
MATS442 Stochastic simulation — Problems 5, 14.2.2020

The problems marked with C have a part which needs to be implemented in a computer
programming language. Please return a single code file with the answers to these exercises
by email to 〈santeri.j.karppinen(·at·)jyu.fi〉.

1. Suppose that p and q are probability densities on R, satisfying q(x) = 0 =⇒ p(x) = 0
and you have implemented self-normalised importance sampling, that is,

X1, . . . , Xn ∼ q( · ), W
(n)
k =

wu(Xk)∑n
j=1wu(Xj)

, wu(x) = cw
p(x)

q(x)
.

(a) How can you estimate Varp(X) using (X1, . . . , Xn) and (W
(n)
1 , . . . ,W

(n)
n )?

(Hint: Express Varp(X) in terms of expectations.)
(b) Show that your estimator is consistent.
(c) How about quantiles, that is, for a given β ∈ (0, 1), how can you estimate the

number xβ ∈ R such that P(X ≤ xβ) = β where X ∼ p?
(Hint: Think first what might be an estimator of F (x) = P(X ≤ x).)

(d) (*) Can you show that the quantile estimator is consistent if F is strictly increasing?

2. Consider Algorithm 6.13 (Metropolis-Hastings).

(a) Observe that (Xk, Yk+1)k≥1 is a Markov chain.
(b) Show that (Xk, Yk+1)k≥1 admits p̃(x, y) = p(x)q(x, y) as invariant distribution.

(Hint: Use first the fact that Xk−1 ∼ p =⇒ Xk ∼ p, and then think about a
conditional distribution of Yk+1. . . )

(c) Where does the following average converge to:

I
(n)
p,q,WR−MH(f) :=

1

n

n∑
k=1

[
α(Xk, Yk+1)f(Yk+1) +

(
1− α(Xk, Yk+1)

)
f(Xk) ?

(d) (*) Can you relate the k:th term in the sum above to the conditional expectation
of f(Xk+1) given Xk and Yk+1? What does this mean regarding the variance of
the k:th term? What about the variance of the whole ‘waste recycling’ estimator
I
(n)
p,q,WR−MH(f) compared to I

(n)
p,q,MH(f)?

3.C & 4.C (worth 2 points). Consider a Metropolis-Hastings algorithm targetting the follow-
ing unnormalised distribution in R2:

pu([x, y]) = exp

(
− 1

2

(
x2 + y2

))
+ exp

(
− 1

2

(
(x− 7)2 + y2

))
,

You may use the following Julia function to calculate values of log pu([x, y]):

function log_p_u(x, m1=[0.0,0.0], m2=[7.0,0.0])

q1 = -.5(x-m1)'*(x-m1); q2 = -.5(x-m2)'*(x-m2)

q0 = max(q1, q2) # Avoid underflow of both exp's below

return(q0 + log(exp(q1-q0) + exp(q2-q0)))

end

Use the proposal distribution q(x, y) = q̃(y−x), where q̃ corresponds to N(0, 4I2), normal
distribution in R2 with diagonal variance 4.

(a) Implement this Metropolis-Hastings algorithm.



(b) Run the algorithm for 100000 iterations and with suitable burn-in, and calculate
estimators for

Ep[fi(X)] and Varp
(
fi(X)

)
,

where fi(x) := x(i), that is, f1(x, y) := x and f2(x, y) := y.
(c) Calculate and inspect sample autocorrelations for fi(X1), . . . , fi(X100000) (using

function autocor of StatsBase package).
(d) Calculate effective sample size by summing autocorrelations up to some truncation.
(e) Use the functions estimateBM and estimateSV of the code provided, which give

estimates of σ2
MH . Calculate the corresponding effective sample sizes, and compare

to your result.
(f) Build up 95% confidence intervals to your estimators, using the estimated variance

Varp
(
fi(X)

)
and effective sample sizes.

(g) (* optional) Repeat your experiments 1000 times, and check how many of your
confidence intervals for Ep[fi(X)] covered the true value (what are the true values?).

5. Let pa stand for the uniform distribution on the set

C0 ∪ Ca, where Ct := {(x, y) ∈ R2 : x ∈ [t, t+ 1], y ∈ [t, t+ 1]}.

(a) Draw a picture of the set with a = 1/2 and a = 1.
(b) Describe a Gibbs sampler for pa with a ∈ [0, 1].
(c) Is the Gibbs sampler irreducible with a = 1? How about a ∈ (0, 1)?

(Precise proof is not necessary here, but explain your reasoning. . . )

6. Suppose pu is an unnormalised p.m.f. on X and q(x, · ) a ‘proposal’ p.m.f.. Further assume
that h(x, · ) is a p.m.f. on non-negative integers N0 := {0, 1, . . .} defined for each x ∈ X,
with the property ∑

z∈N

zh(x, z) = pu(x) for each x ∈ X.

Consider a Markov chain (Xk, Zk) defined as follows: Start from X0 ∈ X, Z0 = 1 and for
k = 1, 2, . . .

• Draw X∗k ∼ q(Xk−1, · ) and then Z∗k ∼ h(X∗k , · ).
• Draw Uk ∼ U(0, 1) and set

(Xk, Zk) =

{
(X∗k , Z

∗
k), if Uk ≤

Z∗
k

Zk−1

q(X∗
k ,Xk−1)

q(Xk−1,X
∗
k )
,

(Xk−1, Zk−1), otherwise.

(a) Write down the transition probability

K
(
(x, z), (x′, z′)

)
= P

(
(Xn, Zn) = (x′, z′) | (Xn−1, Zn−1) = (x, z)

)
of this Markov chain.
(Hint: Write down first the ‘compound proposal’ q̃

(
(x, z), (x∗, z∗)

)
= P(X∗k =

x∗, Z∗k = z∗ | Xk−1 = x, Zk = z).)
(b) Observe that h(x, z)z is an unnormalised distribution on X×N0 (why?), and show

that K is reversible with respect to π(x, z) ∝ h(x, z)z.
(c) Suppose you know that the Markov chain (Xk, Zk)k≥1 is irreducible. What can you

say about

lim
n→∞

1

n

n∑
k=1

f(Xk) ?


