
TIEA311
Tietokonegrafiikan perusteet
kevät 2017

(“Principles of Computer Graphics” – Spring 2017)

Copyright and Fair Use Notice:

The lecture videos of this course are made available for
registered students only. Please, do not redistribute them for
other purposes. Use of auxiliary copyrighted material
(academic papers, industrial standards, web pages, videos,
and other materials) as a part of this lecture is intended to
happen under academic ”fair use” to illustrate key points of the
subject matter. The lecturer may be contacted for take-down
requests or other copyright concerns (email:
paavo.j.nieminen@jyu.fi).

TIEA311 Tietokonegrafiikan perusteet – kevät 2017
(“Principles of Computer Graphics” – Spring 2017)

Adapted from: Wojciech Matusik, and Frédo Durand : 6.837 Computer
Graphics. Fall 2012. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA

Original license terms apply. Re-arrangement and new content
copyright 2017 by Paavo Nieminen and Jarno Kansanaho

Frontpage of the local course version, held during Spring 2017 at the
Faculty of Information technology, University of Jyväskylä:
http://users.jyu.fi/˜nieminen/tgp17/

Assignment 1 etc: how to proceed

I Read instructions
I Start early
I Reflect against the theory slides
I Disregard the “start from scratch” hints! We don’t have

time for that much pain – we’ll have enough, just
modifying the starter codes!

I Ask questions when you arrive to useful ones!
I Start early

Recap

• Vectors can be expressed in a basis
• Keep track of basis with left notation
• Change basis

• Points can be expressed in a frame
(origin+basis)
• Keep track of frame with left notation
• adds a dummy 4th coordinate always 1

2

Linear component

• Note how we leave the fourth component alone
40

Translation component

• Express translation vector t in the basis

41

Translation

42

Full affine expression

Which tells us both how to get a new frame ftM
or how to get the coordinates Mc after transformation

43

Frames & hierarchical modeling

• Many coordinate systems (frames):
• Camera
• Static scene
• car
• driver
• arm
• hand
• ...

• Need to understand nested transformations
49

Image courtesy of Gunnar A. Sjögren on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Frames & hierarchical modeling

• Example: what if I rotate the wheel of the moving
car:

• frame 1: world

• frame 2: car

• transformation: rotation

50

Image courtesy of Gunnar A. Sjögren on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Frames & transformations
• Transformation S wrt car frame f

• how is the world frame a affected by this?

• we have

• which gives

• i.e. the transformation in a is A-1SA

• i.e., from right to left, A takes us from a to f, then

we apply S, then we go back to a with A-1
51

Regarding the “left notation” and changing frames, the local
lecturer of TIEA311 was dealing with something he hadn’t
really used before.

Questions he had to ask himself: How is the math being
used here, conceptually? How are the computations done?
How does this relate to what he had learned before (on
previous instantiations of the present local course and on
Linear Algebra of the math dept.)?

Specifically, the order of A and A−1 and what it means to
“move from a frame to another” were puzzling. How should we
interpret “moving” from ~f to ~a?

Were the slides correct (always possible to contain mistakes)?
And assuming they were (which is more likely), what part of the
concept did he not yet fully understand?

So. . . what did the lecturer have to do in order to understand?

(guesses, anyone?)

Take a paper and a pen, and use a simple, concrete
example to verify that the equations match the mental
image.

This time, it turns out that also the mental image needed to be
adjusted (not much, but a little). This is called learning. It is
painful, takes time, requires necessary tools (perhaps unique
for everyone?), and then rewards.

Basic stuff. On the following slides, some scribbles from along
the way.

Example: Back and forth between frames?
Pen and paper to help the brain (world + car + local origins and
basis vectors + a point rotating in car frame):

Well, not yet enough.. provided only a momentary
enlightenment that faded away overnight. . . followed an old
fixation in thinking.

Example: Back and forth between frames!
More paper with whitespace, possibly same pen (very nice
Ballograf one), re-start after thinking carefully about the slides
covered on previous lectures:

Finally, a corrected mental model of what is “a frame”, and
“keeping track of the frame” as defined by the OCW slides. You
must do this kind of stuff by yourself – in your own way!
(If you learn without, I think you have superpowers and should go fight hostile aliens, not waste those powers on IT studies)

Frames & transformations
• Transformation S wrt car frame f

• how is the world frame a affected by this?

• we have

• which gives

• i.e. the transformation in a is A-1SA

• i.e., from right to left, A takes us from a to f, then

we apply S, then we go back to a with A-1
51

Questions?

52

53

How are transforms combined?

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =

2

0
0
2

0
0

1
0

0
1

3

1

2

0
0
2

3

1 =

Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Caution: matrix multiplication is NOT commutative!

0

0

1

0

0

1

0

0

1

53

Non-commutative Composition

Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

54

TS =

2

0
0

0
2

0

0
0
1

1
0
0

0
1
0

3

1

1

ST =

2

0
0
2

0
0

1
0

0
1

3

1

Non-commutative Composition

Scale then Translate: p' = T (S p) = TS p
2

0
0

0
2

0

3

1

1

2

0
0
2

6

2

=

=

Translate then Scale: p' = S (T p) = ST p

0

0

1

0

0

1

0

0

1

55

Questions?

56

Plan
• Vectors

• Points

• Homogenous coordinates

• Normals

57

Forward reference and eye
• The fourth coordinate is useful for perspective

projection

• Called homogenous coordinates

58

Homogeneous Coordinates

•Add an extra dimension (same as frames)
• in 2D, we use 3-vectors and 3 x 3 matrices
• In 3D, we use 4-vectors and 4 x 4 matrices

•The extra coordinate is now an arbitrary value, w

• You can think of it as “scale,” or “weight”
• For all transformations
except perspective, you can
just set w=1 and not worry
about it

x'

y‘

1

a b

d e

0 0

c

f

1

=
x

y

1

59

• All non-zero scalar multiples of a point are considered
identical

• to get the equivalent Euclidean point, divide by w

Projective Equivalence

x

y

z

w

ax

ay

az

aw

a != 0

=
x/w

y/w

z/w

1

=
w !=0

60

Why bother with extra coord?

w = 1

w = 2

• This picture gives away almost
the whole story.

61

BEWARE: A very lost lecturer babbling BS!
For the perspective projection part (next slides up to the
SIGGRAPH paper title), the Finnish spoken “explanation” on
the 7th lecture of TIEA311 Spring 2017 (Mon, Jan 30) is
mostly rubbish. The slides, in turn, are brilliant in explaining
the perspective projection, but your lecturer hit his own internal
limit of continuous explanation capacity, destroying the clarity.

Flatland reference was OK, and all the “floating” at the distance
of 1. . . but it is of course the z (“depth”) coordinate that divides
the other 2 coordinates in the 3D perspective projection (and
the only other, x, coordinate in the 2D conceptual example
shown here). It happens conveniently via copying the z
coordinate to w (with the matrix given) and then coming back to
the Euclidean equivalent coordinates w = 1 by division by w,
which has been made equal to z by the copy!

Try to decipher it from the slides – we’ll start the next lecture
by correcting the story.

• Camera at origin, looking along z, 90 degree
f.o.v., “image plane” at z=1

Perspective in 2D

62

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

Perspective in 2D

63
This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

The projected point in
homogeneous
coordinates
(we just added w=1):

Perspective in 2D

Projectively
equivalent

64

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

Perspective in 2D
We’ll just copy z to w,
and get the projected
point after
homogenization!

65
This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

Homogeneous Visualization
• Divide by w to normalize (project)

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

(0,0,0)

66

Homogeneous Visualization
• Divide by w to normalize (project)

• w = 0?

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

Points at infinity (directions)

(0,0,0)

67

Projective Equivalence – Why?
• For affine transformations,

adding w=1 in the end proved to be convenient.

• The real showpiece is perspective.

68

This image is in the public domain.
Source: http://openclipart.org/detail/34051/digicam-by-thesaurus.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-us e/.

Questions?

69

Eye candy: photo tourism
• Application of homogenous coordinates

• Goal: given N photos of a scene
• find where they were taken
• get 3D geometry for points in the scene

70

From Photo Tourism:: Exploring Photo Collections in 3D, used with permission from ACM, Inc.

©ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Step 1: point correspondences
• Extract salient points (corners) from images

• Find the same scene point in other images

• To learn how it’s done, take 6.815

71

Structure from motion
• Given point correspondences

• Unknowns: 3D point location, camera poses

• For each point in each image, write perspective
equations

72
Camera 1 R1,t1

Camera 2 R2,t2

Camera 3
R3,t3

p1

Minimize f(R,T,P)

Eye candy: photo tourism

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.

73

BS-WARNING OVER: Lecturer woke up from
his coma

The rest of the 7th lecture talk was less rubbish.

What happened just before, is a great example of what is likely
to happen when you think “this is all very clear, I don’t have to
recapitulate this before presenting it to others”

We learn from our mistakes? Again and again.

Carry on. . .

1

Some slides from BarbCutler &
Jaakko Lehtinen

Wojciech Matusik, MIT EECS

1

6.837 Computer Graphics
Hierarchical Modeling

Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Different objects

• Points

• represent locations

• Vectors

• represent movement, force, displacement from A to B

• Normals

• represent orientation, unit length

• Coordinates

• numerical representation of the above objects
in a given coordinate system

5

Normal

• Surface Normal: unit vector that is locally
perpendicular to the surface

6

Why is the Normal important?

• It's used for shading — makes things look 3D!

object color only Diffuse Shading

7

Visualization of Surface Normal

 ± x = Red
± y = Green
± z = Blue

8

How do we transform normals?

Object Space World Space

nOS

nWS

9

Transform Normal like Object?

• translation?

• rotation?

• isotropic scale?

• scale?

• reflection?

• shear?

• perspective?

10

Transform Normal like Object?

• translation?

• rotation?

• isotropic scale?

• scale?

• reflection?

• shear?

• perspective?

11

Transformation for shear and scale

Incorrect
Normal
Transformation

Correct
Normal
Transformation

12

More Normal Visualizations

Incorrect Normal Transformation Correct Normal Transformation
13

• Think about transforming the tangent plane
to the normal, not the normal vector

So how do we do it right?

Original Incorrect Correct

nOS

Pick any vector vOS in the tangent plane,
how is it transformed by matrix M?

vOS
vWS

nWS

vWS = M vOS

14

Transform tangent vector v

v is perpendicular to normal n:
nOSʿᵀ vOS = 0

 nOSᵀ (M ̄ ¹ M) vOS = 0

 nWSᵀ = nOSᵀ (M ̄ ¹)

 (nOSᵀ M ̄ ¹) (M vOS) = 0
 (nOSᵀ M ̄ ¹) vWS = 0

 nWSᵀ vWS = 0

vWS is perpendicular to normal nWS:

 nWS = (M ̄ ¹)ᵀ nOS

nOS

vWS

nWS

vOS

Dot product

15

Digression

• The previous proof is not quite rigorous; first
you’d need to prove that tangents indeed
transform with M.
- Turns out they do, but we’ll take it on faith here.

- If you believe that, then the above formula follows.

 nWS = (M¯¹)ᵀ nOS

16

Comment

• So the correct way to transform normals is:

• But why did nWS = M nOS work for similitudes?

• Because for similitude / similarity transforms,

(M¯¹)ᵀ =λ M

• e.g. for orthonormal basis:

 M¯¹ = M ᵀ i.e. (M¯¹)ᵀ = M

 nWS = (M¯¹)ᵀ nOS Sometimes denoted M¯ᵀ

17

Connections

• Not part of class, but cool
• “Covariant”: transformed by the matrix

• e.g., tangent

• “Contravariant”: transformed by the inverse transpose
• e.g., the normal

• a normal is a “co-vector”

• Google “differential geometry” to find out more

18

• Further Reading
–Buss, Chapter 2

• Other Cool Stuff
–Algebraic Groups
–http://phototour.cs.washington.edu/
–http://phototour.cs.washington.edu/findingpaths/
–Free-form deformation of solid objects
–Harmonic coordinates for character articulation

19

Question?

20

Assignment 0 aftermath: How to do it “right”

I The “right way” to implement OBJ reading?
I In programming, “the best way” is somewhat ill-defined.
I All you can (should) do is better than your earlier code.
I One measure of a “good enough way” is that the code is

successfully used in real products
I But never forget safety (as the most important measure),

readability, maintainability, performance (which only
matters in selected places! Almost never “comes first”!). . .

I That said, two alternatives from real software to read OBJ
meshes:

I https:
//github.com/openscenegraph/OpenSceneGraph/
blob/master/src/osgPlugins/obj/obj.cpp

I https://github.com/davll/ICG_SSAO/tree/
master/source/nv

I (The former is properly open source; about the latter I’m
not certain - it seems to originate in some Nvidia SDK . . .)

And that’s it for today
• The rest on Thursday

74

