
TIEA311
Tietokonegrafiikan perusteet
kevät 2018

(“Principles of Computer Graphics” – Spring 2018)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).



TIEA311 Tietokonegrafiikan perusteet – kevät 2018
(“Principles of Computer Graphics” – Spring 2018)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017-2018 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2018 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp18/



Some words about:

I programming (philosophical)
I learning programming (philosophical)

With some references to get us thinking

Postponed for a later time (likely next lecture):

I and “what on earth actually happened (or, was supposed
to happen) in Assignment 0?” (philosophical and technical)

I C++ (technical)
I OpenGL (technical)
I GLUT (technical)



Abstruse Goose: “How to teach yourself C++ in 21 days” (
http://abstrusegoose.com/249 )

The above webcomic contains science fiction elements, “nerd
humor”, and sarcasm – but also bits of truth to think about:

I Regardless of language, programming starts with learning
basic structures and program flow.

I Learning takes time
I Learning needs interaction and motivation
I Ten years of actively doing something (ca. 3648 days) is

likely to make you a professional in any skill – like
programming (or theoretical physics, or genetics, or
playing an instrument, for that matter).

I 21 days . . . well . . . is unlikely.



What is learning?

As of Spring 2017 (and also 2018) I’m thinking about this quite
a lot, since we’re discussing this formally in the “YPE” studies
(university pedagogical studies)

My thoughts, and implications:

I Learning takes time – use the 135 hours allotted for any 5
ECTS credit points

I Learning needs interaction – use IRC, email, computer
classes, face-to-face fellow students, friends

I Learning needs motivation – I can only (try to) spark and
maintain yours, but the rest is all personal; if you don’t
want to learn something, a bigger question should arise:
do you want a degree in IT; do you want to be an IT pro?

I Learning is painful – remember: “no pain, no gain”, if you
don’t yet feel any pain, raise the bar! The Assignments of
this course have all the potential to facilitate pain.



What is learning?

More thoughts:

I Learning comes from getting answers to questions – first
thing is to formulate the next question – what do I know,
what do I need to know next. Not so simple, though!!

I Sometimes just thinking about the question gives you
the answer – discovery of an application!

I Usually it leads to reading more information – so simple
these days; we have the WWW!

I At times, you just need to ask others.
I However, I doubt any deeper learning is possible if you

don’t ask yourself first, which leads to formulating the
question.



What is it to learn programming?

More thoughts:

I Not sure about today, but back in the 1990’s the school
system did not really support active thinking and asking
questions. “Book knowledge” is just not enough for
programming (or scientific work, or other fundamentally
creative activities). Fortunately, we are in university now!

I “Book knowledge” is definitely required, too – for example,
we need tutorials to learn how things work, we need
specifications and reference manuals to check things out.

I But none of this knowledge will create a program
I The real skill is to locate knowledge and to apply it to the

task at hand.
I Impossible to remember how all the 10000 nuts and bolts

work – the target skill is to re-discover, again and again.
It gets easier every time. Things look similar (in C, C++,
C#, Java, Javascript, Python, . . . )



Requirements in real-world programming jobs

I Standard pre-assignment in a job recruitement: You are
given a new platform (something you might have never
seen) and a task to create some “simple” application
(something you might have never done before) in one
week.

I You need to be able to do this – they want you to be able
to learn new things (and of course, they’re likely to
measure also the “quality” of your solution)

I Then, you might get to the actual interview – in which
they’d probably like to know how you communicate with
peers – for example, if you are able to ask for help and
help others in a team.



Role of TIEA311. . . a step towards the real skills

I New tools (language, libraries)
I New application
I Less “holding your hand” – a push towards new ways of

thinking and acting (compared to what earlier levels of
school may have been like)

I Towards being a pro!

Programming 1 and 2 can only get you so far. Soon after, there
must be a shift towards the skills to survive in real world.

The Assignments of this course facilitate learning real-world
skills. They give you some basic knowledge, but also “more or
less vague clues” for finding out more from outside sources :).



Ok, we discussed a bit about:

I programming (philosophical)
I learning programming (philosophical)

Then onwards:

I C++ (technical)
I OpenGL (technical)
I GLUT (technical)
I “what on earth actually happens (or, is supposed to

happen) in Assignment 0?” (philosophical and technical)

Abstruse Goose: “How to teach yourself C++ in 21 days” (
http://abstrusegoose.com/249 )



C++

I Old
I Alive and well
I Evolving
I Backwards-compatible “down to C”
I Cross-platform (through native compilation!)
I Multi-paradigm (structural, object oriented, “template

metaprogramming”, some coarse “functional” approaches
possible)

I Complex as hell. . .



OpenGL – “glNameOfSomeCall()”

I One interface for graphics (alternatives: Windows-only
DirectX, upcoming/very new cross-platform Vulkan)

I Implemented as a library with specified function calls
I Cross-platform
I Widely used
I State machine!



OpenGL Utility Library – “gluNameOfSomeCall()”

I Some convenience functions on top of plain OpenǴL
I This is usually available along with OpenGL



GLUT – “glutNameOfSomeCall()”

I user interface library (Window + minimal keyboard and
mouse controls)

I Designed to make it easy to learn OpenGL (UI library is as
simple as possible)

I Not to be used for “production” (production-grade
cross-platform alternatives: SDL2, Qt, fltk, etc. . . )

I Perfect for its intended job
I Event-driven, based on registering callbacks



Let us try to “dissect” Assignment 0 somewhat together,
on-screen . . .

(in 2018, we started this on lecture 2, and we’ll continue the
dive on lecture 3)


