

• Orthobasis u, v, w (horizontal, up, direction) 

41 

Camera Description? 

Object 
coordinates 
World 
coordinates 
View 

coordinates 

Image 
coordinates 

u 
w 

v 
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Camera Description? 

Object 
coordinates 
World 
coordinates 
View 

coordinates 

Image 
coordinates 

u 
w 

v 

• Eye point e (center) 

• Orthobasis u, v, w (horizontal, up, direction) 

• Field of view angle 

• Image rectangle aspect ratio 
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Camera 

Image 
plane 

Image Coordinates 

-1 ≤ x ≤ 1 

-1 ≤ y ≤ 1 

Convenient to define 
“normalized image 
coordinates” such 
that the x, y 

coordinates run 

from -1 to 1 

regardless of the 

dimensions and 

aspect ratio of the 

image rectangle. 

This image is in the public domain.
Source: openclipart
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field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

eye point e 

p 

p is point on image 
plane at coordinate x, 
we want to know the 
direction of the ray r 

r? 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart
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field of view α 

image plane 
-1 < x < 1 

1 

right u 

view direction w 

Ray Generation in 2D 

What is the distance 
D to the screen so 
that the normalized 
coordinates go to 1? 

This image is in the public domain. Source: openclipart



Corrections
CORRECTION: In the following few slides, the ideas are
brilliantly visualized, but some of the equations are rubbish.
These are OK:

tan(α/2) = 1/D =⇒ D = 1/ tan(α/2)

The others should read as:

r = p− e = xu+Dw

And (for the 3D case):

r = xu+ aspect · yv +Dw
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field of view α 

image plane 
-1 < x < 1 

D 

1 

right u 

view direction w 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart
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field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

D 

r = p-e = (x*u, D*w) 

eye point e 

r 

p 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart
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Ray Generation in 2D 

field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

D 

eye point e 

r 

p 

then we just 
normalize r to get 
the ray 

r = p-e = (x*u, D*w) 

This image is in the public domain. Source: openclipart



• y coordinate is treated just like x, 
except accounting for aspect ratio 
– r = (x*u, aspect*y*v, D*w) 
– Again, u, v, w are the basis vectors 

of the view coordinate system 
– Aspect ratio handles non-square viewports 

• Think of your 16:9 widescreen TV 
 

• The point of the exercise with computing D was to 
allow us to use the [-1,1] image coordinate system 
regardless of field of view. 

49 

That was 2D, 3D is just as simple 
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Perspective vs. Orthographic 

• Parallel projection 
• No foreshortening 
• No vanishing point 

perspective orthographic 



• Ray Generation? 
– Origin = e + x*size*u + y*size*v 
– Direction is constant: w 

51 

Orthographic Camera 



• E.g. fish eye, omnimax, parabolic 

52 

Other Weird Cameras 

CAVE Columbia University 

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© CAVE Lab, Columbia University. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 
Even Funkier 

Multiperspective 
Imaging 

Courtesy of Paul Rademacher. Used with permission.



Plan 
• Vectors 

 

• Points 

 

• Homogenous coordinates 
 

• Normals 

57 



Homogeneous Coordinates 

•Add an extra dimension (same as frames) 
• in 2D, we use 3-vectors and 3 x 3 matrices 
• In 3D, we use 4-vectors and 4 x 4 matrices 

•The extra coordinate is now an arbitrary value, w 

• You can think of it as “scale,” or “weight” 
• For all transformations  
except perspective, you can 
just set w=1 and not worry  
about it 

x' 

y‘ 

1 

a    b 

d    e 

0  0 

c 

f 

1 

= 
x 

y 

1 

59 



• All non-zero scalar multiples of a point are considered 
identical 

• to get the equivalent Euclidean point, divide by w 

 

Projective Equivalence 

x 

y 

z 

w 

ax 

ay 

az 

aw 

a  != 0 

= 
x/w 

y/w 

z/w 

1 

= 
w !=0 

60 



Why bother with extra coord? 

w = 1 

w = 2 

• This picture gives away almost 
the whole story. 

61 



• Camera at origin, looking along z, 90 degree 
f.o.v., “image plane” at z=1 

Perspective in 2D 
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This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.



Perspective in 2D 

63 
This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

The projected point in 
homogeneous 
coordinates 
(we just added w=1): 



Perspective in 2D 

Projectively 
equivalent 
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This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.



Perspective in 2D 
We’ll just copy z to w, 
and get the projected 
point after 
homogenization! 

65 
This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.



Homogeneous Visualization 
• Divide by w to normalize (project) 

w = 1 

w = 2 

(0, 0, 1) = (0, 0, 2) = … 
(7, 1, 1) = (14, 2, 2) = … 
(4, 5, 1) = (8, 10, 2) = … 

(0,0,0) 

66 



Homogeneous Visualization 
• Divide by w to normalize (project) 

• w = 0?   

w = 1 

w = 2 

(0, 0, 1) = (0, 0, 2) = … 
(7, 1, 1) = (14, 2, 2) = … 
(4, 5, 1) = (8, 10, 2) = … 

Points at infinity (directions) 

(0,0,0) 

67 



Projective Equivalence – Why? 
• For affine transformations, 

adding w=1 in the end proved to be convenient. 

• The real showpiece is perspective. 

68 

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-us e/.  



Questions? 

69 



Eye candy: photo tourism 
• Application of homogenous coordinates 

• Goal: given N photos of a scene 
• find where they were taken 
• get 3D geometry for points in the scene 

70 

From Photo Tourism::  Exploring Photo Collections in 3D, used with permission from ACM, Inc. 

©ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Step 1: point correspondences 
• Extract salient points (corners) from images 

• Find the same scene point in other images 

• To learn how it’s done, take 6.815 

71 



Structure from motion 
• Given point correspondences 

• Unknowns: 3D point  location, camera poses 

• For each point in each image, write perspective 
equations 

72 
Camera 1 R1,t1 

Camera 2 R2,t2 

Camera 3 
R3,t3 

p1 

Minimize f(R,T,P) 



Eye candy: photo tourism 

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

73 
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http://users.jyu.fi/˜nieminen/tgp19/



• Ray Casting Basics 
 

• Camera and Ray Generation 
 

• Ray-Plane Intersection 
 

• Ray-Sphere Intersection 

54 

Ray Casting 



For every pixel  

Construct a ray from the eye  

For every object in the scene 

Find intersection with the ray  

Keep if closest 

First we will study ray-plane intersection 

55 

Ray Casting 



• Parametric line  
• P(t) = Ro + t * Rd 

• Explicit representation 

56 

Recall: Ray Representation 

Rd Ro 

origin 
direction 

P(t) 



• (Infinite) plane defined by  
– Po = (x0, y0, z0) 
– n = (A,B,C)  

57 

3D Plane Representation? 

H Po 

normal 
P 

P' 
H(p) = d < 0 

H(p) = d > 0 



• (Infinite) plane defined by  
– Po = (x0, y0, z0) 
– n = (A,B,C)  

• Implicit plane equation 
– H(P) = Ax+By+Cz+D = 0 

         = n·P + D = 0 

58 

3D Plane Representation? 

H Po 

normal 
P 

P' 
H(p) = d < 0 

H(p) = d > 0 



• (Infinite) plane defined by  
– Po = (x0, y0, z0) 
– n = (A,B,C)  

• Implicit plane equation 
– H(P) = Ax+By+Cz+D = 0 

         = n·P + D = 0 
– What is D? 

59 

3D Plane Representation? 

H Po 

normal 
P 

P' 
H(p) = d < 0 

H(p) = d > 0 

(Point P0 must lie on plane) 



• (Infinite) plane defined by  
– Po = (x0, y0, z0) 
– n = (A,B,C)  

• Implicit plane equation 
– H(P) = Ax+By+Cz+D = 0 

         = n·P + D = 0 
• Point-Plane distance? 

– If n is normalized,  
distance to plane is H(P) 

– it is a signed distance! 
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3D Plane Representation? 

H Po 

normal 
P 

P' 
H(p) < 0 

H(p) > 0 



• Ray equation is explicit       P(t) = Ro + t * Rd 
– Parametric 
– Generates points 
– Hard to verify that a point is on the ray  

• Plane equation is implicit    H(P) = n·P + D = 0 
– Solution of an equation 
– Does not generate points 
– Verifies that a point is on the plane 

 
• Exercise: Explicit plane and implicit ray? 

61 

Explicit vs. Implicit? 



• Intersection means both are satisfied 
• So, insert explicit equation of ray into  

implicit equation of plane & solve for t 
      P(t) = Ro + t * Rd 

      H(P) = n·P + D = 0 
      n·(Ro + t * Rd) + D = 0 
      t = -(D + n·Ro) / n·Rd  

62 

Ray-Plane Intersection 

P(t) 

Done! 



Done!? What the.. How?
Puzzled by how the final equation “suddenly appears”?

You should be, at least for a second. And then as long as it takes,
until you are happy that you understand and agree.

This was talked through and sketched on lecture. What you should
always do when attempting to fully understand “anything math” is to
fill all the gaps either in your brain (impossible at first, becoming
possible and then faster only with experience) or with pen and paper.
Suspect everything until you agree, every step of the way! With your
own hands, you can also use cleaner notation than in some slide set,
for example to mark up vectors apart from scalars using “arrow hats”.

The next slide leaves not many gaps. Once you understand the “legal
moves”, you can start combining them in your head, no more writing
out those dull intermediate steps. Math articles and textbooks (even
introductory ones!) leave out many “obvious”, “minor” details, because
they expect the reader to fill them in, one way (brain) or the other
(brain & paper)!



Done!? What the.. How?
~n · (~Ro + t ~Rd) +D = 0 Start with equation. Do stuff that keeps both sides

equal, towards leaving only t on the left side.

~n · (~Ro + t ~Rd) +D −D = 0−D Added −D to both sides. Different but equal.

~n · (~Ro + t ~Rd) + (D −D) = 0−D Regroup (real sums are associative)

~n · (~Ro + t ~Rd) + 0 = 0−D Sum of additive inverses yields zero (definition of
“minus”: D − D = D + (−D) = 0)

~n · (~Ro + t ~Rd) = −D
Rid of zeros (neutral element for addition, i.e., ad-
ditive identity). Performing the steps up to here,
all at once, should have become “obvious” in high
school; underlying axiomatic algebra likely not.

~n · ~Ro + ~n · (t ~Rd) = −D Dot product is distributive over vector addition

~n · ~Ro − ~n · ~Ro + ~n · (t ~Rd) = −D − ~n · ~Ro
Add −~n·~Ro (additive inverse, like −D above) to
both sides. Middle OK since sum is commutative.

(~n · ~Ro − ~n · ~Ro) + ~n · (t ~Rd) = −D − ~n · ~Ro Regroup (associativity again)

0 + ~n · (t ~Rd) = −D − ~n · ~Ro Sum of additive inverses (again)

~n · (t ~Rd) = −D − ~n · ~Ro Rid of zero (additive identity)

t(~n · ~Rd) = −D − ~n · ~Ro Scalar multiplication property of dot product

t(~n · ~Rd)(~n · ~Rd)
−1 = (−D − ~n · ~Ro)(~n · ~Rd)

−1 Multiply both sides by multiplicative inverse (“di-
vide”). Such inverse is not defined for 0 though!

t ∗ 1 = (−D − ~n · ~Ro)(~n · ~Rd)
−1 multiplication by inverse yields multiplicative iden-

tity 1; multiplication denoted ∗ for clarity

t = −(D + ~n · ~Ro)(~n · ~Rd)
−1 Rid of 1 (multiplicative identity). Distributive and

associative properties used on right to fit slide.

t = −D + ~n · ~Ro

~n · ~Rd

Use fractional “divide-by” notation for multiplication
by the multiplicative inverse



Done!? What the.. Oh, yes, done indeed!

And that was why

~n · (~Ro + t ~Rd) +D = 0

gives us

t = −D + ~n · ~Ro

~n · ~Rd

“as the reader should verify” :).

Meanwhile, the reader will have noticed the possible case of division
by zero! The reader will have attempted to figure out if and when it
could happen, possibly by sketching figures, re-checking what the
equations mean, and using real-world artefacts in front of real-world
eye-rays (see the lecture video for example). If the reader hasn’t done
this, he or she may have wasted time just looking at random equations
and not learning too much.



• Intersection means both are satisfied 
• So, insert explicit equation of ray into  

implicit equation of plane & solve for t 
      P(t) = Ro + t * Rd 

      H(P) = n·P + D = 0 
      n·(Ro + t * Rd) + D = 0 
      t = -(D + n·Ro) / n·Rd  
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Ray-Plane Intersection 

P(t) 

Done! 



• Intersection means both are satisfied 
• So, insert explicit equation of ray into  

implicit equation of plane & solve for t 
      P(t) = Ro + t * Rd 

      H(P) = n·P + D = 0 
      n·(Ro + t * Rd) + D = 0 
      t = -(D + n·Ro) / n·Rd  

63 

Ray-Plane Intersection 

P(t) 

Done! 

What’s the deal 
when n·Rd = 0? 



• Verify that intersection is closer than previous 
 

• Verify that it is not out of range (behind eye) 

64 

Additional Bookkeeping 

t > tmin 

t < tcurrent 

P(t) 



• Also need surface normal for shading 
– (Diffuse: dot product between light 

direction and normal, clamp to zero) 
• Normal is constant over the plane 

65 

Normal  

normal 



Image by Henrik Wann Jensen 
66 

Questions? 

Courtesy of Henrik Wann Jensen. Used with permission.



TIEA311

The following slides were not shown on the lecture (yet).

They are a preview of what we will talk about next, very soon.

Questions based on your preview will be much appreciated
when we meet on the next lecture!



• Ray Casting Basics 
 

• Camera and Ray Generation 
 

• Ray-Plane Intersection 
 

• Ray-Sphere Intersection 

67 

Ray Casting 



• Implicit sphere equation  
– Assume centered at origin (easy to translate) 
– H(P) = ||P||2 - r2 = P·P - r2  = 0 

68 

Sphere Representation? 

Rd Ro 



• Insert explicit equation of ray into  
implicit equation of sphere & solve for t  

    P(t) = Ro + t*Rd ;     H(P) = P·P - r2  =  0 
         (Ro + tRd) · (Ro + tRd) - r2  =  0 
                  Rd·Rdt2 + 2Rd·Rot + Ro·Ro - r2  = 0 

69 

Ray-Sphere Intersection 

Rd Ro 



• Quadratic: at2 + bt + c = 0 
– a = 1  (remember, ||Rd|| = 1) 
– b = 2Rd·Ro 

– c = Ro·Ro – r2 

 

• with discriminant 
 

• and solutions 

70 

Ray-Sphere Intersection 



• 3 cases, depending on the sign of  b2 – 4ac 
• What do these cases correspond to? 
• Which root (t+ or t-) should you choose? 

– Closest positive! 

71 

Ray-Sphere Intersection 



72 

Ray-Sphere Intersection 
• It's so easy  

that all  
ray-tracing  
images  
have  
spheres! 

:-) 

Tu
rn

er
 W

hi
tte

d 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Simply Q/||Q||  
– Q = P(t), intersection point 
– (for spheres centered at origin) 

73 

Sphere Normal 

Q 
normal 

Ro 

O 

Rd 



74 

Questions? 

Courtesy of Henrik Wann Jensen. Used with permission.



• Use ray-plane intersection followed by in-triangle test 
• Or try to be smarter 

– Use barycentric coordinates 

11 

Ray-Triangle Intersection 

Ro Rd 

c 

a b 

P 
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Barycentric Definition of a Plane 

[Möbius, 1827] 

c 

a b 

P 

Why? How? 

Ro Rd 

• A (non-degenerate) triangle (a,b,c) defines a plane 
• Any point P on this plane can be written as 
    P(,,) = a + b + c, 
    with ++ = 1 



• Since ++ =1, we can write  = 1––  
 P(,,) = a + b + c 

  P(,)      = (1––)a + b + c 
                   = a + (b-a) + (c-a) 

13 

Barycentric Coordinates 

c 

a b 

P 
Non-orthogonal  

coordinate 

system 

on the plane! 

rewrite 

Vectors that lie on 

the triangle plane 

{ { 



• P(,,) = a + b + c 
with ++ =1 

• Is it explicit or implicit? 

14 

Barycentric Definition of a Plane 
[Möbius, 1827] 

c 

a b 

P 

Fun to know: 

P is the barycenter, 
the single point upon which  
the triangle would balance if  
weights of size , , &  are  
placed on points a, b & c. 



• P(,,) = a + b + c 
with ++ =1 parameterizes the entire plane 

15 

Barycentric Definition of a Triangle 

c 

a b 

P 



• P(,,) = a + b + c 
with ++ =1 parameterizes the entire plane 

• If we require in addition that 
, ,  >= 0, we get just the triangle! 
– Note that with ++ =1 this implies 

0    1   &   0    1   &   0    1  
– Verify: 

•  =0  =>  P lies on line b-c 
• ,  =0  =>  P = c 
• etc. 
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Barycentric Definition of a Triangle 

c 

a b 

P 



• P(,,) = a + b + c 
• Condition to be barycentric coordinates: 

++ =1 
• Condition to be inside the triangle: 

, ,   0 
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Barycentric Definition of a Triangle 

c 

a b 

P 



TIEA311 - Fast forward a bit

Let us briefly skim through a couple of slides about determining
the barycentric coordinates of a point (already known to be
within the plane).

(Example of some “math kinda stuff”)



• Ratio of opposite sub-triangle area to total area 
–   = Aa/A       = Ab/A       = Ac/A 

• Use signed areas for points outside the triangle 
    

18 

How Do We Compute , ,  ? 

c 

a b 

P 

Aa 
A 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 

This should be zero 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 

This should be zero 

Something’s wrong... This 
is a linear system of 3 
equations and 2 
unknowns! 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 

These should be zero 

Ha! We’ll take inner products of 
this equation with e1 & e2 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 
where 

and <a,b> is the dot product. 



TIEA311

Back to basics. . .

. . . which means: Just grab an equation from a “math person”
and reproduce it in C++ (or any other language) for fun and/or
profit.



• Again, set ray equation equal to barycentric equation 
                            P(t) = P(, )  
                Ro + t * Rd = a + (b-a) + (c-a)  
• Intersection if  +   1   &   0   &   0 

     (and t > tmin … ) 
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Intersection with Barycentric Triangle 

Ro Rd 

c 

a b 

P 



• Ro + t * Rd = a + (b-a) + (c-a) 
    

 Rox + tRdx = ax + (bx-ax) + (cx-ax) 
 Roy + tRdy = ay + (by-ay) + (cy-ay) 
 Roz + tRdz = az + (bz-az)  + (cz-az) 

 
• Regroup & write in matrix form Ax=b 

25 

Intersection with Barycentric Triangle 

3 equations,  
3 unknowns 



• Used to solve for one variable at a time in system of equations 
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Cramer’s Rule 

A 

R R a b a 

R R a b a 

R R a b a 

dz oz z z z 

dy oy y y y 

dx ox x x x 

- - 
- - 

- 

=  

A 

R a c a b a 

R a c a b a 

R a c a b a 

t 
oz z z z z z 

oy y y y y y 

ox x x x x x 

- - - 
- - - 
- - - 

= 

A 

R c a R a 

R c a R a 

R c a R a 

dz z z oz z 

dy y y oy y 

dx x x ox x - 

=  

|   | denotes the 
determinant 

 
Can be copied 
mechanically  

into code 

- 
- 
- 

- 

- 

- 
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Barycentric Intersection Pros 

Ro Rd 

c 

a b 

P 

• Efficient 
• Stores no plane equation 
• Get the barycentric coordinates for free 

– Useful for interpolation, texture mapping 



• Values v1, v2, v3 defined at a, b, c 

– Colors, normal, texture coordinates, etc. 
• P(,,) = a + b + c is the point... 
• v(,,) = v1 + v2 + v3 is the 

barycentric interpolation of 
v1,v2,v3 at point P 

– Sanity check: v(1,0,0) = v1, etc. 
• I.e, once you know ,, 

you can interpolate values 
using the same weights. 
– Convenient! 
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Barycentric Interpolation 

v1 

v2 

v3 

P 
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Questions? 
• Image computed using 

the RADIANCE 
system by Greg Ward 

© Martin Moeck. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 



For every pixel 

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 
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Ray Casting: Object Oriented Design 



• We want to be able to add primitives easily 
– Inheritance and virtual methods 

• Even the scene is derived from Object3D! 
 
 
 
 
 

• Also cameras are abstracted (perspective/ortho) 
– Methods for generating rays for given image coordinates 
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Object-Oriented Design 

Object3D 
bool intersect(Ray, Hit, tmin) 

Plane 
bool intersect(Ray, Hit, 

tmin) 

Sphere 
bool intersect(Ray, Hit,  

tmin) 

Triangle Mesh 
bool intersect(Ray, Hit, 

 tmin) 

Group 
bool intersect(Ray, Hit,  

tmin) 



• Write a basic ray caster 
– Orthographic and 

perspective cameras 
– Spheres and triangles 
– 2 Display modes: color and distance 

• We provide classes for 
– Ray: origin, direction  
– Hit: t, Material, (normal) 
– Scene Parsing 

• You write ray generation, 
hit testing, simple shading 
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Assignment 4 & 5: Ray Casting/Tracing 



• Peter Shirley et al.: 
Fundamentals of  

Computer Graphics 
AK Peters 
 

• Ray Tracing 
– Jensen 
– Shirley 
– Glassner 
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Books 

Remember the ones at 

books24x7 mentioned 

in the beginning! 

Images of three book covers have been removed due to copyright restrictions.  Please see the 
following books for more details: 
-Shirley P., M. Ashikhmin and S. Marschner, Fundamentals of Computer Graphics 

-Shirley P. and R.K. Morley, Realistic Ray Tracing 

-Jensen H.W., Realistic Image Synthesis Using Photon Mapping 



 
 
 
 
 

• A neat way to build complex objects from simple 
parts using Boolean operations 
– Very easy when ray tracing 

• Remedy used this in the Max Payne games for 
modeling the environments 
– Not so easy when not ray tracing :) 
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Constructive Solid Geometry (CSG) 

© Rockstar Games. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• What happens when  
– Ray Origin lies on an object? 
– Grazing rays? 

• Problem with floating-point approximation 
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Precision 
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The Evil  

reflection 

refraction 

shadow 

• In ray tracing, do NOT report intersection for rays 
starting on surfaces 
– Secondary rays start on surfaces 
– Requires epsilons 
– Best to nudge the starting 

point off the surface 
e.g., along normal 



• Edges in triangle meshes 
– Must report intersection (otherwise not watertight) 
– Hard to get right 
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The Evil  
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Questions? 

Image by Henrik Wann Jensen 

Courtesy of Henrik Wann Jensen. Used with permission.



• We have seen that transformations such as affine 
transforms are useful for modeling & animation 

• How do we incorporate them into ray casting? 
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Transformations and Ray Casting 



1. Make each primitive handle any applied 
transformations and produce a camera space 
description of its geometry 
 
 
 
 
 
 

2. ...Or Transform the Rays 
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Incorporating Transforms 

Transform { 

    Translate { 1 0.5 0 } 

    Scale { 2 2 2 } 

    Sphere {  

        center 0 0 0  

        radius 1  

    }  

}  



• Complicated for many primitives 
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Primitives Handle Transforms 

r 
major 

r 
minor 

(x,y) 

Sphere {  

    center 3 2 0   

    z_rotation 30 

    r_major 2 

    r_minor 1  

}   
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MIT EECS 6.837 – Durand  

(0,0) 

Transform Ray 
• Move the ray from World Space to Object Space 

Object Space World Space 

r = 1 

r 
major 

r 
minor 

(x,y) 

pWS  =  M    pOS 

pOS  =  M-1  pWS 



• New origin: 
 

• New direction: 
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originOS  = M-1 originWS 

directionOS  = M-1 (originWS + 1 * directionWS)   -   M-1 originWS 

originOS 

originWS 

directionOS 

directionWS 

Object Space World Space 

 qWS = originWS + tWS * directionWS 

 qOS  = originOS + tOS * directionOS 

directionOS  = M-1  directionWS 

Transform Ray 
Note that the w 

component of 

direction is 0 



• If M includes scaling, directionOS ends up  
NOT be normalized after transformation  
 

• Two solutions 
– Normalize the direction  
– Do not normalize the direction 
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What About t ? 



• tOS ≠  tWS    

and must be rescaled after intersection 
==> One more possible failure case... 
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1. Normalize Direction 

Object Space World Space 

tWS tOS 



• tOS =  tWS     convenient! 
• But you should not rely on tOS being true distance in 

intersection routines (e.g. a≠1 in ray-sphere test) 
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2. Do Not Normalize Direction 

Object Space World Space 

tWS tOS 



• Transform point 
 
 

 
• Transform direction 
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Transforming Points & Directions 

Homogeneous Coordinates:  
(x,y,z,w) 

w = 0 is a point at infinity (direction) 

• If you do not store w you need different routines to apply M to a 
point and to a direction ==> Store everything in 4D! 



Different objects 

• Points 

• represent locations 

• Vectors 

• represent movement, force, displacement from A to B 

• Normals  

• represent orientation, unit length 

• Coordinates 

• numerical representation of the above objects  
in a given coordinate system 

5 



Normal 

• Surface Normal:  unit vector that is locally 
perpendicular to the surface 

6 



Why is the Normal important? 

• It's used for shading — makes things look 3D! 

object color only  Diffuse Shading  

7 



Visualization of Surface Normal 

   ± x = Red 
± y = Green 
± z = Blue  

8 



How do we transform normals? 

Object Space World Space 

nOS 

nWS 

9 



Transform Normal like Object? 

• translation? 

• rotation? 

• isotropic scale? 

• scale? 

• reflection? 

• shear? 

• perspective?  

10 



Transform Normal like Object? 

• translation? 

• rotation? 

• isotropic scale? 

• scale? 

• reflection? 

• shear? 

• perspective? 

11 



Transformation for shear and scale 

Incorrect 
Normal 
Transformation 

Correct 
Normal 
Transformation 

12 



More Normal Visualizations 

Incorrect Normal Transformation Correct Normal Transformation 
13 



• Think about transforming the tangent plane   
to the normal, not the normal vector 

So how do we do it right? 

Original Incorrect Correct 

nOS 

Pick any vector vOS in the tangent plane, 
how is it transformed by matrix M? 

vOS 
vWS 

nWS 

vWS   =   M  vOS 

14 



Transform tangent vector v 

v is perpendicular to normal n: 
nOSʿᵀ vOS  =  0 

 nOSᵀ  (M ̄ ¹  M)  vOS  =  0 

 nWSᵀ =  nOSᵀ (M ̄ ¹) 

 (nOSᵀ  M ̄ ¹)  (M   vOS)  =  0 
 (nOSᵀ  M ̄ ¹)  vWS  =  0 

 nWSᵀ vWS  =  0 

vWS is perpendicular to normal nWS: 

 nWS = (M ̄ ¹)ᵀ nOS 

nOS 

vWS 

nWS 

vOS 

Dot product 
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Digression 

 

 

• The previous proof is not quite rigorous; first 
you’d need to prove that tangents indeed 
transform with M. 
- Turns out they do, but we’ll take it on faith here. 

- If you believe that, then the above formula follows. 

 nWS = (M¯¹)ᵀ nOS 
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Comment 

• So the correct way to transform normals is: 

 

• But why did  nWS = M nOS work for similitudes? 

• Because for similitude / similarity transforms, 

(M¯¹)ᵀ =λ M 

• e.g. for orthonormal basis: 
 
                   M¯¹ = M ᵀ     i.e.  (M¯¹)ᵀ = M 
 

 nWS = (M¯¹)ᵀ nOS Sometimes denoted M¯ᵀ 
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Connections 

• Not part of class, but cool 
• “Covariant”: transformed by the matrix 

• e.g., tangent 

• “Contravariant”: transformed by the inverse transpose 
• e.g., the normal 

• a normal is a “co-vector” 

 

• Google “differential geometry” to find out more 

18 
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Recap: How to Transform Normals? 

Object Space World Space 

n
OS 

n
WS 



76 

Transformation for Shear and Scale 

Incorrect 
Normal 

Transformation 

Correct 
Normal 

Transformation 



• Think about transforming the tangent plane   
to the normal, not the normal vector 
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So How Do We Do It Right? 

Original Incorrect Correct 

n
OS 

Pick any vector vOS in the tangent plane, 
how is it transformed by matrix M? 

v
OS 

v
WS 

n
WS 

vWS   =   M  vOS 



78 

Transform Tangent Vector v 

v is perpendicular to normal n: 
nOS

T vOS  =  0 
 nOS

T  (M-1  M)  vOS  =  0 

 nWS
T =  nOS

T (M-1) 

 (nOS
T  M-1)  (M   vOS)  =  0 
 (nOS

T  M-1)  vWS  =  0 

 nWS
T vWS  =  0 

vWS is perpendicular to normal nWS: 

 nWS = (M-1)T nOS 

n
OS 

v
WS 

n
WS 

v
OS 

Dot product 



• Position  
– transformed by the full homogeneous matrix M 

• Direction 
– transformed by M except the translation component 

• Normal  
– transformed by M-T, no translation component 
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Position, Direction, Normal 



MIT EECS 6.837 Computer Graphics 

Ray Tracing 
 
 
 
 
 
 
 
 
 
 
 
 
Wojciech Matusik, MIT EECS 
Many slides from Jaakko Lehtinen and Fredo Durand 

H
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n 
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1 Courtesy of Henrik Wann Jensen. Used with permission.



For every pixel  

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 

     Shade 

2 

Ray Casting 



Today – Ray Tracing 
(Indirect illumination) 

Shadows 

Reflections 
Refractions 

(Caustics) 

H
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n 
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4 Courtesy of Henrik Wann Jensen. Used with permission.



Overview of Today 

• Shadows 
 
 

• Reflection 
 
 

• Refraction 
 
 

• Recursive Ray Tracing 
– “Hall of mirrors” 

5 



How Can We Add Shadows? 

6 

For every pixel  

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 

     Shade 



   color = ambient*hit->getMaterial()->getDiffuseColor() 

   for every light  

      Ray ray2(hitPoint, directionToLight) 

      Hit hit2(distanceToLight, NULL, NULL) 

      For every object 

         object->intersect(ray2, hit2, 0) 

      if (hit2->getT() = distanceToLight) 

         color += hit->getMaterial()->Shade 

                  (ray, hit, directionToLight, lightColor) 

   return color 

How Can We Add Shadows? 

ambient = ka 
diffuseColor = kd 

7 



   color = ambient*hit->getMaterial()->getDiffuseColor() 

   for every light  

      Ray ray2(hitPoint, directionToLight) 

      Hit hit2(distanceToLight, NULL, NULL) 

      For every object 

         object->intersect(ray2, hit2, 0) 

      if (hit2->getT() = distanceToLight) 

         color += hit->getMaterial()->Shade 

                  (ray, hit, directionToLight, lightColor) 

   return color 

Problem: Self-Shadowing 

Without epsilon With epsilon 

epsilon) 

Bad Good 
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Let’s Think About Shadow Rays 

Ro Rd 

P 

9 

• What’s special about                                                    
shadow rays compared to eye rays? 



Let’s Think About Shadow Rays 

Ro Rd 

P 
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• What’s special about                                                    
shadow rays compared to eye rays? 



Let’s Think About Shadow Rays 

Ro Rd 

P 
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• What’s special about                                                    
shadow rays compared to eye rays? 



Let’s Think About Shadow Rays 

Ro Rd 

P 
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• What’s special about                                                    
shadow rays compared to eye rays? 
– We do not need to find the closest                                       

intersection, any will do! 



Shadow Optimization 
• We only want to know whether there is an intersection, 

not which one is closest 
• Special routine Object3D::intersectShadowRay()  

– Stops at first intersection 

13 



Questions? 
H
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14 Courtesy of Henrik Wann Jensen. Used with permission.



80 

That’s All for Today! 

Yu et al. 2009 

• Further reading 
– Realistic Ray Tracing, 2nd ed. 

(Shirley, Morley) 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!


