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TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.



TIEA311 - Local plan for today

I Maybe some things I forgot to mention yesterday?
I Very brief recap of what went on previously.
I Then forward, with full speed!



• Triangle meshes 
– Surface analogue of polylines, this is what GPUs 

draw 
• Tensor Product Splines 

– Surface analogue of spline curves 
• Subdivision surfaces 

•   Implicit surfaces, e.g. f(x,y,z)=0 
• Procedural 

– e.g. surfaces of revolution, generalized cylinder 
• From volume data (medical images, etc.) 

Representing Surfaces 
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• What you’ve used so far in Assignment 0 
• Triangle represented by 3 vertices 
• Pro: simple, can be rendered directly 
• Cons: not smooth, needs many triangles to 

approximate smooth surfaces (tessellation) 
 

Triangle Meshes 

This image is in the public domain. Source: Wikimedia Commons.
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>> (“fast-forward!”)

On our local course (TIEA311), we skim through the following
slides, grabbing ideas and keywords without detail. Note to
self: apply great speed with the “next slide” button!

Rationale:

I We need to know about what is possible.
I These things are omnipresent in real-world graphics

libraries, and CAD and CGI software, so we must
understand what they do in order to apply them more
knowingly.

I Examples to motivate further math studies – the
ultimate goal of a computer science student should be the
skills to build and improve the said libraries and software
for the artists and engineers to use.

I If we need some of the concepts or notations again on this
course, we’ll return to them with further explanation.



• P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

Smooth Surfaces? 

What’s the 
dimensionality of a 

curve? 1D! 
 

What about a 
surface? 
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• P(u) = (1-u)³  P1 
  + 3u(1-u)² P2  
  + 3u²(1-u) P3 
  + u³  P4  

 

How to Build Them? Here’s an Idea 

(Note! We relabeled 
t to u) 
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• P(u) = (1-u)³  P1 
  + 3u(1-u)² P2  
  + 3u²(1-u) P3 
  + u³  P4   

 

How to Build Them? Here’s an Idea 

(Note! We relabeled 
t to u) 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
v=2/3 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
v=2/3 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
v=2/3 

A 2D surface patch! 
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• In the previous, Pis were just some curves 
• What if we make them Bézier curves? 

Tensor Product Bézier Patches 
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• In the previous, Pis were just some curves 
• What if we make them Bézier curves? 
• Each u=const. and v=const.                             

curve is a Bézier curve! 
• Note that the boundary                                  

control points (except                                   
corners) are NOT                                     
interpolated! 

Tensor Product Bézier Patches 

v=0 v=1 v=2/3 
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Tensor Product Bézier Patches 

A bicubic Bézier 

surface 
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Tensor Product Bézier Patches 

The “Control Mesh” 
16 control points 
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• P(u,v) =   B1(u) * P1(v) 
  + B2(u) * P2(v)  
  + B3(u) * P3(v) 
  + B4(u) * P4(v) 

• Pi(v) =    B1(v) * Pi,1 
      +      B2(v) * Pi,2 
       +      B3(v) * Pi,3 
      +      B4(v) * Pi,4 

 

Bicubics, Tensor Product 

P1,1 P1,2 
P1,3 

P1,4 

P2,1 P2,2 
P2,3 

P2,4 

P3,1 

P3,2 

P3,3 
P3,4 

P4,1 
P4,2 

P4,3 
P4,4 
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• P(u,v) =   B1(u) * P1(v) 
  + B2(u) * P2(v)  
  + B3(u) * P3(v) 
  + B4(u) * P4(v) 

• Pi(v) =    B1(v) * Pi,1 
      +      B2(v) * Pi,2 
       +      B3(v) * Pi,3 
      +      B4(v) * Pi,4 

 

Bicubics, Tensor Product 
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• P(u,v) =   B1(u) * P1(v) 
  + B2(u) * P2(v)  
  + B3(u) * P3(v) 
  + B4(u) * P4(v) 

• Pi(v) =    B1(v) * Pi,1 
      +      B2(v) * Pi,2 
       +      B3(v) * Pi,3 
      +      B4(v) * Pi,4 

 

Bicubics, Tensor Product 

16 control points Pi,j 
16 2D basis functions Bi,j 
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• Parametric surface P(u,v) is a bicubic polynomial 
of two variables u & v 

• Defined by 4x4=16 control points P1,1, P1,2.... 
P4,4 

• Interpolates 4 corners, approximates others 
• Basis are product of two Bernstein polynomials: 

B1(u)B1(v); B1(u)B2(v);... B4(u)B4(v) 
 

Recap: Tensor Bézier Patches 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 60



Questions? 
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• P(u,v) is a 3D point specified by u, v 

• The partial derivatives                 and                are 
3D vectors 
• Both are tangent to surface at P 

 

Tangents and Normals for Patches 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• P(u,v) is a 3D point specified by u, v 

• The partial derivatives                 and                are 
3D vectors 
• Both are tangent to surface at P 
• Normal is perpendicular to both, i.e., 

 
 

n is usually not 

unit, so must 

normalize! 

Tangents and Normals for Patches 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 63



Questions? 
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• Cubic Bézier in matrix notation 

Recap: Matrix Notation for Curves 

point on curve 
(2x1 vector) 

“Geometry matrix” 
of control points P1..P4 

(2 x 4) 

“Spline matrix” 
(Bernstein) 

Canonical 
“power basis” 
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Hardcore: Matrix Notation for Patches 

x coordinate of 
surface at (u,v) 

Row vector of 
basis functions (u) 

Column vector of 
basis functions (v) 

4x4 matrix of x coordinates 
of the control points 

• Not required, 
but convenient! 
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• Curves: 
 
 
• Surfaces: 
 
 
 
• T = power basis 

B = spline matrix 
G = geometry matrix 

Hardcore: Matrix Notation for Patches 

A separate 4x4 geometry 
matrix for x, y, z 
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• You can stack the Gx, Gy, Gz matrices into a 
geometry tensor of control points 
– I.e., Gki,j = the kth coordinate of control point Pi,j 
– A cube of numbers! 

 
 
• “Definitely not required, but nice! 

– See http://en.wikipedia.org/wiki/Multilinear_algebra 

Super Hardcore: Tensor Notation 
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Tensor Product B-Spline Patches 
• Bézier and B-Spline curves are both cubics 

– Can change between representations using matrices 
 

• Consequently, you can build tensor product 
surface patches out of B-Splines just as well 
– Still 4x4 control points for each patch 
– 2D basis functions are pairwise 

products of B-Spline basis functions 
– Yes, simple! 

© Addison-Wesley. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/. 69



• Pros 
– Smooth  
– Defined by reasonably small set of points 

• Cons 
– Harder to render (usually converted to triangles) 
– Tricky to ensure continuity at patch boundaries 

• Extensions 
– Rational splines: Splines in homogeneous coordinates 
– NURBS: Non-Uniform Rational B-Splines 

• Like curves: ratio of polynomials, non-uniform location of 
control points, etc. 

Tensor Product Spline Patches 
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6.837 – Durand  

Utah Teapot: Tensor Bézier Splines 

• Designed by Martin Newell 

Image courtesy of Dhatfield on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Not all surfaces are smooth... 

Cool: Displacement Mapping 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Not all surfaces are smooth... 
• “Paint” displacements on a smooth surface 

– For example, in the direction of normal 
• Tessellate smooth patch into fine grid, 

then add displacement D(u,v) to vertices 
• Heavily used in movies, more and more in games 

Cool: Displacement Mapping 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 73



Displacement Mapping Example 

Smooth base surface Displaced Surface 
This image is in the public domain. Source: Wikimedia Commons.

74



Questions? 
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6.837 – Durand  

Subdivision Surfaces 

• Start with polygonal mesh 
• Subdivide into larger number of polygons, 

smooth result after each subdivision 
– Lots of ways to do this. 

• The limit surface is smooth! 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Corner Cutting 
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Corner Cutting 

78



Corner Cutting 
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Corner Cutting 
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Corner Cutting 
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Corner Cutting 
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Corner Cutting 
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Corner Cutting 

∞ 
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Corner Cutting 
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Corner Cutting 

It turns out corner cutting 

(Chaikin’s Algorithm) 

produces a quadratic B-

Spline curve! (Magic!) 
86



Corner Cutting 

(Well, not totally unexpected, 

remember de Casteljau) 
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• Idea: cut corners to smooth 
• Add points and compute  

weighted average of neighbors 
• Same for surfaces 

– Special case for irregular vertices  
• vertex with more or less than 6 neighbors in a triangle mesh 

Subdivision Curves and Surfaces 
W

ar
re

n 
et

 a
l. 

 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Advantages 
– Arbitrary topology 
– Smooth at boundaries 
– Level of detail, scalable 
– Simple representation 
– Numerical stability, well-behaved meshes 
– Code simplicity 

• Little disadvantage: 
– Procedural definition 
– Not parametric 
– Tricky at special vertices 

W
ar

re
n 

et
 a

l. 
 

Subdivision Curves and Surfaces 

© IEEE. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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• Catmull-Clark 
– Quads and triangles 
– Generalizes bicubics to 

arbitrary topology! 
• Loop, Butterfly 

– Triangles 
• Doo-Sabin, sqrt(3), biquartic... 

– and a whole host of others 
• Used everywhere in movie and game modeling! 
• See http://www.cs.nyu.edu/~dzorin/sig00course/ 

Flavors of Subdivision Surfaces 

Image courtesy of Romainbehar on Wikimedia Commons.
License: CC-BY-SA. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Subdivision + Displacement 

Original rough mesh Original mesh with  
subdivision 

Original mesh with 
subdivision and 
displacement 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 
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Specialized Procedural Definitions 

• Surfaces of 
revolution 
– Rotate given 2D 

profile curve 
• Generalized 

cylinders 
– Given 2D profile and 

3D curve, sweep the 
profile along the 3D 
curve 

• Assignment 1! 
93



Surface of Revolution 

v 

s(u,v)=R(v)q(u) 

where R is a matrix, 
q a vector, 
and s is a point on 
the surface 

s(u,v) 

• 2D curve q(u) provides one dimension 
– Note: works also with 3D curve 

• Rotation R(v) provides 2nd dimension 
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• Trace out surface by moving a  
profile curve along a trajectory. 
– profile curve q(u) provides one dim 
– trajectory c(u) provides the other 

• Surface of revolution can be seen  
as a special case where trajectory  
is a circle 

General Swept Surfaces 

where M is a matrix that depends on the trajectory c 

q 

c 

s 

s(u,v)=M(c(v))q(u) 
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• How do we get M? 
– Translation is easy, given by c(v) 

– What about orientation? 
• Orientation options: 

– Align profile curve with an axis. 
– Better: Align profile curve with 

frame that “follows” the curve 

General Swept Surfaces 

where M is a matrix that depends on the trajectory c 

s(u,v)=M(c(v))q(u) 

q 

c 

s 
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• Frame defined by 1st 
(tangent), 2nd and 3rd  
derivatives of a 3D curve 

• Looks like a good idea 
for swept surfaces... 

Frames on Curves: Frenet Frame 

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Normal flips! 
• Bad to define a smooth swept surface 

Frenet: Problem at Inflection! 

An inflection is a point 

where curvature changes 

sign 
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• Build triplet of vectors 
– include tangent (it is reliable) 
– orthonormal 
– coherent over the curve 

• Idea:  
– use cross product to create orthogonal vectors 
– exploit discretization of curve  
– use previous frame to bootstrap orientation 
– See Assignment 1 instructions! 

Smooth Frames on Curves 
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• Need partial derivatives w.r.t. 
both u and v 

 

– Remember to normalize! 

• One given by tangent of profile 
curve, the other by tangent of                             
trajectory 

Normals for Swept Surfaces 

where M is a matrix that depends on the trajectory c 

s(u,v)=M(c(v))q(u) 

q 

c 

s 
s s 
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Implicit Surfaces 

• Surface defined implicitly by a function 

This image is in the public domain. Source: Wikimedia Commons.
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• Pros:  
– Efficient check whether  point is inside 
– Efficient Boolean operations 
– Can handle weird topology for animation 
– Easy to do sketchy modeling 

• Cons: 
– Does not allow us to easily generate a  
point on the surface 

Implicit Surfaces 

Image courtesy of Anders Sandberg on Wikimedia Commons. License: CC-BY-
SA. This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

103



Questions? 
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Point Set Surfaces 

• Given only a noisy 3D point cloud (no 
connectivity), can you define a reasonable surface 
using only the points? 
– Laser range scans only give you points, 

so this is potentially useful 

From Point Set Surfaces, (Alexa et al. 2001).

© IEEE. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Point Set Surfaces 
Alexa et al. 2001 

From Point Set Surfaces, used 
with permission from ACM, Inc 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 106



• Modern take on implicit surfaces 
• Cool math: Moving Least Squares (MLS), 

partitions of unity, etc. 
 

 

 

 

 
• Not required in this class, but nice to know. 

Point Set Surfaces 
O

htake et al. 2003

From Multi-Level Partition 
of Unity Implicits

© ACM, Inc.  All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 
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| | (“pause”)

Ok, OMG, what? Further questions:

I Tensor products? Do I need to be a theoretical physicist
like Einstein to do computer graphics?

I Well. . . not really, although it would help :)
I In the long run, the more math you can fit in your

personal study plan, the better you will become in
computing, including graphics programming and many
other wonderful things that “the guy next door” can’t do.

I On this course, as you saw, we did a fast-forward.

Fast-forward ends here. We’ll come back to a first course in
graphics.



This story continues in the practical Assignment 1
handout.

Play with this: http://nurbscalculator.in/

More math details (if you are interested): http:
//www.cs.mtu.edu/˜shene/COURSES/cs3621/NOTES/

Form groups, ask others for help. Help your coursemates –
you’ll learn more while helping others. Ultimately think and
code by yourself – otherwise learning is unlikely to happen.



TIEA311

Note:

I Surfaces in Assignment 1 can be done by applying a
suitable affine transform (4x4 matrix) to each vertex and
normal of the profile curve.

I (Not the whole story! Especially about the normal vector,
but quite enough for Assignment 1. . . )

I So you should go and complete it right about now.



TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!


