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TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.



TIEA311 - Local plan for today

I Maybe some things I forgot to mention yesterday?
I Very brief recap of what went on previously.
I Then forward, with full speed!



6.837 – Matusik  

6.837 Computer Graphics 
 

Curve Properties & Conversion, 
Surface Representations 
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TIEA311
We now enter topics that require some more (simple) math.

We need to know what we are looking at when we see one of
the following:

I Dot product ~a ·~b (or with coordinates: aTb)
I Inner product notation < a, b > when a and b are

Euclidean space vectors.
I Norm ‖~a‖
I Normalization ~a

‖~a‖
I Cross product ~a×~b
I Determination of surface normal using ~a×~b
I The algorithm that makes orthonormal directions from any

2 linearly independent ones.
I Homogenization [x/w, y/w, z/w,w/w]T

I The C++ interface for dot, cross, normalization, and
homogenization in our “vecmath”.

Let us open the Game of Internet!



• Geometry: control points coordinates assembled 
into a matrix (P1, P2, …, Pn+1) 

• Power basis:  the monomials 1, t, t2, ... 
• Cubic Bézier: 

General Spline Formulation 
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• What if we want to transform each point on the 
curve with a linear transformation M?  

Linear Transformations & Cubics 

P’(t)= M 
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• What if we want to transform each point on the 
curve with a linear transformation M? 
– Because everything is linear, it is the same as 

transforming only the control points 

Linear Transformations & Cubics 

P’(t)= M 

= M 
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• Homogeneous coordinates also work 
– Means you can translate, rotate, shear, etc. 
– Note though that you need to normalize P’ by 1/w’ 

Affine Transformations 

P’(t)= M 

= M 

1 1 1 1 

1 1 1 1 
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• Differential Properties of Curves & Continuity 
• B-Splines 
• Surfaces 

– Tensor Product Splines 
– Subdivision Surfaces 
– Procedural Surfaces 
– Other  

The Plan for Today 
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Differential Properties of Curves 

• Motivation 
– Compute normal for surfaces 
– Compute velocity for animation  
– Analyze smoothness 

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• First derivative w.r.t. t 
• Can you compute this for Bezier curves? 

P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

• You know how to 
differentiate polynomials... 

Velocity 
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Velocity 

Sanity check: t=0; t=1 

• First derivative w.r.t. t 
• Can you compute this for Bezier curves? 

P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

• P’(t) = -3(1-t)2  P1  

 + [3(1-t) 2 -6t(1-t)] P2 

 + [6t(1-t)-3t 2]        P3 

 + 3t 2    P4 
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• Differentiation is a linear operation 
– (f+g)’=f’+g’ 
– (af)’=a f’ 

• This means that the derivative of the basis is 
enough to know the derivative of any spline.  

• Can be done with matrices 
– Trivial in monomial basis 
– But get lower-order polynomials 

Linearity? 
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• The tangent to the curve P(t) can be defined as  
T(t)=P’(t)/||P’(t)|| 
– normalized velocity, ||T(t)|| = 1 

• This provides us with one orientation for swept 
surfaces later 

Tangent Vector 
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Courtesy of Seth Teller.



• Derivative of unit tangent 
– K(t)=T’(t) 
– Magnitude ||K(t)|| is constant for a circle 
– Zero for a straight line 

• Always orthogonal to tangent, ie. 

Curvature Vector 
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• K is zero for a line, constant for circle 
– What constant? 1/r 

• 1/||K(t)|| is the radius of the circle that touches 
P(t) at t and has the same curvature as the curve 

Geometric Interpretation 
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• Normalized curvature: T’(t)/||T’(t)|| 

Curve Normal 
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TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!



TIEA311

The following slides were not shown on the lecture (yet).

They are a preview of what we will talk about next, very soon.

Questions based on your preview will be much appreciated
when we meet on the next lecture!



• C0 = continuous 
– The seam can be a sharp kink 

• G1 = geometric continuity 
– Tangents point to the same 

direction at the seam 
• C1 = parametric continuity 

– Tangents are the same at the 
seam, implies G1 

• C2 = curvature continuity 
– Tangents and their derivatives 

are the same 

Orders of Continuity 

C0 

G1 

C1 
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• G1 = geometric continuity 
– Tangents point to the same 

direction at the seam 
– good enough for modeling 

• C1 = parametric continuity 
– Tangents are the same at the 

seam, implies G1 
– often necessary for animation 

Orders of Continuity 

G1 

C1 
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Connecting Cubic Bézier Curves 

• How can we guarantee C0 continuity? 
• How can we guarantee G1 continuity?  
• How can we guarantee C1 continuity? 
• C2 and above gets difficult 
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Connecting Cubic Bézier Curves 
• Where is this curve 
– C0 continuous? 
– G1 continuous? 
– C1 continuous? 
• What’s the relationship 

between:  
– the # of control points, and 

the # of cubic Bézier 
subcurves? 
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Questions? 
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TIEA311 - Local plan for today

Oh, wait! Let us get one thing out of the way. . .

The teacher will now communicate to you at least three things
simultaneously:

I How to pass our T2 with points 1/5, towards course grade
1/5.

I Some philosophy behind the definition of grade 1/5.
I Practically, a spoken-out definition of grade 1/5 on this

course.
I One possible option of some steps that would need to be

taken first in order to progress towards the higher grades,
or in general “being a pro” in IT stuff.

→ Live coding and thinking aloud. See lecture video.



TIEA311

OK.

That went smoothly.

Like a smooth curve!

With score 1/5 secured, we can feel warm and happy, and stop
worrying about “passing or not passing” T2 on TIEA311! That
question about passing is foul in all contexts, anyway! Ugh!

This enables us to relax and spend some nice focused
learning time in order to understand more about all this, and
move towards not (just) copy-pasting, but at least
copy-paste-modifying-with-some-idea-why. . .



Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
Courtesy of Seth Teller.  
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Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
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Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 

27

Courtesy of Seth Teller.  



Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
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Courtesy of Seth Teller.  



6.837 – Durand  

Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
• Curve is not constrained to pass through any 

control points 
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Courtesy of Seth Teller.  



Cubic B-Splines: Basis 

B1 B4 

B2 B3 

These sum to 1, too! 

A B-Spline curve is also 
bounded by the convex  
hull of its control points.  
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B1 B4 

B2 B3 

3
1 

Cubic B-Splines: Basis 
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Cubic B-Splines 

• Local control (windowing) 
• Automatically C2, and no need to match tangents! 

Courtesy of Seth Teller.  Used with permission. 
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B-Spline Curve Control Points 

Default B-Spline B-Spline with 
derivative 

discontinuity 

B-Spline which passes 
through  

end points 
Repeat interior control 

point Repeat end points 

34



Bézier ≠ B-Spline 

Bézier B-Spline 

But both are cubics, so one can be converted into the other! 
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Converting between Bézier & BSpline 

 
• Simple with the basis matrices! 

– Note that this only works for 
a single segment of 4 
control points 

• P(t) = G B1 T(t) = 
G B1 (B2-1B2) T(t)= 
(G B1 B2-1) B2 T(t) 

• G B1 B2-1 are the control points 
for the segment in new basis. 
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In the previous slide, the minor inconvenience of misprinted
subscripts and superscripts is especially harmful. The equation
should read as:

P (t) = GB1T (t)

= GB1(B
−1
2 B2)T (t)

= (GB1B
−1
2 )B2T (t)

Then, we end up with (GB1B
−1
2 ) as new control points.

“Unfortunately”, you will need to do similar re-interpretation of
many of the equations in the OpenCourseware slides to fully
understand them.

“Fortunately”, doing this will actually make you understand
each equation better :). Pen and paper are your friends!



MIT EECS 6.837, Popović 

Converting between Bézier & B-Spline 

original 
control 

points as 
Bézier 

original 
control 
points as 
B-Spline 

new Bézier 
control 

points to 
match     

B-Spline 

new 
BSpline 
control 
points to 
match  
Bézier 
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• Rational cubics 
– Use homogeneous coordinates, just add w ! 

• Provides an extra weight parameter to control points 
 

• NURBS:  Non-Uniform Rational B-Spline 
– non-uniform = different spacing between the 

blending functions, a.k.a. “knots” 
– rational = ratio of cubic polynomials 

(instead of just cubic) 
• implemented by adding the homogeneous coordinate w into 

the control points. 

NURBS (Generalized B-Splines) 
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6 

Demo 



Questions? 
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• Triangle meshes 
– Surface analogue of polylines, this is what GPUs 

draw 
• Tensor Product Splines 

– Surface analogue of spline curves 
• Subdivision surfaces 

•   Implicit surfaces, e.g. f(x,y,z)=0 
• Procedural 

– e.g. surfaces of revolution, generalized cylinder 
• From volume data (medical images, etc.) 

Representing Surfaces 
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