
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).



TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
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TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.



TIEA311 - Today in Jyväskylä

Learning by doing that which is to be learned!

Pick up your pen and paper.

The teacher will give you a live assignment. Something quite
simple.

1 minute solo; 1 minute cross-check with group.

Then we make sure everyone has it correct.

Then we make some connections to theory.



• In 3D, each vector has three components x, y, z 

• But geometrically, each vector is actually the sum 
 
 
• i, j, k  are basis vectors 
 
• Vector addition: just add components 
• Scalar multiplication: just multiply components 
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Usual Vector Spaces 

i 

j 

k 



• Polynomials 
• Can be added: just add the coefficients 
 
 
 
• Can be multiplied by a scalar: multiply the 

coefficients 
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Polynomials as a Vector Space 



• Polynomials 
 
 
 
 
• In the polynomial vector space, {1, t, ..., tn} are 

the basis vectors, a0, a1, ..., an are the 
components 
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Polynomials as a Vector Space 



 
 
• Closed under addition & scalar multiplication 

– Means the result is still a cubic polynomial (verify!) 
• Cubic polynomials also compose a vector space 

– A 4D subspace of the full space of polynomials 
• The x and y coordinates of cubic Bézier curves 

belong to this subspace as functions of t. 
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Subset of Polynomials: Cubic 



More precisely: 
What’s a basis? 
 

• A set of “atomic” vectors 
– Called basis vectors 

– Linear combinations of basis vectors span the space 
• i.e. any cubic polynomial is a sum of those basis cubics 

• Linearly independent 
– Means that no basis vector can be obtained from the 

others by linear combination 
• Example: i, j, i+j is not a basis (missing k direction!) 
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Basis for Cubic Polynomials 

i 

j 

k In 3D 



 

 

 

• Any cubic polynomial is a 
linear combination of these: 

a0+a1t+a2t2+a3t3 = a0*1+a1*t+a2*t2+a3*t3 

 

• They are linearly independent 
– Means you cannot write any of the four monomials as 

a linear combination of the others. (You can try.) 
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Canonical Basis for Cubics 

1 
t 
t2 
t3 



TIEA311
Point of view cont’d (“independently discovered” by your
teacher while thinking about this course and its primary target
audience):

I Mathematics is nothing to be afraid of. Instead, we should
embrace it. And, for example, in graphics, we must.

I Mathematics has been incrementally developed, peer
reviewed, and thoroughly tested for the last 2500 years
or so. (Compare with the 70 years we’ve had computer
programming.)

I Resultingly, for many purposes, mathematics Just Works.
I We can apply math like we apply any class library: by

learning how to read its documentation and constructing
suitable instances for our current tasks!

That said, let us open the “API of mathematics”, on page
“vector spaces, linear maps (≈matrices), and their applications
in cool CGI”.



6.837 – Matusik 

6.837 Computer Graphics 
 

Bézier Curves and Splines 

Wojciech Matusik 
MIT CSAIL 

vectorportal.com 



TIEA311 - Local plan for today

Oh, wait! Let us get one thing out of the way. . .

The teacher will now communicate to you at least three things
simultaneously:

I How to pass our T2 with points 1/5, towards course grade
1/5.

I Some philosophy behind the definition of grade 1/5.
I Practically, a spoken-out definition of grade 1/5 on this

course.
I One possible option of some steps that would need to be

taken first in order to progress towards the higher grades,
or in general “being a pro” in IT stuff.

→ Live coding and thinking aloud. See lecture video.



TIEA311

OK.

That went smoothly.

Like a smooth curve!

With score 1/5 secured, we can feel warm and happy, and stop
worrying about “passing or not passing” T2 on TIEA311! That
question about passing is foul in all contexts, anyway! Ugh!

This enables us to relax and spend some nice focused
learning time in order to understand more about all this, and
move towards not (just) copy-pasting, but at least
copy-paste-modifying-with-some-idea-why. . .



6.837 – Matusik 

6.837 Computer Graphics 
 

Bézier Curves and Splines 

Wojciech Matusik 
MIT CSAIL 

vectorportal.com 



• Smooth curves in 2D 
– Useful in their own right 
– Provides basis for surface 

editing 
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Today 

This image is in the public domain
Source:Wikimedia Commons



• Polylines 
– Sequence of vertices connected 

by straight line segments 
– Useful, but not for smooth curves 
– This is the representation 

that usually gets drawn in the end 
(a curve is converted into a polyline) 

• Smooth curves 

– How do we specify them? 
– A little harder (but not too much) 
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Modeling 1D Curves in 2D 



• A type of smooth curve 
in 2D/3D 

• Many different uses 
– 2D illustration (e.g., Adobe Illustrator) 
– Fonts (e.g., PostScript, TrueType) 
– 3D modeling 
– Animation: trajectories 

• In general: interpolation 
and approximation 
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Splines 

ACM © 1987 “Principles of 
traditional animation applied to 3D 

computer animation” 

© ACM. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Demo 



7 

How Many Dimensions? 
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How Many Dimensions? 

This curve lies on the 2D plane, 

but is itself 1D. 
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How Many Dimensions? 

This curve lies on 

the 2D plane, 

but is itself 1D. 

You can just as well 

define 1D curves in 

3D space. 
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Two Definitions of a Curve 

• A continuous 1D set of points in 2D (or 3D) 
• A mapping from an interval S onto the plane  

– That is, P(t) is the point of the curve at parameter t 
 

 
 
• Big differences 

– It is easy to generate points on the curve from the 2nd 
– The second definition can describe trajectories, the 

speed at which we move on the curve 



• User specifies control points 

• We will interpolate the control points 
by a smooth curve 
– The curve is completely 

determined by the control points. 
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General Principle of Splines 
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Physical Splines 
See http://en.w

ikipedia.org/w
iki/Flat_spline 

Courtesy of The Antique Boat Museum.
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Two Application Scenarios   

• Approximation/interpolation 
– We have “data points”, how can we interpolate? 
– Important in many applications 

 
• User interface/modeling 

– What is an easy way to specify      
a smooth curve? 
– Our main perspective today. 

Image courtesy of SaphireS on Wikimedia Commons. License: CC-BY-
SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 



• Specified by a few control points 
– Good for UI 
– Good for storage 

 

• Results in a smooth parametric curve P(t) 
– Just means that we specify x(t) and y(t) 
– In practice: low-order polynomials, chained together 
– Convenient for animation, where t is time 
– Convenient for tessellation because we can discretize 

t and approximate the curve with a polyline 
15 

Splines 



16 
6.837 – Durand 

Tessellation 

• It is easy to rasterize mathematical line segments 
into pixels 
– OpenGL and the graphics hardware can do it for you 

• But polynomials and other parametric functions 
are harder  

Image courtesy of Phrood on Wikimedia Commons. License: CC-BY-SA.This content is excluded from our
Creative Commons license. For moreinformation, see http://ocw.mit.edu/help/faq-fair-use/.
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Tessellation 

t0 

t1 
t2 

tn 

 

To display P(t),  

discretize it at discrete ts  
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Tessellation 

t0 

t1 
t2 

tn 

It’s clear that adding 

more points will get 

us closer to the 

curve. 
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Tessellation 

t0 

t1 
t2 

tn 

It’s clear that adding 

more points will get 

us closer to the 

curve. 



• Interpolation 
– Goes through all specified points 
– Sounds more logical 

 

• Approximation 
– Does not go through all points 

20 

Interpolation vs. Approximation 

Interpolation 

Approximation 



• Interpolation 
– Goes through all specified points 
– Sounds more logical 
– But can be more unstable 

• Approximation 
– Does not go through all points 
– Turns out to be convenient 

 

• We will do something  
in between. 
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Interpolation vs. Approximation 

Interpolation 

Approximation 
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Questions? 



• User specifies 4 control points P1 ... P4 
• Curve goes through (interpolates) the ends P1, P4 
• Approximates the two other ones 
• Cubic polynomial 

23 

Cubic Bézier Curve 
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Cubic Bézier Curve 
That is, 

• P(t) =  (1-t)³  P1 
  + 3t(1-t)²     P2  
  + 3t²(1-t)      P3 
  + t³          P4  
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Cubic Bézier Curve 

Verify what happens  
for t=0 and t=1 

• P(t) =  (1-t)³  P1 
  + 3t(1-t)²     P2  
  + 3t²(1-t)      P3 
  + t³          P4  



• 4 control points 
• Curve passes through first & last control point 
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Cubic Bézier Curve 

Courtesy of Seth Teller. 
Used with permission. 



• 4 control points 
• Curve passes through first & last control point 
• Curve is tangent at P1 to (P1-P2) and at P4 to (P4-P3) 
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Cubic Bézier Curve 

A Bézier curve is 
bounded by the 

convex hull of its 
control points.  
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Questions? 



• Explanation 1: 
– Magic! 

• Explanation 2:  
– These are smart weights that describe the influence of 

each control point 
• Explanation 3: 

– It is a linear combination of basis polynomials. 
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Why Does the Formula Work? 



• P(t) is a weighted 
combination of the 4 
control points with 
weights: 
– B1(t)=(1-t)³ 
– B2(t)=3t(1-t)² 
– B3(t)=3t²(1-t) 
– B4(t)=t³ 

• First, P1 is the most 
influential point, 
then P2, P3, and P4 
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Weights  
P(t) =  (1-t)³  P1 
 + 3t(1-t)²   P2  
 + 3t²(1-t)  P3 
 + t³  P4  



• P2 and P3 never have full 
influence 
– Not interpolated! 
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Weights 
P(t) =  (1-t)³  P1 
 + 3t(1-t)²   P2  
 + 3t²(1-t)  P3 
 + t³  P4  
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Questions? 



• Explanation 1: 
– Magic! 

• Explanation 2:  
– These are smart weights that describe the influence of 

each control point 
• Explanation 3: 

– It is a linear combination of basis polynomials. 

– The opposite perspective:  

control points are the weights of polynomials!!! 
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Why Does the Formula Work? 



• Understand relationships between types of splines 
– Conversion 

• Express what happens when a spline curve is 
transformed by an affine transform  
(rotation, translation, etc.)  

• Cool simple example of non-trivial vector space 
• Important to understand for advanced methods 

such as finite elements 

34 

Why Study Splines as Vector Space? 



TIEA311 towards next week

I Make use of the live instruction we provide during this
course!

I If you do this outside the lecture period, make use of
friends who already understand this stuff!

I Start at least looking at Assignment 1. Our lectures have
covered only part of the theory. We will cover more next
week and some parts perhaps even later!

I If you start coding for Assignment 1, aim towards using
the general spline formulation GBT (t) with suitably
constructed G, B, and T (t) for curves and suitably
constructed [NBTV ] for surfaces!

I Remember the Power Tools!
I During the weekend, sleep well and dream of vector

spaces!



Assignment 1 etc: how to proceed

I Read instructions
I Start early
I Reflect against the theory slides
I Disregard the “start from scratch” hints! We don’t have

time for that much pain – we’ll have enough, just
modifying the starter codes!

I Ask questions when you arrive to useful ones!
I Start early
I Ask questions
I Start early
I Ask questions
I Start early
I . . . [you got the point?]



Our Finnish students should revisit the material of our very first
Programming course:

Vaikka ohjelmointia käytännössä tehdään suurelta osin
tietokoneella, on silti kynä ja paperia syytä aina olla esillä.
Ohjelmoinnin suurin vaikeus aloittelijalle onkin siinä, että ei
malteta istua kynän ja paperin kanssa ja miettiä mitä ollaan
tekemässä. Jos esimerkiksi pitää tehdä laivanupotuspeli,
pitää ensin pelata useita kertoja peliä, jotta hahmottuu,
mitä kaikkia asioita tulee aikanaan vastaan.

It is difficult for me to imagine a person who can get all the
triangles and indices right in Assignment 1 without doodling
stuff on paper. . . (I really want to examine your head, if you can
pull that off!)



Example of pen and paper: ”The making of courselogo.js”

Outcome of the adventure: https://yousource.it.jyu.fi/tiea311-kurssimateriaalikehitys/

tiea311-kurssimateriaali-avoin/blobs/master/instanssi17_4k_intro_webgl/courselogo.js



TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!



TIEA311

The following slides were not shown on the lecture (yet).

They are a preview of what we will talk about next, very soon.

Questions based on your preview will be much appreciated
when we meet on the next lecture!



• Polynomials 
• Can be added: just add the coefficients 
 
 
 
• Can be multiplied by a scalar: multiply the 

coefficients 
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Polynomials as a Vector Space 



 
 
• Closed under addition & scalar multiplication 

– Means the result is still a cubic polynomial (verify!) 
• Cubic polynomials also compose a vector space 

– A 4D subspace of the full space of polynomials 
• The x and y coordinates of cubic Bézier curves 

belong to this subspace as functions of t. 
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Subset of Polynomials: Cubic 



More precisely: 
What’s a basis? 
 

• A set of “atomic” vectors 
– Called basis vectors 

– Linear combinations of basis vectors span the space 
• i.e. any cubic polynomial is a sum of those basis cubics 

• Linearly independent 
– Means that no basis vector can be obtained from the 

others by linear combination 
• Example: i, j, i+j is not a basis (missing k direction!) 
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Basis for Cubic Polynomials 

i 

j 

k In 3D 



 

 

 

• Any cubic polynomial is a 
linear combination of these: 

a0+a1t+a2t2+a3t3 = a0*1+a1*t+a2*t2+a3*t3 

 

• They are linearly independent 
– Means you cannot write any of the four monomials as 

a linear combination of the others. (You can try.) 
41 

Canonical Basis for Cubics 

1 
t 
t2 
t3 



• For example: 
– {1,  1+t,  1+t+t2, 1+t-t2+t3} 
– {t3,  t3+t2,  t3+t,  t3+1} 

 
 
• These can all be obtained from 

by linear combination 
• Infinite number of possibilities, just like you have 

an infinite number of bases to span R2 

42 

Different Basis  
2D examples 



• For example: 
1,  1+t,  1+t+t², 1+t-t²+t³ 

t³,  t³+t²,  t³+t,  t³+1 
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Matrix-Vector Notation 

Change-of-basis 
matrix 

“Canonical” 
monomial 

basis 

These 

relationships 

hold for each 

value of t 



• For example: 
1,  1+t,  1+t+t2, 1+t-t2+t3 

t3,  t3+t2,  t3+t,  t3+1 
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Matrix-Vector Notation 

Change-of-basis 
matrix 

“Canonical” 
monomial 

basis 

Not any matrix will do! 

If it’s singular, the basis 

set will be linearly 

dependent, i.e., 

redundant and 

incomplete. 



• For Bézier curves, the  
    basis polynomials/vectors 
    are Bernstein polynomials 
 
• For cubic Bezier curve: 
    B1(t)=(1-t)³ B2(t)=3t(1-t)² 
    B3(t)=3t²(1-t) B4(t)=t³ 
    (careful with indices, many authors start at 0) 

• Defined for any degree 

45 

Bernstein Polynomials 
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Properties of Bernstein Polynomials 

•          for all  0    t     1 

• Sum to 1 for every t 
– called partition of unity 

• These two together are the 
reason why Bézier curves  
lie within convex hull 

• B1(0) =1 
– Bezier curve interpolates P1 

• B4(1) =1 
– Bezier curve interpolates P4 



• P(t) = P1B1(t) + P2B2(t) + P3B3(t) + P4B4(t) 
– Pi are 2D points (xi, yi) 

• P(t) is a linear combination of the control points 
with weights equal to Bernstein polynomials at t 

• But at the same time, the control points  
(P1, P2, P3, P4) are the “coordinates” of the 
curve in the Bernstein basis 
– In this sense, specifying a Bézier curve with control 

points is exactly like specifying a 2D point with its x 
and y coordinates. 
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Bézier Curves in Bernstein Basis 



• The plane where the curve lies, a 2D vector space  
• The space of cubic polynomials, a 4D space 
• Don’t be confused! 
• The 2D control points can be replaced by 3D 

points – this yields space curves. 
– The math stays the same, just add z(t). 

• The cubic basis can be extended to higher-order 
polynomials 
– Higher-dimensional vector space 
– More control points 

48 

Two Different Vector Spaces!!! 
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Questions? 



• How do we go from Bernstein basis  
to the canonical monomial basis  
1, t, t², t³ and back? 

– With a matrix! 
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Change of Basis 

New basis vectors 

• B1(t)=(1-t)³ 
• B2(t)=3t(1-t)² 
• B3(t)=3t²(1-t) 
• B4(t)=t³ 
 



Cubic Bernstein: 
• B1(t)=(1-t)³ 
• B2(t)=3t(1-t)² 
• B3(t)=3t²(1-t) 
• B4(t)=t³ 
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How You Get the Matrix 
Expand these out 

and collect powers of t. 
The coefficients are the entries 

in the matrix B! 



 
 
• Given B1...B4, how to get back 

to canonical 1, t, t², t³ ? 
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Change of Basis, Other Direction 



 
 
• Given B1...B4, how to get back 

to canonical 1, t, t², t³ ? 
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Change of Basis, Other Direction 

That’s right, with the inverse matrix! 



• Cubic polynomials form a 4D vector space. 
• Bernstein basis is canonical for Bézier. 

– Can be seen as influence function of data points 
– Or data points are coordinates of the curve in the 

Bernstein basis 
• We can change between basis with matrices. 
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Recap 
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Questions? 



56 

More Matrix-Vector Notation 

matrix of 
control points (2 x 4) 

Bernstein polynomials 
(4x1 vector) 

point on curve 
(2x1 vector) 
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Flashback 
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Cubic Bézier in Matrix Notation 

point on curve 
(2x1 vector) 

“Geometry matrix” 
of control points P1..P4 

(2 x 4) 

“Spline matrix” 
(Bernstein) 

Canonical 
monomial basis 



• Geometry: control points coordinates assembled 
into a matrix (P1, P2, …, Pn+1) 

• Spline matrix: defines the type of spline 
– Bernstein for Bézier  

• Power basis:  the monomials (1, t, ..., tn) 
• Advantage of general formulation 

– Compact expression 
– Easy to convert between types of splines 
– Dimensionality (plane or space) does not really matter 
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General Spline Formulation 


