
TIEA311
Tietokonegrafiikan perusteet
kevät 2019

(“Principles of Computer Graphics” – Spring 2019)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet – kevät 2019
(“Principles of Computer Graphics” – Spring 2019)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2019 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2019 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp19/

Overview of Today

• Shadows

• Reflection

• Refraction

• Recursive Ray Tracing

15

Mirror Reflection
• Cast ray symmetric with

respect to the normal
• Multiply by reflection

coefficient ks (color)
• Don’t forget to add epsilon

to the ray!

Without epsilon

With epsilon

16

Perfect Mirror Reflection

• Reflection angle = view angle
– Normal component is negated
– Remember particle collisions?

• R = V – 2 (V · N) N

R V

 V  R

N

V N N

V N N

V

17

Amount of Reflection
• Traditional ray tracing (hack)

– Constant ks

• More realistic (we’ll do this later):
– Fresnel reflection term (more reflection at grazing angle)
– Schlick’s approximation: R()=R0+(1-R0)(1-cos )5

• Fresnel makes a big difference!

metal 18 Dielectric (glass)

Questions?
H

en
rik

 W
an

n
Je

ns
en

“Sphereflake” fractal

19
Courtesy of Henrik Wann Jensen. Used with permission.

Overview of Today

• Shadows

• Reflection

• Refraction

• Recursive Ray Tracing

20

Transparency (Refraction)

• Cast ray in refracted direction
• Multiply by transparency coefficient kt (color)

21

Qualitative Refraction

22

© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Refracted direction T?

Refraction

I

T

Өi

ӨT

N

-N

M ηT

ηi

Snell-Descartes Law:

23

Relative index of refraction

Material 1, index of refraction ηi

Material 2, index of refraction ηT

𝑛𝑖 sin 𝜃𝑖 = 𝑛𝑇 sin 𝜃𝑇

sin 𝜃𝑇

sin 𝜃𝑖
=

𝑛𝑖

𝑛𝑇
= 𝑛𝑟

Refraction
I = N cos Өi – M sin Өi

M = (N cos Өi – I) / sin Өi

T = – N cos ӨT + M sin ӨT

 = – N cos ӨT + (N cos Өi – I) sin ӨT / sin Өi

 = – N cos ӨT + (N cos Өi – I) ηr

 = [ηr cos Өi – cos ӨT] N – ηr I

 = [ηr cos Өi – √1 – sin2 ӨT] N – ηr I

 = [ηr cos Өi – √1 – ηr
2 sin2 Өi] N – ηr I

 = [ηr cos Өi – √1 – ηr
2 (1 – cos2 Өi)] N – ηr I

 = [ηr (N · I) – √1 – ηr
2 (1 – (N · I)2)] N – ηr I

I

T

Өi

ӨT

N

-N

M ηT

ηi

Snell-Descartes Law:

N cos Өi

– M sin Өi

let’s get rid of

the cos & sin

Plug M

24

sin 𝜃𝑇

sin 𝜃𝑖
=

𝑛𝑖

𝑛𝑇
= 𝑛𝑟

𝑛𝑖 sin 𝜃𝑖 = 𝑛𝑇 sin 𝜃𝑇

Refraction
I = N cos Өi – M sin Өi

M = (N cos Өi – I) / sin Өi

T = – N cos ӨT + M sin ӨT

 = – N cos ӨT + (N cos Өi – I) sin ӨT / sin Өi

 = – N cos ӨT + (N cos Өi – I) ηr

 = [ηr cos Өi – cos ӨT] N – ηr I

 = [ηr cos Өi – √1 – sin2 ӨT] N – ηr I

 = [ηr cos Өi – √1 – ηr
2 sin2 Өi] N – ηr I

 = [ηr cos Өi – √1 – ηr
2 (1 – cos2 Өi)] N – ηr I

 = [ηr (N · I) – √1 – ηr
2 (1 – (N · I)2)] N – ηr I

I

T

Өi

ӨT

N

-N

M ηT

ηi

Snell-Descartes Law:

N cos Өi

– M sin Өi

let’s get rid of

the cos & sin

Plug M

• Total internal reflection when
the square root is imaginary
(no refraction, just reflection)

25

𝑛𝑖 sin 𝜃𝑖 = 𝑛𝑇 sin 𝜃𝑇

sin 𝜃𝑇

sin 𝜃𝑖
=

𝑛𝑖

𝑛𝑇
= 𝑛𝑟

Total Internal Reflection

No transmission

26

Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Total Internal Reflection

27

© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Make sure you know whether you’re entering or leaving
the transmissive material:

• Note: We won’t ask you to trace rays through
intersecting transparent objects :-)

Refraction & Sidedness of Objects

T

ηT = material

 index

ηi=1

N

T

ηT= 1

ηi = material

 index

N

I

I

28

Cool Refraction Demo
• Enright, D.,

Marschner, S.
and Fedkiw,
R.,
SIGGRAPH
2002

29

© ACM. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Refraction and the Lifeguard Problem

• Running is faster than swimming
Beach

Person
in trouble

Lifeguard

Water

Run

Swim

30
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

TIEA311 - Today in Jyväskylä

Wait a moment. . . who is in trouble on this course?

TIEA311 - Today in Jyväskylä

Refraction and the Lifeguard Problem

• Running is faster than swimming
Beach

Person
in trouble

Lifeguard

Water

Run

Swim

30
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

How Does a Rainbow Work?
• From “Color and Light in Nature”

by Lynch and Livingstone

31
© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Wavelength

Pittoni, 1725, Allegory to Newton
Pink Floyd, The Dark Side of the Moon

• Refraction is wavelength-
dependent (dispersion)
– Refraction increases as the

wavelength of light decreases
– violet and blue experience more

bending than orange and red

• Newton’s prism experiment
• Usually ignored in graphics

32
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© The Fitzwilliam Museum. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Rainbow

• Rainbow is caused by
refraction + internal reflection + refraction

• Maximum for angle around 42 degrees
• Refraction depends on wavelength (dispersion)

“C
ol

or
 a

nd
 L

ig
ht

 in
 N

at
ur

e”

by
 L

yn
ch

 a
nd

 L
iv

in
gs

to
ne

The outgoing

angle is different

for each

wavelength

33
© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Rainbow

• Rainbow is caused by
refraction + internal
reflection + refraction

• Maximum for angle
around 42 degrees

• Refraction depends on
wavelength
(dispersion)

34
This image is in the public domain. Source: Wikipedia.

Dispersion
• Image by Henrik Wann Jensen using Photon Mapping

35
Courtesy of Henrik Wann Jensen. Used with permission.

• Has revolutionized lens design
– E.g. zoom lenses are good now

Application: CAD for lenses

From Hecht's Optics

37

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Lens design by Ray Tracing

• Used to be done
manually, by rooms
full of engineers who
would trace rays.

• Now software, e.g.
Zemax

• More in 6.815/6.865
Computational
Photography

source: canon red book

38

© BBG Photographica. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Let’s Pause for a Moment...

• Do these pictures look real?

39

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

What’s Wrong then?

• No surface is a perfect mirror,
no material interface is perfectly smooth

40

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

What’s Wrong then?

• No surface is a perfect mirror,
no material interface is perfectly smooth

Adapted from blender.org

Perfectly specular
(mirror) reflection

Perfectly specular
refraction

1 ray in 1 ray out
1 ray in

1 ray out

1 ray out

41

Non-Ideal Reflection/Refraction

Non-ideal glossy
reflection

Non-ideal refraction

• No surface is a perfect mirror,
no material interface is perfectly smooth

Adapted from blender.org

1 ray in
1 ray in

many
rays out

many
rays out

42

Non-Ideal Reflection/Refraction

images from blender.org

Glossy (as opposed to mirror) reflection

Glossy (as opposed to perfect) refraction

43

Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• One reflection ray per intersection

perfect mirror

Reflection

θ θ

44

Glossy Reflection
• Multiple reflection rays

polished surface θ θ

Justin Legakis

45

Courtesy of Justin Legakis.

Shadows
• One shadow ray per

intersection per point
light source

no shadow rays

one shadow ray

46

Shadows & Light Sources

http://www.pa.uky.edu/~sciworks/light/preview/bulb2.htm

clear bulb frosted bulb

http://3media.initialized.org/photos/2000-10-18/index_gall.htm

http://www.davidfay.com/index.php

47

Image removed due to copyright restrictions.

© David Fay Custom Furniture. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Joseph Straley and Sally Shafer Kovash. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray

(to random location)

lots of shadow rays

48

Antialiasing – Supersampling
• Multiple rays per pixel

jaggies w/ antialiasing

49

Motion Blur
• Sample objects

temporally over
time interval

Rob Cook

50

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Multiple rays per pixel:
sample lens aperture

MIT EECS 6.837 – Durand

Depth of Field

Justin Legakis
focal length

film

out-of-focus blur

out-of-focus blur

51
Courtesy of Justin Legakis.

Questions?
H

en
rik

 W
an

n
Je

ns
en

52
Courtesy of Henrik Wann Jensen. Used with permission.

Stack Studios, Rendered using Maxwell

That’s All for Today

Further reading:
- Shirley: Realistic Ray Tracing
- Dutre et al.: Advanced

Global Illumination

61

© Next Limit S.L. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

MIT EECS 6.837 Computer Graphics

Wojciech Matusik, MIT EECS

Acceleration
Structures for Ray Casting

Hašan et al. 2007 1

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Stopping criteria:
• Recursion depth

– Stop after a
number
of bounces

• Ray contribution
– Stop if reflected /

transmitted
contribution
becomes too small

trace ray

 Intersect all objects

 color = ambient term

 For every light

 cast shadow ray

 color += local shading term

 If mirror

 color += colorrefl *

 trace reflected ray

 If transparent

 color += colortrans *

 trace transmitted ray

• Does it ever end?

Recap: Ray Tracing

2

The Ray Tree

R2

R1

R3

L2

L1

L3 N1

N2

N3

T1

T3

Ni surface normal

Ri reflected ray

Li shadow ray

Ti transmitted (refracted) ray

Eye

L1

T3 R3

L3 L2

T1 R1

R2
Eye

Complexity?

58

3

Recursion For Reflection: None

0 recursion

Recursion For Reflection: 1

0 recursion

4

Recursion For Reflection: 2

0 recursion

5

Ray tree

• Visualizing the ray tree for single image pixel

incoming
reflected ray
shadow ray
transmitted (refracted) ray

6

Ray tree

• Visualizing the ray tree for single image pixel

incoming
reflected ray
shadow ray
transmitted (refracted) ray

This gets pretty complicated
pretty fast!

7

Ray Tracing Algorithm Analysis
• Lots of primitives
• Recursive
• Distributed Ray

Tracing
– Means using many

rays for non-
ideal/non-pointlike
phenomena

• Soft shadows
• Anti-aliasing
• Glossy reflection
• Motion blur
• Depth of field

cost ≈ height * width *
 num primitives *
 intersection cost *
 size of recursive ray tree *
 num shadow rays *
 num supersamples *
 num glossy rays *
 num temporal samples *
 num aperture samples *
 . . .

Can we reduce this?

9

• Motivation
– You need LOTS of rays to generate nice pictures
– Intersecting every ray with every primitive becomes the

bottleneck
• Bounding volumes
• Bounding Volume Hierarchies, Kd-trees

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

 Shade

Today

10

Accelerating Ray Casting
• Goal: Reduce the number

of ray/primitive
intersections

11

Conservative Bounding Volume

12

• First check for an
intersection with a
conservative
bounding volume

• Early reject: If ray
doesn’t hit volume,
it doesn’t hit the
triangles!

Conservative Bounding Volume
• What does

“conservative” mean?
– Volume must be big

enough to contain all
geometry within

13

Conservative Bounding Regions

14

• Desiderata
– Tight →

avoid false positives
– Fast to intersect

Bounding Volume Hierarchies

• If ray hits bounding volume,
must we test all primitives inside it?
– Lots of work, think of a 1M-triangle mesh

• You guessed it already, we’ll split the primitives in
groups and build recursive bounding volumes
– Like collision detection,

remember?
bounding

sphere

hierarchy

46

TIEA311 - Today in Jyväskylä

Sorry, guys. . . If you want to learn more about this stuff, you
need to do it all by yourselves. At this point, we skip a lot of
material about optimizing algorithms (all sorts of similar
algorithms, even if graphics is an example, btw.).

To learn more, you may want to check out (on your own time)
“Lecture 14” of the original course, and some books and
articles about ray tracing. Should you want to use this stuff in
your own hobby projects, do ask about possibilities of getting
credit points. State-of-the-art methods are good topics for
Bachelor / Master thesis projects.

This course will now teleport over algorithmic optimizations.
(This is, of course, called “course optimization”!) – we haven’t
covered all the fundamentals yet, so let’s not get stuck with
details. The next few slides from the MIT course give
references for further study (not necessary for our course).

Questions?

• Further reading on efficient Kd-tree construction
– Hunt, Mark & Stoll, IRT 2006
– Zhou et al., SIGGRAPH Asia 2008 Zhou et al.

68

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Optimizing Splitting Planes

• Most people use the Surface Area Heuristic (SAH)
– MacDonald and Booth 1990, “Heuristic for ray tracing

using space subdivision”, Visual Computer
• Idea: simple probabilistic prediction of traversal cost

based on split distance
• Then try different possible splits and keep the one

with lowest cost
• Further reading on efficient Kd-tree construction

– Hunt, Mark & Stoll, IRT 2006
– Zhou et al., SIGGRAPH Asia 2008

85

Hard-core efficiency considerations

• See e.g. Ingo Wald’s PhD thesis
–

• Calculation
– Optimized barycentric ray-triangle intersection

• Memory
– Make kd-tree node as small as possible

(dirty bit packing, make it 8 bytes)
• Parallelism

– SIMD extensions, trace 4 rays at a time, mask results
where they disagree

89

http://www.sci.utah.edu/~wald/PhD/

Pros and Cons of Kd trees

• Pros
– Simple code
– Efficient traversal
– Can conform to data

• Cons

– costly construction, not great if you work with moving
objects

90

Questions?

• For extensions to moving scenes, see Real-Time KD-
Tree Construction on Graphics Hardware, Zhou et
al., SIGGRAPH 2008

91

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

TIEA311 - Today in Jyväskylä

Sorry, guys. . . If you want to learn more about this stuff, you
need to do it all by yourselves. At this point, we skip a lot of
material about optimizing algorithms (all sorts of similar
algorithms, even if graphics is an example, btw.).

To learn more, you may want to check out (on your own time)
“Lecture 14” of the original course, and some books and
articles about ray tracing. Should you want to use this stuff in
your own hobby projects, do ask about possibilities of getting
credit points. State-of-the-art methods are good topics for
Bachelor / Master thesis projects.

This course will now teleport over algorithmic optimizations.
(This is, of course, called “course optimization”!) – we haven’t
covered all the fundamentals yet, so let’s not get stuck with
details. The next few slides from the MIT course give
references for further study (not necessary for our course).

MIT EECS 6.837 Computer Graphics

1 MIT EECS 6.837 – Matusik

Texture Mapping & Shaders

© Remedy Enterainment. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• All materials seen so far are the same everywhere
– In other words, we are assuming the BRDF is independent

of the surface point x

– No real reason to make that assumption

3

Spatial Variation

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Fredo Durand. Used with permission.
© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

• We will allow BRDF parameters to vary over space
– This will give us much more complex surface appearance
– e.g. diffuse color kd vary with x
– Other parameters/info can vary too: ks, exponent, normal

4

Spatial Variation

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Fredo Durand. Used with permission.© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

• From data : texture mapping
– read color and other information

from 2D images

• Procedural : shader
– write little programs that compute

color/info as a function of location

5

Two Approaches

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

6

Effect of Textures

Courtesy of Jeremy Birn.

7

Texture Mapping

Image of a cartoon of a man applying wall paper has been removed due to copyright restrictions.

8

Texture Mapping
3D model Texture mapped model

Image: Praun et al.

?

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This

content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

9

Texture Mapping
Texture

mapped model

Image: Praun et al.

Texture map (2D image)

We need a function

that associates each

surface point with a

2D coordinate in the

texture map

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

10

Texture Mapping
Texture

mapped model

Image: Praun et al.

Texture map (2D image)

For each point

rendered, look up

color in texture map

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Each vertex P stores 2D (u, v) “texture coordinates”
– UVs determine the 2D location in the texture for the vertex
– We will see how to specify them later

• Then we interpolate using barycentrics

11

UV Coordinates

(u0, v0)

(u1, v1)
(u2, v2) u

v
(αu0+βu1+γu2,
αv0+βv1+γv2)

• Each vertex P stores 2D (u, v) “texture coordinates”
– UVs determine the 2D location in the texture for the vertex
– We will see how to specify them later

• Then we interpolate using barycentrics

12

UV Coordinates

(u0, v0)

(u1, v1)
(u2, v2) u

v

✔

• Ray cast pixel (x, y), get visible point and α, β, γ
• Get texture coordinates (u, v) at that point

– Interpolate from vertices using barycentrics
• Look up texture color

using UV coordinates

13

Pseudocode – Ray Casting

Scene

Texture map

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.

• Per-vertex (u, v) “texture coordinates” are specified:
– Manually, provided by user (tedious!)
– Automatically using parameterization optimization
– Mathematical mapping (independent of vertices)

14

UV Coordinates?

(u0, v0)

(u1, v1)
(u2, v2) u

v

✔

• Goal : “flatten” 3D object onto 2D UV coordinates
• For each vertex, find coordinates U,V such that

distortion is minimized
– distances in UV correspond to distances on mesh
– angle of 3D triangle same as angle of triangle in UV plane

• Cuts are usually required (discontinuities)

15

Texture UV Optimization

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• For this course, assume UV given per vertex
• Mesh Parameterization: Theory and Practice”

– Kai Hormann, Bruno Lévy and Alla Sheffer ACM SIGGRAPH Course Notes, 2007

• http://alice.loria.fr/index.php/publications.html?redir
ect=0&Paper=SigCourseParam@2007&Author=Lev
y

16

To Learn More

17

Slide from Epic Games

3D Model UV Mapping

© Epic Games Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Information we need:
• Per vertex

– 3D coordinates
– Normal
– 2D UV coordinates

• Other information
– BRDF (often same for the whole object, but could vary)
– 2D Image for the texture map

18

3D Model

19

Questions?

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• What of non-triangular geometry?
– Spheres, etc.

• No vertices, cannot specify UVs that way!

• Solution: Parametric Texturing

– Deduce (u, v) from (x, y, z)
– Various mappings are possible....

20

Mathematical Mapping

• Planar
– Vertex UVs and

linear interpolation
is a special case!

• Cylindrical
• Spherical
• Perspective

Projection

21

Common Texture Coordinate Mappings
Planar

Spherical

Spherical

Images removed due to copyright restrictions.

• Modeling from photographs
• Using input photos as textures

24

Projective Texture Example

Figure from Debevec, Taylor & Malik
http://www.debevec.org/Research

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Specify texture coordinates (u,v) at each vertex
• Canonical texture coordinates (0,0) → (1,1)

– Wrap around when coordinates are outside (0, 1)

Texture Tiling

seamless tiling (repeating) tiles with visible seams (0,0) (3,0)

(0,3)

(0,0) (3,0)

(0,3)

(0,0)

(1,1)

(0,0)

(1,1)

Note the range (0,1) unlike

normalized screen coordinates!

• Texture mapping can be used to alter some or all
of the constants in the illumination equation
– Diffuse color kd, specular exponent q, specular color ks...
– Any parameter in any BRDF model!

– kd in particular is often read from a texture map

29

Texture Mapping & Illumination

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color

30

Gloss Mapping Example

Spatially varying kd and ks

R
on

 F
ra

zi
er

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

31

Questions?

• The normal vector is really important in conveying
the small-scale surface detail
– Remember cosine dependence
– The human eye is really good at

picking up shape cues from lighting!

• We can exploit this and look up also the normal
vector from a texture map
– This is called “normal mapping” or “bump mapping”
– A coarse mesh combined with detailed normal maps can

convey the shape very well!
32

We Can Go Even Further...

• For each shaded point, normal is given by a 2D
image normalMap that stores the 3D normal

 For a visible point
interpolate UV using barycentric

 // same as texture mapping
Normal = normalMap[U,V]
compute shading (BRDF) using this normal

33

Normal Mapping

34

Normal Map Example

Original Mesh
4M triangles

Paolo Cignoni

Image courtesy of Maksim on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

35

Normal Map Example

Simplified mesh,
500 triangles

Simplified mesh +
normal mapping

Paolo Cignoni

Image courtesy of Maksim on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

36

Normal Map Example

Diffuse texture kd

Normal Map

Final render

Models and images: Trevor Taylor

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

37

Generating Normal Maps

• Model a detailed mesh
• Generate a UV parameterization for the mesh

– A UV mapping such that each 3D point has unique
image coordinates in the 2D texture map

– This is a difficult problem, but tools are available
• E.g., the DirectX SDK has functionality to do this

• Simplify the mesh (again, see DirectX SDK)
• Overlay simplified and original model
• For each point P on the simplified mesh, find

closest point P’ on original model (ray casting)
• Store the normal at P’ in the normal map. Done!

• You can store an object-space normal
– Convenient if you have a

unique parameterization
•but if you want to use a tiling
 normal map, this will not work

– Must account for the curvature
of the object!

– Think of mapping this diffuse+normal
map combination on a cylindrical tower

• Solution: Tangent space normal map
– Encode a “difference” from the

geometric normal in a local coord. system 38

Normal Map Details

39

Questions?
Epic Games

Image from Epic Games has been removed due to copyright restrictions.

• Functions executed when light interacts with a
surface

• Constructor:
– set shader parameters

• Inputs:
– Incident radiance
– Incident and reflected light directions
– Surface tangent basis (anisotropic shaders only)

• Output:
– Reflected radiance

40

Shaders (Material class)

• Initially for production (slow) rendering
– Renderman in particular

• Now used for real-time (Games)
– Evaluated by graphics hardware
– More later in the course

• Often makes heavy use of texture mapping

41

Shader

42

Questions?

43

Procedural Textures

Image by Turner Whitted

• Alternative to
texture mapping

• Little program that
computes color as a
function of x,y,z:

f(x,y,z) color

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Advantages:
– easy to implement in ray tracer
– more compact than texture maps

(especially for solid textures)
– infinite resolution

• Disadvantages

– non-intuitive
– difficult to match existing texture

44

Procedural Textures

45

Questions?

• Critical component of
procedural textures

• Pseudo-random function
– But continuous
– band pass (single scale)

• Useful to add lots of visual detail
http://www.noisemachine.com/talk1/index.html
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://mrl.nyu.edu/~perlin/noise/
http://en.wikipedia.org/wiki/Perlin_noise
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 (not really Perlin noise but very good)
http://portal.acm.org/citation.cfm?id=325247

46

Perlin Noise

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Pseudo random
• For arbitrary dimension

– 4D is common for animation
• Smooth
• Band pass (single scale)
• Little memory usage

• How would you do it?

47

Requirements

• Cubic lattice
• Zero at vertices

– To avoid low frequencies
• Pseudo-random gradient

at vertices
– define local linear functions

• Splines to interpolate the values
to arbitrary 3D points

48

Perlin Noise

TIEA311 - Today in Jyväskylä

I Basic idea of Perlin noise is nicely introduced on “Lecture
16” of the original course material.

I We skip it here. I hope the follow-up course starting next
week has time for this, among many other wonderful
things.

I Pseudo-random noise is very easy to incorporate in
real-time graphics shaders. If you want, you can just
“copy-paste” code that you trust (and that has a license
that allows inclusion in your current work!)

I Next, we proceed directly to applications of Perlin noise.

• A scale is also called an octave in noise parlance

55

Noise At One Scale

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• A scale is also called an octave in noise parlance
• But multiple octaves

are usually used,
where the scale
between two octaves
is multiplied by 2
– hence the name

octave

56

Noise At Multiple Scales

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• That is, each octave f has weight 1/f

57

Sum 1/f noise

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Absolute value introduces C1 discontinuities

58

sum 1/f |noise|

• a.k.a. turbulence

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Looks like marble!

59

sin (x + sum 1/f |noise|)

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

sum 1/f(noise) sum 1/f(|noise|)

60

Comparison
•noise sin(x + sum 1/f(|noise|))

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

61

Questions?

• Marble
– recall sin (x[0] + sum 1/f |noise|)
– BoringMarble = colormap (sin(x[0])
– Marble = colormap (sin(x[0]+turbulence))
– http://legakis.net/justin/MarbleApplet/

• Wood
– replace x (or parallel plane)

by radius
– Wood = colormap (sin(r+turbulence))
– http://www.connectedpixel.com/blog/texture/wood

62

Noise For Solid Textures

© Ken Perlin. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

64

Other Cool Usage: Displacement, Fur

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

65

Questions?

Image removed due to copyright restrictions. Please the image of “blueglass.gif” from
http://mrl.nyu.edu/~perlin/imgs/imgs.html.

• Noise: one ingredient of shaders
• Can also use textures
• Shaders control diffuse color, but also specular

components, maybe even roughness (exponent),
transparency, etc.

• Shaders can be layered (e.g. a layer of dust,
peeling paint, mortar between bricks).

• Notion of shade tree
– Pretty much algebraic tree

• Assignment 5:
checkerboard shader based on two shaders

66

Shaders

• Programmable shader provide great flexibility
• Shaders can be extremely complex

– 10,000 lines of code!
• Writing shaders is a black art

67

Bottom Line

Sampling,
Aliasing,

& Mipmaps

1

MIT EECS 6.837 Computer Graphics

Wojciech Matusik, MIT EECS

Examples of Aliasing

2

© Rosalee Nerheim-Wolfe, Toby Howard, Stephen Spencer. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Examples of Aliasing

3

© Rosalee Nerheim-Wolfe, Toby Howard, Stephen Spencer. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Examples of Aliasing

4

© Rosalee Nerheim-Wolfe, Toby Howard, Stephen Spencer. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Examples of Aliasing
Texture Errors

point sampling

5

In photos too

See also http://vimeo.com/26299355

6

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Philosophical perspective
• The physical world is continuous, inside the

computer things need to be discrete
• Lots of computer graphics is about translating

continuous problems into discrete solutions
– e.g. ODEs for physically-based animation, global

illumination, meshes to represent smooth surfaces,
rasterization, antialiasing

• Careful mathematical understanding helps do the
right thing

7

What is a Pixel?
• A pixel is not:

– a box
– a disk
– a teeny tiny little light

• A pixel “looks different” on
different display devices

• A pixel is a sample
– it has no dimension
– it occupies no area
– it cannot be seen
– it has a coordinate
– it has a value

8

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

• In signal processing, the process of mapping a continuous
function to a discrete one is called sampling

• The process of mapping a continuous variable to a discrete one
is called quantization

– Gamma helps quantization

• To represent or render an image using a computer,
we must both sample and quantize
– Today we focus on the effects of sampling and how to fight them

More on Samples

discrete position

discrete
value

9

Sampling Density

• If we’re lucky, sampling density is enough

Input Reconstructed
12

Sampling Density

• If we insufficiently sample the signal, it may be
mistaken for something simpler during reconstruction
(that's aliasing!)

• This is why it’s called aliasing: the new low-frequency
sine wave is an alias/ghost of the high-frequency one

13

Discussion
• Types of aliasing

– Edges
• mostly directional

aliasing
(vertical and horizontal
edges rather than actual
slope)

– Repetitive textures
• Paradigm of aliasing
• Harder to solve right
• Motivates fun

mathematics

14

© Rosalee Nerheim-Wolfe, Toby Howard, Stephen Spencer. All rights
reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Solution?
• How do we avoid that high-frequency patterns

mess up our image?
• We blur!

– In the case of audio, people first include an analog low-
pass filter before sampling

– For ray tracing/rasterization: compute at higher
resolution, blur, resample at lower resolution

– For textures, we can also blur the texture image before
doing the lookup

• To understand what really happens, we need
serious math

16

• Your intuitive solution is to
compute multiple color values per
pixel and average them

In practice: Supersampling

jaggies w/ antialiasing

18

Uniform supersampling
• Compute image at resolution k*width, k*height
• Downsample using low-pass filter

(e.g. Gaussian, sinc, bicubic)

19

Low pass / convolution
• Each output (low-res) pixel is a weighted average

of input subsamples
• Weight depends on relative spatial position
• For example:

– Gaussian as a function of distance
– 1 inside a square, zero outside (box)

20 http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

© 2003 R. Fisher, S. Perkins, A. Walker and E. Wolfart. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Recommended filter
• Bicubic

– http://www.mentallandscape.com/Papers_siggraph88.
pdf

• Good tradeoff between sharpness and aliasing

23
http://de.wikipedia.org/wiki/Datei:Mitchell_Filter.svg

Choosing the parameters
• Empirical tests determined usable parameters

– Mitchell, Don and Arun Netravali, "Reconstruction Filters in
Computer Graphics", SIGGRAPH 88.

 http://www.mentallandscape.com/Papers_siggraph88.pdf
 http://dl.acm.org/citation.cfm?id=378514

25

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Spatial Filtering
• Remove the high frequencies

which cause artifacts in texture
minification.

• Compute a spatial integration
over the extent of the pixel

• This is equivalent to
convolving the texture with a
filter kernel centered at the
sample (i.e., pixel center)!

• Expensive to do during
rasterization, but an
approximation it can be
precomputed

projected texture in image plane

pixels projected in texture plane
48

MIP Mapping
• Construct a pyramid

of images that are
pre-filtered and
re-sampled at
1/2, 1/4, 1/8, etc.,
of the original
image's sampling

• During rasterization
we compute the index of the decimated image that is sampled at
a rate closest to the density of our desired sampling rate

• MIP stands for multum in parvo which means
many in a small place

49

MIP Mapping Example

MIP Mapped (Bi-Linear) Nearest Neighbor

50

Examples of Aliasing
Texture Errors

nearest neighbor/ point
sampling

mipmaps & linear interpolation

52

TIEA311 - Today in Jyväskylä

I Much more about sampling issues and antialiasing on
“Lecture 17” of the original course material.

I The previous few slides were just a low-resolution sample
of the original slide set – (pun, intended, funny).

I As mentioned earlier, we gladly defer the theory to our
local courses “TIES324 Signaalinkäsittely” and techniques
to “TIES471 Reaaliaikainen renderöinti”.

TIEA311 - Today in Jyväskylä
Facing the fact that our original course material from MIT is a
full-semester course whereas we only have one half, we need
to cut stock a bit. On this lecture, we’ll see “teasers” of what we
skip, with ideas of where to fit similar material in our curriculum:

I While we cover animation from the original “Lecture 6”, we
skip skinning, and the skinning part of “Assignment 2”.

→ This topic is covered in the follow-up course “Realtime
Rendering” – skinning can be implemented in vertex
shaders, which is also a topic of the follow-up course;
benefits from quaternions, a piece of math suitable for the
follow-up, too.

I We skip the original Lectures “7–9” about physical
models and the practical “Assignment 3” that deals with
those.

→ Maybe we could revive our own course about “physical
models in computer animations” in the (near-ish?)
future. . .

Many slides courtesy of Jovan
Popovic, Ronen Barzel, and
Jaakko Lehtinen

Basics of Computer Animation
Skinning/Enveloping

MIT EECS 6.837 Computer Graphics

6.837 Matusik

Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

1

Traditional Animation

 From ACM © 1997 “Multiperspective panoramas for cel animation.”

• Draw each frame by hand
– great control, but tedious

• Reduce burden with cel animation
– Layer, keyframe, inbetween, …
– Example: Cel panoramas (Disney’s

Pinocchio)
Image courtesy of Garrett Albright on Wikimedia
Commons. License: CC-BY-SA. This content is
excluded from our Creative Commons license.
For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

2

• The in-betweening, was once a job for apprentice animators.
Splines accomplish these tasks automatically. However, the
animator still has to draw the keyframes. This is an art form and
precisely why the experienced animators were spared the in-
betweening work even before automatic techniques.

• The classical paper on animation by John Lasseter from Pixar
surveys some the standard animation techniques:

• "Principles of Traditional Animation Applied to 3D Computer
Graphics,“ SIGGRAPH'87, pp. 35-44.

• See also The Illusion of Life: Disney Animation, by Frank
Thomas and Ollie Johnston.

Traditional Animation Principles

3

• Squash: flatten an object or character by pressure or by
its own power

• Stretch: used to increase the sense of speed and

emphasize the squash by contrast

Example: Squash and Stretch

Image adapted from: Lasseter, John. "Principles of Traditional Animation applied to 3D Computer Animation." ACM SIGGRAPH Computer Graphics 21, no. 4 (July 1987): 35-44.

© ACM. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

4

Example: Timing

• Timing affects weight:
– Light object move quickly
– Heavier objects move slower

• Timing completely changes the interpretation of the

motion.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

5

• How do we describe and generate motion of
objects in the scene?

• Two very different contexts:

– Production (offline)
• Can be hardcoded, entire sequence know beforehand

– Interactive (e.g. games, simulators)
• Needs to react to user interaction, sequence not known

Computer Animation

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

6

Types of Animation: Keyframing

• Specify scene only at
some instants of time

• Generate in-betweens automatically

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

8

• Describes the motion algorithmically
• Express animation as a function of

small number of parameters
• Example

– a clock/watch with second, minute and hour hands
– express the clock motions in terms of

a “seconds” variable
• the clock is animated by

changing this variable

• Another example: Grass in the wind,
tree canopies, etc.

Types of Animation: Procedural

9

• Assign physical properties to objects
– Masses, forces, etc.

• Also procedural forces (like wind)
• Simulate physics by solving equations of motion

– Rigid bodies, fluids, plastic deformation, etc.
• Realistic but difficult to control

Types of Animation: Physically-Based

v0

m g
10

• Physically-Based Character Animation
– Specify keyframes, solve for physically valid motion

that interpolates them by “spacetime optimization”

• Anthony C. Fang and Nancy S. Pollard, 2003. Efficient

Synthesis of Physically Valid Human Motion, ACM
Transactions on Graphics 22(3) 417-426, Proc. SIGGRAPH
2003.http://graphics.cs.cmu.edu/nsp/projects/spacetime/space
time.html

Another Example

11

• Animation is (usually) specified using some form
of low-dimensional controls as opposed to
remodeling the actual geometry for each frame.
– Example: The joint angles (bone transformations) in a

hierarchical character determine the pose
– Example: A rigid motion is represented by

changing the object-to-world transformation
(rotation and translation).

“Blendshapes” are

keyframes that are just

snapshots of the

entire geometry.

Because we are Lazy...

Courtesy Robert C. Duvall, Duke
University. License CC BY-NC-SA.

15

Building 3D models and their animation controls is
a major component of every animation pipeline.

Building the controls is called “rigging”.

17

• Forward kinematics
describes the positions of the
body parts as a function of
joint angles
– Body parts are

usually called “bones”
– Angles are the low-

dimensional control.
• Inverse kinematics specifies

constraint locations for bones
and solves for joint angles.

Articulated Character Models

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA.

18

• Embed a skeleton into a
detailed character mesh

• Animate “bones”
– Change the joint

angles over time
– Keyframing, procedural, etc.

• Bind skin vertices to bones
– Animate skeleton, skin will

move with it

Skinning Characters

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA.

Courtesy of Blender Foundation. License CC-BY. This content
is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use.

20

Motion Capture
• Usually uses optical markers and multiple

high-speed cameras
• Triangulate to get marker 3D position

– (Again, structure from motion and projective
geometry, i.e., homogeneous coordinates)

• Captures style, subtle nuances and realism
• But need ability to record someone

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA. 21

Motion Capture

• Motion capture records
3D marker positions
– But character is
controlled using
animation controls
that affect bone

transformations!
• Marker positions must be

translated into character
controls (“retargeting”)

This image is in the public domain. Source: Wikimedia Commons.

22

5

Skinning/Enveloping

25 Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use.

25

• We know how to animate a
bone hierarchy
– Change the joint angles, i.e.,

bone transformations, over
time (keyframing)

• Embed a skeleton into a
detailed character mesh

• Bind skin vertices to bones
– Animate skeleton, skin will

move with it
– But how?

Skinning

Courtesy of Blender Foundation. License CC-BY. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use.

27

• Need to infer how skin deforms
from bone transformations.

• Most popular technique:
Skeletal Subspace Deformation
(SSD), or simply Skinning
– Other aliases

• vertex blending
• matrix palette skinning
• linear blend skinning

Skinning/Enveloping

 This image is in the public domain. Source: Wikimedia Commons.

28

