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TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.



TIEA311 - Local plan for today

I Maybe some things I forgot to mention yesterday?
I Very brief recap of what went on previously.
I Then forward, with full speed!



TIEA311

~a1

p̃~a2

~b1 q̃

~b2

”Midterm” revisited

Live exercise time!

→ See lecture video.

This is important.
Do this!
(non-Finnish ones need to cope
with English slides from MIT
that will summarize this later;
make sure you go through the
frame switches using pen and
paper, not only looking at them!)



Linear algebra is friendly and simple after the initial pain of
learning it. (this slide is transcripted from MIT OCW originals; I think the
matrices got inversed A vs A−1 w.r.t. our lecture example in Finnish. But that
is the point: we learn how to re-learn this any time we need to!)

Some transformation is specified by a matrix S in ”car” frame ~f
as ~f tc→ ~f tSc.
How is the world frame ~a affected by this?

I Frame can be interchanged with matrix and inverse:
~f t = ~atA−1 and ~at = ~f tA.

I Coordinates transform too:
~atd = (~f tA)d = ~f t(Ad) and ~f tc = (~atA−1)c = ~at(A−1c).

I So, start from transformation given in ~f :
~f tc→ ~f tSc

I Plug in the above expressions. Transformation then reads:
(~atA−1)(Ad)→ (~atA−1)S(Ad)

I Rearrange parentheses: ~at(A−1A)d→ ~at(A−1SA)d

I Rid of identity matrix: ~atd→ ~at(A−1SA)d. Done!



Linear algebra is friendly and simple after the initial pain of
learning it. (this slide uses the notations we created together during the
Finnish lecture example! And this, if anything, proves the main point: we have
learned how to re-learn and verify this any time we need to!)

Some transformation is specified by a matrix R in ”dude” frame
~b as ~btc→ ~btRc.
How is the world frame ~a affected by this?

I Frame can be interchanged with matrix and inverse:
~bt = ~atA and ~at = ~btA−1.

I Coordinates transform too:
~atd = (~btA−1)d = ~bt(A−1d) and ~f tc = (~atA)c = ~at(Ac).

I So, start from transformation given in ~f :
~f tc→ ~f tRc

I Plug in the above expressions. Transformation then reads:
(~atA)(A−1d)→ (~atA)R(A−1d)

I Rearrange parentheses: ~at(AA−1)d→ ~at(ARA−1)d

I Rid of identity matrix: ~atd→ ~at(ARA−1)d. Done!



Those who saw the lecture 13 of TIEA311 Spring 2019 either
live or on video witnessed the following:

I Insecure teacher, in panic, trying to figure out if he got it
right this time (after two consecutive years of failing the
first attempt at explaining this bit) or not.

I The effect of panic and extreme deadline pressure on
somebody who thinks he can do this thing any time, and
(seemingly) can, too:). Circumstances matter.

I In the end, there was ultimately no mistake, but
uncertainty was acknowledged. And that is the main
ingredient, folks!!

Learnings to take home:

I This stuff is easy. . . but only after getting it right and
being sure it was right.

I It is necessary to doubt everything, starting especially
from yourself. The same in all math and programming!

I Finally: math (and software!) does not lie. It works or it
doesn’t, and there is a reason. It can be verified/tested.



Further necessary exercises:

Compute the thing with actual matrices, using the power tools
of pen and paper, and verify it works for a simple transform, like
the 90 degree rotation we did together on Finnish lectures.

Celebrate the “magic” of mathematics that you can now
perform: the algebraic equation we sort of found is valid for
any affine transform and any two frames!

Think about how you can follow either the transformations of
the frame (multiply frame from right), or transformations of the
coordinates (multiply coordinates from left) one-by-one and
end up with the same result. Real-world objects may help the
brain.

Observe that after computing either way, there is finally only
one matrix M = ARA−1 that performs the whole transform.

This is the same for any number of combined transforms!
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How are transforms combined? 
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Scale then Translate 

Use matrix multiplication:   p'  =  T ( S p )  =  TS p 

Caution: matrix multiplication is NOT commutative! 
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Non-commutative Composition 

Scale then Translate:   p'  =  T ( S p )  =  TS p 

Translate then Scale:   p'  =  S ( T p )  =  ST p 
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Non-commutative Composition 

Scale then Translate:   p'  =  T ( S p )  =  TS p 
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Translate then Scale:   p'  =  S ( T p )  =  ST p 
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Some slides from BarbCutler & 
Jaakko Lehtinen 

Wojciech Matusik, MIT EECS 
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6.837 Computer Graphics 
Hierarchical Modeling 

Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical Modeling 
• Triangles, parametric curves and surfaces 

are the building blocks from which more 
complex real-world objects are modeled. 

 

• Hierarchical modeling creates complex real-
world objects by combining simple primitive 
shapes into more complex aggregate 
objects.  

21 
Image courtesy of Nostalgic dave on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical models 

22 
Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical models 

23 Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical models 
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Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical models 
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Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical models 

26

 
Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical models 
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Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Hierarchical Grouping of Objects 
• The “scene graph” represents 

the logical organization of scene 

6.837 -  Durand 

chair table 

table fruits 

ground 

scene 
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Scene Graph 

• Convenient Data structure  
for scene representation 

• Geometry (meshes, etc.) 

• Transformations 

• Materials, color 

• Multiple instances 

• Basic idea: Hierarchical Tree 

• Useful for manipulation/animation 

• Also for articulated figures 

• Useful for rendering, too 

• Ray tracing acceleration,  
occlusion culling 

• But note that two things that are close to 
each other in the tree are NOT necessarily 
spatially near each other 29 

This image is in the public domain.

Source: Wikimedia Commons.

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons.

License: CC-BY-SA. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Scene Graph Representation 

30 

• Basic idea: Tree 

• Comprised of several node types 

• Shape: 3D geometric objects 

• Transform: Affect current transformation 

• Property: Color, texture 

• Group: Collection of subgraphs 
 

 

• C++ implementation 

• base class Object 

• children, parent 

• derived classes for each                                
node type (group, transform) 



Scene Graph Representation 

Group 

Trsfrm Trsfrm Trsfrm Trsfrm 

Group 
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• In fact, generalization of a tree: Directed Acyclic Graph (DAG) 

• Means a node can have multiple parents, but cycles are not allowed 

• Why? Allows multiple instantiations 

• Reuse complex hierarchies many times in the scene using different 
transformations (example: a tree) 

• Of course, if you only want to reuse meshes, just load the mesh once and make 
several geometry nodes point to the same data 



6.837 -  Durand 

Simple Example with Groups 

Text format is fictitious, better to use XML in real applications 
32 

Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 



6.837 -  Durand 

Simple Example with Groups 

Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 

Here we have only simple shapes, but easy to add a “Mesh” 
node whose parameters specify an .OBJ to load (say) 
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Adding Attributes (Material, etc.) 
Group {   

    numObjects 3 

    Material { <BLUE> } 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Material { <BROWN> } 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Material { <GREEN> } 

            Box { <BOX PARAMS> } 

            Material { <RED> } 

            Sphere { <SPHERE PARAMS> } 

            Material { <ORANGE> } 

            Sphere { <SPHERE PARAMS> } } } 

            Material { <BLACK> } 

    Plane { <PLANE PARAMS> } } 
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Adding Transformations 
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Questions? 
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Scene Graph Traversal 

• Depth first recursion 

• Visit node, then visit subtrees (top to bottom, left to right) 

• When visiting a geometry node: Draw it! 
 

• How to handle transformations? 

• Remember, transformations are always specified 
in coordinate system of the parent 
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Scene Graph Traversal 

• How to handle transformations? 

• Traversal algorithm keeps a transformation state S (a 4x4 matrix) 

• from world coordinates 

• Initialized to identity in the beginning 

• Geometry nodes always drawn using current S  

• When visiting a transformation node T: 
multiply current state S with T, 
then visit child nodes 

• Has the effect that nodes below 
will have new transformation 

• When all children have been 
visited, undo the effect of T! 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = I 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = I 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 
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At each node, the current object-to-world transformation is the 

matrix product of all transformations found on the way from the 

node to the root. 

S = T1R1 



Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix (Why?) 
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Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 
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Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 

Can you think of a data structure suited for this? 
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Traversal State – Stack 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 

 

• Solution: Keep state variables in a stack 

• Push current state when entering node, update current state
 

• Pop stack when leaving state-changing node 

• See what the stack looks like in the previous example! 
64 



Questions? 
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Plan 

• Hierarchical Modeling, Scene Graph 

• OpenGL matrix stack 

• Hierarchical modeling and animation of characters 

• Forward and inverse kinematics 
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Hierarchical Modeling in OpenGL 

• The OpenGL Matrix Stack implements what we just did! 

 

• Commands to change current transformation 

• glTranslate, glScale, etc.  

• Current transformation is part of the OpenGL state, i.e., all 
following draw calls will undergo the new transformation 

• Remember, a transform affects the whole subtree 

• Functions to maintain a matrix stack 

• glPushMatrix, glPopMatrix 

• Separate stacks for modelview (object-to-view) 
and projection matrices 
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When You Encounter a Transform Node 

• Push the current transform using glPushMatrix() 

• Multiply current transform by node’s transformation 

• Use glMultMatrix(), glTranslate(), glRotate(), glScale(), etc. 

• Traverse the subtree 

• Issue draw calls for geometry nodes 

• Use glPopMatrix() when done. 
 
 

• Simple as that! 
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More Specifically... 

• An OpenGL transformation call corresponds to a matrix T 

• The call multiplies current modelview matrix C by T from the 
right, i.e. C’ = C * T. 

• This also works for projection, but you often set it up only once. 

 

• This means that the transformation for the subsequent 
vertices will be p’ = C * T * p 

• Vertices are column vectors on the right in OpenGL 

• This implements hierarchical transformation directly! 
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More Specifically... 

• An OpenGL transformation call corresponds to a matrix T 

• The call multiplies current modelview matrix C by T from the 
right, i.e. C’ = C * T. 

• This also works for projection, but you often set it up only once. 

 

• This means that the transformation for the subsequent 
vertices will be p’ = C * T * p 

• Vertices are column vectors on the right in OpenGL 

• This implements hierarchical transformation directly! 
 

• At the beginning of the frame, initialize the current matrix by 
the viewing transform that maps from world space to view 
space. 

• For instance, glLoadIdentity() followed by gluLookAt() 
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TIEA311 - Code!

Let us revisit the Assignment 0 example that draws a teapot.

Can we use the “theory” just presented to make a controlled
scene of a couple of more teapots in their own object
coordinates wrt. the world and the camera?

Does real OpenGL code look the way it was just “promised”?

[live, on-screen, if Visual Studio is working also in today’s
lecture room]



Questions? 

• Further reading on OpenGL 
Matrix Stack and hierarchical model/view transforms 

• http://www.glprogramming.com/red/chapter03.html 

 

• It can be a little confusing if you don’t think the previous 
through, but it’s really quite simple in the end. 

• I know very capable people who after 15 years of experience still 
resort to brute force (trying all the combinations) for getting their 
transformations right, but it’s such a waste :) 
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Plan 

• Hierarchical Modeling, Scene Graph 

• OpenGL matrix stack 

• Hierarchical modeling and animation of characters 

• Forward and inverse kinematics 
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Animation 

• Hierarchical structure is essential for 
animation 

• Eyes move with head 

• Hands move with arms 

• Feet move with legs 

• … 

 

• Without such structure the model falls apart. 
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Articulated Models 

• Articulated models are rigid parts connected by joints 

• each joint has some angular degrees of freedom 
 

• Articulated models can be animated by specifying the joint 
angles as functions of time. 
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Joints and bones 

• Describes the positions of the 
body parts as a function of joint angles. 

• Body parts are usually called “bones” 
 

• Each joint is characterized by its degrees of freedom (dof) 

• Usually rotation for articulated bodies 

1 DOF: knee 2 DOF: wrist 3 DOF: arm 
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Skeleton Hierarchy 

• Each bone position/orientation described 
relative to the parent in the hierarchy: 

hips 

r-thigh 

r-calf 

r-foot 

left-leg 
... 

vs 

y 

x 

z 

For the root, the 
parameters 
include a position 
as well 

Joints are 
specified by 
angles. 
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Draw by Traversing a Tree 

 

 

 

 

 

 

 

 

• Assumes drawing procedures 
for thigh, calf, and foot use 
joint positions as the origin for 
a drawing coordinate frame 

hips 

r-thigh 

r-calf 

r-foot 

left-leg 
... 

glLoadIdentity(); 

glPushMatrix(); 

  glTranslatef(…); 

  glRotate(…); 

  drawHips(); 

  glPushMatrix(); 

    glTranslate(…); 

 glRotate(…); 

 drawThigh(); 

 glTranslate(…); 

 glRotate(…); 

 drawCalf(); 

 glTranslate(…); 

 glRotate(…); 

 drawFoot(); 

  glPopMatrix(); 

      left-leg 
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Forward Kinematics 

vs vs How to determine the world-space 
position for point vs? 
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Forward Kinematics 

vs vs 

Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between 
the point and the root of the hierarchy. S is a 
function of all the joint angles between here and 
root. 
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Forward Kinematics 

vs vs 

This product is S 

Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between 
the point and the root of the hierarchy. S is a 
function of all the joint angles between here and 
root. 

Note that the angles have a non-linear effect. 
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6.837 -  Durand 

Forward Kinematics 

vs vs 

parameter vector p 

This product is S 

Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between 
the point and the root of the hierarchy. S is a 
function of all the joint angles between here and 
root. 

Note that the angles have a non-linear effect. 
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Questions? 
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TIEA311 - Today in Jyväskylä

Today (if Visual Studio allows):

I Assignment 2 and 4 live. Some C++ language features
weren’t used in the earlier ones. Also, Assignment 4 is a
bit larger code with less functionality implemented in the
starter pack. Warm ups are done. Now we start working!

I C++ static member functions (i.e., “static methods”)
I C++ object instantiation using constructors, operator

overloading, temporary objects, pass-by-value vs.
pass-by-reference

I C++ (and C) pass-by-pointer
I C++ pointer types and inheritance
I Dots, asterisks, ampersands, and arrows in C++ (and C)



• 3 ways to pass arguments to a function 
– by value, e.g. float f(float x) 
– by reference, e.g. float f(float &x) 

• f can modify the value of x 

– by pointer, e.g. float f(float *x) 
• x here is a just a memory address 
• motivations:  

less memory than a full data structure if x has a complex type 
dirty hacks (pointer arithmetic),but just do not do it 

• clean languages do not use pointers 
• kind of redundant with reference 
• arrays are pointers 

2 

C++  



• Can get it from a variable using & 
– often a BAD idea. see next slide 

• Can be dereferenced with * 
– float *px=new float; // px is a memory address to a float 
– *px=5.0; //modify the value at the address px 

• Should be instantiated with new. See next slide 

3 

Pointers 



• Two ways to create objects 
– The BAD way, on the stack 

• myObject *f() { 
– myObject x; 
– ... 
– return &x 

• will crash because x is defined only locally and the memory gets 
de-allocated when you leave function f 

– The GOOD way, on the heap 
• myObject *f() { 

– myObject *x=new myObject; 
– ... 
– return x 

• but then you will probably eventually need to delete it  
4 

Pointers, Heap, Stack 



• When you read or, worse, write at an invalid address 
• Easiest segmentation fault: 

– float *px; // px is a memory address to a float 
– *px=5.0; //modify the value at the address px 
– Not 100% guaranteed, but you haven’t instantiated px, it 

could have any random memory address. 
• 2nd easiest seg fault 

– Vector<float> vx(3); 
– vx[9]=0; 
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Segmentation Fault 



• TERRIBLE thing about segfault: the program does 
not necessarily crash where you caused the problem 

• You might write at an address that is inappropriate 
but that exists 

• You corrupt data or code at that location 
• Next time you get there, crash 

 
• When a segmentation fault occurs, always look for 

pointer or array operations before the crash, but not 
necessarily at the crash 
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Segmentation Fault 



• Display as much information as you can 
– image maps (e.g. per-pixel depth, normal) 
– OpenGL 3D display (e.g. vectors, etc.) 
– cerr<< or cout<< (with intermediate values, a message 

when you hit a given if statement, etc.) 
• Doubt everything 

– Yes, you are sure this part of the code works, but test it 
nonetheless 

• Use simple cases 
– e.g. plane z=0, ray with direction (1, 0, 0) 
– and display all intermediate computation 
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Debugging 
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TIEA311 - Today in Jyväskylä (in Finnish)
The “steps of Jarno” (Ajattelumallia tehtävien ratkaisuun):

1. Luentomateriaali
2. Tehtävänanto (muista mitä aiemmissa tehtävissä on

tehty/annettu)
3. Hae lähdekoodi ja testaa sen toiminta
4. Yhdistä teoria tehtävään ja lähdekoodiin,

ymmärrä kokonaisuus
5. Hahmottele kevyt ”speksi” esim. paperille UML,

prosessikaavio, ...
————————————————-

6. Tee osatehtävä 1
7. Päivitä ”speksi”
8. Tee osatehtävä 2
9. Päivitä ”speksi”

...



TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!


