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Overview of Today 

• Shadows 
 
 

• Reflection 
 
 

• Refraction 
 
 

• Recursive Ray Tracing 
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Mirror Reflection 
• Cast ray symmetric with  

respect to the normal 
• Multiply by reflection  

coefficient ks (color) 
• Don’t forget to add epsilon  

to the ray! 

Without epsilon 

With epsilon 

16 



Perfect Mirror Reflection 

• Reflection angle = view angle 
– Normal component is negated 
– Remember particle collisions? 

• R = V – 2 (V · N) N 

R V 

 V  R 

N 

V N N 

V N N 

V 
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Amount of Reflection 
• Traditional ray tracing (hack)  

– Constant ks 

• More realistic (we’ll do this later): 
– Fresnel reflection term (more reflection at grazing angle) 
– Schlick’s approximation: R()=R0+(1-R0)(1-cos )5 

• Fresnel makes a big difference! 

metal 18 Dielectric (glass) 
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“Sphereflake” fractal 
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Courtesy of Henrik Wann Jensen. Used with permission.



Overview of Today 

• Shadows 
 
 

• Reflection 
 
 

• Refraction 
 
 

• Recursive Ray Tracing 

20 



Transparency (Refraction) 

• Cast ray in refracted direction 
• Multiply by transparency coefficient kt (color) 
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Qualitative Refraction 
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© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Refracted direction T? 

Refraction 

I 

T 

Өi 

ӨT 

N 

-N 

M ηT 

ηi 

Snell-Descartes Law: 
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Relative index of refraction 

Material 1, index of refraction ηi 

Material 2, index of refraction ηT 

𝑛𝑖 sin 𝜃𝑖 = 𝑛𝑇 sin 𝜃𝑇 

sin 𝜃𝑇

sin 𝜃𝑖
=  

𝑛𝑖

𝑛𝑇
= 𝑛𝑟 



Refraction 
I    = N cos Өi  – M sin Өi 

M  = (N cos Өi  – I) / sin Өi 

 
T  = – N cos ӨT  + M sin ӨT 

     = – N cos ӨT + (N cos Өi – I) sin ӨT / sin Өi 

     = – N cos ӨT + (N cos Өi – I) ηr 

     = [ ηr cos Өi – cos ӨT ] N – ηr I 

     = [ ηr cos Өi – √1 – sin2 ӨT ] N – ηr I 

     = [ ηr cos Өi – √1 – ηr
2 sin2 Өi ] N – ηr I 

     = [ ηr cos Өi – √1 – ηr
2 (1 – cos2 Өi ) ] N – ηr I 

     = [ ηr (N · I) – √1 – ηr
2 (1 – (N · I)2 ) ] N – ηr I 

I 

T 

Өi 

ӨT 

N 

-N 

M ηT 

ηi 

Snell-Descartes Law: 

 

N cos Өi 

– M sin Өi 

let’s get rid of  

the cos & sin 

Plug M 

24 

sin 𝜃𝑇

sin 𝜃𝑖
=  

𝑛𝑖

𝑛𝑇
= 𝑛𝑟 

𝑛𝑖 sin 𝜃𝑖 = 𝑛𝑇 sin 𝜃𝑇 



Refraction 
I    = N cos Өi  – M sin Өi 

M  = (N cos Өi  – I) / sin Өi 

 
T  = – N cos ӨT  + M sin ӨT 

     = – N cos ӨT + (N cos Өi – I) sin ӨT / sin Өi 

     = – N cos ӨT + (N cos Өi – I) ηr 

     = [ ηr cos Өi – cos ӨT ] N – ηr I 

     = [ ηr cos Өi – √1 – sin2 ӨT ] N – ηr I 

     = [ ηr cos Өi – √1 – ηr
2 sin2 Өi ] N – ηr I 

     = [ ηr cos Өi – √1 – ηr
2 (1 – cos2 Өi ) ] N – ηr I 

     = [ ηr (N · I) – √1 – ηr
2 (1 – (N · I)2 ) ] N – ηr I 

I 

T 

Өi 

ӨT 

N 

-N 

M ηT 

ηi 

Snell-Descartes Law: 

 

N cos Өi 

– M sin Өi 

let’s get rid of  

the cos & sin 

Plug M 

• Total internal reflection when  
the square root is imaginary 
(no refraction, just reflection) 
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𝑛𝑖 sin 𝜃𝑖 = 𝑛𝑇 sin 𝜃𝑇 

sin 𝜃𝑇

sin 𝜃𝑖
=  

𝑛𝑖

𝑛𝑇
= 𝑛𝑟 



Total Internal Reflection 

No transmission 
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Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Total Internal Reflection 

27 

© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Make sure you know whether you’re entering or leaving 
the transmissive material: 
 
 
 
 
 
 
 

• Note: We won’t ask you to trace rays through 
intersecting transparent objects :-) 

Refraction & Sidedness of Objects 

T 

ηT = material  

        index 

ηi=1 

N 

T 

ηT= 1 

ηi = material  

       index 

N 

I 

I 
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Cool Refraction Demo 
• Enright, D., 

Marschner, S. 
and Fedkiw, 
R., 
SIGGRAPH 
2002  
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© ACM. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Refraction and the Lifeguard Problem 

• Running is faster than swimming  
Beach 

Person  
in trouble 

Lifeguard 

Water 

Run 

Swim 

30 
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



TIEA311 - Today in Jyväskylä

Wait a moment. . . who is in trouble on this course?



TIEA311 - Today in Jyväskylä

Refraction and the Lifeguard Problem 

• Running is faster than swimming  
Beach 

Person  
in trouble 

Lifeguard 

Water 

Run 

Swim 

30 
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



How Does a Rainbow Work? 
• From “Color and Light in Nature” 

by Lynch and Livingstone 

31 
© Cambridge University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Wavelength 

Pittoni, 1725, Allegory to Newton 
Pink Floyd, The Dark Side of the Moon 

• Refraction is wavelength-
dependent (dispersion) 
– Refraction increases as the 

wavelength of light decreases 
– violet and blue experience more 

bending than orange and red  

• Newton’s prism experiment 
• Usually ignored in graphics 

32 
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© The Fitzwilliam Museum. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.



Rainbow 

• Rainbow is caused by  
refraction + internal reflection + refraction 

• Maximum for angle around 42 degrees 
• Refraction depends on wavelength (dispersion) 

“C
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The outgoing 

angle is different 

for each 

wavelength 
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Rainbow 

• Rainbow is caused by  
refraction + internal 
reflection + refraction 

• Maximum for angle 
around 42 degrees 

• Refraction depends on 
wavelength 
(dispersion) 

34 
This image is in the public domain. Source: Wikipedia.



Dispersion  
• Image by Henrik Wann Jensen using Photon Mapping 

35 
Courtesy of Henrik Wann Jensen. Used with permission.



• Has revolutionized lens design 
– E.g. zoom lenses are good now 

Application: CAD for lenses 

From Hecht's Optics 
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© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Lens design by Ray Tracing 

• Used to be done 
manually, by rooms 
full of engineers who 
would trace rays. 

• Now software, e.g. 
Zemax 

• More in 6.815/6.865 
Computational 
Photography 

source: canon red book 
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© BBG Photographica. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Let’s Pause for a Moment... 

• Do these pictures look real? 

39 

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



What’s Wrong then? 

• No surface is a perfect mirror, 
no material interface is perfectly smooth 

40 

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



What’s Wrong then? 

• No surface is a perfect mirror, 
no material interface is perfectly smooth 

Adapted from blender.org 

Perfectly specular 
(mirror) reflection 

Perfectly specular 
refraction 

1 ray in 1 ray out 
1 ray in 

1 ray out 

1 ray out 
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Non-Ideal Reflection/Refraction 

Non-ideal glossy 
reflection 

Non-ideal refraction 

• No surface is a perfect mirror, 
no material interface is perfectly smooth 

Adapted from blender.org 

1 ray in 
1 ray in 

many 
rays out 

many 
rays out 
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Non-Ideal Reflection/Refraction 

images from blender.org 

Glossy (as opposed to mirror) reflection 

Glossy (as opposed to perfect) refraction 
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Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 



Glossy Reflection 
• Multiple reflection rays 

polished surface θ θ 

Justin Legakis 

45 

Courtesy of Justin Legakis.



Shadows 
• One shadow ray per 

intersection per point 
light source 

no shadow rays 

one shadow ray 
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Shadows & Light Sources 

http://www.pa.uky.edu/~sciworks/light/preview/bulb2.htm 

clear bulb frosted bulb 

http://3media.initialized.org/photos/2000-10-18/index_gall.htm 

http://www.davidfay.com/index.php 
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Image removed due to copyright restrictions.  

© David Fay Custom Furniture. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Joseph Straley and Sally Shafer Kovash. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  

(to random location) 

lots of shadow rays 
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Antialiasing – Supersampling 
• Multiple rays per pixel 

jaggies w/ antialiasing 
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Motion Blur 
• Sample objects 

temporally over 
time interval 

Rob Cook 

50 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Multiple rays per pixel: 
sample lens aperture 

MIT EECS 6.837 – Durand 
  

Depth of Field 

Justin Legakis 
focal length 

film 

out-of-focus blur 

out-of-focus blur 

51 
Courtesy of Justin Legakis.



Questions? 
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Courtesy of Henrik Wann Jensen. Used with permission.



Stack Studios, Rendered using Maxwell 

That’s All for Today 
 
Further reading: 
- Shirley: Realistic Ray Tracing 
- Dutre et al.: Advanced 

Global Illumination 

61 

© Next Limit S.L. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



MIT EECS 6.837 Computer Graphics 

Wojciech Matusik, MIT EECS 

Acceleration 
Structures for Ray Casting 

Hašan et al. 2007 1 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Stopping criteria: 
• Recursion depth 

– Stop after a 
number  
of bounces 

• Ray contribution 
– Stop if reflected /  

transmitted 
contribution  
becomes too small 

trace ray 

   Intersect all objects 

   color = ambient term 

   For every light 

      cast shadow ray  

      color += local shading term 

   If mirror 

      color += colorrefl *  

                trace reflected ray 

   If transparent 

      color += colortrans *  

               trace transmitted ray 

 

•   Does it ever end? 

Recap: Ray Tracing 

2 



The Ray Tree 

R2 

R1 

R3 

L2 

L1 

L3 N1 

N2 

N3 

T1 

T3 

Ni surface normal 

Ri reflected ray 

Li shadow ray 

Ti transmitted (refracted) ray 

Eye 

L1 

T3 R3 

L3 L2 

T1 R1 

R2 
Eye 

Complexity? 

58 



3 

Recursion For Reflection: None 

0 recursion 



Recursion For Reflection: 1 

0 recursion 

4 



Recursion For Reflection: 2 

0 recursion 

5 



Ray tree 

• Visualizing the ray tree for single image pixel 

incoming 
reflected ray 
shadow ray 
transmitted (refracted) ray 

6 



Ray tree 

• Visualizing the ray tree for single image pixel 

incoming 
reflected ray 
shadow ray 
transmitted (refracted) ray 

This gets pretty complicated 
pretty fast! 

7 



Ray Tracing Algorithm Analysis 
• Lots of primitives 
• Recursive 
• Distributed Ray 

Tracing 
– Means using many 

rays for non-
ideal/non-pointlike 
phenomena  

• Soft shadows 
• Anti-aliasing 
• Glossy reflection 
• Motion blur 
• Depth of field 

cost  ≈   height * width *  
              num primitives *  
              intersection cost *  
              size of recursive ray tree *  
         num shadow rays * 
         num supersamples * 
              num glossy rays *               
              num temporal samples * 
              num aperture samples * 
              . . . 

Can we reduce this? 

9 



• Motivation 
– You need LOTS of rays to generate nice pictures 
– Intersecting every ray with every primitive becomes the 

bottleneck 
• Bounding volumes 
• Bounding Volume Hierarchies, Kd-trees 

For every pixel  

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 

     Shade 

Today 

10 



Accelerating Ray Casting 
• Goal: Reduce the number 

of ray/primitive 
intersections 

11 



Conservative Bounding Volume 

12 

• First check for an 
intersection with a 
conservative  
bounding volume 

• Early reject: If ray 
doesn’t hit volume, 
it doesn’t hit the 
triangles! 



Conservative Bounding Volume 
• What does 

“conservative” mean? 
– Volume must be big 

enough to contain all 
geometry within 

13 



Conservative Bounding Regions 

14 

• Desiderata 
– Tight → 

avoid false positives 
– Fast to intersect 



Bounding Volume Hierarchies 

• If ray hits bounding volume, 
must we test all primitives inside it? 
– Lots of work, think of a 1M-triangle mesh 

• You guessed it already, we’ll split the primitives in 
groups and build recursive bounding volumes 
– Like collision detection, 

remember? 
bounding 

sphere 

hierarchy 

46 



TIEA311 - Today in Jyväskylä

Sorry, guys. . . If you want to learn more about this stuff, you
need to do it all by yourselves. At this point, we skip a lot of
material about optimizing algorithms (all sorts of similar
algorithms, even if graphics is an example, btw.).

To learn more, you may want to check out (on your own time)
“Lecture 14” of the original course, and some books and
articles about ray tracing. Should you want to use this stuff in
your own hobby projects, do ask about possibilities of getting
credit points. State-of-the-art methods are good topics for
Bachelor / Master thesis projects.

This course will now teleport over algorithmic optimizations.
(This is, of course, called “course optimization”!) – we haven’t
covered all the fundamentals yet, so let’s not get stuck with
details. The next few slides from the MIT course give
references for further study (not necessary for our course).



Questions? 

• Further reading on efficient Kd-tree construction 
– Hunt, Mark & Stoll, IRT 2006 
– Zhou et al., SIGGRAPH Asia 2008 Zhou et al. 

68 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Optimizing Splitting Planes 

• Most people use the Surface Area Heuristic (SAH) 
– MacDonald and Booth 1990, “Heuristic for ray tracing 

using space subdivision”, Visual Computer 
• Idea: simple probabilistic prediction of traversal cost 

based on split distance 
• Then try different possible splits and keep the one 

with lowest cost 
• Further reading on efficient Kd-tree construction 

– Hunt, Mark & Stoll, IRT 2006 
– Zhou et al., SIGGRAPH Asia 2008 

85 



Hard-core efficiency considerations 

• See e.g. Ingo Wald’s PhD thesis  
–   

• Calculation 
– Optimized barycentric ray-triangle intersection 

• Memory 
– Make kd-tree node as small as possible 

(dirty bit packing, make it 8 bytes) 
• Parallelism 

– SIMD extensions, trace 4 rays at a time, mask results 
where they disagree 

89 

http://www.sci.utah.edu/~wald/PhD/



Pros and Cons of Kd trees 

• Pros 
– Simple code 
– Efficient traversal 
– Can conform to data 

 
• Cons  

– costly construction, not great if you work with moving 
objects 

90 



Questions? 

• For extensions to moving scenes, see Real-Time KD-
Tree Construction on Graphics Hardware, Zhou et 
al., SIGGRAPH 2008 

91 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



TIEA311 - Today in Jyväskylä

Sorry, guys. . . If you want to learn more about this stuff, you
need to do it all by yourselves. At this point, we skip a lot of
material about optimizing algorithms (all sorts of similar
algorithms, even if graphics is an example, btw.).

To learn more, you may want to check out (on your own time)
“Lecture 14” of the original course, and some books and
articles about ray tracing. Should you want to use this stuff in
your own hobby projects, do ask about possibilities of getting
credit points. State-of-the-art methods are good topics for
Bachelor / Master thesis projects.

This course will now teleport over algorithmic optimizations.
(This is, of course, called “course optimization”!) – we haven’t
covered all the fundamentals yet, so let’s not get stuck with
details. The next few slides from the MIT course give
references for further study (not necessary for our course).



MIT EECS 6.837 Computer Graphics  

 
1 MIT EECS 6.837 – Matusik  

Texture Mapping & Shaders 

© Remedy Enterainment. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• All materials seen so far are the same everywhere 
– In other words, we are assuming the BRDF is independent 

of the surface point x 

– No real reason to make that assumption 

3 

Spatial Variation 

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Fredo Durand. Used with permission.
© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.



• We will allow BRDF parameters to vary over space 
– This will give us much more complex surface appearance 
– e.g. diffuse color kd vary with x  
– Other parameters/info can vary too: ks, exponent, normal 

4 

Spatial Variation 

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Fredo Durand. Used with permission.© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.



• From data : texture mapping  
– read color and other information  

from 2D images 
 
 
 

• Procedural : shader 
– write little programs that compute 

color/info as a function of location 

5 

Two Approaches 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Effect of Textures 

Courtesy of Jeremy Birn.
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Texture Mapping 

Image of a cartoon of a man applying wall paper has been removed due to copyright restrictions. 
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Texture Mapping 
3D model Texture mapped model 

Image: Praun et al. 

? 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This

content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Texture Mapping 
Texture 

mapped model 

Image: Praun et al. 

Texture map (2D image) 

We need a function 

that associates each 

surface point with a 

2D coordinate in the 

texture map 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Texture Mapping 
Texture 

mapped model 

Image: Praun et al. 

Texture map (2D image) 

For each point 

rendered, look up 

color in texture map 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Each vertex P stores 2D (u, v) “texture coordinates” 
– UVs determine the 2D location in the texture for the vertex  
– We will see how to specify them later 

• Then we interpolate using barycentrics 

11 

UV Coordinates 

(u0, v0) 

(u1, v1) 
(u2, v2) u 

v 
(αu0+βu1+γu2, 
αv0+βv1+γv2) 



• Each vertex P stores 2D (u, v) “texture coordinates” 
– UVs determine the 2D location in the texture for the vertex  
– We will see how to specify them later 

• Then we interpolate using barycentrics 

12 

UV Coordinates 

(u0, v0) 

(u1, v1) 
(u2, v2) u 

v 

✔ 



• Ray cast pixel (x, y), get visible point and α, β, γ 
• Get texture coordinates (u, v) at that point 

– Interpolate from vertices using barycentrics 
• Look up texture color 

using UV coordinates 

13 

Pseudocode – Ray Casting 

Scene 

Texture map 

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.



• Per-vertex (u, v) “texture coordinates” are specified: 
– Manually, provided by user (tedious!) 
– Automatically using parameterization optimization 
– Mathematical mapping (independent of vertices) 

14 

UV Coordinates? 

(u0, v0) 

(u1, v1) 
(u2, v2) u 

v 

✔ 



• Goal : “flatten” 3D object onto 2D UV coordinates 
• For each vertex, find coordinates U,V such that 

distortion is minimized 
– distances in UV correspond to distances on mesh 
– angle of 3D triangle same as angle of triangle in UV plane 

• Cuts are usually required (discontinuities) 

15 

Texture UV Optimization 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• For this course, assume UV given per vertex 
• Mesh Parameterization: Theory and Practice” 

– Kai Hormann, Bruno Lévy and Alla Sheffer ACM SIGGRAPH Course Notes, 2007 

• http://alice.loria.fr/index.php/publications.html?redir
ect=0&Paper=SigCourseParam@2007&Author=Lev
y 
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To Learn More 
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Slide from Epic Games 

3D Model UV Mapping 

© Epic Games Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Information we need: 
• Per vertex 

– 3D coordinates 
– Normal 
– 2D UV coordinates 

• Other information 
– BRDF (often same for the whole object, but could vary) 
– 2D Image for the texture map 

18 

3D Model 
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Questions? 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• What of non-triangular geometry? 
– Spheres, etc. 

 
• No vertices, cannot specify UVs that way! 

 
• Solution: Parametric Texturing 

– Deduce (u, v) from (x, y, z) 
– Various mappings are possible.... 

20 

Mathematical Mapping 



• Planar 
– Vertex UVs and 

linear interpolation 
is a special case! 

• Cylindrical 
• Spherical  
• Perspective  

Projection 

21 

Common Texture Coordinate Mappings 
Planar 

Spherical 

Spherical 

Images removed due to copyright restrictions. 



• Modeling from photographs 
• Using input photos as textures 

24 

Projective Texture Example 

Figure from Debevec, Taylor & Malik 
http://www.debevec.org/Research 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Specify texture coordinates (u,v) at each vertex 
• Canonical texture coordinates (0,0) → (1,1) 

– Wrap around when coordinates are outside (0, 1) 

Texture Tiling 

seamless tiling (repeating) tiles with visible seams (0,0) (3,0) 

(0,3) 

(0,0) (3,0) 

(0,3) 

(0,0) 

(1,1) 

(0,0) 

(1,1) 

Note the range (0,1) unlike 

normalized screen coordinates! 



• Texture mapping can be used to alter some or all 
of the constants in the illumination equation 
– Diffuse color kd, specular exponent q, specular color ks... 
– Any parameter in any BRDF model! 

 
 
 

– kd in particular is often read from a  texture map 

29 

Texture Mapping & Illumination 

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color 
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Gloss Mapping Example 

Spatially varying kd and ks 

R
on

 F
ra

zi
er

 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 



• The normal vector is really important in conveying 
the small-scale surface detail 
– Remember cosine dependence 
– The human eye is really good at 

picking up shape cues from lighting! 
 

• We can exploit this and look up also the normal 
vector from a texture map 
– This is called “normal mapping” or “bump mapping” 
– A coarse mesh combined with detailed normal maps can 

convey the shape very well! 
32 

We Can Go Even Further... 



• For each shaded point, normal is given by a 2D 
image normalMap that stores the 3D normal 

 For a visible point 
interpolate UV using barycentric  

       // same as texture mapping 
Normal = normalMap[U,V] 
compute shading (BRDF) using this normal 

33 

Normal Mapping 
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Normal Map Example 

Original Mesh 
4M triangles 

Paolo Cignoni 

Image courtesy of Maksim on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Normal Map Example 

Simplified mesh, 
500 triangles 

Simplified mesh + 
normal mapping 

Paolo Cignoni 

Image courtesy of Maksim on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



36 

Normal Map Example 

Diffuse texture kd 

Normal Map 

Final render 

Models and images: Trevor Taylor 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Generating Normal Maps 

• Model a detailed mesh 
• Generate a UV parameterization for the mesh 

– A UV mapping such that each 3D point has unique 
image coordinates in the 2D texture map 

– This is a difficult problem, but tools are available 
• E.g., the DirectX SDK has functionality to do this 

• Simplify the mesh (again, see DirectX SDK) 
• Overlay simplified and original model 
• For each point P on the simplified mesh, find 

closest point P’ on original model (ray casting) 
• Store the normal at P’ in the normal map. Done! 



• You can store an object-space normal 
– Convenient if you have a 

unique parameterization 
• ....but if you want to use a tiling 
 normal map, this will not work 

– Must account for the curvature 
of the object! 

– Think of mapping this diffuse+normal 
map combination on a cylindrical tower 

• Solution: Tangent space normal map 
– Encode a “difference” from the 

geometric normal in a local coord. system 38 

Normal Map Details 
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Questions? 
Epic Games 

Image from Epic Games has been removed due to copyright restrictions. 



• Functions executed when light interacts with a 
surface 

• Constructor: 
– set shader parameters  

• Inputs: 
– Incident radiance 
– Incident and reflected light directions 
– Surface tangent basis (anisotropic shaders only) 

• Output: 
– Reflected radiance 

40 

Shaders (Material class) 



• Initially for production (slow) rendering 
– Renderman in particular 

• Now used for real-time (Games) 
– Evaluated by graphics hardware 
– More later in the course 

 
• Often makes heavy use of texture mapping 

41 

Shader 
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Questions? 
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Procedural Textures 

Image by Turner Whitted 

• Alternative to 
texture mapping 

• Little program that 
computes color as a 
function of x,y,z: 

f(x,y,z) color 

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Advantages: 
– easy to implement in ray tracer  
– more compact than texture maps 

(especially for solid textures)  
– infinite resolution 

 
• Disadvantages 

– non-intuitive  
– difficult to match existing texture 
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Procedural Textures 
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Questions? 



• Critical component of  
procedural textures 

• Pseudo-random function 
– But continuous 
– band pass (single scale) 

• Useful to add lots of visual detail 
http://www.noisemachine.com/talk1/index.html 
http://mrl.nyu.edu/~perlin/doc/oscar.html 
http://mrl.nyu.edu/~perlin/noise/ 
http://en.wikipedia.org/wiki/Perlin_noise 
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm  
 (not really Perlin noise but very good) 
http://portal.acm.org/citation.cfm?id=325247  
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Perlin Noise 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Pseudo random 
• For arbitrary dimension 

– 4D is common for animation 
• Smooth 
• Band pass (single scale) 
• Little memory usage 

 
• How would you do it? 

47 

Requirements 



• Cubic lattice  
• Zero at vertices 

– To avoid low frequencies 
• Pseudo-random gradient  

at vertices 
– define local linear functions 

• Splines to interpolate the values  
to arbitrary 3D points 

48 

Perlin Noise 



TIEA311 - Today in Jyväskylä

I Basic idea of Perlin noise is nicely introduced on “Lecture
16” of the original course material.

I We skip it here. I hope the follow-up course starting next
week has time for this, among many other wonderful
things.

I Pseudo-random noise is very easy to incorporate in
real-time graphics shaders. If you want, you can just
“copy-paste” code that you trust (and that has a license
that allows inclusion in your current work!)

I Next, we proceed directly to applications of Perlin noise.



• A scale is also called an octave in noise parlance 
 

55 

Noise At One Scale 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• A scale is also called an octave in noise parlance 
• But multiple octaves 

are usually used,  
where the scale  
between two octaves 
is multiplied by 2 
– hence the name 

octave 

56 

Noise At Multiple Scales 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• That is, each octave f has weight 1/f 
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Sum 1/f noise 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Absolute value introduces C1 discontinuities 

58 

sum 1/f |noise| 

 
• a.k.a. turbulence 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



• Looks like marble! 
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sin (x + sum 1/f |noise|) 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



sum 1/f(noise) sum 1/f( |noise| ) 
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Comparison 
•noise                               sin(x + sum 1/f( |noise| ))  

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 



• Marble 
– recall sin (x[0] + sum 1/f |noise|)  
– BoringMarble = colormap (sin(x[0]) 
– Marble = colormap (sin(x[0]+turbulence)) 
– http://legakis.net/justin/MarbleApplet/  

• Wood 
– replace x (or parallel plane)  

by radius 
– Wood = colormap (sin(r+turbulence)) 
– http://www.connectedpixel.com/blog/texture/wood 
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Noise For Solid Textures 

© Ken Perlin. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.
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Other Cool Usage: Displacement, Fur 

© Ken Perlin. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



65 

Questions? 

Image removed due to copyright restrictions.  Please the image of “blueglass.gif” from 
http://mrl.nyu.edu/~perlin/imgs/imgs.html. 



• Noise: one ingredient of shaders 
• Can also use textures 
• Shaders control diffuse color, but also specular 

components, maybe even roughness (exponent), 
transparency, etc. 

• Shaders can be layered (e.g. a layer of dust, 
peeling paint, mortar between bricks).  

• Notion of shade tree  
– Pretty much algebraic tree 

• Assignment 5:  
checkerboard shader based on two shaders 
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Shaders 



• Programmable shader provide great flexibility 
• Shaders can be extremely complex 

– 10,000 lines of code! 
• Writing shaders is a black art 

67 

Bottom Line 



Sampling,  
Aliasing,  

& Mipmaps 

1 

MIT EECS 6.837 Computer Graphics 

Wojciech Matusik, MIT EECS 



Examples of Aliasing 

2 
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Examples of Aliasing 
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Examples of Aliasing 

4 

© Rosalee Nerheim-Wolfe, Toby Howard, Stephen Spencer. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Examples of Aliasing 
Texture Errors 

point sampling 

5 



In photos too 

See also http://vimeo.com/26299355 
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Philosophical perspective 
• The physical world is continuous, inside the 

computer things need to be discrete 
• Lots of computer graphics is about translating 

continuous problems into discrete solutions  
– e.g. ODEs for physically-based animation, global 

illumination, meshes to represent smooth surfaces, 
rasterization, antialiasing 

• Careful mathematical understanding helps do the 
right thing 

7 



What is a Pixel? 
• A pixel is not: 

– a box 
– a disk 
– a teeny tiny little light 

• A pixel “looks different” on 
different display devices 

• A pixel is a sample 
– it has no dimension 
– it occupies no area 
– it cannot be seen 
– it has a coordinate 
– it has a value 

8 

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.



• In signal processing, the process of mapping a continuous 
function to a discrete one is called sampling 

• The process of mapping a continuous variable to a discrete one 
is called quantization 

– Gamma helps quantization 

• To represent or render an image using a computer,  
we must both sample and quantize  
– Today we focus on the effects of sampling and how to fight them 

More on Samples 

discrete position 

discrete 
value 

9 



Sampling Density 

• If we’re lucky, sampling density is enough 

Input Reconstructed 
12 



Sampling Density 

• If we insufficiently sample the signal, it may be 
mistaken for something simpler during reconstruction 
(that's aliasing!) 

• This is why it’s called aliasing: the new low-frequency 
sine wave is an alias/ghost of the high-frequency one 

13 



Discussion 
• Types of aliasing 

– Edges 
• mostly directional 

aliasing 
(vertical and horizontal 
edges rather than actual 
slope)  

– Repetitive textures 
• Paradigm of aliasing 
• Harder to solve right 
• Motivates fun  

mathematics 

14 

© Rosalee Nerheim-Wolfe, Toby Howard, Stephen Spencer. All rights
reserved. This content is excluded from our Creative Commons license.
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Solution? 
• How do we avoid that high-frequency patterns 

mess up our image? 
• We blur! 

– In the case of audio, people first include an analog low-
pass filter before sampling 

– For ray tracing/rasterization: compute at higher 
resolution, blur, resample at lower resolution 

– For textures, we can also blur the texture image before 
doing the lookup 

• To understand what really happens, we need 
serious math 

16 



• Your intuitive solution is to 
compute multiple color values per 
pixel and average them 

In practice: Supersampling 

jaggies w/ antialiasing 

18 



Uniform supersampling 
• Compute image at resolution k*width, k*height 
• Downsample using low-pass filter  

(e.g. Gaussian, sinc, bicubic) 

19 



Low pass / convolution 
• Each output (low-res) pixel is a weighted average 

of input subsamples 
• Weight depends on relative spatial position 
• For example: 

– Gaussian as a function of distance 
– 1 inside a square, zero outside (box) 
 

20 http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm 

© 2003 R. Fisher, S. Perkins, A. Walker and E. Wolfart. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



Recommended filter 
• Bicubic 

– http://www.mentallandscape.com/Papers_siggraph88.
pdf 

• Good tradeoff between sharpness and aliasing 

23 
http://de.wikipedia.org/wiki/Datei:Mitchell_Filter.svg 



Choosing the parameters 
• Empirical tests determined usable parameters 

– Mitchell, Don and Arun Netravali, "Reconstruction Filters in 
Computer Graphics", SIGGRAPH 88. 

         http://www.mentallandscape.com/Papers_siggraph88.pdf 
         http://dl.acm.org/citation.cfm?id=378514 
 

25 
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Spatial Filtering 
• Remove the high frequencies 

which cause artifacts in texture 
minification. 

• Compute a spatial integration 
over the extent of the pixel 

• This is equivalent to 
convolving the texture with a 
filter kernel centered at the 
sample (i.e., pixel center)! 

• Expensive to do during 
rasterization, but an 
approximation it can be 
precomputed 

projected texture in image plane 

pixels projected in texture plane 
48 



MIP Mapping 
• Construct a pyramid  

of images that are  
pre-filtered and  
re-sampled at  
1/2, 1/4, 1/8, etc.,  
of the original  
image's sampling 

• During rasterization  
we compute the index of the decimated image that is sampled at 
a rate closest to the density of our desired sampling rate 

• MIP stands for multum in parvo which means  
many in a small place  

49 



MIP Mapping Example 

MIP Mapped (Bi-Linear) Nearest Neighbor 

50 



Examples of Aliasing 
Texture Errors 

nearest neighbor/ point 
sampling 

mipmaps & linear interpolation 

52 



TIEA311 - Today in Jyväskylä

I Much more about sampling issues and antialiasing on
“Lecture 17” of the original course material.

I The previous few slides were just a low-resolution sample
of the original slide set – (pun, intended, funny).

I As mentioned earlier, we gladly defer the theory to our
local courses “TIES324 Signaalinkäsittely” and techniques
to “TIES471 Reaaliaikainen renderöinti”.



TIEA311 - Today in Jyväskylä
Facing the fact that our original course material from MIT is a
full-semester course whereas we only have one half, we need
to cut stock a bit. On this lecture, we’ll see “teasers” of what we
skip, with ideas of where to fit similar material in our curriculum:

I While we cover animation from the original “Lecture 6”, we
skip skinning, and the skinning part of “Assignment 2”.

→ This topic is covered in the follow-up course “Realtime
Rendering” – skinning can be implemented in vertex
shaders, which is also a topic of the follow-up course;
benefits from quaternions, a piece of math suitable for the
follow-up, too.

I We skip the original Lectures “7–9” about physical
models and the practical “Assignment 3” that deals with
those.

→ Maybe we could revive our own course about “physical
models in computer animations” in the (near-ish?)
future. . .



Many slides courtesy of Jovan 
Popovic, Ronen Barzel, and 
Jaakko Lehtinen 

Basics of Computer Animation 
Skinning/Enveloping 
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Traditional Animation 

 From ACM © 1997 “Multiperspective panoramas for cel animation.”

• Draw each frame by hand 
– great control, but tedious 

• Reduce burden with cel animation 
– Layer, keyframe, inbetween, … 
– Example: Cel panoramas (Disney’s 

Pinocchio) 
Image courtesy of Garrett Albright on Wikimedia
Commons. License: CC-BY-SA. This content is
excluded from our Creative Commons license.
For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• The in-betweening, was once a job for apprentice animators. 
Splines accomplish these tasks automatically. However, the 
animator still has to draw the keyframes.  This is an art form and 
precisely why the experienced animators were spared the in-
betweening work even before automatic techniques. 

• The classical paper on animation by John Lasseter from Pixar 
surveys some the standard animation techniques:  

• "Principles of Traditional Animation Applied to 3D Computer 
Graphics,“ SIGGRAPH'87, pp. 35-44. 

• See also The Illusion of Life:  Disney Animation, by Frank 
Thomas and Ollie Johnston.  

Traditional Animation Principles 

3



• Squash: flatten an object or character by pressure or by 
its own power 

 
• Stretch: used to increase the sense of speed and 

emphasize the squash by contrast 

Example: Squash and Stretch 

Image adapted from: Lasseter, John. "Principles of Traditional Animation applied to 3D Computer Animation."  ACM SIGGRAPH Computer Graphics 21, no. 4 (July 1987): 35-44. 

© ACM. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

4



Example: Timing 

• Timing affects weight: 
– Light object move quickly 
– Heavier objects move slower 

 
 
• Timing completely changes the interpretation of the 

motion. 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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• How do we describe and generate motion of 
objects in the scene? 

 
 
 
• Two very different contexts:  

– Production (offline)  
• Can be hardcoded, entire sequence know beforehand 

– Interactive (e.g. games, simulators)  
• Needs to react to user interaction, sequence not known 

Computer Animation 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Types of Animation: Keyframing 

• Specify scene only at 
some instants of time 

• Generate in-betweens automatically 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Describes the motion algorithmically 
• Express animation as a function of 

small number of parameters 
• Example 

– a clock/watch with second, minute and hour hands 
– express the clock motions in terms of 

a “seconds” variable 
• the clock is animated by 

changing this variable 

• Another example: Grass in the wind, 
tree canopies, etc. 

Types of Animation: Procedural 
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• Assign physical properties to objects 
– Masses, forces, etc. 

• Also procedural forces (like wind) 
• Simulate physics by solving equations of motion 

– Rigid bodies, fluids, plastic deformation, etc. 
• Realistic but difficult to control 

Types of Animation: Physically-Based 

v0 

m g 
10



• Physically-Based Character Animation 
– Specify keyframes, solve for physically valid motion 

that interpolates them by “spacetime optimization” 
 
• Anthony C. Fang and Nancy S. Pollard, 2003. Efficient 

Synthesis of Physically Valid Human Motion, ACM 
Transactions on Graphics 22(3) 417-426, Proc. SIGGRAPH 
2003.http://graphics.cs.cmu.edu/nsp/projects/spacetime/space
time.html 

Another Example 

11



• Animation is (usually) specified using some form 
of low-dimensional controls as opposed to 
remodeling the actual geometry for each frame. 
– Example: The joint angles (bone transformations) in a 

hierarchical character determine the pose 
– Example: A rigid motion is represented by 

changing the object-to-world transformation 
(rotation and translation). 

“Blendshapes” are 

keyframes that are just 

snapshots of the 

entire geometry. 

Because we are Lazy... 

Courtesy Robert C. Duvall, Duke
University. License CC BY-NC-SA.
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Building 3D models and their animation controls is 
a major component of every animation pipeline. 

 
Building the controls is called “rigging”. 

17



• Forward kinematics 
describes the positions of the 
body parts as a function of 
joint angles 
– Body parts are 

usually called “bones” 
– Angles are the low-

dimensional control. 
• Inverse kinematics specifies 

constraint locations for bones 
and solves for joint angles. 

Articulated Character Models 

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA.
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• Embed a skeleton into a 
detailed character mesh 

• Animate “bones” 
– Change the joint 

angles over time 
– Keyframing, procedural, etc. 

• Bind skin vertices to bones 
– Animate skeleton, skin will 

move with it 

Skinning Characters 

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA. 

Courtesy of Blender Foundation. License CC-BY. This content
is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use.
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Motion Capture 
• Usually uses optical markers and multiple 

high-speed cameras 
• Triangulate to get marker 3D position 

– (Again, structure from motion and projective 
geometry, i.e., homogeneous coordinates) 

• Captures style, subtle nuances and realism 
• But need ability to record someone 

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA. 21



Motion Capture 

• Motion capture records 
3D marker positions 
– But character is  
controlled using 
animation controls  
that affect bone 

transformations! 
• Marker positions must be 

translated into character 
controls (“retargeting”) 

 

This image is in the public domain. Source: Wikimedia Commons.
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Skinning/Enveloping 

25 Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use.
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• We know how to animate a 
bone hierarchy 
– Change the joint angles, i.e., 

bone transformations, over 
time (keyframing) 

• Embed a skeleton into a 
detailed character mesh 

• Bind skin vertices to bones 
– Animate skeleton, skin will 

move with it 
– But how? 

Skinning 

Courtesy of Blender Foundation. License CC-BY. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use.
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• Need to infer how skin deforms 
from bone transformations. 

• Most popular technique: 
Skeletal Subspace Deformation 
(SSD), or simply Skinning 
– Other aliases 

• vertex blending 
• matrix palette skinning 
• linear blend skinning 

Skinning/Enveloping 

 This image is in the public domain. Source: Wikimedia Commons.
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