
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp19/

TIEA311 - Today in Jyväskylä

Plan for today:

I Usual warm-up.
I Continue from yesterday
I Go through theory
I Remember to have a break!
I The teacher will try to remember and make use of the fact

that we have groups of 2-3 students with pen and paper.

Vectors (linear space)
• Formally, a set of elements equipped with

addition and scalar multiplication
• plus other nice properties

• There is a special element, the zero vector
• no displacement, no force

12

Vectors (linear space)
• We can use a basis to produce all the vectors in

the space:
• Given n basis vectors

any vector can be written as

here:

13

Linear algebra notation

• can be written as

• Nice because it makes the basis
(coordinate system) explicit

• Shorthand:

• where bold means triplet, t is transpose
14

Matrices have two purposes
• (At least for geometry)

• Transform things
• e.g. rotate the car from facing

North to facing East

• Express coordinate system
changes
• e.g. given the driver's location

in the coordinate system of the
car, express it in the coordinate
system of the world

7

Linear transformation

• Transformation of the vector space

16

Courtesy of Prof. Fredo Durand. Used with permission.

Linear transformation

• Transformation of the vector space so that

• Note that it implies

• Notation for transformations

17

Courtesy of Prof. Fredo Durand. Used with permission.

Matrix notation
• Linearity implies

?

18

Matrix notation
• Linearity implies

• i.e. we only need to know the basis
transformation

• or in algebra notation

19

Algebra notation
• The are also vectors of the space

• They can be expressed in the basis
for example:

• which gives us

...

20

Algebra notation
• The are also vectors of the space

• They can be expressed in the basis
for example:

• which gives us

21

Recap, matrix notation

• Given the coordinates c in basis
the transformed vector has coordinates Mc in

22

Example 1

Just one example of a linear transformation matrix useful in
graphics – Counter-clockwise rotation of θ radians around the
z-axis (pointing towards the viewer when right-handed
coordinates are used):

Rz(θ) =



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1




How to remember / understand this? Take a pen, draw a unit
circle on the xy-plane, and recall basic trigonometry from
school times (or Wikipedia. . .)! The “canonical” basis vectors
[1, 0, 0]t and [0, 1, 0]t must rotate along the unit circle to the
expected new positions.

Really, do it, if you haven’t already!

Example 2

Another example of a linear transformation matrix useful in
graphics – Scaling of axes:

S(sx, sy, sz) =



sx 0 0
0 sy 0
0 0 sz




How to remember / understand this? Take a pen, draw a unit
box or some other simple shape, and see how different values
of sx,sy, and sz make isotropic and anisotropic scalings.

Really, do it, if you haven’t already!

Further Examples

Look at the implementation of the Matrix3f class in our example
codes, found in the files Matrix3f.cpp and Matrix3f.h

Make sure you understand the implementation of rotation
and scaling matrices, and the overloaded operators for
matrix-vector multiplication and matrix-matrix multiplication.

Really, do it, if you haven’t already!

Also, see what else the class provides and how it all looks in
C++. How is the code split in the header (.h) and
implementation (.cpp). Learn to use your IDE to navigate the
files easily!

Example: Inverse transforms

Matrix3f.cpp implements determining (by computing the
“determinant”) if an inverse matrix exists, and a formula for
inverting an invertible matrix. It is important to understand the
concept of the inverse transform (M−1M =MM−1 = I). For
most of our graphics transforms, we know the inverses
explicitly (understand and verify):

R−1
z (θ) = Rz(−θ) =



cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1


 =




cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1




BTW: The last identity means that the inverse in this case is the
transpose of the original. How do we get that? (1) By symmetry
properties of the trigonometric functions (draw it to believe) but also
(2) they teach us in linear algebra courses that this is true for any
real-valued matrix that is “orthonormal”, i.e., keeps orthogonality
and distances the same. This makes some inverses in graphics and
other computation tasks trivial, maximally accurate, and blazingly fast!

Another inverse

The inverse of scaling is easy to figure out:

S−1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) =



1/sx 0 0
0 1/sy 0
0 0 1/sz




This one is not the same as ST because scaling is not
orthonormal (orthogonal yes, but not normal, i.e., it does not
preserve lengths).

Remember the supertools

Your Super Tools: the Brain, the Pen and the Paper. Teacher’s
own example from 2017:

Why do we care
• We like linear algebra

• It’s always good to get back to an abstraction
that we know and for which smarter people have
developed a lot of tools

• But we also need to keep track of what
basis/coordinate system we use

23

•L(p + q) = L(p) + L(q)

•L(ap) = a L(p)

Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Translation is not linear:
f(p) = p+t
f(ap) = ap+t ≠ a(p+t) = a f(p)
f(p+q) = p+q+t ≠ (p+t)+(q+t) = f(p) + f(q)

30

Affine space
• Points are elements of an affine space

• We denote them with a tilde

• Affine spaces are an extension of vector spaces

33

Point-vector operations
• Subtracting points gives a vector

• Adding a vector to a point gives a point

34

Frames
• A frame is an origin plus a basis

• We can obtain any point in the space by adding
a vector to the origin

• using the coordinates c of the vector in

35

Algebra notation
• We like matrix-vector expressions

• We want to keep track of the frame

• We’re going to cheat a little for elegance
and decide that 1 times a point is the point

• is represented in by 4 coordinate, where the
extra dummy coordinate is always 1 (for now)

36

Further Examples (Affine transforms)

Look at the implementation of the Matrix4f class in our example
codes, found in the files Matrix4f.cpp and Matrix4f.h

Really, do it. (And keep doing it all the time!)

Observe how the fourth coordinate is used to implement 3D
frames and affine transforms of points. And linear transforms of
directions. A straightforward way to do many things is to build a
proper 4x4 matrix and then multiply. Not much code, actually!

In Assignment 1 you will avoid a lot of tears by figuring out
how (and when and why) to use the provided constructors and
the operator * to transform points and frames suitably.

Also, this stuff is a key thing in computer graphics!

TIEA311 - Today in Jyväskylä

The time allotted for this week’s graphics lectures is now over.

Next lecture happens in 6 days and 4 hours.

The teacher will now tell his view about what could be useful
activities for you during that time period.

→ see lecture video.

Make notes, if you have to.

Even if he forgets to say it, remember to rest, too!

