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Abstract. Recently developed adaptive Markov chain Monte Carlo (MCMC)
methods have been applied successfully to many problems in Bayesian sta-
tistics. Grapham is a new open source implementation covering several such
methods, with emphasis on graphical models for directed acyclic graphs. The
implemented algorithms include the seminal Adaptive Metropolis algorithm
adjusting the proposal covariance according to the history of the chain and a
Metropolis algorithm adjusting the proposal scale based on the observed accep-
tance probability. Different variants of the algorithms allow one, for example,
to use these two algorithms together, employ delayed rejection and adjust sev-
eral parameters of the algorithms. The implemented Metropolis-within-Gibbs
update allows arbitrary sampling blocks. The software is written in C and uses
a simple extension language Lua in configuration.

1. Introduction

Markov chain Monte Carlo (MCMC) is a general framework for computing
expectations over complicated distributions in general state spaces. The methods
are based on constructing a Markov chain (Xn)n≥1 so that the ergodic averages

IN = N−1
∑

N

k=1 f(Xk) converge to I =
∫

f(x)π(x)dx as N → ∞, where π is
the target distribution of interest. Such a chain is often easy to construct using
the Metropolis-Hastings algorithm; see, for example, Robert and Casella [1999].
Depending on π, however, it may be difficult to design a practical algorithm so
that IN would approximate I well with a moderate number of samples N .

Recently proposed adaptive MCMC algorithms adjust the parameters of the
algorithm (the proposal distribution) on-the-fly, aiming to allow efficient simula-
tion. They have attracted increasing attention in the last few years, after Haario
et al. [2001] presented the seminal Adaptive Metropolis (AM) algorithm, and An-
drieu and Robert [2001] related adaptive MCMC to the general context of the
Robbins-Monro stochastic approximation. After that, several authors have pro-
posed new algorithms and variations, and provided theoretical validation of the
methods [Haario et al., 2005, 2006, Atchadé and Rosenthal, 2005, Andrieu and
Moulines, 2006, Roberts and Rosenthal, 2009, 2007, Saksman and Vihola, 2008,
Atchadé and Fort, 2008, Bai et al., 2008, Vihola, 2009]; see also the recent review
by Andrieu and Thoms [2008] and references therein.

Grapham is an open source implementation of several adaptive MCMC algo-
rithms based on the random walk Metropolis sampler. The purpose of Grapham
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is to provide an experimental tool for evaluating the performance of such algo-
rithms with practical problems, especially in Bayesian statistics. The source code
of the software and additional documentation are available for downloading in
http://iki.fi/mvihola/grapham/.

Rosenthal [2007] describes another adaptive MCMC implementation: AMCMC.
It is an R interface to one adaptive MCMC algorithm (referred to as ‘ASCM’ in
Section 2 below). Grapham differs from AMCMC in that it relies on a hierarchical
model specification and provides more alternative algorithms. Unlike AMCMC,
Grapham also provides a set of ready-made standard distribution functions the
user can employ as a part of their model specification. This is intended to allow
faster development while permitting the user to define arbitrary distributions
easily.

The models are specified in Grapham by defining a set of variables with their
conditional distributions. Such models are often referred to as ‘graphical mod-
els’; see, for example, Lauritzen [1996] and references therein. This underlying
philosophy of Grapham reminds that of BUGS [Spiegelhalter et al., 1996–2008];
see also the review Murphy [2007] of other software for graphical models. The
advantage of Grapham over BUGS is that the adaptive MCMC algorithms can be
much more efficient than the non-adaptive (Metropolis-within-)Gibbs algorithms
of BUGS. One should, however, notice that Grapham is an experimental project
not offering the versatility and maturity of BUGS. It is also likely that BUGS
performs better than Grapham with many simpler models.

2. Algorithms

The general form of the algorithms implemented in Grapham can be described
as follows. Let X0 ≡ x0 ∈ R

d be a given starting point for the state chain, and
θ0 and L0 stand for the initial scaling parameter and the (lower-diagonal with
non-zero diagonal) shape matrix, respectively. For n ≥ 1, the recursion follows:

(S1) form a proposal Yn = Xn−1 + θn−1Ln−1Wn, where Wn is an independent
sample from a symmetric proposal distribution q0,

(S2) with probability αn = min{1, π(Yn)/π(Xn−1)}, the proposal is accepted and
Xn = Yn; otherwise, the proposal is rejected and Xn = Xn−1, and

(S3) update the scaling parameter θn−1 → θn > 0 and the shape Ln−1 → Ln ∈
R

d×d according to the selected adaptive algorithm.

The steps (S1) and (S2) implement an iteration of the random-walk Metropolis
algorithm with the proposal distribution q0 scaled by the factor θn−1Ln−1. Step
(S3) implements the adaptation, changing the scaling parameters θn and Ln based
on the history of the chain. Examples of such updates are given below.

Instead of applying the iteration (S1)–(S3) at once to all the elements of the
vector Xn, one may use Metropolis-within-Gibbs and apply the iteration sequen-
tially to subsets of the elements of Xn, as in the single component AM algorithm
suggested by Haario et al. [2005]. These sampling blocks can be selected freely
in Grapham. The proposal distribution q0 in (S1) can also be chosen. Grapham
currently implements (multivariate) Gaussian, student, uniform (in a cube) and
(a d-fold product of) Laplace proposal distributions.
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The adaptation of (S3) depends on the selected algorithm. The Adaptive Me-
tropolis (AM) algorithm of Haario et al. [2001] implies constant scaling θn = θ0

for all n ≥ 1. The shape matrix Ln is the Cholesky factor of a covariance estimate
of the chain. In particular, LnLT

n
= Cn with a positive definite C0 ∈ R

d×d and
defined through

Mn = (1 − ηn)Mn−1 + ηnXn and(1)

Cn = (1 − ηn)Cn−1 + ηn(Xn − Mn−1)(Xn − Mn−1)
T ,(2)

with M0 ≡ x0. The weight sequence ηn ∈ (0, 1) can be selected arbitrarily, but it is
recommended to choose ηn decaying to zero. For example, setting ηn = η0 > 0 for
all n ≥ 1 results in an algorithm similar to the Adaptive Proposal (AP) algorithm
[Haario et al., 1999]. This algorithm does not, in general, provide valid simulation;
see the example in Haario et al. [2001]. The original AM algorithm employs
the default value ηn = (n + 1)−1, in which case Mn and Cn coincide with the
average and (asymptotically) the sample covariance of X0, . . . , Xn, respectively.
The updated Cholesky factor Ln+1 of Cn+1 is computed efficiently from Ln by a
rank one update requiring O(d2) operations [Dongarra et al., 1979]. Observe that
the same order of operations is needed when forming the proposal Yn in (S1).

The adaptive scaling Metropolis (ASCM) algorithm as proposed by Atchadé and
Rosenthal [2005] and Roberts and Rosenthal [2007, 2009] leaves the shape matrix
constant Ln = L0 for all n ≥ 1. The scaling parameter θn is updated according
to the observed acceptance probability. The default update in Grapham is

(3) θn = θn−1

[

1 + ηn

(αn

α∗
− 1

)]

,

where α∗ is the desired acceptance probability. The default values for α∗ are 0.44
in dimension one and 0.234 otherwise following Roberts and Rosenthal [2009]. The
user can also supply an alternative, arbitrary update function easily, as exemplified
in Section 4.

These two algorithms, AM and ASCM, can be used simultaneously, as suggested
in Atchadé and Fort [2008] and Andrieu and Thoms [2008]. Additional flavours to
the algorithms include a Rao-Blackwellised version of AM [Andrieu and Thoms,
2008] modifying the update formulae (1) and (2) to

Mn = (1 − ηn)Mn−1 + ηn[αnYn + (1 − αn)Xn−1] and(4)

Cn = (1 − ηn)Cn−1 + ηn

[

αn(Yn − Mn−1)(Yn − Mn−1)
T(5)

+(1 − αn)(Xn−1 − Mn−1)(Xn−1 − Mn−1)
T
]

.

There is a possibility to use (two-stage) delayed rejection (DR) with AM [Haario
et al., 2006]. DR can also be applied when using ASCM, so that only the first-stage
acceptance probability αn is employed in (3).

Grapham implements three different burn-in strategies for adaptation. The
default ‘greedy’ strategy performs continuous adaptation during the whole MCMC
run. The ‘traditional’ strategy as proposed in Haario et al. [2001] uses a fixed
proposal for the burn-in and then performs continuous adaptation during the rest
of the simulation. One may also apply a ‘freeze’ strategy adapting only during
the burn-in and keeping the obtained parameters fixed during the estimation run.
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It is possible to employ a mixture of two proposal density components, a fixed
and an adaptive one [Roberts and Rosenthal, 2009]. This is implemented in
Grapham so that, with probability pmix, the initial parameters L0 and θ0 are
used in (S1) instead of the adapted values θn−1 and Ln−1. The user may define

also a non-constant mixing probability p
(n)
mix ∈ [0, 1]. This feature can be used,

for example, to introduce a ‘gradual burn-in,’ by defining a decaying sequence

p
(n)
mix → 0.

3. Implementation

Grapham does not have an interactive ‘user interface.’ It is simply executed
from the command prompt (shell) with input file names as parameters. The
input files contain the model specification and the simulation parameters. It
is also possible to define the functional of interest in the input files. For more
complicated functionals, however, it may be convenient to store (a subset of) the
samples simulated by Grapham and process them in another environment. The
samples can be saved into a file in the CSV (comma separated values) format or
in a simple binary format. The former allows the samples to be easily imported to
many other environments. There are ready-made functions for loading the binary
data files into R [R Development Core Team, 2009], MatlabR© (The MathWorks,
Natick, Massachusetts) and Octave [Eaton, 2002] environments.

The core of Grapham is implemented in C. It includes some numerical Fortran
subroutines from the Netlib repository [Browne et al., 1995] and can optionally
be compiled with the dSFMT random number generator of Saito and Matsumoto
[2008] instead of using the random number generators provided by the C standard
libraries. The configuration of Grapham is done using the small and publicly
available extension language Lua [Ierusalimschy et al., 1996]. While minimalistic,
Lua is in fact a full-featured programming language offering a great flexibility.
For example, the user can supply functions as configuration parameters and apply
data from external files in the model. In fact, Grapham includes some functions
written in Lua, for example for reading data files in the CSV format. The Numeric
Lua package [Carvalho, 2005] can also be compiled with Grapham to allow easy
working with vector-valued variables.

There are numerous ready-made distribution functions available for defining
the conditional densities associated with the variables. The densities can also be
defined arbitrarily as Lua functions. Likewise, the functional of interest may be
written in Lua. However, to allow optimal performance, Grapham allows the user
to supply densities and functionals in a separate C library with ease.

4. An Example Session

Consider the baseball model of Rosenthal [1996] used as an example also with
AMCMC [Rosenthal, 2007]. It consists of 38 real-valued variables, defined hier-
archically as depicted in Fig. 1. The file specifying this model in Grapham is
shown in Fig. 2. The model is defined in the Lua table model, defined in lines
4–20. Each variable is defined by an entry containing a logarithmic density, con-
ditional on the parent variables. The variables µ, t and y in the example have
standard distributions: µ has (an improper) uniform distribution over R, while
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µ a

t1 t2 t18

· · ·

y1 y2 y18

Figure 1. The graphical representation of the baseball model. The
nodes with observed values (‘data’) are shown in grey.

1 const = {

2 v = 0.00434

3 }

4 model = {

5 mu = {

6 density = "duniform"

7 },

8 t = {

9 parents = {"mu","a"}, density = "dnorm"

10 },

11 y = {

12 parents = {"t", "v"}, density = "dnorm"

13 },

14 a = {

15 init_val = 1,

16 density = function(a_)

17 return dexp(1/a_, 1/2)

18 end

19 },

20 }

21 _, y = read_csv("models/baseball.data")

22 repeat_block({"y","t"}, y[1])

23 function functional()

24 return {t1, mu, a}

25 end

26 para = {

27 niter = 30000, nburn = 10000, algorithm = "ascm",

28 }

Figure 2. The Lua code in the file models/baseball.lua speci-
fying the model of Fig. 1 in Grapham.

t and y are conditionally Gaussian with means µ and t and variances a and v,
respectively. The reciprocal of the variable a is exponentially distributed; this is
defined through a Lua function defined in lines 16–18, calling dexp, the exponen-
tial distribution function. The model is, in fact, then modified by the function
repeat_block. The block of variables (y, t) in the model is replicated 18 times to
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1 para.scaling_adapt = function(sc, alpha, dim, k)

2 if alpha>0.44 then

3 delta = 1

4 else

5 delta = -1

6 end

7 return sc*exp(delta*min(0.01, 1/sqrt(k+1)))

8 end

9 para.dr = 0.1; para.proposal = "student"

Figure 3. The Lua code in the file models/amcmc dr.lua.

obtain blocks (y1, t1), . . . , (y18, t18). At the same time, the function repeat_block

sets the values of yi to the 18 values read from the CSV file baseball.data using
the function read_csv.

The following shows an example run of Grapham with the model specification
of Fig. 2.

$ ./grapham models/baseball.lua

Functional average = [ 0.392507 0.267393 0.318917 ]

Acceptance rates: ( a ): 44.03% ( t7 ): 43.97% ( t9 ): 44.00%

The part of the output shown above contains the computed estimate of the ex-
pected value of the functional specified in lines 23–25 of Fig. 2, that is, the mean
of the vector [t1, µ, a], giving a similar estimate for t1 as obtained by AMCMC
[Rosenthal, 2007]. Moreover, the average acceptance rate of the nodes was ap-
proximately 44%, which is the default value of the desired acceptance probability
α∗. The run consisted of 40000 (of which 10000 burn-in) iterations using the
ASCM algorithm for each real-valued variable at a time. This algorithm is very
similar to the one implemented in AMCMC. The running time of Grapham was
approximately 1.0 seconds with Intel Pentium 4 at 2.80GHz. As a comparison, the
same run with AMCMC (with both the density and the functional specified in C
for optimal performance) took approximately 3.8 seconds. The faster simulation
speed of Grapham is explained by the hierarchical model setup, which Grapham
can take advantage of. That is, only part of the conditional densities in the target
distribution need to be evaluated when each variable is updated.

Let us modify the above example, by adding the lines shown in Fig. 3 to the
model specification of Fig. 2. The supplied function para.scaling_adapt replaces
the default update in (3), and in fact implements exactly the scaling adaptation
algorithm of AMCMC [Rosenthal, 2007, Roberts and Rosenthal, 2009]. The value
set to the parameter para.dr means that delayed rejection is used, with a 0.1
times down-scaled proposal in the second stage. Moreover, instead of the de-
fault Gaussian distribution, the proposal samples are drawn from a Student’s
t-distribution.

$ ./grapham models/baseball.lua models/amcmc_dr.lua

Functional average = [ 0.392465 0.266204 0.321466 ]

Acceptance rates: ( a ): 70.26% (47.49%/22.77%) ( t7 ): 70.66%

(47.55%/23.10%) ( t9 ): 71.08% (47.62%/23.46%)
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In this case, the total acceptance rate of each block is around 70%, of which
roughly two thirds are accepted in the first stage and one third in the second,
delayed rejection stage. The estimates obtained for t1, µ and a appear similar to
the first run.

Finally, to exemplify how the data simulated by Grapham can be used in other
environments, let us run Grapham with the command line

$ ./grapham models/baseball.lua -e "para.outfile=’bb.bin’"

This command includes the chuck of Lua code para.outfile=’bb.bin’ after
reading the file baseball.lua. As a consequence, the simulated samples are
written in the file bb.bin. In R, one could, for example, write

> source("tools/grapham_read.r")

> data <- grapham_read("bb.bin", nthin=10)

> plot(data$a, data$t1)

which would plot every tenth of the 30000 simulated samples of (a, t1) in the same
figure.

5. Conclusions

Grapham provides a flexible open-source test bed for evaluating the perfor-
mance of different adaptive random walk Metropolis algorithms, especially with
hierarchical models often encountered in Bayesian statistics. It provides a fairly
simple and general way of determining models and functionals and for incorpo-
rating data into the model. The simulation speed of Grapham is good, even in a
relatively high-dimensional setting, as the implemented algorithms involve at most
a quadratic number of operations with respect to the dimension. The user has ex-
tensive control over the various parameters of the algorithms, enabling a thorough
testing of different adaptation strategies. Moreover, new adaptive algorithms of
the similar random walk type can be easily added to Grapham.
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