
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp19/

TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.

TIEA311 - Local plan for today

I Maybe some things I forgot to mention yesterday?
I Very brief recap of what went on previously.
I Then forward, with full speed!

1 MIT EECS 6.837 – Matusik

MIT EECS 6.837 Computer Graphics
Part 2 – Rendering

NVIDIA

Today: Intro to Rendering, Ray Casting

© NVIDIA Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

26

Ray Tracing

Reflections, refractions

Caustics

Reflections

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Henrik Wann Jensen. Used with permission.

© Turner Whitted, Bell Laboratories. All rights reserved. This content is
excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

For every pixel

Construct a ray from the eye

For every object in the scene

Find intersection with the ray

Keep if closest

Shade depending on light and normal vector

28

Ray Casting

N
Finding the

intersection point

and normal is the

central part of ray

casting

• Origin – Point
• Direction – Vector

– normalized is better
• Parametric line

– P(t) = origin + t * direction

29

Ray Representation

origin
direction

P(t)

How would you

represent a ray?

• Origin – Point
• Direction – Vector

– normalized is better
• Parametric line

– P(t) = origin + t * direction

30

Ray Representation

origin
direction

P(t)

Another way to put

the ray casting

problem statement:

Find smallest t > 0

such that P(t) lies

on a surface in the

scene

• Albrecht Dürer, 16th century

31

Dürer’s Ray Casting Machine

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Albrecht Dürer, 16th century

32

Dürer’s Ray Casting Machine

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Ray Casting Basics

• Camera and Ray Generation

• Ray-Plane Intersection

• Ray-Sphere Intersection

33

Ray Casting

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with ray

 Keep if closest

34

Cameras

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

35

Pinhole Camera
• Box with a tiny hole
• Inverted image
• Similar triangles

• Perfect image if hole
infinitely small

• Pure geometric optics
• No depth of field issue

(everything in focus)

• From Gemma Frisius, 1545

36

Oldest Illustration

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

37

Also Called “Camera Obscura”

Image courtesy of Wellcome Library, London. License: CC-BY-NC. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

38

Camera Obscura Today

Abelardo Morell
www.abelardomorell.net

Images removed due to copyright restrictions -- please see
http://www.abelardomorell.net/photography/cameraobsc_01/cameraobsc_17.html
http://www.abelardomorell.net/posts/camera-obscura/
http://www.abelardomorell.net/photography/cameraobsc_49/cameraobsc_63.html
for further details.

• Eye-image pyramid (view frustum)
• Note that the distance/size of image are arbitrary

39

Simplified Pinhole Camera

same image

will result on

this image plane

40

Camera Description?

• Eye point e (center)

• Orthobasis u, v, w (horizontal, up, direction)

41

Camera Description?

Object
coordinates
World
coordinates
View

coordinates

Image
coordinates

u
w

v

42

Camera Description?

Object
coordinates
World
coordinates
View

coordinates

Image
coordinates

u
w

v

• Eye point e (center)

• Orthobasis u, v, w (horizontal, up, direction)

• Field of view angle

• Image rectangle aspect ratio

43

Camera

Image
plane

Image Coordinates

-1 ≤ x ≤ 1

-1 ≤ y ≤ 1

Convenient to define
“normalized image
coordinates” such
that the x, y

coordinates run

from -1 to 1

regardless of the

dimensions and

aspect ratio of the

image rectangle.

This image is in the public domain.
Source: openclipart

44

field of view α
right u

view direction w

image plane
-1 < x < 1

x

eye point e

p

p is point on image
plane at coordinate x,
we want to know the
direction of the ray r

r?

Ray Generation in 2D

This image is in the public domain. Source: openclipart

45

field of view α

image plane
-1 < x < 1

1

right u

view direction w

Ray Generation in 2D

What is the distance
D to the screen so
that the normalized
coordinates go to 1?

This image is in the public domain. Source: openclipart

Corrections
CORRECTION: In the following few slides, the ideas are
brilliantly visualized, but some of the equations are rubbish.
These are OK:

tan(α/2) = 1/D =⇒ D = 1/ tan(α/2)

The others should read as:

r = p− e = xu+Dw

And (for the 3D case):

r = xu+ aspect · yv +Dw

46

field of view α

image plane
-1 < x < 1

D

1

right u

view direction w

Ray Generation in 2D

This image is in the public domain. Source: openclipart

47

field of view α
right u

view direction w

image plane
-1 < x < 1

x

D

r = p-e = (x*u, D*w)

eye point e

r

p

Ray Generation in 2D

This image is in the public domain. Source: openclipart

48

Ray Generation in 2D

field of view α
right u

view direction w

image plane
-1 < x < 1

x

D

eye point e

r

p

then we just
normalize r to get
the ray

r = p-e = (x*u, D*w)

This image is in the public domain. Source: openclipart

• y coordinate is treated just like x,
except accounting for aspect ratio
– r = (x*u, aspect*y*v, D*w)
– Again, u, v, w are the basis vectors

of the view coordinate system
– Aspect ratio handles non-square viewports

• Think of your 16:9 widescreen TV

• The point of the exercise with computing D was to
allow us to use the [-1,1] image coordinate system
regardless of field of view.

49

That was 2D, 3D is just as simple

50

Perspective vs. Orthographic

• Parallel projection
• No foreshortening
• No vanishing point

perspective orthographic

• Ray Generation?
– Origin = e + x*size*u + y*size*v
– Direction is constant: w

51

Orthographic Camera

• E.g. fish eye, omnimax, parabolic

52

Other Weird Cameras

CAVE Columbia University

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© CAVE Lab, Columbia University. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

53

Questions?
Even Funkier

Multiperspective
Imaging

Courtesy of Paul Rademacher. Used with permission.

Plan
• Vectors

• Points

• Homogenous coordinates

• Normals

57

Homogeneous Coordinates

•Add an extra dimension (same as frames)
• in 2D, we use 3-vectors and 3 x 3 matrices
• In 3D, we use 4-vectors and 4 x 4 matrices

•The extra coordinate is now an arbitrary value, w

• You can think of it as “scale,” or “weight”
• For all transformations
except perspective, you can
just set w=1 and not worry
about it

x'

y‘

1

a b

d e

0 0

c

f

1

=
x

y

1

59

• All non-zero scalar multiples of a point are considered
identical

• to get the equivalent Euclidean point, divide by w

Projective Equivalence

x

y

z

w

ax

ay

az

aw

a != 0

=
x/w

y/w

z/w

1

=
w !=0

60

Why bother with extra coord?

w = 1

w = 2

• This picture gives away almost
the whole story.

61

• Camera at origin, looking along z, 90 degree
f.o.v., “image plane” at z=1

Perspective in 2D

62

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

Perspective in 2D

63
This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

The projected point in
homogeneous
coordinates
(we just added w=1):

Perspective in 2D

Projectively
equivalent

64

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

Perspective in 2D
We’ll just copy z to w,
and get the projected
point after
homogenization!

65
This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

Homogeneous Visualization
• Divide by w to normalize (project)

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

(0,0,0)

66

Homogeneous Visualization
• Divide by w to normalize (project)

• w = 0?

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

Points at infinity (directions)

(0,0,0)

67

Projective Equivalence – Why?
• For affine transformations,

adding w=1 in the end proved to be convenient.

• The real showpiece is perspective.

68

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-us e/.

Questions?

69

Eye candy: photo tourism
• Application of homogenous coordinates

• Goal: given N photos of a scene
• find where they were taken
• get 3D geometry for points in the scene

70

From Photo Tourism:: Exploring Photo Collections in 3D, used with permission from ACM, Inc.

©ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Step 1: point correspondences
• Extract salient points (corners) from images

• Find the same scene point in other images

• To learn how it’s done, take 6.815

71

Structure from motion
• Given point correspondences

• Unknowns: 3D point location, camera poses

• For each point in each image, write perspective
equations

72
Camera 1 R1,t1

Camera 2 R2,t2

Camera 3
R3,t3

p1

Minimize f(R,T,P)

Eye candy: photo tourism

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

73

TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp19/

• Ray Casting Basics

• Camera and Ray Generation

• Ray-Plane Intersection

• Ray-Sphere Intersection

54

Ray Casting

For every pixel

Construct a ray from the eye

For every object in the scene

Find intersection with the ray

Keep if closest

First we will study ray-plane intersection

55

Ray Casting

• Parametric line
• P(t) = Ro + t * Rd

• Explicit representation

56

Recall: Ray Representation

Rd Ro

origin
direction

P(t)

• (Infinite) plane defined by
– Po = (x0, y0, z0)
– n = (A,B,C)

57

3D Plane Representation?

H Po

normal
P

P'
H(p) = d < 0

H(p) = d > 0

• (Infinite) plane defined by
– Po = (x0, y0, z0)
– n = (A,B,C)

• Implicit plane equation
– H(P) = Ax+By+Cz+D = 0

 = n·P + D = 0

58

3D Plane Representation?

H Po

normal
P

P'
H(p) = d < 0

H(p) = d > 0

• (Infinite) plane defined by
– Po = (x0, y0, z0)
– n = (A,B,C)

• Implicit plane equation
– H(P) = Ax+By+Cz+D = 0

 = n·P + D = 0
– What is D?

59

3D Plane Representation?

H Po

normal
P

P'
H(p) = d < 0

H(p) = d > 0

(Point P0 must lie on plane)

• (Infinite) plane defined by
– Po = (x0, y0, z0)
– n = (A,B,C)

• Implicit plane equation
– H(P) = Ax+By+Cz+D = 0

 = n·P + D = 0
• Point-Plane distance?

– If n is normalized,
distance to plane is H(P)

– it is a signed distance!

60

3D Plane Representation?

H Po

normal
P

P'
H(p) < 0

H(p) > 0

• Ray equation is explicit P(t) = Ro + t * Rd
– Parametric
– Generates points
– Hard to verify that a point is on the ray

• Plane equation is implicit H(P) = n·P + D = 0
– Solution of an equation
– Does not generate points
– Verifies that a point is on the plane

• Exercise: Explicit plane and implicit ray?

61

Explicit vs. Implicit?

• Intersection means both are satisfied
• So, insert explicit equation of ray into

implicit equation of plane & solve for t
 P(t) = Ro + t * Rd

 H(P) = n·P + D = 0
 n·(Ro + t * Rd) + D = 0
 t = -(D + n·Ro) / n·Rd

62

Ray-Plane Intersection

P(t)

Done!

Done!? What the.. How?
Puzzled by how the final equation “suddenly appears”?

You should be, at least for a second. And then as long as it takes,
until you are happy that you understand and agree.

This was talked through and sketched on lecture. What you should
always do when attempting to fully understand “anything math” is to
fill all the gaps either in your brain (impossible at first, becoming
possible and then faster only with experience) or with pen and paper.
Suspect everything until you agree, every step of the way! With your
own hands, you can also use cleaner notation than in some slide set,
for example to mark up vectors apart from scalars using “arrow hats”.

The next slide leaves not many gaps. Once you understand the “legal
moves”, you can start combining them in your head, no more writing
out those dull intermediate steps. Math articles and textbooks (even
introductory ones!) leave out many “obvious”, “minor” details, because
they expect the reader to fill them in, one way (brain) or the other
(brain & paper)!

Done!? What the.. How?
~n · (~Ro + t ~Rd) +D = 0 Start with equation. Do stuff that keeps both sides

equal, towards leaving only t on the left side.

~n · (~Ro + t ~Rd) +D −D = 0−D Added −D to both sides. Different but equal.

~n · (~Ro + t ~Rd) + (D −D) = 0−D Regroup (real sums are associative)

~n · (~Ro + t ~Rd) + 0 = 0−D Sum of additive inverses yields zero (definition of
“minus”: D − D = D + (−D) = 0)

~n · (~Ro + t ~Rd) = −D
Rid of zeros (neutral element for addition, i.e., ad-
ditive identity). Performing the steps up to here,
all at once, should have become “obvious” in high
school; underlying axiomatic algebra likely not.

~n · ~Ro + ~n · (t ~Rd) = −D Dot product is distributive over vector addition

~n · ~Ro − ~n · ~Ro + ~n · (t ~Rd) = −D − ~n · ~Ro
Add −~n·~Ro (additive inverse, like −D above) to
both sides. Middle OK since sum is commutative.

(~n · ~Ro − ~n · ~Ro) + ~n · (t ~Rd) = −D − ~n · ~Ro Regroup (associativity again)

0 + ~n · (t ~Rd) = −D − ~n · ~Ro Sum of additive inverses (again)

~n · (t ~Rd) = −D − ~n · ~Ro Rid of zero (additive identity)

t(~n · ~Rd) = −D − ~n · ~Ro Scalar multiplication property of dot product

t(~n · ~Rd)(~n · ~Rd)
−1 = (−D − ~n · ~Ro)(~n · ~Rd)

−1 Multiply both sides by multiplicative inverse (“di-
vide”). Such inverse is not defined for 0 though!

t ∗ 1 = (−D − ~n · ~Ro)(~n · ~Rd)
−1 multiplication by inverse yields multiplicative iden-

tity 1; multiplication denoted ∗ for clarity

t = −(D + ~n · ~Ro)(~n · ~Rd)
−1 Rid of 1 (multiplicative identity). Distributive and

associative properties used on right to fit slide.

t = −D + ~n · ~Ro

~n · ~Rd

Use fractional “divide-by” notation for multiplication
by the multiplicative inverse

Done!? What the.. Oh, yes, done indeed!

And that was why

~n · (~Ro + t ~Rd) +D = 0

gives us

t = −D + ~n · ~Ro

~n · ~Rd

“as the reader should verify” :).

Meanwhile, the reader will have noticed the possible case of division
by zero! The reader will have attempted to figure out if and when it
could happen, possibly by sketching figures, re-checking what the
equations mean, and using real-world artefacts in front of real-world
eye-rays (see the lecture video for example). If the reader hasn’t done
this, he or she may have wasted time just looking at random equations
and not learning too much.

• Intersection means both are satisfied
• So, insert explicit equation of ray into

implicit equation of plane & solve for t
 P(t) = Ro + t * Rd

 H(P) = n·P + D = 0
 n·(Ro + t * Rd) + D = 0
 t = -(D + n·Ro) / n·Rd

62

Ray-Plane Intersection

P(t)

Done!

• Intersection means both are satisfied
• So, insert explicit equation of ray into

implicit equation of plane & solve for t
 P(t) = Ro + t * Rd

 H(P) = n·P + D = 0
 n·(Ro + t * Rd) + D = 0
 t = -(D + n·Ro) / n·Rd

63

Ray-Plane Intersection

P(t)

Done!

What’s the deal
when n·Rd = 0?

• Verify that intersection is closer than previous

• Verify that it is not out of range (behind eye)

64

Additional Bookkeeping

t > tmin

t < tcurrent

P(t)

• Also need surface normal for shading
– (Diffuse: dot product between light

direction and normal, clamp to zero)
• Normal is constant over the plane

65

Normal

normal

Image by Henrik Wann Jensen
66

Questions?

Courtesy of Henrik Wann Jensen. Used with permission.

TIEA311

The following slides were not shown on the lecture (yet).

They are a preview of what we will talk about next, very soon.

Questions based on your preview will be much appreciated
when we meet on the next lecture!

• Ray Casting Basics

• Camera and Ray Generation

• Ray-Plane Intersection

• Ray-Sphere Intersection

67

Ray Casting

• Implicit sphere equation
– Assume centered at origin (easy to translate)
– H(P) = ||P||2 - r2 = P·P - r2 = 0

68

Sphere Representation?

Rd Ro

• Insert explicit equation of ray into
implicit equation of sphere & solve for t

 P(t) = Ro + t*Rd ; H(P) = P·P - r2 = 0
 (Ro + tRd) · (Ro + tRd) - r2 = 0
 Rd·Rdt2 + 2Rd·Rot + Ro·Ro - r2 = 0

69

Ray-Sphere Intersection

Rd Ro

• Quadratic: at2 + bt + c = 0
– a = 1 (remember, ||Rd|| = 1)
– b = 2Rd·Ro

– c = Ro·Ro – r2

• with discriminant

• and solutions

70

Ray-Sphere Intersection

• 3 cases, depending on the sign of b2 – 4ac
• What do these cases correspond to?
• Which root (t+ or t-) should you choose?

– Closest positive!

71

Ray-Sphere Intersection

72

Ray-Sphere Intersection
• It's so easy

that all
ray-tracing
images
have
spheres!

:-)

Tu
rn

er
 W

hi
tte

d

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Simply Q/||Q||
– Q = P(t), intersection point
– (for spheres centered at origin)

73

Sphere Normal

Q
normal

Ro

O

Rd

74

Questions?

Courtesy of Henrik Wann Jensen. Used with permission.

• Use ray-plane intersection followed by in-triangle test
• Or try to be smarter

– Use barycentric coordinates

11

Ray-Triangle Intersection

Ro Rd

c

a b

P

12

Barycentric Definition of a Plane

[Möbius, 1827]

c

a b

P

Why? How?

Ro Rd

• A (non-degenerate) triangle (a,b,c) defines a plane
• Any point P on this plane can be written as
 P(,,) = a + b + c,
 with ++ = 1

• Since ++ =1, we can write  = 1––
 P(,,) = a + b + c

 P(,) = (1––)a + b + c
 = a + (b-a) + (c-a)

13

Barycentric Coordinates

c

a b

P
Non-orthogonal

coordinate

system

on the plane!

rewrite

Vectors that lie on

the triangle plane

{ {

• P(,,) = a + b + c
with ++ =1

• Is it explicit or implicit?

14

Barycentric Definition of a Plane
[Möbius, 1827]

c

a b

P

Fun to know:

P is the barycenter,
the single point upon which
the triangle would balance if
weights of size , , &  are
placed on points a, b & c.

• P(,,) = a + b + c
with ++ =1 parameterizes the entire plane

15

Barycentric Definition of a Triangle

c

a b

P

• P(,,) = a + b + c
with ++ =1 parameterizes the entire plane

• If we require in addition that
, ,  >= 0, we get just the triangle!
– Note that with ++ =1 this implies

0    1 & 0    1 & 0    1
– Verify:

•  =0 => P lies on line b-c
• ,  =0 => P = c
• etc.

16

Barycentric Definition of a Triangle

c

a b

P

• P(,,) = a + b + c
• Condition to be barycentric coordinates:

++ =1
• Condition to be inside the triangle:

, ,   0

17

Barycentric Definition of a Triangle

c

a b

P

TIEA311 - Fast forward a bit

Let us briefly skim through a couple of slides about determining
the barycentric coordinates of a point (already known to be
within the plane).

(Example of some “math kinda stuff”)

• Ratio of opposite sub-triangle area to total area
–  = Aa/A  = Ab/A  = Ac/A

• Use signed areas for points outside the triangle

18

How Do We Compute , ,  ?

c

a b

P

Aa
A

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

19

How Do We Compute , ,  ?

c

a b

P

This should be zero

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

20

How Do We Compute , ,  ?

c

a b

P

This should be zero

Something’s wrong... This
is a linear system of 3
equations and 2
unknowns!

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

21

How Do We Compute , ,  ?

c

a b

P

These should be zero

Ha! We’ll take inner products of
this equation with e1 & e2

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

22

How Do We Compute , ,  ?

c

a b

P
where

and <a,b> is the dot product.

TIEA311

Back to basics. . .

. . . which means: Just grab an equation from a “math person”
and reproduce it in C++ (or any other language) for fun and/or
profit.

• Again, set ray equation equal to barycentric equation
 P(t) = P(, )
 Ro + t * Rd = a + (b-a) + (c-a)
• Intersection if  +   1 &   0 &   0

 (and t > tmin …)

24

Intersection with Barycentric Triangle

Ro Rd

c

a b

P

• Ro + t * Rd = a + (b-a) + (c-a)

 Rox + tRdx = ax + (bx-ax) + (cx-ax)
 Roy + tRdy = ay + (by-ay) + (cy-ay)
 Roz + tRdz = az + (bz-az) + (cz-az)

• Regroup & write in matrix form Ax=b

25

Intersection with Barycentric Triangle

3 equations,
3 unknowns

• Used to solve for one variable at a time in system of equations

26

Cramer’s Rule

A

R R a b a

R R a b a

R R a b a

dz oz z z z

dy oy y y y

dx ox x x x

- -
- -

-

= 

A

R a c a b a

R a c a b a

R a c a b a

t
oz z z z z z

oy y y y y y

ox x x x x x

- - -
- - -
- - -

=

A

R c a R a

R c a R a

R c a R a

dz z z oz z

dy y y oy y

dx x x ox x -

= 

| | denotes the
determinant

Can be copied
mechanically

into code

-
-
-

-

-

-

27

Barycentric Intersection Pros

Ro Rd

c

a b

P

• Efficient
• Stores no plane equation
• Get the barycentric coordinates for free

– Useful for interpolation, texture mapping

• Values v1, v2, v3 defined at a, b, c

– Colors, normal, texture coordinates, etc.
• P(,,) = a + b + c is the point...
• v(,,) = v1 + v2 + v3 is the

barycentric interpolation of
v1,v2,v3 at point P

– Sanity check: v(1,0,0) = v1, etc.
• I.e, once you know ,,

you can interpolate values
using the same weights.
– Convenient!

28

Barycentric Interpolation

v1

v2

v3

P

29

Questions?
• Image computed using

the RADIANCE
system by Greg Ward

© Martin Moeck. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

30

Ray Casting: Object Oriented Design

• We want to be able to add primitives easily
– Inheritance and virtual methods

• Even the scene is derived from Object3D!

• Also cameras are abstracted (perspective/ortho)
– Methods for generating rays for given image coordinates

31

Object-Oriented Design

Object3D
bool intersect(Ray, Hit, tmin)

Plane
bool intersect(Ray, Hit,

tmin)

Sphere
bool intersect(Ray, Hit,

tmin)

Triangle Mesh
bool intersect(Ray, Hit,

 tmin)

Group
bool intersect(Ray, Hit,

tmin)

• Write a basic ray caster
– Orthographic and

perspective cameras
– Spheres and triangles
– 2 Display modes: color and distance

• We provide classes for
– Ray: origin, direction
– Hit: t, Material, (normal)
– Scene Parsing

• You write ray generation,
hit testing, simple shading

32

Assignment 4 & 5: Ray Casting/Tracing

• Peter Shirley et al.:
Fundamentals of

Computer Graphics
AK Peters

• Ray Tracing
– Jensen
– Shirley
– Glassner

33

Books

Remember the ones at

books24x7 mentioned

in the beginning!

Images of three book covers have been removed due to copyright restrictions. Please see the
following books for more details:
-Shirley P., M. Ashikhmin and S. Marschner, Fundamentals of Computer Graphics

-Shirley P. and R.K. Morley, Realistic Ray Tracing

-Jensen H.W., Realistic Image Synthesis Using Photon Mapping

• A neat way to build complex objects from simple
parts using Boolean operations
– Very easy when ray tracing

• Remedy used this in the Max Payne games for
modeling the environments
– Not so easy when not ray tracing :)

34

Constructive Solid Geometry (CSG)

© Rockstar Games. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• What happens when
– Ray Origin lies on an object?
– Grazing rays?

• Problem with floating-point approximation

62

Precision

63

The Evil 

reflection

refraction

shadow

• In ray tracing, do NOT report intersection for rays
starting on surfaces
– Secondary rays start on surfaces
– Requires epsilons
– Best to nudge the starting

point off the surface
e.g., along normal

• Edges in triangle meshes
– Must report intersection (otherwise not watertight)
– Hard to get right

64

The Evil 

65

Questions?

Image by Henrik Wann Jensen

Courtesy of Henrik Wann Jensen. Used with permission.

• We have seen that transformations such as affine
transforms are useful for modeling & animation

• How do we incorporate them into ray casting?

66

Transformations and Ray Casting

1. Make each primitive handle any applied
transformations and produce a camera space
description of its geometry

2. ...Or Transform the Rays

67

Incorporating Transforms

Transform {

 Translate { 1 0.5 0 }

 Scale { 2 2 2 }

 Sphere {

 center 0 0 0

 radius 1

 }

}

• Complicated for many primitives

68

Primitives Handle Transforms

r
major

r
minor

(x,y)

Sphere {

 center 3 2 0

 z_rotation 30

 r_major 2

 r_minor 1

}

69
MIT EECS 6.837 – Durand

(0,0)

Transform Ray
• Move the ray from World Space to Object Space

Object Space World Space

r = 1

r
major

r
minor

(x,y)

pWS = M pOS

pOS = M-1 pWS

• New origin:

• New direction:

70

originOS = M-1 originWS

directionOS = M-1 (originWS + 1 * directionWS) - M-1 originWS

originOS

originWS

directionOS

directionWS

Object Space World Space

 qWS = originWS + tWS * directionWS

 qOS = originOS + tOS * directionOS

directionOS = M-1 directionWS

Transform Ray
Note that the w

component of

direction is 0

• If M includes scaling, directionOS ends up
NOT be normalized after transformation

• Two solutions
– Normalize the direction
– Do not normalize the direction

71

What About t ?

• tOS ≠ tWS

and must be rescaled after intersection
==> One more possible failure case...

72

1. Normalize Direction

Object Space World Space

tWS tOS

• tOS = tWS  convenient!
• But you should not rely on tOS being true distance in

intersection routines (e.g. a≠1 in ray-sphere test)

73

2. Do Not Normalize Direction

Object Space World Space

tWS tOS

• Transform point

• Transform direction

74

Transforming Points & Directions

Homogeneous Coordinates:
(x,y,z,w)

w = 0 is a point at infinity (direction)

• If you do not store w you need different routines to apply M to a
point and to a direction ==> Store everything in 4D!

Different objects

• Points

• represent locations

• Vectors

• represent movement, force, displacement from A to B

• Normals

• represent orientation, unit length

• Coordinates

• numerical representation of the above objects
in a given coordinate system

5

Normal

• Surface Normal: unit vector that is locally
perpendicular to the surface

6

Why is the Normal important?

• It's used for shading — makes things look 3D!

object color only Diffuse Shading

7

Visualization of Surface Normal

 ± x = Red
± y = Green
± z = Blue

8

How do we transform normals?

Object Space World Space

nOS

nWS

9

Transform Normal like Object?

• translation?

• rotation?

• isotropic scale?

• scale?

• reflection?

• shear?

• perspective?

10

Transform Normal like Object?

• translation?

• rotation?

• isotropic scale?

• scale?

• reflection?

• shear?

• perspective?

11

Transformation for shear and scale

Incorrect
Normal
Transformation

Correct
Normal
Transformation

12

More Normal Visualizations

Incorrect Normal Transformation Correct Normal Transformation
13

• Think about transforming the tangent plane
to the normal, not the normal vector

So how do we do it right?

Original Incorrect Correct

nOS

Pick any vector vOS in the tangent plane,
how is it transformed by matrix M?

vOS
vWS

nWS

vWS = M vOS

14

Transform tangent vector v

v is perpendicular to normal n:
nOSʿᵀ vOS = 0

 nOSᵀ (M ̄ ¹ M) vOS = 0

 nWSᵀ = nOSᵀ (M ̄ ¹)

 (nOSᵀ M ̄ ¹) (M vOS) = 0
 (nOSᵀ M ̄ ¹) vWS = 0

 nWSᵀ vWS = 0

vWS is perpendicular to normal nWS:

 nWS = (M ̄ ¹)ᵀ nOS

nOS

vWS

nWS

vOS

Dot product

15

Digression

• The previous proof is not quite rigorous; first
you’d need to prove that tangents indeed
transform with M.
- Turns out they do, but we’ll take it on faith here.

- If you believe that, then the above formula follows.

 nWS = (M¯¹)ᵀ nOS

16

Comment

• So the correct way to transform normals is:

• But why did nWS = M nOS work for similitudes?

• Because for similitude / similarity transforms,

(M¯¹)ᵀ =λ M

• e.g. for orthonormal basis:

 M¯¹ = M ᵀ i.e. (M¯¹)ᵀ = M

 nWS = (M¯¹)ᵀ nOS Sometimes denoted M¯ᵀ

17

Connections

• Not part of class, but cool
• “Covariant”: transformed by the matrix

• e.g., tangent

• “Contravariant”: transformed by the inverse transpose
• e.g., the normal

• a normal is a “co-vector”

• Google “differential geometry” to find out more

18

75

Recap: How to Transform Normals?

Object Space World Space

n
OS

n
WS

76

Transformation for Shear and Scale

Incorrect
Normal

Transformation

Correct
Normal

Transformation

• Think about transforming the tangent plane
to the normal, not the normal vector

77

So How Do We Do It Right?

Original Incorrect Correct

n
OS

Pick any vector vOS in the tangent plane,
how is it transformed by matrix M?

v
OS

v
WS

n
WS

vWS = M vOS

78

Transform Tangent Vector v

v is perpendicular to normal n:
nOS

T vOS = 0
 nOS

T (M-1 M) vOS = 0

 nWS
T = nOS

T (M-1)

 (nOS
T M-1) (M vOS) = 0
 (nOS

T M-1) vWS = 0

 nWS
T vWS = 0

vWS is perpendicular to normal nWS:

 nWS = (M-1)T nOS

n
OS

v
WS

n
WS

v
OS

Dot product

• Position
– transformed by the full homogeneous matrix M

• Direction
– transformed by M except the translation component

• Normal
– transformed by M-T, no translation component

79

Position, Direction, Normal

MIT EECS 6.837 Computer Graphics

Ray Tracing

Wojciech Matusik, MIT EECS
Many slides from Jaakko Lehtinen and Fredo Durand

H
en

rik
 W

an
n

Je
ns

en

1 Courtesy of Henrik Wann Jensen. Used with permission.

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

 Shade

2

Ray Casting

Today – Ray Tracing
(Indirect illumination)

Shadows

Reflections
Refractions

(Caustics)

H
en

rik
 W

an
n

Je
ns

en

4 Courtesy of Henrik Wann Jensen. Used with permission.

Overview of Today

• Shadows

• Reflection

• Refraction

• Recursive Ray Tracing
– “Hall of mirrors”

5

How Can We Add Shadows?

6

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

 Shade

 color = ambient*hit->getMaterial()->getDiffuseColor()

 for every light

 Ray ray2(hitPoint, directionToLight)

 Hit hit2(distanceToLight, NULL, NULL)

 For every object

 object->intersect(ray2, hit2, 0)

 if (hit2->getT() = distanceToLight)

 color += hit->getMaterial()->Shade

 (ray, hit, directionToLight, lightColor)

 return color

How Can We Add Shadows?

ambient = ka
diffuseColor = kd

7

 color = ambient*hit->getMaterial()->getDiffuseColor()

 for every light

 Ray ray2(hitPoint, directionToLight)

 Hit hit2(distanceToLight, NULL, NULL)

 For every object

 object->intersect(ray2, hit2, 0)

 if (hit2->getT() = distanceToLight)

 color += hit->getMaterial()->Shade

 (ray, hit, directionToLight, lightColor)

 return color

Problem: Self-Shadowing

Without epsilon With epsilon

epsilon)

Bad Good

8

Let’s Think About Shadow Rays

Ro Rd

P

9

• What’s special about
shadow rays compared to eye rays?

Let’s Think About Shadow Rays

Ro Rd

P

10

• What’s special about
shadow rays compared to eye rays?

Let’s Think About Shadow Rays

Ro Rd

P

11

• What’s special about
shadow rays compared to eye rays?

Let’s Think About Shadow Rays

Ro Rd

P

12

• What’s special about
shadow rays compared to eye rays?
– We do not need to find the closest

intersection, any will do!

Shadow Optimization
• We only want to know whether there is an intersection,

not which one is closest
• Special routine Object3D::intersectShadowRay()

– Stops at first intersection

13

Questions?
H

en
rik

 W
an

n
Je

ns
en

14 Courtesy of Henrik Wann Jensen. Used with permission.

80

That’s All for Today!

Yu et al. 2009

• Further reading
– Realistic Ray Tracing, 2nd ed.

(Shirley, Morley)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!

